]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/mtd/nand/nand_base.c
sunxi_nand_spl: Remove NAND_SUNXI_SPL_SYNDROME_PARTITIONS_END
[karo-tx-uboot.git] / drivers / mtd / nand / nand_base.c
1 /*
2  *  drivers/mtd/nand.c
3  *
4  *  Overview:
5  *   This is the generic MTD driver for NAND flash devices. It should be
6  *   capable of working with almost all NAND chips currently available.
7  *
8  *      Additional technical information is available on
9  *      http://www.linux-mtd.infradead.org/doc/nand.html
10  *
11  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
12  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
13  *
14  *  Credits:
15  *      David Woodhouse for adding multichip support
16  *
17  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
18  *      rework for 2K page size chips
19  *
20  *  TODO:
21  *      Enable cached programming for 2k page size chips
22  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
23  *      if we have HW ECC support.
24  *      BBT table is not serialized, has to be fixed
25  *
26  * This program is free software; you can redistribute it and/or modify
27  * it under the terms of the GNU General Public License version 2 as
28  * published by the Free Software Foundation.
29  *
30  */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 #include <common.h>
34 #include <malloc.h>
35 #include <watchdog.h>
36 #include <linux/err.h>
37 #include <linux/compat.h>
38 #include <linux/mtd/mtd.h>
39 #include <linux/mtd/nand.h>
40 #include <linux/mtd/nand_ecc.h>
41 #include <linux/mtd/nand_bch.h>
42 #ifdef CONFIG_MTD_PARTITIONS
43 #include <linux/mtd/partitions.h>
44 #endif
45 #include <asm/io.h>
46 #include <asm/errno.h>
47
48 static bool is_module_text_address(unsigned long addr) {return 0;}
49
50 /* Define default oob placement schemes for large and small page devices */
51 static struct nand_ecclayout nand_oob_8 = {
52         .eccbytes = 3,
53         .eccpos = {0, 1, 2},
54         .oobfree = {
55                 {.offset = 3,
56                  .length = 2},
57                 {.offset = 6,
58                  .length = 2} }
59 };
60
61 static struct nand_ecclayout nand_oob_16 = {
62         .eccbytes = 6,
63         .eccpos = {0, 1, 2, 3, 6, 7},
64         .oobfree = {
65                 {.offset = 8,
66                  . length = 8} }
67 };
68
69 static struct nand_ecclayout nand_oob_64 = {
70         .eccbytes = 24,
71         .eccpos = {
72                    40, 41, 42, 43, 44, 45, 46, 47,
73                    48, 49, 50, 51, 52, 53, 54, 55,
74                    56, 57, 58, 59, 60, 61, 62, 63},
75         .oobfree = {
76                 {.offset = 2,
77                  .length = 38} }
78 };
79
80 static struct nand_ecclayout nand_oob_128 = {
81         .eccbytes = 48,
82         .eccpos = {
83                    80, 81, 82, 83, 84, 85, 86, 87,
84                    88, 89, 90, 91, 92, 93, 94, 95,
85                    96, 97, 98, 99, 100, 101, 102, 103,
86                    104, 105, 106, 107, 108, 109, 110, 111,
87                    112, 113, 114, 115, 116, 117, 118, 119,
88                    120, 121, 122, 123, 124, 125, 126, 127},
89         .oobfree = {
90                 {.offset = 2,
91                  .length = 78} }
92 };
93
94 static int nand_get_device(struct mtd_info *mtd, int new_state);
95
96 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
97                              struct mtd_oob_ops *ops);
98
99 /*
100  * For devices which display every fart in the system on a separate LED. Is
101  * compiled away when LED support is disabled.
102  */
103 DEFINE_LED_TRIGGER(nand_led_trigger);
104
105 static int check_offs_len(struct mtd_info *mtd,
106                                         loff_t ofs, uint64_t len)
107 {
108         struct nand_chip *chip = mtd->priv;
109         int ret = 0;
110
111         /* Start address must align on block boundary */
112         if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
113                 pr_debug("%s: unaligned address\n", __func__);
114                 ret = -EINVAL;
115         }
116
117         /* Length must align on block boundary */
118         if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
119                 pr_debug("%s: length not block aligned\n", __func__);
120                 ret = -EINVAL;
121         }
122
123         return ret;
124 }
125
126 /**
127  * nand_release_device - [GENERIC] release chip
128  * @mtd: MTD device structure
129  *
130  * Release chip lock and wake up anyone waiting on the device.
131  */
132 static void nand_release_device(struct mtd_info *mtd)
133 {
134         struct nand_chip *chip = mtd->priv;
135
136         /* De-select the NAND device */
137         chip->select_chip(mtd, -1);
138 }
139
140 /**
141  * nand_read_byte - [DEFAULT] read one byte from the chip
142  * @mtd: MTD device structure
143  *
144  * Default read function for 8bit buswidth
145  */
146 uint8_t nand_read_byte(struct mtd_info *mtd)
147 {
148         struct nand_chip *chip = mtd->priv;
149         return readb(chip->IO_ADDR_R);
150 }
151
152 /**
153  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
154  * @mtd: MTD device structure
155  *
156  * Default read function for 16bit buswidth with endianness conversion.
157  *
158  */
159 static uint8_t nand_read_byte16(struct mtd_info *mtd)
160 {
161         struct nand_chip *chip = mtd->priv;
162         return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
163 }
164
165 /**
166  * nand_read_word - [DEFAULT] read one word from the chip
167  * @mtd: MTD device structure
168  *
169  * Default read function for 16bit buswidth without endianness conversion.
170  */
171 static u16 nand_read_word(struct mtd_info *mtd)
172 {
173         struct nand_chip *chip = mtd->priv;
174         return readw(chip->IO_ADDR_R);
175 }
176
177 /**
178  * nand_select_chip - [DEFAULT] control CE line
179  * @mtd: MTD device structure
180  * @chipnr: chipnumber to select, -1 for deselect
181  *
182  * Default select function for 1 chip devices.
183  */
184 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
185 {
186         struct nand_chip *chip = mtd->priv;
187
188         switch (chipnr) {
189         case -1:
190                 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
191                 break;
192         case 0:
193                 break;
194
195         default:
196                 BUG();
197         }
198 }
199
200 /**
201  * nand_write_byte - [DEFAULT] write single byte to chip
202  * @mtd: MTD device structure
203  * @byte: value to write
204  *
205  * Default function to write a byte to I/O[7:0]
206  */
207 static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
208 {
209         struct nand_chip *chip = mtd->priv;
210
211         chip->write_buf(mtd, &byte, 1);
212 }
213
214 /**
215  * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
216  * @mtd: MTD device structure
217  * @byte: value to write
218  *
219  * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
220  */
221 static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
222 {
223         struct nand_chip *chip = mtd->priv;
224         uint16_t word = byte;
225
226         /*
227          * It's not entirely clear what should happen to I/O[15:8] when writing
228          * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
229          *
230          *    When the host supports a 16-bit bus width, only data is
231          *    transferred at the 16-bit width. All address and command line
232          *    transfers shall use only the lower 8-bits of the data bus. During
233          *    command transfers, the host may place any value on the upper
234          *    8-bits of the data bus. During address transfers, the host shall
235          *    set the upper 8-bits of the data bus to 00h.
236          *
237          * One user of the write_byte callback is nand_onfi_set_features. The
238          * four parameters are specified to be written to I/O[7:0], but this is
239          * neither an address nor a command transfer. Let's assume a 0 on the
240          * upper I/O lines is OK.
241          */
242         chip->write_buf(mtd, (uint8_t *)&word, 2);
243 }
244
245 #if !defined(CONFIG_BLACKFIN)
246 static void iowrite8_rep(void *addr, const uint8_t *buf, int len)
247 {
248         int i;
249
250         for (i = 0; i < len; i++)
251                 writeb(buf[i], addr);
252 }
253 static void ioread8_rep(void *addr, uint8_t *buf, int len)
254 {
255         int i;
256
257         for (i = 0; i < len; i++)
258                 buf[i] = readb(addr);
259 }
260
261 static void ioread16_rep(void *addr, void *buf, int len)
262 {
263         int i;
264         u16 *p = (u16 *) buf;
265
266         for (i = 0; i < len; i++)
267                 p[i] = readw(addr);
268 }
269
270 static void iowrite16_rep(void *addr, void *buf, int len)
271 {
272         int i;
273         u16 *p = (u16 *) buf;
274
275         for (i = 0; i < len; i++)
276                 writew(p[i], addr);
277 }
278 #endif
279
280 /**
281  * nand_write_buf - [DEFAULT] write buffer to chip
282  * @mtd: MTD device structure
283  * @buf: data buffer
284  * @len: number of bytes to write
285  *
286  * Default write function for 8bit buswidth.
287  */
288 void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
289 {
290         struct nand_chip *chip = mtd->priv;
291
292         iowrite8_rep(chip->IO_ADDR_W, buf, len);
293 }
294
295 /**
296  * nand_read_buf - [DEFAULT] read chip data into buffer
297  * @mtd: MTD device structure
298  * @buf: buffer to store date
299  * @len: number of bytes to read
300  *
301  * Default read function for 8bit buswidth.
302  */
303 void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
304 {
305         struct nand_chip *chip = mtd->priv;
306
307         ioread8_rep(chip->IO_ADDR_R, buf, len);
308 }
309
310 /**
311  * nand_write_buf16 - [DEFAULT] write buffer to chip
312  * @mtd: MTD device structure
313  * @buf: data buffer
314  * @len: number of bytes to write
315  *
316  * Default write function for 16bit buswidth.
317  */
318 void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
319 {
320         struct nand_chip *chip = mtd->priv;
321         u16 *p = (u16 *) buf;
322
323         iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
324 }
325
326 /**
327  * nand_read_buf16 - [DEFAULT] read chip data into buffer
328  * @mtd: MTD device structure
329  * @buf: buffer to store date
330  * @len: number of bytes to read
331  *
332  * Default read function for 16bit buswidth.
333  */
334 void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
335 {
336         struct nand_chip *chip = mtd->priv;
337         u16 *p = (u16 *) buf;
338
339         ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
340 }
341
342 /**
343  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
344  * @mtd: MTD device structure
345  * @ofs: offset from device start
346  * @getchip: 0, if the chip is already selected
347  *
348  * Check, if the block is bad.
349  */
350 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
351 {
352         int page, chipnr, res = 0, i = 0;
353         struct nand_chip *chip = mtd->priv;
354         u16 bad;
355
356         if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
357                 ofs += mtd->erasesize - mtd->writesize;
358
359         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
360
361         if (getchip) {
362                 chipnr = (int)(ofs >> chip->chip_shift);
363
364                 nand_get_device(mtd, FL_READING);
365
366                 /* Select the NAND device */
367                 chip->select_chip(mtd, chipnr);
368         }
369
370         do {
371                 if (chip->options & NAND_BUSWIDTH_16) {
372                         chip->cmdfunc(mtd, NAND_CMD_READOOB,
373                                         chip->badblockpos & 0xFE, page);
374                         bad = cpu_to_le16(chip->read_word(mtd));
375                         if (chip->badblockpos & 0x1)
376                                 bad >>= 8;
377                         else
378                                 bad &= 0xFF;
379                 } else {
380                         chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
381                                         page);
382                         bad = chip->read_byte(mtd);
383                 }
384
385                 if (likely(chip->badblockbits == 8))
386                         res = bad != 0xFF;
387                 else
388                         res = hweight8(bad) < chip->badblockbits;
389                 ofs += mtd->writesize;
390                 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
391                 i++;
392         } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
393
394         if (getchip) {
395                 chip->select_chip(mtd, -1);
396                 nand_release_device(mtd);
397         }
398
399         return res;
400 }
401
402 /**
403  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
404  * @mtd: MTD device structure
405  * @ofs: offset from device start
406  *
407  * This is the default implementation, which can be overridden by a hardware
408  * specific driver. It provides the details for writing a bad block marker to a
409  * block.
410  */
411 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
412 {
413         struct nand_chip *chip = mtd->priv;
414         struct mtd_oob_ops ops;
415         uint8_t buf[2] = { 0, 0 };
416         int ret = 0, res, i = 0;
417
418         memset(&ops, 0, sizeof(ops));
419         ops.oobbuf = buf;
420         ops.ooboffs = chip->badblockpos;
421         if (chip->options & NAND_BUSWIDTH_16) {
422                 ops.ooboffs &= ~0x01;
423                 ops.len = ops.ooblen = 2;
424         } else {
425                 ops.len = ops.ooblen = 1;
426         }
427         ops.mode = MTD_OPS_PLACE_OOB;
428
429         /* Write to first/last page(s) if necessary */
430         if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
431                 ofs += mtd->erasesize - mtd->writesize;
432         do {
433                 res = nand_do_write_oob(mtd, ofs, &ops);
434                 if (!ret)
435                         ret = res;
436
437                 i++;
438                 ofs += mtd->writesize;
439         } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
440
441         return ret;
442 }
443
444 /**
445  * nand_block_markbad_lowlevel - mark a block bad
446  * @mtd: MTD device structure
447  * @ofs: offset from device start
448  *
449  * This function performs the generic NAND bad block marking steps (i.e., bad
450  * block table(s) and/or marker(s)). We only allow the hardware driver to
451  * specify how to write bad block markers to OOB (chip->block_markbad).
452  *
453  * We try operations in the following order:
454  *  (1) erase the affected block, to allow OOB marker to be written cleanly
455  *  (2) write bad block marker to OOB area of affected block (unless flag
456  *      NAND_BBT_NO_OOB_BBM is present)
457  *  (3) update the BBT
458  * Note that we retain the first error encountered in (2) or (3), finish the
459  * procedures, and dump the error in the end.
460 */
461 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
462 {
463         struct nand_chip *chip = mtd->priv;
464         int res, ret = 0;
465
466         if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
467                 struct erase_info einfo;
468
469                 /* Attempt erase before marking OOB */
470                 memset(&einfo, 0, sizeof(einfo));
471                 einfo.mtd = mtd;
472                 einfo.addr = ofs;
473                 einfo.len = 1ULL << chip->phys_erase_shift;
474                 nand_erase_nand(mtd, &einfo, 0);
475
476                 /* Write bad block marker to OOB */
477                 nand_get_device(mtd, FL_WRITING);
478                 ret = chip->block_markbad(mtd, ofs);
479                 nand_release_device(mtd);
480         }
481
482         /* Mark block bad in BBT */
483         if (chip->bbt) {
484                 res = nand_markbad_bbt(mtd, ofs);
485                 if (!ret)
486                         ret = res;
487         }
488
489         if (!ret)
490                 mtd->ecc_stats.badblocks++;
491
492         return ret;
493 }
494
495 /**
496  * nand_check_wp - [GENERIC] check if the chip is write protected
497  * @mtd: MTD device structure
498  *
499  * Check, if the device is write protected. The function expects, that the
500  * device is already selected.
501  */
502 static int nand_check_wp(struct mtd_info *mtd)
503 {
504         struct nand_chip *chip = mtd->priv;
505
506         /* Broken xD cards report WP despite being writable */
507         if (chip->options & NAND_BROKEN_XD)
508                 return 0;
509
510         /* Check the WP bit */
511         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
512         return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
513 }
514
515 /**
516  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
517  * @mtd: MTD device structure
518  * @ofs: offset from device start
519  *
520  * Check if the block is marked as reserved.
521  */
522 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
523 {
524         struct nand_chip *chip = mtd->priv;
525
526         if (!chip->bbt)
527                 return 0;
528         /* Return info from the table */
529         return nand_isreserved_bbt(mtd, ofs);
530 }
531
532 /**
533  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
534  * @mtd: MTD device structure
535  * @ofs: offset from device start
536  * @getchip: 0, if the chip is already selected
537  * @allowbbt: 1, if its allowed to access the bbt area
538  *
539  * Check, if the block is bad. Either by reading the bad block table or
540  * calling of the scan function.
541  */
542 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
543                                int allowbbt)
544 {
545         struct nand_chip *chip = mtd->priv;
546
547         if (!(chip->options & NAND_SKIP_BBTSCAN) &&
548             !(chip->options & NAND_BBT_SCANNED)) {
549                 chip->options |= NAND_BBT_SCANNED;
550                 chip->scan_bbt(mtd);
551         }
552
553         if (!chip->bbt)
554                 return chip->block_bad(mtd, ofs, getchip);
555
556         /* Return info from the table */
557         return nand_isbad_bbt(mtd, ofs, allowbbt);
558 }
559
560 /* Wait for the ready pin, after a command. The timeout is caught later. */
561 void nand_wait_ready(struct mtd_info *mtd)
562 {
563         struct nand_chip *chip = mtd->priv;
564         u32 timeo = (CONFIG_SYS_HZ * 20) / 1000;
565         u32 time_start;
566
567         time_start = get_timer(0);
568         /* Wait until command is processed or timeout occurs */
569         while (get_timer(time_start) < timeo) {
570                 if (chip->dev_ready)
571                         if (chip->dev_ready(mtd))
572                                 break;
573         }
574 }
575 EXPORT_SYMBOL_GPL(nand_wait_ready);
576
577 /**
578  * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
579  * @mtd: MTD device structure
580  * @timeo: Timeout in ms
581  *
582  * Wait for status ready (i.e. command done) or timeout.
583  */
584 static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
585 {
586         register struct nand_chip *chip = mtd->priv;
587         u32 time_start;
588
589         timeo = (CONFIG_SYS_HZ * timeo) / 1000;
590         time_start = get_timer(0);
591         while (get_timer(time_start) < timeo) {
592                 if ((chip->read_byte(mtd) & NAND_STATUS_READY))
593                         break;
594                 WATCHDOG_RESET();
595         }
596 };
597
598 /**
599  * nand_command - [DEFAULT] Send command to NAND device
600  * @mtd: MTD device structure
601  * @command: the command to be sent
602  * @column: the column address for this command, -1 if none
603  * @page_addr: the page address for this command, -1 if none
604  *
605  * Send command to NAND device. This function is used for small page devices
606  * (512 Bytes per page).
607  */
608 static void nand_command(struct mtd_info *mtd, unsigned int command,
609                          int column, int page_addr)
610 {
611         register struct nand_chip *chip = mtd->priv;
612         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
613
614         /* Write out the command to the device */
615         if (command == NAND_CMD_SEQIN) {
616                 int readcmd;
617
618                 if (column >= mtd->writesize) {
619                         /* OOB area */
620                         column -= mtd->writesize;
621                         readcmd = NAND_CMD_READOOB;
622                 } else if (column < 256) {
623                         /* First 256 bytes --> READ0 */
624                         readcmd = NAND_CMD_READ0;
625                 } else {
626                         column -= 256;
627                         readcmd = NAND_CMD_READ1;
628                 }
629                 chip->cmd_ctrl(mtd, readcmd, ctrl);
630                 ctrl &= ~NAND_CTRL_CHANGE;
631         }
632         chip->cmd_ctrl(mtd, command, ctrl);
633
634         /* Address cycle, when necessary */
635         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
636         /* Serially input address */
637         if (column != -1) {
638                 /* Adjust columns for 16 bit buswidth */
639                 if (chip->options & NAND_BUSWIDTH_16 &&
640                                 !nand_opcode_8bits(command))
641                         column >>= 1;
642                 chip->cmd_ctrl(mtd, column, ctrl);
643                 ctrl &= ~NAND_CTRL_CHANGE;
644         }
645         if (page_addr != -1) {
646                 chip->cmd_ctrl(mtd, page_addr, ctrl);
647                 ctrl &= ~NAND_CTRL_CHANGE;
648                 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
649                 /* One more address cycle for devices > 32MiB */
650                 if (chip->chipsize > (32 << 20))
651                         chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
652         }
653         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
654
655         /*
656          * Program and erase have their own busy handlers status and sequential
657          * in needs no delay
658          */
659         switch (command) {
660
661         case NAND_CMD_PAGEPROG:
662         case NAND_CMD_ERASE1:
663         case NAND_CMD_ERASE2:
664         case NAND_CMD_SEQIN:
665         case NAND_CMD_STATUS:
666                 return;
667
668         case NAND_CMD_RESET:
669                 if (chip->dev_ready)
670                         break;
671                 udelay(chip->chip_delay);
672                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
673                                NAND_CTRL_CLE | NAND_CTRL_CHANGE);
674                 chip->cmd_ctrl(mtd,
675                                NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
676                 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
677                 nand_wait_status_ready(mtd, 250);
678                 return;
679
680                 /* This applies to read commands */
681         default:
682                 /*
683                  * If we don't have access to the busy pin, we apply the given
684                  * command delay
685                  */
686                 if (!chip->dev_ready) {
687                         udelay(chip->chip_delay);
688                         return;
689                 }
690         }
691         /*
692          * Apply this short delay always to ensure that we do wait tWB in
693          * any case on any machine.
694          */
695         ndelay(100);
696
697         nand_wait_ready(mtd);
698 }
699
700 /**
701  * nand_command_lp - [DEFAULT] Send command to NAND large page device
702  * @mtd: MTD device structure
703  * @command: the command to be sent
704  * @column: the column address for this command, -1 if none
705  * @page_addr: the page address for this command, -1 if none
706  *
707  * Send command to NAND device. This is the version for the new large page
708  * devices. We don't have the separate regions as we have in the small page
709  * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
710  */
711 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
712                             int column, int page_addr)
713 {
714         register struct nand_chip *chip = mtd->priv;
715
716         /* Emulate NAND_CMD_READOOB */
717         if (command == NAND_CMD_READOOB) {
718                 column += mtd->writesize;
719                 command = NAND_CMD_READ0;
720         }
721
722         /* Command latch cycle */
723         chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
724
725         if (column != -1 || page_addr != -1) {
726                 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
727
728                 /* Serially input address */
729                 if (column != -1) {
730                         /* Adjust columns for 16 bit buswidth */
731                         if (chip->options & NAND_BUSWIDTH_16 &&
732                                         !nand_opcode_8bits(command))
733                                 column >>= 1;
734                         chip->cmd_ctrl(mtd, column, ctrl);
735                         ctrl &= ~NAND_CTRL_CHANGE;
736                         chip->cmd_ctrl(mtd, column >> 8, ctrl);
737                 }
738                 if (page_addr != -1) {
739                         chip->cmd_ctrl(mtd, page_addr, ctrl);
740                         chip->cmd_ctrl(mtd, page_addr >> 8,
741                                        NAND_NCE | NAND_ALE);
742                         /* One more address cycle for devices > 128MiB */
743                         if (chip->chipsize > (128 << 20))
744                                 chip->cmd_ctrl(mtd, page_addr >> 16,
745                                                NAND_NCE | NAND_ALE);
746                 }
747         }
748         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
749
750         /*
751          * Program and erase have their own busy handlers status, sequential
752          * in and status need no delay.
753          */
754         switch (command) {
755
756         case NAND_CMD_CACHEDPROG:
757         case NAND_CMD_PAGEPROG:
758         case NAND_CMD_ERASE1:
759         case NAND_CMD_ERASE2:
760         case NAND_CMD_SEQIN:
761         case NAND_CMD_RNDIN:
762         case NAND_CMD_STATUS:
763                 return;
764
765         case NAND_CMD_RESET:
766                 if (chip->dev_ready)
767                         break;
768                 udelay(chip->chip_delay);
769                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
770                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
771                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
772                                NAND_NCE | NAND_CTRL_CHANGE);
773                 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
774                 nand_wait_status_ready(mtd, 250);
775                 return;
776
777         case NAND_CMD_RNDOUT:
778                 /* No ready / busy check necessary */
779                 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
780                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
781                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
782                                NAND_NCE | NAND_CTRL_CHANGE);
783                 return;
784
785         case NAND_CMD_READ0:
786                 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
787                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
788                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
789                                NAND_NCE | NAND_CTRL_CHANGE);
790
791                 /* This applies to read commands */
792         default:
793                 /*
794                  * If we don't have access to the busy pin, we apply the given
795                  * command delay.
796                  */
797                 if (!chip->dev_ready) {
798                         udelay(chip->chip_delay);
799                         return;
800                 }
801         }
802
803         /*
804          * Apply this short delay always to ensure that we do wait tWB in
805          * any case on any machine.
806          */
807         ndelay(100);
808
809         nand_wait_ready(mtd);
810 }
811
812 /**
813  * panic_nand_get_device - [GENERIC] Get chip for selected access
814  * @chip: the nand chip descriptor
815  * @mtd: MTD device structure
816  * @new_state: the state which is requested
817  *
818  * Used when in panic, no locks are taken.
819  */
820 static void panic_nand_get_device(struct nand_chip *chip,
821                       struct mtd_info *mtd, int new_state)
822 {
823         /* Hardware controller shared among independent devices */
824         chip->controller->active = chip;
825         chip->state = new_state;
826 }
827
828 /**
829  * nand_get_device - [GENERIC] Get chip for selected access
830  * @mtd: MTD device structure
831  * @new_state: the state which is requested
832  *
833  * Get the device and lock it for exclusive access
834  */
835 static int
836 nand_get_device(struct mtd_info *mtd, int new_state)
837 {
838         struct nand_chip *chip = mtd->priv;
839         chip->state = new_state;
840         return 0;
841 }
842
843 /**
844  * panic_nand_wait - [GENERIC] wait until the command is done
845  * @mtd: MTD device structure
846  * @chip: NAND chip structure
847  * @timeo: timeout
848  *
849  * Wait for command done. This is a helper function for nand_wait used when
850  * we are in interrupt context. May happen when in panic and trying to write
851  * an oops through mtdoops.
852  */
853 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
854                             unsigned long timeo)
855 {
856         int i;
857         for (i = 0; i < timeo; i++) {
858                 if (chip->dev_ready) {
859                         if (chip->dev_ready(mtd))
860                                 break;
861                 } else {
862                         if (chip->read_byte(mtd) & NAND_STATUS_READY)
863                                 break;
864                 }
865                 mdelay(1);
866         }
867 }
868
869 /**
870  * nand_wait - [DEFAULT] wait until the command is done
871  * @mtd: MTD device structure
872  * @chip: NAND chip structure
873  *
874  * Wait for command done. This applies to erase and program only. Erase can
875  * take up to 400ms and program up to 20ms according to general NAND and
876  * SmartMedia specs.
877  */
878 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
879 {
880
881         int status, state = chip->state;
882         unsigned long timeo = (state == FL_ERASING ? 400 : 20);
883
884         led_trigger_event(nand_led_trigger, LED_FULL);
885
886         /*
887          * Apply this short delay always to ensure that we do wait tWB in any
888          * case on any machine.
889          */
890         ndelay(100);
891
892         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
893
894         u32 timer = (CONFIG_SYS_HZ * timeo) / 1000;
895         u32 time_start;
896  
897         time_start = get_timer(0);
898         while (get_timer(time_start) < timer) {
899                 if (chip->dev_ready) {
900                         if (chip->dev_ready(mtd))
901                                 break;
902                 } else {
903                         if (chip->read_byte(mtd) & NAND_STATUS_READY)
904                                 break;
905                 }
906         }
907         led_trigger_event(nand_led_trigger, LED_OFF);
908
909         status = (int)chip->read_byte(mtd);
910         /* This can happen if in case of timeout or buggy dev_ready */
911         WARN_ON(!(status & NAND_STATUS_READY));
912         return status;
913 }
914
915 /**
916  * nand_read_page_raw - [INTERN] read raw page data without ecc
917  * @mtd: mtd info structure
918  * @chip: nand chip info structure
919  * @buf: buffer to store read data
920  * @oob_required: caller requires OOB data read to chip->oob_poi
921  * @page: page number to read
922  *
923  * Not for syndrome calculating ECC controllers, which use a special oob layout.
924  */
925 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
926                               uint8_t *buf, int oob_required, int page)
927 {
928         chip->read_buf(mtd, buf, mtd->writesize);
929         if (oob_required)
930                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
931         return 0;
932 }
933
934 /**
935  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
936  * @mtd: mtd info structure
937  * @chip: nand chip info structure
938  * @buf: buffer to store read data
939  * @oob_required: caller requires OOB data read to chip->oob_poi
940  * @page: page number to read
941  *
942  * We need a special oob layout and handling even when OOB isn't used.
943  */
944 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
945                                        struct nand_chip *chip, uint8_t *buf,
946                                        int oob_required, int page)
947 {
948         int eccsize = chip->ecc.size;
949         int eccbytes = chip->ecc.bytes;
950         uint8_t *oob = chip->oob_poi;
951         int steps, size;
952
953         for (steps = chip->ecc.steps; steps > 0; steps--) {
954                 chip->read_buf(mtd, buf, eccsize);
955                 buf += eccsize;
956
957                 if (chip->ecc.prepad) {
958                         chip->read_buf(mtd, oob, chip->ecc.prepad);
959                         oob += chip->ecc.prepad;
960                 }
961
962                 chip->read_buf(mtd, oob, eccbytes);
963                 oob += eccbytes;
964
965                 if (chip->ecc.postpad) {
966                         chip->read_buf(mtd, oob, chip->ecc.postpad);
967                         oob += chip->ecc.postpad;
968                 }
969         }
970
971         size = mtd->oobsize - (oob - chip->oob_poi);
972         if (size)
973                 chip->read_buf(mtd, oob, size);
974
975         return 0;
976 }
977
978 /**
979  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
980  * @mtd: mtd info structure
981  * @chip: nand chip info structure
982  * @buf: buffer to store read data
983  * @oob_required: caller requires OOB data read to chip->oob_poi
984  * @page: page number to read
985  */
986 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
987                                 uint8_t *buf, int oob_required, int page)
988 {
989         int i, eccsize = chip->ecc.size;
990         int eccbytes = chip->ecc.bytes;
991         int eccsteps = chip->ecc.steps;
992         uint8_t *p = buf;
993         uint8_t *ecc_calc = chip->buffers->ecccalc;
994         uint8_t *ecc_code = chip->buffers->ecccode;
995         uint32_t *eccpos = chip->ecc.layout->eccpos;
996         unsigned int max_bitflips = 0;
997
998         chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
999
1000         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1001                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1002
1003         for (i = 0; i < chip->ecc.total; i++)
1004                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1005
1006         eccsteps = chip->ecc.steps;
1007         p = buf;
1008
1009         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1010                 int stat;
1011
1012                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1013                 if (stat < 0) {
1014                         mtd->ecc_stats.failed++;
1015                 } else {
1016                         mtd->ecc_stats.corrected += stat;
1017                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1018                 }
1019         }
1020         return max_bitflips;
1021 }
1022
1023 /**
1024  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1025  * @mtd: mtd info structure
1026  * @chip: nand chip info structure
1027  * @data_offs: offset of requested data within the page
1028  * @readlen: data length
1029  * @bufpoi: buffer to store read data
1030  * @page: page number to read
1031  */
1032 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1033                         uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1034                         int page)
1035 {
1036         int start_step, end_step, num_steps;
1037         uint32_t *eccpos = chip->ecc.layout->eccpos;
1038         uint8_t *p;
1039         int data_col_addr, i, gaps = 0;
1040         int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1041         int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1042         int index;
1043         unsigned int max_bitflips = 0;
1044
1045         /* Column address within the page aligned to ECC size (256bytes) */
1046         start_step = data_offs / chip->ecc.size;
1047         end_step = (data_offs + readlen - 1) / chip->ecc.size;
1048         num_steps = end_step - start_step + 1;
1049         index = start_step * chip->ecc.bytes;
1050
1051         /* Data size aligned to ECC ecc.size */
1052         datafrag_len = num_steps * chip->ecc.size;
1053         eccfrag_len = num_steps * chip->ecc.bytes;
1054
1055         data_col_addr = start_step * chip->ecc.size;
1056         /* If we read not a page aligned data */
1057         if (data_col_addr != 0)
1058                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1059
1060         p = bufpoi + data_col_addr;
1061         chip->read_buf(mtd, p, datafrag_len);
1062
1063         /* Calculate ECC */
1064         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1065                 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1066
1067         /*
1068          * The performance is faster if we position offsets according to
1069          * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1070          */
1071         for (i = 0; i < eccfrag_len - 1; i++) {
1072                 if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
1073                         gaps = 1;
1074                         break;
1075                 }
1076         }
1077         if (gaps) {
1078                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1079                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1080         } else {
1081                 /*
1082                  * Send the command to read the particular ECC bytes take care
1083                  * about buswidth alignment in read_buf.
1084                  */
1085                 aligned_pos = eccpos[index] & ~(busw - 1);
1086                 aligned_len = eccfrag_len;
1087                 if (eccpos[index] & (busw - 1))
1088                         aligned_len++;
1089                 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1090                         aligned_len++;
1091
1092                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1093                                         mtd->writesize + aligned_pos, -1);
1094                 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1095         }
1096
1097         for (i = 0; i < eccfrag_len; i++)
1098                 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1099
1100         p = bufpoi + data_col_addr;
1101         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1102                 int stat;
1103
1104                 stat = chip->ecc.correct(mtd, p,
1105                         &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1106                 if (stat < 0) {
1107                         mtd->ecc_stats.failed++;
1108                 } else {
1109                         mtd->ecc_stats.corrected += stat;
1110                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1111                 }
1112         }
1113         return max_bitflips;
1114 }
1115
1116 /**
1117  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1118  * @mtd: mtd info structure
1119  * @chip: nand chip info structure
1120  * @buf: buffer to store read data
1121  * @oob_required: caller requires OOB data read to chip->oob_poi
1122  * @page: page number to read
1123  *
1124  * Not for syndrome calculating ECC controllers which need a special oob layout.
1125  */
1126 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1127                                 uint8_t *buf, int oob_required, int page)
1128 {
1129         int i, eccsize = chip->ecc.size;
1130         int eccbytes = chip->ecc.bytes;
1131         int eccsteps = chip->ecc.steps;
1132         uint8_t *p = buf;
1133         uint8_t *ecc_calc = chip->buffers->ecccalc;
1134         uint8_t *ecc_code = chip->buffers->ecccode;
1135         uint32_t *eccpos = chip->ecc.layout->eccpos;
1136         unsigned int max_bitflips = 0;
1137
1138         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1139                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1140                 chip->read_buf(mtd, p, eccsize);
1141                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1142         }
1143         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1144
1145         for (i = 0; i < chip->ecc.total; i++)
1146                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1147
1148         eccsteps = chip->ecc.steps;
1149         p = buf;
1150
1151         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1152                 int stat;
1153
1154                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1155                 if (stat < 0) {
1156                         mtd->ecc_stats.failed++;
1157                 } else {
1158                         mtd->ecc_stats.corrected += stat;
1159                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1160                 }
1161         }
1162         return max_bitflips;
1163 }
1164
1165 /**
1166  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1167  * @mtd: mtd info structure
1168  * @chip: nand chip info structure
1169  * @buf: buffer to store read data
1170  * @oob_required: caller requires OOB data read to chip->oob_poi
1171  * @page: page number to read
1172  *
1173  * Hardware ECC for large page chips, require OOB to be read first. For this
1174  * ECC mode, the write_page method is re-used from ECC_HW. These methods
1175  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1176  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1177  * the data area, by overwriting the NAND manufacturer bad block markings.
1178  */
1179 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1180         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1181 {
1182         int i, eccsize = chip->ecc.size;
1183         int eccbytes = chip->ecc.bytes;
1184         int eccsteps = chip->ecc.steps;
1185         uint8_t *p = buf;
1186         uint8_t *ecc_code = chip->buffers->ecccode;
1187         uint32_t *eccpos = chip->ecc.layout->eccpos;
1188         uint8_t *ecc_calc = chip->buffers->ecccalc;
1189         unsigned int max_bitflips = 0;
1190
1191         /* Read the OOB area first */
1192         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1193         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1194         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1195
1196         for (i = 0; i < chip->ecc.total; i++)
1197                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1198
1199         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1200                 int stat;
1201
1202                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1203                 chip->read_buf(mtd, p, eccsize);
1204                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1205
1206                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1207                 if (stat < 0) {
1208                         mtd->ecc_stats.failed++;
1209                 } else {
1210                         mtd->ecc_stats.corrected += stat;
1211                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1212                 }
1213         }
1214         return max_bitflips;
1215 }
1216
1217 /**
1218  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1219  * @mtd: mtd info structure
1220  * @chip: nand chip info structure
1221  * @buf: buffer to store read data
1222  * @oob_required: caller requires OOB data read to chip->oob_poi
1223  * @page: page number to read
1224  *
1225  * The hw generator calculates the error syndrome automatically. Therefore we
1226  * need a special oob layout and handling.
1227  */
1228 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1229                                    uint8_t *buf, int oob_required, int page)
1230 {
1231         int i, eccsize = chip->ecc.size;
1232         int eccbytes = chip->ecc.bytes;
1233         int eccsteps = chip->ecc.steps;
1234         uint8_t *p = buf;
1235         uint8_t *oob = chip->oob_poi;
1236         unsigned int max_bitflips = 0;
1237
1238         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1239                 int stat;
1240
1241                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1242                 chip->read_buf(mtd, p, eccsize);
1243
1244                 if (chip->ecc.prepad) {
1245                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1246                         oob += chip->ecc.prepad;
1247                 }
1248
1249                 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1250                 chip->read_buf(mtd, oob, eccbytes);
1251                 stat = chip->ecc.correct(mtd, p, oob, NULL);
1252
1253                 if (stat < 0) {
1254                         mtd->ecc_stats.failed++;
1255                 } else {
1256                         mtd->ecc_stats.corrected += stat;
1257                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1258                 }
1259
1260                 oob += eccbytes;
1261
1262                 if (chip->ecc.postpad) {
1263                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1264                         oob += chip->ecc.postpad;
1265                 }
1266         }
1267
1268         /* Calculate remaining oob bytes */
1269         i = mtd->oobsize - (oob - chip->oob_poi);
1270         if (i)
1271                 chip->read_buf(mtd, oob, i);
1272
1273         return max_bitflips;
1274 }
1275
1276 /**
1277  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1278  * @chip: nand chip structure
1279  * @oob: oob destination address
1280  * @ops: oob ops structure
1281  * @len: size of oob to transfer
1282  */
1283 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1284                                   struct mtd_oob_ops *ops, size_t len)
1285 {
1286         switch (ops->mode) {
1287
1288         case MTD_OPS_PLACE_OOB:
1289         case MTD_OPS_RAW:
1290                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1291                 return oob + len;
1292
1293         case MTD_OPS_AUTO_OOB: {
1294                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1295                 uint32_t boffs = 0, roffs = ops->ooboffs;
1296                 size_t bytes = 0;
1297
1298                 for (; free->length && len; free++, len -= bytes) {
1299                         /* Read request not from offset 0? */
1300                         if (unlikely(roffs)) {
1301                                 if (roffs >= free->length) {
1302                                         roffs -= free->length;
1303                                         continue;
1304                                 }
1305                                 boffs = free->offset + roffs;
1306                                 bytes = min_t(size_t, len,
1307                                               (free->length - roffs));
1308                                 roffs = 0;
1309                         } else {
1310                                 bytes = min_t(size_t, len, free->length);
1311                                 boffs = free->offset;
1312                         }
1313                         memcpy(oob, chip->oob_poi + boffs, bytes);
1314                         oob += bytes;
1315                 }
1316                 return oob;
1317         }
1318         default:
1319                 BUG();
1320         }
1321         return NULL;
1322 }
1323
1324 /**
1325  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1326  * @mtd: MTD device structure
1327  * @retry_mode: the retry mode to use
1328  *
1329  * Some vendors supply a special command to shift the Vt threshold, to be used
1330  * when there are too many bitflips in a page (i.e., ECC error). After setting
1331  * a new threshold, the host should retry reading the page.
1332  */
1333 static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1334 {
1335         struct nand_chip *chip = mtd->priv;
1336
1337         pr_debug("setting READ RETRY mode %d\n", retry_mode);
1338
1339         if (retry_mode >= chip->read_retries)
1340                 return -EINVAL;
1341
1342         if (!chip->setup_read_retry)
1343                 return -EOPNOTSUPP;
1344
1345         return chip->setup_read_retry(mtd, retry_mode);
1346 }
1347
1348 /**
1349  * nand_do_read_ops - [INTERN] Read data with ECC
1350  * @mtd: MTD device structure
1351  * @from: offset to read from
1352  * @ops: oob ops structure
1353  *
1354  * Internal function. Called with chip held.
1355  */
1356 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1357                             struct mtd_oob_ops *ops)
1358 {
1359         int chipnr, page, realpage, col, bytes, aligned, oob_required;
1360         struct nand_chip *chip = mtd->priv;
1361         int ret = 0;
1362         uint32_t readlen = ops->len;
1363         uint32_t oobreadlen = ops->ooblen;
1364         uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1365                 mtd->oobavail : mtd->oobsize;
1366
1367         uint8_t *bufpoi, *oob, *buf;
1368         int use_bufpoi;
1369         unsigned int max_bitflips = 0;
1370         int retry_mode = 0;
1371         bool ecc_fail = false;
1372
1373         chipnr = (int)(from >> chip->chip_shift);
1374         chip->select_chip(mtd, chipnr);
1375
1376         realpage = (int)(from >> chip->page_shift);
1377         page = realpage & chip->pagemask;
1378
1379         col = (int)(from & (mtd->writesize - 1));
1380
1381         buf = ops->datbuf;
1382         oob = ops->oobbuf;
1383         oob_required = oob ? 1 : 0;
1384
1385         while (1) {
1386                 unsigned int ecc_failures = mtd->ecc_stats.failed;
1387
1388                 WATCHDOG_RESET();
1389                 bytes = min(mtd->writesize - col, readlen);
1390                 aligned = (bytes == mtd->writesize);
1391
1392                 if (!aligned)
1393                         use_bufpoi = 1;
1394                 else
1395                         use_bufpoi = 0;
1396
1397                 /* Is the current page in the buffer? */
1398                 if (realpage != chip->pagebuf || oob) {
1399                         bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1400
1401                         if (use_bufpoi && aligned)
1402                                 pr_debug("%s: using read bounce buffer for buf@%p\n",
1403                                                  __func__, buf);
1404
1405 read_retry:
1406                         chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1407
1408                         /*
1409                          * Now read the page into the buffer.  Absent an error,
1410                          * the read methods return max bitflips per ecc step.
1411                          */
1412                         if (unlikely(ops->mode == MTD_OPS_RAW))
1413                                 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1414                                                               oob_required,
1415                                                               page);
1416                         else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1417                                  !oob)
1418                                 ret = chip->ecc.read_subpage(mtd, chip,
1419                                                         col, bytes, bufpoi,
1420                                                         page);
1421                         else
1422                                 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1423                                                           oob_required, page);
1424                         if (ret < 0) {
1425                                 if (use_bufpoi)
1426                                         /* Invalidate page cache */
1427                                         chip->pagebuf = -1;
1428                                 break;
1429                         }
1430
1431                         max_bitflips = max_t(unsigned int, max_bitflips, ret);
1432
1433                         /* Transfer not aligned data */
1434                         if (use_bufpoi) {
1435                                 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1436                                     !(mtd->ecc_stats.failed - ecc_failures) &&
1437                                     (ops->mode != MTD_OPS_RAW)) {
1438                                         chip->pagebuf = realpage;
1439                                         chip->pagebuf_bitflips = ret;
1440                                 } else {
1441                                         /* Invalidate page cache */
1442                                         chip->pagebuf = -1;
1443                                 }
1444                                 memcpy(buf, chip->buffers->databuf + col, bytes);
1445                         }
1446
1447                         if (unlikely(oob)) {
1448                                 int toread = min(oobreadlen, max_oobsize);
1449
1450                                 if (toread) {
1451                                         oob = nand_transfer_oob(chip,
1452                                                 oob, ops, toread);
1453                                         oobreadlen -= toread;
1454                                 }
1455                         }
1456
1457                         if (chip->options & NAND_NEED_READRDY) {
1458                                 /* Apply delay or wait for ready/busy pin */
1459                                 if (!chip->dev_ready)
1460                                         udelay(chip->chip_delay);
1461                                 else
1462                                         nand_wait_ready(mtd);
1463                         }
1464
1465                         if (mtd->ecc_stats.failed - ecc_failures) {
1466                                 if (retry_mode + 1 < chip->read_retries) {
1467                                         retry_mode++;
1468                                         ret = nand_setup_read_retry(mtd,
1469                                                         retry_mode);
1470                                         if (ret < 0)
1471                                                 break;
1472
1473                                         /* Reset failures; retry */
1474                                         mtd->ecc_stats.failed = ecc_failures;
1475                                         goto read_retry;
1476                                 } else {
1477                                         /* No more retry modes; real failure */
1478                                         ecc_fail = true;
1479                                 }
1480                         }
1481
1482                         buf += bytes;
1483                 } else {
1484                         memcpy(buf, chip->buffers->databuf + col, bytes);
1485                         buf += bytes;
1486                         max_bitflips = max_t(unsigned int, max_bitflips,
1487                                              chip->pagebuf_bitflips);
1488                 }
1489
1490                 readlen -= bytes;
1491
1492                 /* Reset to retry mode 0 */
1493                 if (retry_mode) {
1494                         ret = nand_setup_read_retry(mtd, 0);
1495                         if (ret < 0)
1496                                 break;
1497                         retry_mode = 0;
1498                 }
1499
1500                 if (!readlen)
1501                         break;
1502
1503                 /* For subsequent reads align to page boundary */
1504                 col = 0;
1505                 /* Increment page address */
1506                 realpage++;
1507
1508                 page = realpage & chip->pagemask;
1509                 /* Check, if we cross a chip boundary */
1510                 if (!page) {
1511                         chipnr++;
1512                         chip->select_chip(mtd, -1);
1513                         chip->select_chip(mtd, chipnr);
1514                 }
1515         }
1516         chip->select_chip(mtd, -1);
1517
1518         ops->retlen = ops->len - (size_t) readlen;
1519         if (oob)
1520                 ops->oobretlen = ops->ooblen - oobreadlen;
1521
1522         if (ret < 0)
1523                 return ret;
1524
1525         if (ecc_fail)
1526                 return -EBADMSG;
1527
1528         return max_bitflips;
1529 }
1530
1531 /**
1532  * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1533  * @mtd: MTD device structure
1534  * @from: offset to read from
1535  * @len: number of bytes to read
1536  * @retlen: pointer to variable to store the number of read bytes
1537  * @buf: the databuffer to put data
1538  *
1539  * Get hold of the chip and call nand_do_read.
1540  */
1541 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1542                      size_t *retlen, uint8_t *buf)
1543 {
1544         struct mtd_oob_ops ops;
1545         int ret;
1546
1547         nand_get_device(mtd, FL_READING);
1548         memset(&ops, 0, sizeof(ops));
1549         ops.len = len;
1550         ops.datbuf = buf;
1551         ops.mode = MTD_OPS_PLACE_OOB;
1552         ret = nand_do_read_ops(mtd, from, &ops);
1553         *retlen = ops.retlen;
1554         nand_release_device(mtd);
1555         return ret;
1556 }
1557
1558 /**
1559  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1560  * @mtd: mtd info structure
1561  * @chip: nand chip info structure
1562  * @page: page number to read
1563  */
1564 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1565                              int page)
1566 {
1567         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1568         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1569         return 0;
1570 }
1571
1572 /**
1573  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1574  *                          with syndromes
1575  * @mtd: mtd info structure
1576  * @chip: nand chip info structure
1577  * @page: page number to read
1578  */
1579 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1580                                   int page)
1581 {
1582         int length = mtd->oobsize;
1583         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1584         int eccsize = chip->ecc.size;
1585         uint8_t *bufpoi = chip->oob_poi;
1586         int i, toread, sndrnd = 0, pos;
1587
1588         chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1589         for (i = 0; i < chip->ecc.steps; i++) {
1590                 if (sndrnd) {
1591                         pos = eccsize + i * (eccsize + chunk);
1592                         if (mtd->writesize > 512)
1593                                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1594                         else
1595                                 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1596                 } else
1597                         sndrnd = 1;
1598                 toread = min_t(int, length, chunk);
1599                 chip->read_buf(mtd, bufpoi, toread);
1600                 bufpoi += toread;
1601                 length -= toread;
1602         }
1603         if (length > 0)
1604                 chip->read_buf(mtd, bufpoi, length);
1605
1606         return 0;
1607 }
1608
1609 /**
1610  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1611  * @mtd: mtd info structure
1612  * @chip: nand chip info structure
1613  * @page: page number to write
1614  */
1615 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1616                               int page)
1617 {
1618         int status = 0;
1619         const uint8_t *buf = chip->oob_poi;
1620         int length = mtd->oobsize;
1621
1622         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1623         chip->write_buf(mtd, buf, length);
1624         /* Send command to program the OOB data */
1625         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1626
1627         status = chip->waitfunc(mtd, chip);
1628
1629         return status & NAND_STATUS_FAIL ? -EIO : 0;
1630 }
1631
1632 /**
1633  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1634  *                           with syndrome - only for large page flash
1635  * @mtd: mtd info structure
1636  * @chip: nand chip info structure
1637  * @page: page number to write
1638  */
1639 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1640                                    struct nand_chip *chip, int page)
1641 {
1642         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1643         int eccsize = chip->ecc.size, length = mtd->oobsize;
1644         int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1645         const uint8_t *bufpoi = chip->oob_poi;
1646
1647         /*
1648          * data-ecc-data-ecc ... ecc-oob
1649          * or
1650          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1651          */
1652         if (!chip->ecc.prepad && !chip->ecc.postpad) {
1653                 pos = steps * (eccsize + chunk);
1654                 steps = 0;
1655         } else
1656                 pos = eccsize;
1657
1658         chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1659         for (i = 0; i < steps; i++) {
1660                 if (sndcmd) {
1661                         if (mtd->writesize <= 512) {
1662                                 uint32_t fill = 0xFFFFFFFF;
1663
1664                                 len = eccsize;
1665                                 while (len > 0) {
1666                                         int num = min_t(int, len, 4);
1667                                         chip->write_buf(mtd, (uint8_t *)&fill,
1668                                                         num);
1669                                         len -= num;
1670                                 }
1671                         } else {
1672                                 pos = eccsize + i * (eccsize + chunk);
1673                                 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1674                         }
1675                 } else
1676                         sndcmd = 1;
1677                 len = min_t(int, length, chunk);
1678                 chip->write_buf(mtd, bufpoi, len);
1679                 bufpoi += len;
1680                 length -= len;
1681         }
1682         if (length > 0)
1683                 chip->write_buf(mtd, bufpoi, length);
1684
1685         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1686         status = chip->waitfunc(mtd, chip);
1687
1688         return status & NAND_STATUS_FAIL ? -EIO : 0;
1689 }
1690
1691 /**
1692  * nand_do_read_oob - [INTERN] NAND read out-of-band
1693  * @mtd: MTD device structure
1694  * @from: offset to read from
1695  * @ops: oob operations description structure
1696  *
1697  * NAND read out-of-band data from the spare area.
1698  */
1699 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1700                             struct mtd_oob_ops *ops)
1701 {
1702         int page, realpage, chipnr;
1703         struct nand_chip *chip = mtd->priv;
1704         struct mtd_ecc_stats stats;
1705         int readlen = ops->ooblen;
1706         int len;
1707         uint8_t *buf = ops->oobbuf;
1708         int ret = 0;
1709
1710         pr_debug("%s: from = 0x%08Lx, len = %i\n",
1711                         __func__, (unsigned long long)from, readlen);
1712
1713         stats = mtd->ecc_stats;
1714
1715         if (ops->mode == MTD_OPS_AUTO_OOB)
1716                 len = chip->ecc.layout->oobavail;
1717         else
1718                 len = mtd->oobsize;
1719
1720         if (unlikely(ops->ooboffs >= len)) {
1721                 pr_debug("%s: attempt to start read outside oob\n",
1722                                 __func__);
1723                 return -EINVAL;
1724         }
1725
1726         /* Do not allow reads past end of device */
1727         if (unlikely(from >= mtd->size ||
1728                      ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1729                                         (from >> chip->page_shift)) * len)) {
1730                 pr_debug("%s: attempt to read beyond end of device\n",
1731                                 __func__);
1732                 return -EINVAL;
1733         }
1734
1735         chipnr = (int)(from >> chip->chip_shift);
1736         chip->select_chip(mtd, chipnr);
1737
1738         /* Shift to get page */
1739         realpage = (int)(from >> chip->page_shift);
1740         page = realpage & chip->pagemask;
1741
1742         while (1) {
1743                 WATCHDOG_RESET();
1744
1745                 if (ops->mode == MTD_OPS_RAW)
1746                         ret = chip->ecc.read_oob_raw(mtd, chip, page);
1747                 else
1748                         ret = chip->ecc.read_oob(mtd, chip, page);
1749
1750                 if (ret < 0)
1751                         break;
1752
1753                 len = min(len, readlen);
1754                 buf = nand_transfer_oob(chip, buf, ops, len);
1755
1756                 if (chip->options & NAND_NEED_READRDY) {
1757                         /* Apply delay or wait for ready/busy pin */
1758                         if (!chip->dev_ready)
1759                                 udelay(chip->chip_delay);
1760                         else
1761                                 nand_wait_ready(mtd);
1762                 }
1763
1764                 readlen -= len;
1765                 if (!readlen)
1766                         break;
1767
1768                 /* Increment page address */
1769                 realpage++;
1770
1771                 page = realpage & chip->pagemask;
1772                 /* Check, if we cross a chip boundary */
1773                 if (!page) {
1774                         chipnr++;
1775                         chip->select_chip(mtd, -1);
1776                         chip->select_chip(mtd, chipnr);
1777                 }
1778         }
1779         chip->select_chip(mtd, -1);
1780
1781         ops->oobretlen = ops->ooblen - readlen;
1782
1783         if (ret < 0)
1784                 return ret;
1785
1786         if (mtd->ecc_stats.failed - stats.failed)
1787                 return -EBADMSG;
1788
1789         return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1790 }
1791
1792 /**
1793  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1794  * @mtd: MTD device structure
1795  * @from: offset to read from
1796  * @ops: oob operation description structure
1797  *
1798  * NAND read data and/or out-of-band data.
1799  */
1800 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1801                          struct mtd_oob_ops *ops)
1802 {
1803         int ret = -ENOTSUPP;
1804
1805         ops->retlen = 0;
1806
1807         /* Do not allow reads past end of device */
1808         if (ops->datbuf && (from + ops->len) > mtd->size) {
1809                 pr_debug("%s: attempt to read beyond end of device\n",
1810                                 __func__);
1811                 return -EINVAL;
1812         }
1813
1814         nand_get_device(mtd, FL_READING);
1815
1816         switch (ops->mode) {
1817         case MTD_OPS_PLACE_OOB:
1818         case MTD_OPS_AUTO_OOB:
1819         case MTD_OPS_RAW:
1820                 break;
1821
1822         default:
1823                 goto out;
1824         }
1825
1826         if (!ops->datbuf)
1827                 ret = nand_do_read_oob(mtd, from, ops);
1828         else
1829                 ret = nand_do_read_ops(mtd, from, ops);
1830
1831 out:
1832         nand_release_device(mtd);
1833         return ret;
1834 }
1835
1836
1837 /**
1838  * nand_write_page_raw - [INTERN] raw page write function
1839  * @mtd: mtd info structure
1840  * @chip: nand chip info structure
1841  * @buf: data buffer
1842  * @oob_required: must write chip->oob_poi to OOB
1843  *
1844  * Not for syndrome calculating ECC controllers, which use a special oob layout.
1845  */
1846 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1847                                 const uint8_t *buf, int oob_required)
1848 {
1849         chip->write_buf(mtd, buf, mtd->writesize);
1850         if (oob_required)
1851                 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1852
1853         return 0;
1854 }
1855
1856 /**
1857  * nand_write_page_raw_syndrome - [INTERN] raw page write function
1858  * @mtd: mtd info structure
1859  * @chip: nand chip info structure
1860  * @buf: data buffer
1861  * @oob_required: must write chip->oob_poi to OOB
1862  *
1863  * We need a special oob layout and handling even when ECC isn't checked.
1864  */
1865 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
1866                                         struct nand_chip *chip,
1867                                         const uint8_t *buf, int oob_required)
1868 {
1869         int eccsize = chip->ecc.size;
1870         int eccbytes = chip->ecc.bytes;
1871         uint8_t *oob = chip->oob_poi;
1872         int steps, size;
1873
1874         for (steps = chip->ecc.steps; steps > 0; steps--) {
1875                 chip->write_buf(mtd, buf, eccsize);
1876                 buf += eccsize;
1877
1878                 if (chip->ecc.prepad) {
1879                         chip->write_buf(mtd, oob, chip->ecc.prepad);
1880                         oob += chip->ecc.prepad;
1881                 }
1882
1883                 chip->write_buf(mtd, oob, eccbytes);
1884                 oob += eccbytes;
1885
1886                 if (chip->ecc.postpad) {
1887                         chip->write_buf(mtd, oob, chip->ecc.postpad);
1888                         oob += chip->ecc.postpad;
1889                 }
1890         }
1891
1892         size = mtd->oobsize - (oob - chip->oob_poi);
1893         if (size)
1894                 chip->write_buf(mtd, oob, size);
1895
1896         return 0;
1897 }
1898 /**
1899  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
1900  * @mtd: mtd info structure
1901  * @chip: nand chip info structure
1902  * @buf: data buffer
1903  * @oob_required: must write chip->oob_poi to OOB
1904  */
1905 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1906                                   const uint8_t *buf, int oob_required)
1907 {
1908         int i, eccsize = chip->ecc.size;
1909         int eccbytes = chip->ecc.bytes;
1910         int eccsteps = chip->ecc.steps;
1911         uint8_t *ecc_calc = chip->buffers->ecccalc;
1912         const uint8_t *p = buf;
1913         uint32_t *eccpos = chip->ecc.layout->eccpos;
1914
1915         /* Software ECC calculation */
1916         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1917                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1918
1919         for (i = 0; i < chip->ecc.total; i++)
1920                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1921
1922         return chip->ecc.write_page_raw(mtd, chip, buf, 1);
1923 }
1924
1925 /**
1926  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
1927  * @mtd: mtd info structure
1928  * @chip: nand chip info structure
1929  * @buf: data buffer
1930  * @oob_required: must write chip->oob_poi to OOB
1931  */
1932 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1933                                   const uint8_t *buf, int oob_required)
1934 {
1935         int i, eccsize = chip->ecc.size;
1936         int eccbytes = chip->ecc.bytes;
1937         int eccsteps = chip->ecc.steps;
1938         uint8_t *ecc_calc = chip->buffers->ecccalc;
1939         const uint8_t *p = buf;
1940         uint32_t *eccpos = chip->ecc.layout->eccpos;
1941
1942         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1943                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1944                 chip->write_buf(mtd, p, eccsize);
1945                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1946         }
1947
1948         for (i = 0; i < chip->ecc.total; i++)
1949                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1950
1951         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1952
1953         return 0;
1954 }
1955
1956
1957 /**
1958  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
1959  * @mtd:        mtd info structure
1960  * @chip:       nand chip info structure
1961  * @offset:     column address of subpage within the page
1962  * @data_len:   data length
1963  * @buf:        data buffer
1964  * @oob_required: must write chip->oob_poi to OOB
1965  */
1966 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
1967                                 struct nand_chip *chip, uint32_t offset,
1968                                 uint32_t data_len, const uint8_t *buf,
1969                                 int oob_required)
1970 {
1971         uint8_t *oob_buf  = chip->oob_poi;
1972         uint8_t *ecc_calc = chip->buffers->ecccalc;
1973         int ecc_size      = chip->ecc.size;
1974         int ecc_bytes     = chip->ecc.bytes;
1975         int ecc_steps     = chip->ecc.steps;
1976         uint32_t *eccpos  = chip->ecc.layout->eccpos;
1977         uint32_t start_step = offset / ecc_size;
1978         uint32_t end_step   = (offset + data_len - 1) / ecc_size;
1979         int oob_bytes       = mtd->oobsize / ecc_steps;
1980         int step, i;
1981
1982         for (step = 0; step < ecc_steps; step++) {
1983                 /* configure controller for WRITE access */
1984                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1985
1986                 /* write data (untouched subpages already masked by 0xFF) */
1987                 chip->write_buf(mtd, buf, ecc_size);
1988
1989                 /* mask ECC of un-touched subpages by padding 0xFF */
1990                 if ((step < start_step) || (step > end_step))
1991                         memset(ecc_calc, 0xff, ecc_bytes);
1992                 else
1993                         chip->ecc.calculate(mtd, buf, ecc_calc);
1994
1995                 /* mask OOB of un-touched subpages by padding 0xFF */
1996                 /* if oob_required, preserve OOB metadata of written subpage */
1997                 if (!oob_required || (step < start_step) || (step > end_step))
1998                         memset(oob_buf, 0xff, oob_bytes);
1999
2000                 buf += ecc_size;
2001                 ecc_calc += ecc_bytes;
2002                 oob_buf  += oob_bytes;
2003         }
2004
2005         /* copy calculated ECC for whole page to chip->buffer->oob */
2006         /* this include masked-value(0xFF) for unwritten subpages */
2007         ecc_calc = chip->buffers->ecccalc;
2008         for (i = 0; i < chip->ecc.total; i++)
2009                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2010
2011         /* write OOB buffer to NAND device */
2012         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2013
2014         return 0;
2015 }
2016
2017
2018 /**
2019  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2020  * @mtd: mtd info structure
2021  * @chip: nand chip info structure
2022  * @buf: data buffer
2023  * @oob_required: must write chip->oob_poi to OOB
2024  *
2025  * The hw generator calculates the error syndrome automatically. Therefore we
2026  * need a special oob layout and handling.
2027  */
2028 static int nand_write_page_syndrome(struct mtd_info *mtd,
2029                                     struct nand_chip *chip,
2030                                     const uint8_t *buf, int oob_required)
2031 {
2032         int i, eccsize = chip->ecc.size;
2033         int eccbytes = chip->ecc.bytes;
2034         int eccsteps = chip->ecc.steps;
2035         const uint8_t *p = buf;
2036         uint8_t *oob = chip->oob_poi;
2037
2038         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2039
2040                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2041                 chip->write_buf(mtd, p, eccsize);
2042
2043                 if (chip->ecc.prepad) {
2044                         chip->write_buf(mtd, oob, chip->ecc.prepad);
2045                         oob += chip->ecc.prepad;
2046                 }
2047
2048                 chip->ecc.calculate(mtd, p, oob);
2049                 chip->write_buf(mtd, oob, eccbytes);
2050                 oob += eccbytes;
2051
2052                 if (chip->ecc.postpad) {
2053                         chip->write_buf(mtd, oob, chip->ecc.postpad);
2054                         oob += chip->ecc.postpad;
2055                 }
2056         }
2057
2058         /* Calculate remaining oob bytes */
2059         i = mtd->oobsize - (oob - chip->oob_poi);
2060         if (i)
2061                 chip->write_buf(mtd, oob, i);
2062
2063         return 0;
2064 }
2065
2066 /**
2067  * nand_write_page - [REPLACEABLE] write one page
2068  * @mtd: MTD device structure
2069  * @chip: NAND chip descriptor
2070  * @offset: address offset within the page
2071  * @data_len: length of actual data to be written
2072  * @buf: the data to write
2073  * @oob_required: must write chip->oob_poi to OOB
2074  * @page: page number to write
2075  * @cached: cached programming
2076  * @raw: use _raw version of write_page
2077  */
2078 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2079                 uint32_t offset, int data_len, const uint8_t *buf,
2080                 int oob_required, int page, int cached, int raw)
2081 {
2082         int status, subpage;
2083
2084         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2085                 chip->ecc.write_subpage)
2086                 subpage = offset || (data_len < mtd->writesize);
2087         else
2088                 subpage = 0;
2089
2090         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2091
2092         if (unlikely(raw))
2093                 status = chip->ecc.write_page_raw(mtd, chip, buf,
2094                                                         oob_required);
2095         else if (subpage)
2096                 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2097                                                          buf, oob_required);
2098         else
2099                 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2100
2101         if (status < 0)
2102                 return status;
2103
2104         /*
2105          * Cached progamming disabled for now. Not sure if it's worth the
2106          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2107          */
2108         cached = 0;
2109
2110         if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2111
2112                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2113                 status = chip->waitfunc(mtd, chip);
2114                 /*
2115                  * See if operation failed and additional status checks are
2116                  * available.
2117                  */
2118                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2119                         status = chip->errstat(mtd, chip, FL_WRITING, status,
2120                                                page);
2121
2122                 if (status & NAND_STATUS_FAIL)
2123                         return -EIO;
2124         } else {
2125                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2126                 status = chip->waitfunc(mtd, chip);
2127         }
2128
2129         return 0;
2130 }
2131
2132 /**
2133  * nand_fill_oob - [INTERN] Transfer client buffer to oob
2134  * @mtd: MTD device structure
2135  * @oob: oob data buffer
2136  * @len: oob data write length
2137  * @ops: oob ops structure
2138  */
2139 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2140                               struct mtd_oob_ops *ops)
2141 {
2142         struct nand_chip *chip = mtd->priv;
2143
2144         /*
2145          * Initialise to all 0xFF, to avoid the possibility of left over OOB
2146          * data from a previous OOB read.
2147          */
2148         memset(chip->oob_poi, 0xff, mtd->oobsize);
2149
2150         switch (ops->mode) {
2151
2152         case MTD_OPS_PLACE_OOB:
2153         case MTD_OPS_RAW:
2154                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2155                 return oob + len;
2156
2157         case MTD_OPS_AUTO_OOB: {
2158                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2159                 uint32_t boffs = 0, woffs = ops->ooboffs;
2160                 size_t bytes = 0;
2161
2162                 for (; free->length && len; free++, len -= bytes) {
2163                         /* Write request not from offset 0? */
2164                         if (unlikely(woffs)) {
2165                                 if (woffs >= free->length) {
2166                                         woffs -= free->length;
2167                                         continue;
2168                                 }
2169                                 boffs = free->offset + woffs;
2170                                 bytes = min_t(size_t, len,
2171                                               (free->length - woffs));
2172                                 woffs = 0;
2173                         } else {
2174                                 bytes = min_t(size_t, len, free->length);
2175                                 boffs = free->offset;
2176                         }
2177                         memcpy(chip->oob_poi + boffs, oob, bytes);
2178                         oob += bytes;
2179                 }
2180                 return oob;
2181         }
2182         default:
2183                 BUG();
2184         }
2185         return NULL;
2186 }
2187
2188 #define NOTALIGNED(x)   (((x) & (chip->subpagesize - 1)) != 0)
2189
2190 /**
2191  * nand_do_write_ops - [INTERN] NAND write with ECC
2192  * @mtd: MTD device structure
2193  * @to: offset to write to
2194  * @ops: oob operations description structure
2195  *
2196  * NAND write with ECC.
2197  */
2198 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2199                              struct mtd_oob_ops *ops)
2200 {
2201         int chipnr, realpage, page, blockmask, column;
2202         struct nand_chip *chip = mtd->priv;
2203         uint32_t writelen = ops->len;
2204
2205         uint32_t oobwritelen = ops->ooblen;
2206         uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2207                                 mtd->oobavail : mtd->oobsize;
2208
2209         uint8_t *oob = ops->oobbuf;
2210         uint8_t *buf = ops->datbuf;
2211         int ret;
2212         int oob_required = oob ? 1 : 0;
2213
2214         ops->retlen = 0;
2215         if (!writelen)
2216                 return 0;
2217
2218         /* Reject writes, which are not page aligned */
2219         if (NOTALIGNED(to)) {
2220                 pr_notice("%s: attempt to write non page aligned data\n",
2221                            __func__);
2222                 return -EINVAL;
2223         }
2224
2225         column = to & (mtd->writesize - 1);
2226
2227         chipnr = (int)(to >> chip->chip_shift);
2228         chip->select_chip(mtd, chipnr);
2229
2230         /* Check, if it is write protected */
2231         if (nand_check_wp(mtd)) {
2232                 ret = -EIO;
2233                 goto err_out;
2234         }
2235
2236         realpage = (int)(to >> chip->page_shift);
2237         page = realpage & chip->pagemask;
2238         blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2239
2240         /* Invalidate the page cache, when we write to the cached page */
2241         if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2242             ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
2243                 chip->pagebuf = -1;
2244
2245         /* Don't allow multipage oob writes with offset */
2246         if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2247                 ret = -EINVAL;
2248                 goto err_out;
2249         }
2250
2251         while (1) {
2252                 int bytes = mtd->writesize;
2253                 int cached = writelen > bytes && page != blockmask;
2254                 uint8_t *wbuf = buf;
2255                 int use_bufpoi;
2256                 int part_pagewr = (column || writelen < (mtd->writesize - 1));
2257
2258                 if (part_pagewr)
2259                         use_bufpoi = 1;
2260                 else
2261                         use_bufpoi = 0;
2262
2263                 WATCHDOG_RESET();
2264                 /* Partial page write?, or need to use bounce buffer */
2265                 if (use_bufpoi) {
2266                         pr_debug("%s: using write bounce buffer for buf@%p\n",
2267                                          __func__, buf);
2268                         cached = 0;
2269                         if (part_pagewr)
2270                                 bytes = min_t(int, bytes - column, writelen);
2271                         chip->pagebuf = -1;
2272                         memset(chip->buffers->databuf, 0xff, mtd->writesize);
2273                         memcpy(&chip->buffers->databuf[column], buf, bytes);
2274                         wbuf = chip->buffers->databuf;
2275                 }
2276
2277                 if (unlikely(oob)) {
2278                         size_t len = min(oobwritelen, oobmaxlen);
2279                         oob = nand_fill_oob(mtd, oob, len, ops);
2280                         oobwritelen -= len;
2281                 } else {
2282                         /* We still need to erase leftover OOB data */
2283                         memset(chip->oob_poi, 0xff, mtd->oobsize);
2284                 }
2285                 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2286                                         oob_required, page, cached,
2287                                         (ops->mode == MTD_OPS_RAW));
2288                 if (ret)
2289                         break;
2290
2291                 writelen -= bytes;
2292                 if (!writelen)
2293                         break;
2294
2295                 column = 0;
2296                 buf += bytes;
2297                 realpage++;
2298
2299                 page = realpage & chip->pagemask;
2300                 /* Check, if we cross a chip boundary */
2301                 if (!page) {
2302                         chipnr++;
2303                         chip->select_chip(mtd, -1);
2304                         chip->select_chip(mtd, chipnr);
2305                 }
2306         }
2307
2308         ops->retlen = ops->len - writelen;
2309         if (unlikely(oob))
2310                 ops->oobretlen = ops->ooblen;
2311
2312 err_out:
2313         chip->select_chip(mtd, -1);
2314         return ret;
2315 }
2316
2317 /**
2318  * panic_nand_write - [MTD Interface] NAND write with ECC
2319  * @mtd: MTD device structure
2320  * @to: offset to write to
2321  * @len: number of bytes to write
2322  * @retlen: pointer to variable to store the number of written bytes
2323  * @buf: the data to write
2324  *
2325  * NAND write with ECC. Used when performing writes in interrupt context, this
2326  * may for example be called by mtdoops when writing an oops while in panic.
2327  */
2328 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2329                             size_t *retlen, const uint8_t *buf)
2330 {
2331         struct nand_chip *chip = mtd->priv;
2332         struct mtd_oob_ops ops;
2333         int ret;
2334
2335         /* Wait for the device to get ready */
2336         panic_nand_wait(mtd, chip, 400);
2337
2338         /* Grab the device */
2339         panic_nand_get_device(chip, mtd, FL_WRITING);
2340
2341         memset(&ops, 0, sizeof(ops));
2342         ops.len = len;
2343         ops.datbuf = (uint8_t *)buf;
2344         ops.mode = MTD_OPS_PLACE_OOB;
2345
2346         ret = nand_do_write_ops(mtd, to, &ops);
2347
2348         *retlen = ops.retlen;
2349         return ret;
2350 }
2351
2352 /**
2353  * nand_write - [MTD Interface] NAND write with ECC
2354  * @mtd: MTD device structure
2355  * @to: offset to write to
2356  * @len: number of bytes to write
2357  * @retlen: pointer to variable to store the number of written bytes
2358  * @buf: the data to write
2359  *
2360  * NAND write with ECC.
2361  */
2362 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2363                           size_t *retlen, const uint8_t *buf)
2364 {
2365         struct mtd_oob_ops ops;
2366         int ret;
2367
2368         nand_get_device(mtd, FL_WRITING);
2369         memset(&ops, 0, sizeof(ops));
2370         ops.len = len;
2371         ops.datbuf = (uint8_t *)buf;
2372         ops.mode = MTD_OPS_PLACE_OOB;
2373         ret = nand_do_write_ops(mtd, to, &ops);
2374         *retlen = ops.retlen;
2375         nand_release_device(mtd);
2376         return ret;
2377 }
2378
2379 /**
2380  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2381  * @mtd: MTD device structure
2382  * @to: offset to write to
2383  * @ops: oob operation description structure
2384  *
2385  * NAND write out-of-band.
2386  */
2387 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2388                              struct mtd_oob_ops *ops)
2389 {
2390         int chipnr, page, status, len;
2391         struct nand_chip *chip = mtd->priv;
2392
2393         pr_debug("%s: to = 0x%08x, len = %i\n",
2394                          __func__, (unsigned int)to, (int)ops->ooblen);
2395
2396         if (ops->mode == MTD_OPS_AUTO_OOB)
2397                 len = chip->ecc.layout->oobavail;
2398         else
2399                 len = mtd->oobsize;
2400
2401         /* Do not allow write past end of page */
2402         if ((ops->ooboffs + ops->ooblen) > len) {
2403                 pr_debug("%s: attempt to write past end of page\n",
2404                                 __func__);
2405                 return -EINVAL;
2406         }
2407
2408         if (unlikely(ops->ooboffs >= len)) {
2409                 pr_debug("%s: attempt to start write outside oob\n",
2410                                 __func__);
2411                 return -EINVAL;
2412         }
2413
2414         /* Do not allow write past end of device */
2415         if (unlikely(to >= mtd->size ||
2416                      ops->ooboffs + ops->ooblen >
2417                         ((mtd->size >> chip->page_shift) -
2418                          (to >> chip->page_shift)) * len)) {
2419                 pr_debug("%s: attempt to write beyond end of device\n",
2420                                 __func__);
2421                 return -EINVAL;
2422         }
2423
2424         chipnr = (int)(to >> chip->chip_shift);
2425         chip->select_chip(mtd, chipnr);
2426
2427         /* Shift to get page */
2428         page = (int)(to >> chip->page_shift);
2429
2430         /*
2431          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2432          * of my DiskOnChip 2000 test units) will clear the whole data page too
2433          * if we don't do this. I have no clue why, but I seem to have 'fixed'
2434          * it in the doc2000 driver in August 1999.  dwmw2.
2435          */
2436         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2437
2438         /* Check, if it is write protected */
2439         if (nand_check_wp(mtd)) {
2440                 chip->select_chip(mtd, -1);
2441                 return -EROFS;
2442         }
2443
2444         /* Invalidate the page cache, if we write to the cached page */
2445         if (page == chip->pagebuf)
2446                 chip->pagebuf = -1;
2447
2448         nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2449
2450         if (ops->mode == MTD_OPS_RAW)
2451                 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2452         else
2453                 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2454
2455         chip->select_chip(mtd, -1);
2456
2457         if (status)
2458                 return status;
2459
2460         ops->oobretlen = ops->ooblen;
2461
2462         return 0;
2463 }
2464
2465 /**
2466  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2467  * @mtd: MTD device structure
2468  * @to: offset to write to
2469  * @ops: oob operation description structure
2470  */
2471 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2472                           struct mtd_oob_ops *ops)
2473 {
2474         int ret = -ENOTSUPP;
2475
2476         ops->retlen = 0;
2477
2478         /* Do not allow writes past end of device */
2479         if (ops->datbuf && (to + ops->len) > mtd->size) {
2480                 pr_debug("%s: attempt to write beyond end of device\n",
2481                                 __func__);
2482                 return -EINVAL;
2483         }
2484
2485         nand_get_device(mtd, FL_WRITING);
2486
2487         switch (ops->mode) {
2488         case MTD_OPS_PLACE_OOB:
2489         case MTD_OPS_AUTO_OOB:
2490         case MTD_OPS_RAW:
2491                 break;
2492
2493         default:
2494                 goto out;
2495         }
2496
2497         if (!ops->datbuf)
2498                 ret = nand_do_write_oob(mtd, to, ops);
2499         else
2500                 ret = nand_do_write_ops(mtd, to, ops);
2501
2502 out:
2503         nand_release_device(mtd);
2504         return ret;
2505 }
2506
2507 /**
2508  * single_erase - [GENERIC] NAND standard block erase command function
2509  * @mtd: MTD device structure
2510  * @page: the page address of the block which will be erased
2511  *
2512  * Standard erase command for NAND chips. Returns NAND status.
2513  */
2514 static int single_erase(struct mtd_info *mtd, int page)
2515 {
2516         struct nand_chip *chip = mtd->priv;
2517         /* Send commands to erase a block */
2518         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2519         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2520
2521         return chip->waitfunc(mtd, chip);
2522 }
2523
2524 /**
2525  * nand_erase - [MTD Interface] erase block(s)
2526  * @mtd: MTD device structure
2527  * @instr: erase instruction
2528  *
2529  * Erase one ore more blocks.
2530  */
2531 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2532 {
2533         return nand_erase_nand(mtd, instr, 0);
2534 }
2535
2536 /**
2537  * nand_erase_nand - [INTERN] erase block(s)
2538  * @mtd: MTD device structure
2539  * @instr: erase instruction
2540  * @allowbbt: allow erasing the bbt area
2541  *
2542  * Erase one ore more blocks.
2543  */
2544 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2545                     int allowbbt)
2546 {
2547         int page, status, pages_per_block, ret, chipnr;
2548         struct nand_chip *chip = mtd->priv;
2549         loff_t len;
2550
2551         pr_debug("%s: start = 0x%012llx, len = %llu\n",
2552                         __func__, (unsigned long long)instr->addr,
2553                         (unsigned long long)instr->len);
2554
2555         if (check_offs_len(mtd, instr->addr, instr->len))
2556                 return -EINVAL;
2557
2558         /* Grab the lock and see if the device is available */
2559         nand_get_device(mtd, FL_ERASING);
2560
2561         /* Shift to get first page */
2562         page = (int)(instr->addr >> chip->page_shift);
2563         chipnr = (int)(instr->addr >> chip->chip_shift);
2564
2565         /* Calculate pages in each block */
2566         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2567
2568         /* Select the NAND device */
2569         chip->select_chip(mtd, chipnr);
2570
2571         /* Check, if it is write protected */
2572         if (nand_check_wp(mtd)) {
2573                 pr_debug("%s: device is write protected!\n",
2574                                 __func__);
2575                 instr->state = MTD_ERASE_FAILED;
2576                 goto erase_exit;
2577         }
2578
2579         /* Loop through the pages */
2580         len = instr->len;
2581
2582         instr->state = MTD_ERASING;
2583
2584         while (len) {
2585                 WATCHDOG_RESET();
2586
2587                 /* Check if we have a bad block, we do not erase bad blocks! */
2588                 if (!instr->scrub && nand_block_checkbad(mtd, ((loff_t) page) <<
2589                                         chip->page_shift, 0, allowbbt)) {
2590                         pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2591                                     __func__, page);
2592                         instr->state = MTD_ERASE_FAILED;
2593                         goto erase_exit;
2594                 }
2595
2596                 /*
2597                  * Invalidate the page cache, if we erase the block which
2598                  * contains the current cached page.
2599                  */
2600                 if (page <= chip->pagebuf && chip->pagebuf <
2601                     (page + pages_per_block))
2602                         chip->pagebuf = -1;
2603
2604                 status = chip->erase(mtd, page & chip->pagemask);
2605
2606                 /*
2607                  * See if operation failed and additional status checks are
2608                  * available
2609                  */
2610                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2611                         status = chip->errstat(mtd, chip, FL_ERASING,
2612                                                status, page);
2613
2614                 /* See if block erase succeeded */
2615                 if (status & NAND_STATUS_FAIL) {
2616                         pr_debug("%s: failed erase, page 0x%08x\n",
2617                                         __func__, page);
2618                         instr->state = MTD_ERASE_FAILED;
2619                         instr->fail_addr =
2620                                 ((loff_t)page << chip->page_shift);
2621                         goto erase_exit;
2622                 }
2623
2624                 /* Increment page address and decrement length */
2625                 len -= (1ULL << chip->phys_erase_shift);
2626                 page += pages_per_block;
2627
2628                 /* Check, if we cross a chip boundary */
2629                 if (len && !(page & chip->pagemask)) {
2630                         chipnr++;
2631                         chip->select_chip(mtd, -1);
2632                         chip->select_chip(mtd, chipnr);
2633                 }
2634         }
2635         instr->state = MTD_ERASE_DONE;
2636
2637 erase_exit:
2638
2639         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2640
2641         /* Deselect and wake up anyone waiting on the device */
2642         chip->select_chip(mtd, -1);
2643         nand_release_device(mtd);
2644
2645         /* Do call back function */
2646         if (!ret)
2647                 mtd_erase_callback(instr);
2648
2649         /* Return more or less happy */
2650         return ret;
2651 }
2652
2653 /**
2654  * nand_sync - [MTD Interface] sync
2655  * @mtd: MTD device structure
2656  *
2657  * Sync is actually a wait for chip ready function.
2658  */
2659 static void nand_sync(struct mtd_info *mtd)
2660 {
2661         pr_debug("%s: called\n", __func__);
2662
2663         /* Grab the lock and see if the device is available */
2664         nand_get_device(mtd, FL_SYNCING);
2665         /* Release it and go back */
2666         nand_release_device(mtd);
2667 }
2668
2669 /**
2670  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2671  * @mtd: MTD device structure
2672  * @offs: offset relative to mtd start
2673  */
2674 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2675 {
2676         return nand_block_checkbad(mtd, offs, 1, 0);
2677 }
2678
2679 /**
2680  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2681  * @mtd: MTD device structure
2682  * @ofs: offset relative to mtd start
2683  */
2684 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2685 {
2686         int ret;
2687
2688         ret = nand_block_isbad(mtd, ofs);
2689         if (ret) {
2690                 /* If it was bad already, return success and do nothing */
2691                 if (ret > 0)
2692                         return 0;
2693                 return ret;
2694         }
2695
2696         return nand_block_markbad_lowlevel(mtd, ofs);
2697 }
2698
2699 /**
2700  * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2701  * @mtd: MTD device structure
2702  * @chip: nand chip info structure
2703  * @addr: feature address.
2704  * @subfeature_param: the subfeature parameters, a four bytes array.
2705  */
2706 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2707                         int addr, uint8_t *subfeature_param)
2708 {
2709         int status;
2710         int i;
2711
2712 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
2713         if (!chip->onfi_version ||
2714             !(le16_to_cpu(chip->onfi_params.opt_cmd)
2715               & ONFI_OPT_CMD_SET_GET_FEATURES))
2716                 return -EINVAL;
2717 #endif
2718
2719         chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
2720         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2721                 chip->write_byte(mtd, subfeature_param[i]);
2722
2723         status = chip->waitfunc(mtd, chip);
2724         if (status & NAND_STATUS_FAIL)
2725                 return -EIO;
2726         return 0;
2727 }
2728
2729 /**
2730  * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2731  * @mtd: MTD device structure
2732  * @chip: nand chip info structure
2733  * @addr: feature address.
2734  * @subfeature_param: the subfeature parameters, a four bytes array.
2735  */
2736 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2737                         int addr, uint8_t *subfeature_param)
2738 {
2739         int i;
2740
2741 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
2742         if (!chip->onfi_version ||
2743             !(le16_to_cpu(chip->onfi_params.opt_cmd)
2744               & ONFI_OPT_CMD_SET_GET_FEATURES))
2745                 return -EINVAL;
2746 #endif
2747
2748         /* clear the sub feature parameters */
2749         memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
2750
2751         chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
2752         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2753                 *subfeature_param++ = chip->read_byte(mtd);
2754         return 0;
2755 }
2756
2757 /* Set default functions */
2758 static void nand_set_defaults(struct nand_chip *chip, int busw)
2759 {
2760         /* check for proper chip_delay setup, set 20us if not */
2761         if (!chip->chip_delay)
2762                 chip->chip_delay = 20;
2763
2764         /* check, if a user supplied command function given */
2765         if (chip->cmdfunc == NULL)
2766                 chip->cmdfunc = nand_command;
2767
2768         /* check, if a user supplied wait function given */
2769         if (chip->waitfunc == NULL)
2770                 chip->waitfunc = nand_wait;
2771
2772         if (!chip->select_chip)
2773                 chip->select_chip = nand_select_chip;
2774
2775         /* set for ONFI nand */
2776         if (!chip->onfi_set_features)
2777                 chip->onfi_set_features = nand_onfi_set_features;
2778         if (!chip->onfi_get_features)
2779                 chip->onfi_get_features = nand_onfi_get_features;
2780
2781         /* If called twice, pointers that depend on busw may need to be reset */
2782         if (!chip->read_byte || chip->read_byte == nand_read_byte)
2783                 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2784         if (!chip->read_word)
2785                 chip->read_word = nand_read_word;
2786         if (!chip->block_bad)
2787                 chip->block_bad = nand_block_bad;
2788         if (!chip->block_markbad)
2789                 chip->block_markbad = nand_default_block_markbad;
2790         if (!chip->write_buf || chip->write_buf == nand_write_buf)
2791                 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2792         if (!chip->write_byte || chip->write_byte == nand_write_byte)
2793                 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
2794         if (!chip->read_buf || chip->read_buf == nand_read_buf)
2795                 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2796         if (!chip->scan_bbt)
2797                 chip->scan_bbt = nand_default_bbt;
2798
2799         if (!chip->controller) {
2800                 chip->controller = &chip->hwcontrol;
2801                 spin_lock_init(&chip->controller->lock);
2802                 init_waitqueue_head(&chip->controller->wq);
2803         }
2804
2805 }
2806
2807 /* Sanitize ONFI strings so we can safely print them */
2808 static void sanitize_string(char *s, size_t len)
2809 {
2810         ssize_t i;
2811
2812         /* Null terminate */
2813         s[len - 1] = 0;
2814
2815         /* Remove non printable chars */
2816         for (i = 0; i < len - 1; i++) {
2817                 if (s[i] < ' ' || s[i] > 127)
2818                         s[i] = '?';
2819         }
2820
2821         /* Remove trailing spaces */
2822         strim(s);
2823 }
2824
2825 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2826 {
2827         int i;
2828         while (len--) {
2829                 crc ^= *p++ << 8;
2830                 for (i = 0; i < 8; i++)
2831                         crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2832         }
2833
2834         return crc;
2835 }
2836
2837 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
2838 /* Parse the Extended Parameter Page. */
2839 static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
2840                 struct nand_chip *chip, struct nand_onfi_params *p)
2841 {
2842         struct onfi_ext_param_page *ep;
2843         struct onfi_ext_section *s;
2844         struct onfi_ext_ecc_info *ecc;
2845         uint8_t *cursor;
2846         int ret = -EINVAL;
2847         int len;
2848         int i;
2849
2850         len = le16_to_cpu(p->ext_param_page_length) * 16;
2851         ep = kmalloc(len, GFP_KERNEL);
2852         if (!ep)
2853                 return -ENOMEM;
2854
2855         /* Send our own NAND_CMD_PARAM. */
2856         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2857
2858         /* Use the Change Read Column command to skip the ONFI param pages. */
2859         chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
2860                         sizeof(*p) * p->num_of_param_pages , -1);
2861
2862         /* Read out the Extended Parameter Page. */
2863         chip->read_buf(mtd, (uint8_t *)ep, len);
2864         if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
2865                 != le16_to_cpu(ep->crc))) {
2866                 pr_debug("fail in the CRC.\n");
2867                 goto ext_out;
2868         }
2869
2870         /*
2871          * Check the signature.
2872          * Do not strictly follow the ONFI spec, maybe changed in future.
2873          */
2874         if (strncmp((char *)ep->sig, "EPPS", 4)) {
2875                 pr_debug("The signature is invalid.\n");
2876                 goto ext_out;
2877         }
2878
2879         /* find the ECC section. */
2880         cursor = (uint8_t *)(ep + 1);
2881         for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
2882                 s = ep->sections + i;
2883                 if (s->type == ONFI_SECTION_TYPE_2)
2884                         break;
2885                 cursor += s->length * 16;
2886         }
2887         if (i == ONFI_EXT_SECTION_MAX) {
2888                 pr_debug("We can not find the ECC section.\n");
2889                 goto ext_out;
2890         }
2891
2892         /* get the info we want. */
2893         ecc = (struct onfi_ext_ecc_info *)cursor;
2894
2895         if (!ecc->codeword_size) {
2896                 pr_debug("Invalid codeword size\n");
2897                 goto ext_out;
2898         }
2899
2900         chip->ecc_strength_ds = ecc->ecc_bits;
2901         chip->ecc_step_ds = 1 << ecc->codeword_size;
2902         ret = 0;
2903
2904 ext_out:
2905         kfree(ep);
2906         return ret;
2907 }
2908
2909 static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
2910 {
2911         struct nand_chip *chip = mtd->priv;
2912         uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
2913
2914         return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
2915                         feature);
2916 }
2917
2918 /*
2919  * Configure chip properties from Micron vendor-specific ONFI table
2920  */
2921 static void nand_onfi_detect_micron(struct nand_chip *chip,
2922                 struct nand_onfi_params *p)
2923 {
2924         struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
2925
2926         if (le16_to_cpu(p->vendor_revision) < 1)
2927                 return;
2928
2929         chip->read_retries = micron->read_retry_options;
2930         chip->setup_read_retry = nand_setup_read_retry_micron;
2931 }
2932
2933 /*
2934  * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
2935  */
2936 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2937                                         int *busw)
2938 {
2939         struct nand_onfi_params *p = &chip->onfi_params;
2940         int i, j;
2941         int val;
2942
2943         /* Try ONFI for unknown chip or LP */
2944         chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2945         if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2946                 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2947                 return 0;
2948
2949         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2950         for (i = 0; i < 3; i++) {
2951                 for (j = 0; j < sizeof(*p); j++)
2952                         ((uint8_t *)p)[j] = chip->read_byte(mtd);
2953                 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2954                                 le16_to_cpu(p->crc)) {
2955                         break;
2956                 }
2957         }
2958
2959         if (i == 3) {
2960                 pr_err("Could not find valid ONFI parameter page; aborting\n");
2961                 return 0;
2962         }
2963
2964         /* Check version */
2965         val = le16_to_cpu(p->revision);
2966         if (val & (1 << 5))
2967                 chip->onfi_version = 23;
2968         else if (val & (1 << 4))
2969                 chip->onfi_version = 22;
2970         else if (val & (1 << 3))
2971                 chip->onfi_version = 21;
2972         else if (val & (1 << 2))
2973                 chip->onfi_version = 20;
2974         else if (val & (1 << 1))
2975                 chip->onfi_version = 10;
2976
2977         if (!chip->onfi_version) {
2978                 pr_info("unsupported ONFI version: %d\n", val);
2979                 return 0;
2980         }
2981
2982         sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2983         sanitize_string(p->model, sizeof(p->model));
2984         if (!mtd->name)
2985                 mtd->name = p->model;
2986
2987         mtd->writesize = le32_to_cpu(p->byte_per_page);
2988
2989         /*
2990          * pages_per_block and blocks_per_lun may not be a power-of-2 size
2991          * (don't ask me who thought of this...). MTD assumes that these
2992          * dimensions will be power-of-2, so just truncate the remaining area.
2993          */
2994         mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
2995         mtd->erasesize *= mtd->writesize;
2996
2997         mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
2998
2999         /* See erasesize comment */
3000         chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3001         chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3002         chip->bits_per_cell = p->bits_per_cell;
3003
3004         if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3005                 *busw = NAND_BUSWIDTH_16;
3006         else
3007                 *busw = 0;
3008
3009         if (p->ecc_bits != 0xff) {
3010                 chip->ecc_strength_ds = p->ecc_bits;
3011                 chip->ecc_step_ds = 512;
3012         } else if (chip->onfi_version >= 21 &&
3013                 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3014
3015                 /*
3016                  * The nand_flash_detect_ext_param_page() uses the
3017                  * Change Read Column command which maybe not supported
3018                  * by the chip->cmdfunc. So try to update the chip->cmdfunc
3019                  * now. We do not replace user supplied command function.
3020                  */
3021                 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3022                         chip->cmdfunc = nand_command_lp;
3023
3024                 /* The Extended Parameter Page is supported since ONFI 2.1. */
3025                 if (nand_flash_detect_ext_param_page(mtd, chip, p))
3026                         pr_warn("Failed to detect ONFI extended param page\n");
3027         } else {
3028                 pr_warn("Could not retrieve ONFI ECC requirements\n");
3029         }
3030
3031         if (p->jedec_id == NAND_MFR_MICRON)
3032                 nand_onfi_detect_micron(chip, p);
3033
3034         return 1;
3035 }
3036 #else
3037 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3038                                         int *busw)
3039 {
3040         return 0;
3041 }
3042 #endif
3043
3044 /*
3045  * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3046  */
3047 static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3048                                         int *busw)
3049 {
3050         struct nand_jedec_params *p = &chip->jedec_params;
3051         struct jedec_ecc_info *ecc;
3052         int val;
3053         int i, j;
3054
3055         /* Try JEDEC for unknown chip or LP */
3056         chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3057         if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3058                 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3059                 chip->read_byte(mtd) != 'C')
3060                 return 0;
3061
3062         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3063         for (i = 0; i < 3; i++) {
3064                 for (j = 0; j < sizeof(*p); j++)
3065                         ((uint8_t *)p)[j] = chip->read_byte(mtd);
3066
3067                 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3068                                 le16_to_cpu(p->crc))
3069                         break;
3070         }
3071
3072         if (i == 3) {
3073                 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3074                 return 0;
3075         }
3076
3077         /* Check version */
3078         val = le16_to_cpu(p->revision);
3079         if (val & (1 << 2))
3080                 chip->jedec_version = 10;
3081         else if (val & (1 << 1))
3082                 chip->jedec_version = 1; /* vendor specific version */
3083
3084         if (!chip->jedec_version) {
3085                 pr_info("unsupported JEDEC version: %d\n", val);
3086                 return 0;
3087         }
3088
3089         sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3090         sanitize_string(p->model, sizeof(p->model));
3091         if (!mtd->name)
3092                 mtd->name = p->model;
3093
3094         mtd->writesize = le32_to_cpu(p->byte_per_page);
3095
3096         /* Please reference to the comment for nand_flash_detect_onfi. */
3097         mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3098         mtd->erasesize *= mtd->writesize;
3099
3100         mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3101
3102         /* Please reference to the comment for nand_flash_detect_onfi. */
3103         chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3104         chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3105         chip->bits_per_cell = p->bits_per_cell;
3106
3107         if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3108                 *busw = NAND_BUSWIDTH_16;
3109         else
3110                 *busw = 0;
3111
3112         /* ECC info */
3113         ecc = &p->ecc_info[0];
3114
3115         if (ecc->codeword_size >= 9) {
3116                 chip->ecc_strength_ds = ecc->ecc_bits;
3117                 chip->ecc_step_ds = 1 << ecc->codeword_size;
3118         } else {
3119                 pr_warn("Invalid codeword size\n");
3120         }
3121
3122         return 1;
3123 }
3124
3125 /*
3126  * nand_id_has_period - Check if an ID string has a given wraparound period
3127  * @id_data: the ID string
3128  * @arrlen: the length of the @id_data array
3129  * @period: the period of repitition
3130  *
3131  * Check if an ID string is repeated within a given sequence of bytes at
3132  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3133  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3134  * if the repetition has a period of @period; otherwise, returns zero.
3135  */
3136 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3137 {
3138         int i, j;
3139         for (i = 0; i < period; i++)
3140                 for (j = i + period; j < arrlen; j += period)
3141                         if (id_data[i] != id_data[j])
3142                                 return 0;
3143         return 1;
3144 }
3145
3146 /*
3147  * nand_id_len - Get the length of an ID string returned by CMD_READID
3148  * @id_data: the ID string
3149  * @arrlen: the length of the @id_data array
3150
3151  * Returns the length of the ID string, according to known wraparound/trailing
3152  * zero patterns. If no pattern exists, returns the length of the array.
3153  */
3154 static int nand_id_len(u8 *id_data, int arrlen)
3155 {
3156         int last_nonzero, period;
3157
3158         /* Find last non-zero byte */
3159         for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3160                 if (id_data[last_nonzero])
3161                         break;
3162
3163         /* All zeros */
3164         if (last_nonzero < 0)
3165                 return 0;
3166
3167         /* Calculate wraparound period */
3168         for (period = 1; period < arrlen; period++)
3169                 if (nand_id_has_period(id_data, arrlen, period))
3170                         break;
3171
3172         /* There's a repeated pattern */
3173         if (period < arrlen)
3174                 return period;
3175
3176         /* There are trailing zeros */
3177         if (last_nonzero < arrlen - 1)
3178                 return last_nonzero + 1;
3179
3180         /* No pattern detected */
3181         return arrlen;
3182 }
3183
3184 /* Extract the bits of per cell from the 3rd byte of the extended ID */
3185 static int nand_get_bits_per_cell(u8 cellinfo)
3186 {
3187         int bits;
3188
3189         bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3190         bits >>= NAND_CI_CELLTYPE_SHIFT;
3191         return bits + 1;
3192 }
3193
3194 /*
3195  * Many new NAND share similar device ID codes, which represent the size of the
3196  * chip. The rest of the parameters must be decoded according to generic or
3197  * manufacturer-specific "extended ID" decoding patterns.
3198  */
3199 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3200                                 u8 id_data[8], int *busw)
3201 {
3202         int extid, id_len;
3203         /* The 3rd id byte holds MLC / multichip data */
3204         chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3205         /* The 4th id byte is the important one */
3206         extid = id_data[3];
3207
3208         id_len = nand_id_len(id_data, 8);
3209
3210         /*
3211          * Field definitions are in the following datasheets:
3212          * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3213          * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3214          * Hynix MLC   (6 byte ID): Hynix H27UBG8T2B (p.22)
3215          *
3216          * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3217          * ID to decide what to do.
3218          */
3219         if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3220                         !nand_is_slc(chip) && id_data[5] != 0x00) {
3221                 /* Calc pagesize */
3222                 mtd->writesize = 2048 << (extid & 0x03);
3223                 extid >>= 2;
3224                 /* Calc oobsize */
3225                 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3226                 case 1:
3227                         mtd->oobsize = 128;
3228                         break;
3229                 case 2:
3230                         mtd->oobsize = 218;
3231                         break;
3232                 case 3:
3233                         mtd->oobsize = 400;
3234                         break;
3235                 case 4:
3236                         mtd->oobsize = 436;
3237                         break;
3238                 case 5:
3239                         mtd->oobsize = 512;
3240                         break;
3241                 case 6:
3242                         mtd->oobsize = 640;
3243                         break;
3244                 case 7:
3245                 default: /* Other cases are "reserved" (unknown) */
3246                         mtd->oobsize = 1024;
3247                         break;
3248                 }
3249                 extid >>= 2;
3250                 /* Calc blocksize */
3251                 mtd->erasesize = (128 * 1024) <<
3252                         (((extid >> 1) & 0x04) | (extid & 0x03));
3253                 *busw = 0;
3254         } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3255                         !nand_is_slc(chip)) {
3256                 unsigned int tmp;
3257
3258                 /* Calc pagesize */
3259                 mtd->writesize = 2048 << (extid & 0x03);
3260                 extid >>= 2;
3261                 /* Calc oobsize */
3262                 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3263                 case 0:
3264                         mtd->oobsize = 128;
3265                         break;
3266                 case 1:
3267                         mtd->oobsize = 224;
3268                         break;
3269                 case 2:
3270                         mtd->oobsize = 448;
3271                         break;
3272                 case 3:
3273                         mtd->oobsize = 64;
3274                         break;
3275                 case 4:
3276                         mtd->oobsize = 32;
3277                         break;
3278                 case 5:
3279                         mtd->oobsize = 16;
3280                         break;
3281                 default:
3282                         mtd->oobsize = 640;
3283                         break;
3284                 }
3285                 extid >>= 2;
3286                 /* Calc blocksize */
3287                 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3288                 if (tmp < 0x03)
3289                         mtd->erasesize = (128 * 1024) << tmp;
3290                 else if (tmp == 0x03)
3291                         mtd->erasesize = 768 * 1024;
3292                 else
3293                         mtd->erasesize = (64 * 1024) << tmp;
3294                 *busw = 0;
3295         } else {
3296                 /* Calc pagesize */
3297                 mtd->writesize = 1024 << (extid & 0x03);
3298                 extid >>= 2;
3299                 /* Calc oobsize */
3300                 mtd->oobsize = (8 << (extid & 0x01)) *
3301                         (mtd->writesize >> 9);
3302                 extid >>= 2;
3303                 /* Calc blocksize. Blocksize is multiples of 64KiB */
3304                 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3305                 extid >>= 2;
3306                 /* Get buswidth information */
3307                 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3308
3309                 /*
3310                  * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3311                  * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3312                  * follows:
3313                  * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3314                  *                         110b -> 24nm
3315                  * - ID byte 5, bit[7]:    1 -> BENAND, 0 -> raw SLC
3316                  */
3317                 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3318                                 nand_is_slc(chip) &&
3319                                 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3320                                 !(id_data[4] & 0x80) /* !BENAND */) {
3321                         mtd->oobsize = 32 * mtd->writesize >> 9;
3322                 }
3323
3324         }
3325 }
3326
3327 /*
3328  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3329  * decodes a matching ID table entry and assigns the MTD size parameters for
3330  * the chip.
3331  */
3332 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3333                                 struct nand_flash_dev *type, u8 id_data[8],
3334                                 int *busw)
3335 {
3336         int maf_id = id_data[0];
3337
3338         mtd->erasesize = type->erasesize;
3339         mtd->writesize = type->pagesize;
3340         mtd->oobsize = mtd->writesize / 32;
3341         *busw = type->options & NAND_BUSWIDTH_16;
3342
3343         /* All legacy ID NAND are small-page, SLC */
3344         chip->bits_per_cell = 1;
3345
3346         /*
3347          * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3348          * some Spansion chips have erasesize that conflicts with size
3349          * listed in nand_ids table.
3350          * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3351          */
3352         if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3353                         && id_data[6] == 0x00 && id_data[7] == 0x00
3354                         && mtd->writesize == 512) {
3355                 mtd->erasesize = 128 * 1024;
3356                 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3357         }
3358 }
3359
3360 /*
3361  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3362  * heuristic patterns using various detected parameters (e.g., manufacturer,
3363  * page size, cell-type information).
3364  */
3365 static void nand_decode_bbm_options(struct mtd_info *mtd,
3366                                     struct nand_chip *chip, u8 id_data[8])
3367 {
3368         int maf_id = id_data[0];
3369
3370         /* Set the bad block position */
3371         if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3372                 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3373         else
3374                 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3375
3376         /*
3377          * Bad block marker is stored in the last page of each block on Samsung
3378          * and Hynix MLC devices; stored in first two pages of each block on
3379          * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3380          * AMD/Spansion, and Macronix.  All others scan only the first page.
3381          */
3382         if (!nand_is_slc(chip) &&
3383                         (maf_id == NAND_MFR_SAMSUNG ||
3384                          maf_id == NAND_MFR_HYNIX))
3385                 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3386         else if ((nand_is_slc(chip) &&
3387                                 (maf_id == NAND_MFR_SAMSUNG ||
3388                                  maf_id == NAND_MFR_HYNIX ||
3389                                  maf_id == NAND_MFR_TOSHIBA ||
3390                                  maf_id == NAND_MFR_AMD ||
3391                                  maf_id == NAND_MFR_MACRONIX)) ||
3392                         (mtd->writesize == 2048 &&
3393                          maf_id == NAND_MFR_MICRON))
3394                 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3395 }
3396
3397 static inline bool is_full_id_nand(struct nand_flash_dev *type)
3398 {
3399         return type->id_len;
3400 }
3401
3402 static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3403                    struct nand_flash_dev *type, u8 *id_data, int *busw)
3404 {
3405         if (!strncmp((char *)type->id, (char *)id_data, type->id_len)) {
3406                 mtd->writesize = type->pagesize;
3407                 mtd->erasesize = type->erasesize;
3408                 mtd->oobsize = type->oobsize;
3409
3410                 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3411                 chip->chipsize = (uint64_t)type->chipsize << 20;
3412                 chip->options |= type->options;
3413                 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3414                 chip->ecc_step_ds = NAND_ECC_STEP(type);
3415                 chip->onfi_timing_mode_default =
3416                                         type->onfi_timing_mode_default;
3417
3418                 *busw = type->options & NAND_BUSWIDTH_16;
3419
3420                 if (!mtd->name)
3421                         mtd->name = type->name;
3422
3423                 return true;
3424         }
3425         return false;
3426 }
3427
3428 /*
3429  * Get the flash and manufacturer id and lookup if the type is supported.
3430  */
3431 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3432                                                   struct nand_chip *chip,
3433                                                   int *maf_id, int *dev_id,
3434                                                   struct nand_flash_dev *type)
3435 {
3436         int busw;
3437         int i, maf_idx;
3438         u8 id_data[8];
3439
3440         /* Select the device */
3441         chip->select_chip(mtd, 0);
3442
3443         /*
3444          * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3445          * after power-up.
3446          */
3447         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3448
3449         /* Send the command for reading device ID */
3450         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3451
3452         /* Read manufacturer and device IDs */
3453         *maf_id = chip->read_byte(mtd);
3454         *dev_id = chip->read_byte(mtd);
3455
3456         /*
3457          * Try again to make sure, as some systems the bus-hold or other
3458          * interface concerns can cause random data which looks like a
3459          * possibly credible NAND flash to appear. If the two results do
3460          * not match, ignore the device completely.
3461          */
3462
3463         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3464
3465         /* Read entire ID string */
3466         for (i = 0; i < 8; i++)
3467                 id_data[i] = chip->read_byte(mtd);
3468
3469         if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3470                 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3471                         *maf_id, *dev_id, id_data[0], id_data[1]);
3472                 return ERR_PTR(-ENODEV);
3473         }
3474
3475         if (!type)
3476                 type = nand_flash_ids;
3477
3478         for (; type->name != NULL; type++) {
3479                 if (is_full_id_nand(type)) {
3480                         if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3481                                 goto ident_done;
3482                 } else if (*dev_id == type->dev_id) {
3483                                 break;
3484                 }
3485         }
3486
3487         chip->onfi_version = 0;
3488         if (!type->name || !type->pagesize) {
3489                 /* Check if the chip is ONFI compliant */
3490                 if (nand_flash_detect_onfi(mtd, chip, &busw))
3491                         goto ident_done;
3492
3493                 /* Check if the chip is JEDEC compliant */
3494                 if (nand_flash_detect_jedec(mtd, chip, &busw))
3495                         goto ident_done;
3496         }
3497
3498         if (!type->name)
3499                 return ERR_PTR(-ENODEV);
3500
3501         if (!mtd->name)
3502                 mtd->name = type->name;
3503
3504         chip->chipsize = (uint64_t)type->chipsize << 20;
3505
3506         if (!type->pagesize && chip->init_size) {
3507                 /* Set the pagesize, oobsize, erasesize by the driver */
3508                 busw = chip->init_size(mtd, chip, id_data);
3509         } else if (!type->pagesize) {
3510                 /* Decode parameters from extended ID */
3511                 nand_decode_ext_id(mtd, chip, id_data, &busw);
3512         } else {
3513                 nand_decode_id(mtd, chip, type, id_data, &busw);
3514         }
3515         /* Get chip options */
3516         chip->options |= type->options;
3517
3518         /*
3519          * Check if chip is not a Samsung device. Do not clear the
3520          * options for chips which do not have an extended id.
3521          */
3522         if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3523                 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3524 ident_done:
3525
3526         /* Try to identify manufacturer */
3527         for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3528                 if (nand_manuf_ids[maf_idx].id == *maf_id)
3529                         break;
3530         }
3531
3532         if (chip->options & NAND_BUSWIDTH_AUTO) {
3533                 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3534                 chip->options |= busw;
3535                 nand_set_defaults(chip, busw);
3536         } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3537                 /*
3538                  * Check, if buswidth is correct. Hardware drivers should set
3539                  * chip correct!
3540                  */
3541                 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3542                         *maf_id, *dev_id);
3543                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3544                 pr_warn("bus width %d instead %d bit\n",
3545                            (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3546                            busw ? 16 : 8);
3547                 return ERR_PTR(-EINVAL);
3548         }
3549
3550         nand_decode_bbm_options(mtd, chip, id_data);
3551
3552         /* Calculate the address shift from the page size */
3553         chip->page_shift = ffs(mtd->writesize) - 1;
3554         /* Convert chipsize to number of pages per chip -1 */
3555         chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3556
3557         chip->bbt_erase_shift = chip->phys_erase_shift =
3558                 ffs(mtd->erasesize) - 1;
3559         if (chip->chipsize & 0xffffffff)
3560                 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3561         else {
3562                 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3563                 chip->chip_shift += 32 - 1;
3564         }
3565
3566         chip->badblockbits = 8;
3567         chip->erase = single_erase;
3568
3569         /* Do not replace user supplied command function! */
3570         if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3571                 chip->cmdfunc = nand_command_lp;
3572
3573         pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3574                 *maf_id, *dev_id);
3575
3576 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
3577         if (chip->onfi_version)
3578                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3579                                 chip->onfi_params.model);
3580         else if (chip->jedec_version)
3581                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3582                                 chip->jedec_params.model);
3583         else
3584                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3585                                 type->name);
3586 #else
3587         if (chip->jedec_version)
3588                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3589                                 chip->jedec_params.model);
3590         else
3591                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3592                                 type->name);
3593
3594         pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3595                 type->name);
3596 #endif
3597
3598         pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3599                 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3600                 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
3601         return type;
3602 }
3603
3604 /**
3605  * nand_scan_ident - [NAND Interface] Scan for the NAND device
3606  * @mtd: MTD device structure
3607  * @maxchips: number of chips to scan for
3608  * @table: alternative NAND ID table
3609  *
3610  * This is the first phase of the normal nand_scan() function. It reads the
3611  * flash ID and sets up MTD fields accordingly.
3612  *
3613  * The mtd->owner field must be set to the module of the caller.
3614  */
3615 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3616                     struct nand_flash_dev *table)
3617 {
3618         int i, nand_maf_id, nand_dev_id;
3619         struct nand_chip *chip = mtd->priv;
3620         struct nand_flash_dev *type;
3621
3622         /* Set the default functions */
3623         nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
3624
3625         /* Read the flash type */
3626         type = nand_get_flash_type(mtd, chip, &nand_maf_id,
3627                                    &nand_dev_id, table);
3628
3629         if (IS_ERR(type)) {
3630                 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3631                         pr_warn("No NAND device found\n");
3632                 chip->select_chip(mtd, -1);
3633                 return PTR_ERR(type);
3634         }
3635
3636         chip->select_chip(mtd, -1);
3637
3638         /* Check for a chip array */
3639         for (i = 1; i < maxchips; i++) {
3640                 chip->select_chip(mtd, i);
3641                 /* See comment in nand_get_flash_type for reset */
3642                 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3643                 /* Send the command for reading device ID */
3644                 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3645                 /* Read manufacturer and device IDs */
3646                 if (nand_maf_id != chip->read_byte(mtd) ||
3647                     nand_dev_id != chip->read_byte(mtd)) {
3648                         chip->select_chip(mtd, -1);
3649                         break;
3650                 }
3651                 chip->select_chip(mtd, -1);
3652         }
3653
3654 #ifdef DEBUG
3655         if (i > 1)
3656                 pr_info("%d chips detected\n", i);
3657 #endif
3658
3659         /* Store the number of chips and calc total size for mtd */
3660         chip->numchips = i;
3661         mtd->size = i * chip->chipsize;
3662
3663         return 0;
3664 }
3665 EXPORT_SYMBOL(nand_scan_ident);
3666
3667 /*
3668  * Check if the chip configuration meet the datasheet requirements.
3669
3670  * If our configuration corrects A bits per B bytes and the minimum
3671  * required correction level is X bits per Y bytes, then we must ensure
3672  * both of the following are true:
3673  *
3674  * (1) A / B >= X / Y
3675  * (2) A >= X
3676  *
3677  * Requirement (1) ensures we can correct for the required bitflip density.
3678  * Requirement (2) ensures we can correct even when all bitflips are clumped
3679  * in the same sector.
3680  */
3681 static bool nand_ecc_strength_good(struct mtd_info *mtd)
3682 {
3683         struct nand_chip *chip = mtd->priv;
3684         struct nand_ecc_ctrl *ecc = &chip->ecc;
3685         int corr, ds_corr;
3686
3687         if (ecc->size == 0 || chip->ecc_step_ds == 0)
3688                 /* Not enough information */
3689                 return true;
3690
3691         /*
3692          * We get the number of corrected bits per page to compare
3693          * the correction density.
3694          */
3695         corr = (mtd->writesize * ecc->strength) / ecc->size;
3696         ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
3697
3698         return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
3699 }
3700
3701 /**
3702  * nand_scan_tail - [NAND Interface] Scan for the NAND device
3703  * @mtd: MTD device structure
3704  *
3705  * This is the second phase of the normal nand_scan() function. It fills out
3706  * all the uninitialized function pointers with the defaults and scans for a
3707  * bad block table if appropriate.
3708  */
3709 int nand_scan_tail(struct mtd_info *mtd)
3710 {
3711         int i;
3712         struct nand_chip *chip = mtd->priv;
3713         struct nand_ecc_ctrl *ecc = &chip->ecc;
3714         struct nand_buffers *nbuf;
3715
3716         /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3717         BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3718                         !(chip->bbt_options & NAND_BBT_USE_FLASH));
3719
3720         if (!(chip->options & NAND_OWN_BUFFERS)) {
3721                 nbuf = kzalloc(sizeof(struct nand_buffers), GFP_KERNEL);
3722                 chip->buffers = nbuf;
3723         } else {
3724                 if (!chip->buffers)
3725                         return -ENOMEM;
3726         }
3727
3728         /* Set the internal oob buffer location, just after the page data */
3729         chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3730
3731         /*
3732          * If no default placement scheme is given, select an appropriate one.
3733          */
3734         if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
3735                 switch (mtd->oobsize) {
3736                 case 8:
3737                         ecc->layout = &nand_oob_8;
3738                         break;
3739                 case 16:
3740                         ecc->layout = &nand_oob_16;
3741                         break;
3742                 case 64:
3743                         ecc->layout = &nand_oob_64;
3744                         break;
3745                 case 128:
3746                         ecc->layout = &nand_oob_128;
3747                         break;
3748                 default:
3749                         pr_warn("No oob scheme defined for oobsize %d\n",
3750                                    mtd->oobsize);
3751                         BUG();
3752                 }
3753         }
3754
3755         if (!chip->write_page)
3756                 chip->write_page = nand_write_page;
3757
3758         /*
3759          * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3760          * selected and we have 256 byte pagesize fallback to software ECC
3761          */
3762
3763         switch (ecc->mode) {
3764         case NAND_ECC_HW_OOB_FIRST:
3765                 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3766                 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
3767                         pr_warn("No ECC functions supplied; hardware ECC not possible\n");
3768                         BUG();
3769                 }
3770                 if (!ecc->read_page)
3771                         ecc->read_page = nand_read_page_hwecc_oob_first;
3772
3773         case NAND_ECC_HW:
3774                 /* Use standard hwecc read page function? */
3775                 if (!ecc->read_page)
3776                         ecc->read_page = nand_read_page_hwecc;
3777                 if (!ecc->write_page)
3778                         ecc->write_page = nand_write_page_hwecc;
3779                 if (!ecc->read_page_raw)
3780                         ecc->read_page_raw = nand_read_page_raw;
3781                 if (!ecc->write_page_raw)
3782                         ecc->write_page_raw = nand_write_page_raw;
3783                 if (!ecc->read_oob)
3784                         ecc->read_oob = nand_read_oob_std;
3785                 if (!ecc->write_oob)
3786                         ecc->write_oob = nand_write_oob_std;
3787                 if (!ecc->read_subpage)
3788                         ecc->read_subpage = nand_read_subpage;
3789                 if (!ecc->write_subpage)
3790                         ecc->write_subpage = nand_write_subpage_hwecc;
3791
3792         case NAND_ECC_HW_SYNDROME:
3793                 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
3794                     (!ecc->read_page ||
3795                      ecc->read_page == nand_read_page_hwecc ||
3796                      !ecc->write_page ||
3797                      ecc->write_page == nand_write_page_hwecc)) {
3798                         pr_warn("No ECC functions supplied; hardware ECC not possible\n");
3799                         BUG();
3800                 }
3801                 /* Use standard syndrome read/write page function? */
3802                 if (!ecc->read_page)
3803                         ecc->read_page = nand_read_page_syndrome;
3804                 if (!ecc->write_page)
3805                         ecc->write_page = nand_write_page_syndrome;
3806                 if (!ecc->read_page_raw)
3807                         ecc->read_page_raw = nand_read_page_raw_syndrome;
3808                 if (!ecc->write_page_raw)
3809                         ecc->write_page_raw = nand_write_page_raw_syndrome;
3810                 if (!ecc->read_oob)
3811                         ecc->read_oob = nand_read_oob_syndrome;
3812                 if (!ecc->write_oob)
3813                         ecc->write_oob = nand_write_oob_syndrome;
3814
3815                 if (mtd->writesize >= ecc->size) {
3816                         if (!ecc->strength) {
3817                                 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3818                                 BUG();
3819                         }
3820                         break;
3821                 }
3822                 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
3823                         ecc->size, mtd->writesize);
3824                 ecc->mode = NAND_ECC_SOFT;
3825
3826         case NAND_ECC_SOFT:
3827                 ecc->calculate = nand_calculate_ecc;
3828                 ecc->correct = nand_correct_data;
3829                 ecc->read_page = nand_read_page_swecc;
3830                 ecc->read_subpage = nand_read_subpage;
3831                 ecc->write_page = nand_write_page_swecc;
3832                 ecc->read_page_raw = nand_read_page_raw;
3833                 ecc->write_page_raw = nand_write_page_raw;
3834                 ecc->read_oob = nand_read_oob_std;
3835                 ecc->write_oob = nand_write_oob_std;
3836                 if (!ecc->size)
3837                         ecc->size = 256;
3838                 ecc->bytes = 3;
3839                 ecc->strength = 1;
3840                 break;
3841
3842         case NAND_ECC_SOFT_BCH:
3843                 if (!mtd_nand_has_bch()) {
3844                         pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
3845                         BUG();
3846                 }
3847                 ecc->calculate = nand_bch_calculate_ecc;
3848                 ecc->correct = nand_bch_correct_data;
3849                 ecc->read_page = nand_read_page_swecc;
3850                 ecc->read_subpage = nand_read_subpage;
3851                 ecc->write_page = nand_write_page_swecc;
3852                 ecc->read_page_raw = nand_read_page_raw;
3853                 ecc->write_page_raw = nand_write_page_raw;
3854                 ecc->read_oob = nand_read_oob_std;
3855                 ecc->write_oob = nand_write_oob_std;
3856                 /*
3857                  * Board driver should supply ecc.size and ecc.strength values
3858                  * to select how many bits are correctable. Otherwise, default
3859                  * to 4 bits for large page devices.
3860                  */
3861                 if (!ecc->size && (mtd->oobsize >= 64)) {
3862                         ecc->size = 512;
3863                         ecc->strength = 4;
3864                 }
3865
3866                 /* See nand_bch_init() for details. */
3867                 ecc->bytes = DIV_ROUND_UP(
3868                                 ecc->strength * fls(8 * ecc->size), 8);
3869                 ecc->priv = nand_bch_init(mtd, ecc->size, ecc->bytes,
3870                                                &ecc->layout);
3871                 if (!ecc->priv) {
3872                         pr_warn("BCH ECC initialization failed!\n");
3873                         BUG();
3874                 }
3875                 break;
3876
3877         case NAND_ECC_NONE:
3878                 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
3879                 ecc->read_page = nand_read_page_raw;
3880                 ecc->write_page = nand_write_page_raw;
3881                 ecc->read_oob = nand_read_oob_std;
3882                 ecc->read_page_raw = nand_read_page_raw;
3883                 ecc->write_page_raw = nand_write_page_raw;
3884                 ecc->write_oob = nand_write_oob_std;
3885                 ecc->size = mtd->writesize;
3886                 ecc->bytes = 0;
3887                 ecc->strength = 0;
3888                 break;
3889
3890         default:
3891                 pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
3892                 BUG();
3893         }
3894
3895         /* For many systems, the standard OOB write also works for raw */
3896         if (!ecc->read_oob_raw)
3897                 ecc->read_oob_raw = ecc->read_oob;
3898         if (!ecc->write_oob_raw)
3899                 ecc->write_oob_raw = ecc->write_oob;
3900
3901         /*
3902          * The number of bytes available for a client to place data into
3903          * the out of band area.
3904          */
3905         ecc->layout->oobavail = 0;
3906         for (i = 0; ecc->layout->oobfree[i].length
3907                         && i < ARRAY_SIZE(ecc->layout->oobfree); i++)
3908                 ecc->layout->oobavail += ecc->layout->oobfree[i].length;
3909         mtd->oobavail = ecc->layout->oobavail;
3910
3911         /* ECC sanity check: warn if it's too weak */
3912         if (!nand_ecc_strength_good(mtd))
3913                 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
3914                         mtd->name);
3915
3916         /*
3917          * Set the number of read / write steps for one page depending on ECC
3918          * mode.
3919          */
3920         ecc->steps = mtd->writesize / ecc->size;
3921         if (ecc->steps * ecc->size != mtd->writesize) {
3922                 pr_warn("Invalid ECC parameters\n");
3923                 pr_warn("steps=%d size=%d writesize=%d\n",
3924                         chip->ecc.steps, chip->ecc.size, mtd->writesize);
3925                 BUG();
3926         }
3927         ecc->total = ecc->steps * ecc->bytes;
3928
3929         /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
3930         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
3931                 switch (ecc->steps) {
3932                 case 2:
3933                         mtd->subpage_sft = 1;
3934                         break;
3935                 case 4:
3936                 case 8:
3937                 case 16:
3938                         mtd->subpage_sft = 2;
3939                         break;
3940                 }
3941         }
3942         chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3943
3944         /* Initialize state */
3945         chip->state = FL_READY;
3946
3947         /* Invalidate the pagebuffer reference */
3948         chip->pagebuf = -1;
3949
3950         /* Large page NAND with SOFT_ECC should support subpage reads */
3951         switch (ecc->mode) {
3952         case NAND_ECC_SOFT:
3953         case NAND_ECC_SOFT_BCH:
3954                 if (chip->page_shift > 9)
3955                         chip->options |= NAND_SUBPAGE_READ;
3956                 break;
3957
3958         default:
3959                 break;
3960         }
3961
3962         /* Fill in remaining MTD driver data */
3963         mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
3964         mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3965                                                 MTD_CAP_NANDFLASH;
3966         mtd->_erase = nand_erase;
3967         mtd->_read = nand_read;
3968         mtd->_write = nand_write;
3969         mtd->_panic_write = panic_nand_write;
3970         mtd->_read_oob = nand_read_oob;
3971         mtd->_write_oob = nand_write_oob;
3972         mtd->_sync = nand_sync;
3973         mtd->_lock = NULL;
3974         mtd->_unlock = NULL;
3975         mtd->_block_isreserved = nand_block_isreserved;
3976         mtd->_block_isbad = nand_block_isbad;
3977         mtd->_block_markbad = nand_block_markbad;
3978         mtd->writebufsize = mtd->writesize;
3979
3980         /* propagate ecc info to mtd_info */
3981         mtd->ecclayout = ecc->layout;
3982         mtd->ecc_strength = ecc->strength;
3983         mtd->ecc_step_size = ecc->size;
3984         /*
3985          * Initialize bitflip_threshold to its default prior scan_bbt() call.
3986          * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
3987          * properly set.
3988          */
3989         if (!mtd->bitflip_threshold)
3990                 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
3991
3992         return 0;
3993 }
3994 EXPORT_SYMBOL(nand_scan_tail);
3995
3996 /*
3997  * is_module_text_address() isn't exported, and it's mostly a pointless
3998  * test if this is a module _anyway_ -- they'd have to try _really_ hard
3999  * to call us from in-kernel code if the core NAND support is modular.
4000  */
4001 #ifdef MODULE
4002 #define caller_is_module() (1)
4003 #else
4004 #define caller_is_module() \
4005         is_module_text_address((unsigned long)__builtin_return_address(0))
4006 #endif
4007
4008 /**
4009  * nand_scan - [NAND Interface] Scan for the NAND device
4010  * @mtd: MTD device structure
4011  * @maxchips: number of chips to scan for
4012  *
4013  * This fills out all the uninitialized function pointers with the defaults.
4014  * The flash ID is read and the mtd/chip structures are filled with the
4015  * appropriate values. The mtd->owner field must be set to the module of the
4016  * caller.
4017  */
4018 int nand_scan(struct mtd_info *mtd, int maxchips)
4019 {
4020         int ret;
4021
4022         /* Many callers got this wrong, so check for it for a while... */
4023         if (!mtd->owner && caller_is_module()) {
4024                 pr_crit("%s called with NULL mtd->owner!\n", __func__);
4025                 BUG();
4026         }
4027
4028         ret = nand_scan_ident(mtd, maxchips, NULL);
4029         if (!ret)
4030                 ret = nand_scan_tail(mtd);
4031         return ret;
4032 }
4033 EXPORT_SYMBOL(nand_scan);
4034
4035 module_init(nand_base_init);
4036 module_exit(nand_base_exit);
4037
4038 MODULE_LICENSE("GPL");
4039 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4040 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4041 MODULE_DESCRIPTION("Generic NAND flash driver code");