]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/mtd/nand/omap_gpmc.c
Merge branch 'master' of git://git.denx.de/u-boot-usb
[karo-tx-uboot.git] / drivers / mtd / nand / omap_gpmc.c
1 /*
2  * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
3  * Rohit Choraria <rohitkc@ti.com>
4  *
5  * SPDX-License-Identifier:     GPL-2.0+
6  */
7
8 #include <common.h>
9 #include <asm/io.h>
10 #include <asm/errno.h>
11 #include <asm/arch/mem.h>
12 #include <linux/mtd/omap_gpmc.h>
13 #include <linux/mtd/nand_ecc.h>
14 #include <linux/bch.h>
15 #include <linux/compiler.h>
16 #include <nand.h>
17 #include <linux/mtd/omap_elm.h>
18
19 #define BADBLOCK_MARKER_LENGTH  2
20 #define SECTOR_BYTES            512
21 #define ECCCLEAR                (0x1 << 8)
22 #define ECCRESULTREG1           (0x1 << 0)
23 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
24 #define BCH4_BIT_PAD            4
25
26 #ifdef CONFIG_BCH
27 static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
28                                 0x97, 0x79, 0xe5, 0x24, 0xb5};
29 #endif
30 static uint8_t cs_next;
31 static __maybe_unused struct nand_ecclayout omap_ecclayout;
32
33 /*
34  * Driver configurations
35  */
36 struct omap_nand_info {
37         struct bch_control *control;
38         enum omap_ecc ecc_scheme;
39         int cs;
40 };
41
42 /* We are wasting a bit of memory but al least we are safe */
43 static struct omap_nand_info omap_nand_info[GPMC_MAX_CS];
44
45 /*
46  * omap_nand_hwcontrol - Set the address pointers corretly for the
47  *                      following address/data/command operation
48  */
49 static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
50                                 uint32_t ctrl)
51 {
52         register struct nand_chip *this = mtd->priv;
53         struct omap_nand_info *info = this->priv;
54         int cs = info->cs;
55
56         /*
57          * Point the IO_ADDR to DATA and ADDRESS registers instead
58          * of chip address
59          */
60         switch (ctrl) {
61         case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
62                 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
63                 break;
64         case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
65                 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
66                 break;
67         case NAND_CTRL_CHANGE | NAND_NCE:
68                 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
69                 break;
70         }
71
72         if (cmd != NAND_CMD_NONE)
73                 writeb(cmd, this->IO_ADDR_W);
74 }
75
76 /* Check wait pin as dev ready indicator */
77 static int omap_dev_ready(struct mtd_info *mtd)
78 {
79         return gpmc_cfg->status & (1 << 8);
80 }
81
82 /*
83  * gen_true_ecc - This function will generate true ECC value, which
84  * can be used when correcting data read from NAND flash memory core
85  *
86  * @ecc_buf:    buffer to store ecc code
87  *
88  * @return:     re-formatted ECC value
89  */
90 static uint32_t gen_true_ecc(uint8_t *ecc_buf)
91 {
92         return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
93                 ((ecc_buf[2] & 0x0F) << 8);
94 }
95
96 /*
97  * omap_correct_data - Compares the ecc read from nand spare area with ECC
98  * registers values and corrects one bit error if it has occured
99  * Further details can be had from OMAP TRM and the following selected links:
100  * http://en.wikipedia.org/wiki/Hamming_code
101  * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
102  *
103  * @mtd:                 MTD device structure
104  * @dat:                 page data
105  * @read_ecc:            ecc read from nand flash
106  * @calc_ecc:            ecc read from ECC registers
107  *
108  * @return 0 if data is OK or corrected, else returns -1
109  */
110 static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
111                                 uint8_t *read_ecc, uint8_t *calc_ecc)
112 {
113         uint32_t orig_ecc, new_ecc, res, hm;
114         uint16_t parity_bits, byte;
115         uint8_t bit;
116
117         /* Regenerate the orginal ECC */
118         orig_ecc = gen_true_ecc(read_ecc);
119         new_ecc = gen_true_ecc(calc_ecc);
120         /* Get the XOR of real ecc */
121         res = orig_ecc ^ new_ecc;
122         if (res) {
123                 /* Get the hamming width */
124                 hm = hweight32(res);
125                 /* Single bit errors can be corrected! */
126                 if (hm == 12) {
127                         /* Correctable data! */
128                         parity_bits = res >> 16;
129                         bit = (parity_bits & 0x7);
130                         byte = (parity_bits >> 3) & 0x1FF;
131                         /* Flip the bit to correct */
132                         dat[byte] ^= (0x1 << bit);
133                 } else if (hm == 1) {
134                         printf("Error: Ecc is wrong\n");
135                         /* ECC itself is corrupted */
136                         return 2;
137                 } else {
138                         /*
139                          * hm distance != parity pairs OR one, could mean 2 bit
140                          * error OR potentially be on a blank page..
141                          * orig_ecc: contains spare area data from nand flash.
142                          * new_ecc: generated ecc while reading data area.
143                          * Note: if the ecc = 0, all data bits from which it was
144                          * generated are 0xFF.
145                          * The 3 byte(24 bits) ecc is generated per 512byte
146                          * chunk of a page. If orig_ecc(from spare area)
147                          * is 0xFF && new_ecc(computed now from data area)=0x0,
148                          * this means that data area is 0xFF and spare area is
149                          * 0xFF. A sure sign of a erased page!
150                          */
151                         if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
152                                 return 0;
153                         printf("Error: Bad compare! failed\n");
154                         /* detected 2 bit error */
155                         return -1;
156                 }
157         }
158         return 0;
159 }
160
161 /*
162  * omap_enable_hwecc - configures GPMC as per ECC scheme before read/write
163  * @mtd:        MTD device structure
164  * @mode:       Read/Write mode
165  */
166 __maybe_unused
167 static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
168 {
169         struct nand_chip        *nand   = mtd->priv;
170         struct omap_nand_info   *info   = nand->priv;
171         unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0;
172         unsigned int ecc_algo = 0;
173         unsigned int bch_type = 0;
174         unsigned int eccsize1 = 0x00, eccsize0 = 0x00, bch_wrapmode = 0x00;
175         u32 ecc_size_config_val = 0;
176         u32 ecc_config_val = 0;
177         int cs = info->cs;
178
179         /* configure GPMC for specific ecc-scheme */
180         switch (info->ecc_scheme) {
181         case OMAP_ECC_HAM1_CODE_SW:
182                 return;
183         case OMAP_ECC_HAM1_CODE_HW:
184                 ecc_algo = 0x0;
185                 bch_type = 0x0;
186                 bch_wrapmode = 0x00;
187                 eccsize0 = 0xFF;
188                 eccsize1 = 0xFF;
189                 break;
190         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
191         case OMAP_ECC_BCH8_CODE_HW:
192                 ecc_algo = 0x1;
193                 bch_type = 0x1;
194                 if (mode == NAND_ECC_WRITE) {
195                         bch_wrapmode = 0x01;
196                         eccsize0 = 0;  /* extra bits in nibbles per sector */
197                         eccsize1 = 28; /* OOB bits in nibbles per sector */
198                 } else {
199                         bch_wrapmode = 0x01;
200                         eccsize0 = 26; /* ECC bits in nibbles per sector */
201                         eccsize1 = 2;  /* non-ECC bits in nibbles per sector */
202                 }
203                 break;
204         case OMAP_ECC_BCH16_CODE_HW:
205                 ecc_algo = 0x1;
206                 bch_type = 0x2;
207                 if (mode == NAND_ECC_WRITE) {
208                         bch_wrapmode = 0x01;
209                         eccsize0 = 0;  /* extra bits in nibbles per sector */
210                         eccsize1 = 52; /* OOB bits in nibbles per sector */
211                 } else {
212                         bch_wrapmode = 0x01;
213                         eccsize0 = 52; /* ECC bits in nibbles per sector */
214                         eccsize1 = 0;  /* non-ECC bits in nibbles per sector */
215                 }
216                 break;
217         default:
218                 return;
219         }
220         /* Clear ecc and enable bits */
221         writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
222         /* Configure ecc size for BCH */
223         ecc_size_config_val = (eccsize1 << 22) | (eccsize0 << 12);
224         writel(ecc_size_config_val, &gpmc_cfg->ecc_size_config);
225
226         /* Configure device details for BCH engine */
227         ecc_config_val = ((ecc_algo << 16)      | /* HAM1 | BCHx */
228                         (bch_type << 12)        | /* BCH4/BCH8/BCH16 */
229                         (bch_wrapmode << 8)     | /* wrap mode */
230                         (dev_width << 7)        | /* bus width */
231                         (0x0 << 4)              | /* number of sectors */
232                         (cs <<  1)              | /* ECC CS */
233                         (0x1));                   /* enable ECC */
234         writel(ecc_config_val, &gpmc_cfg->ecc_config);
235 }
236
237 /*
238  *  omap_calculate_ecc - Read ECC result
239  *  @mtd:       MTD structure
240  *  @dat:       unused
241  *  @ecc_code:  ecc_code buffer
242  *  Using noninverted ECC can be considered ugly since writing a blank
243  *  page ie. padding will clear the ECC bytes. This is no problem as
244  *  long nobody is trying to write data on the seemingly unused page.
245  *  Reading an erased page will produce an ECC mismatch between
246  *  generated and read ECC bytes that has to be dealt with separately.
247  *  E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
248  *  is used, the result of read will be 0x0 while the ECC offsets of the
249  *  spare area will be 0xFF which will result in an ECC mismatch.
250  */
251 static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
252                                 uint8_t *ecc_code)
253 {
254         struct nand_chip *chip = mtd->priv;
255         struct omap_nand_info *info = chip->priv;
256         uint32_t *ptr, val = 0;
257         int8_t i = 0, j;
258
259         switch (info->ecc_scheme) {
260         case OMAP_ECC_HAM1_CODE_HW:
261                 val = readl(&gpmc_cfg->ecc1_result);
262                 ecc_code[0] = val & 0xFF;
263                 ecc_code[1] = (val >> 16) & 0xFF;
264                 ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
265                 break;
266 #ifdef CONFIG_BCH
267         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
268 #endif
269         case OMAP_ECC_BCH8_CODE_HW:
270                 ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
271                 val = readl(ptr);
272                 ecc_code[i++] = (val >>  0) & 0xFF;
273                 ptr--;
274                 for (j = 0; j < 3; j++) {
275                         val = readl(ptr);
276                         ecc_code[i++] = (val >> 24) & 0xFF;
277                         ecc_code[i++] = (val >> 16) & 0xFF;
278                         ecc_code[i++] = (val >>  8) & 0xFF;
279                         ecc_code[i++] = (val >>  0) & 0xFF;
280                         ptr--;
281                 }
282                 break;
283         case OMAP_ECC_BCH16_CODE_HW:
284                 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[2]);
285                 ecc_code[i++] = (val >>  8) & 0xFF;
286                 ecc_code[i++] = (val >>  0) & 0xFF;
287                 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[1]);
288                 ecc_code[i++] = (val >> 24) & 0xFF;
289                 ecc_code[i++] = (val >> 16) & 0xFF;
290                 ecc_code[i++] = (val >>  8) & 0xFF;
291                 ecc_code[i++] = (val >>  0) & 0xFF;
292                 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[0]);
293                 ecc_code[i++] = (val >> 24) & 0xFF;
294                 ecc_code[i++] = (val >> 16) & 0xFF;
295                 ecc_code[i++] = (val >>  8) & 0xFF;
296                 ecc_code[i++] = (val >>  0) & 0xFF;
297                 for (j = 3; j >= 0; j--) {
298                         val = readl(&gpmc_cfg->bch_result_0_3[0].bch_result_x[j]
299                                                                         );
300                         ecc_code[i++] = (val >> 24) & 0xFF;
301                         ecc_code[i++] = (val >> 16) & 0xFF;
302                         ecc_code[i++] = (val >>  8) & 0xFF;
303                         ecc_code[i++] = (val >>  0) & 0xFF;
304                 }
305                 break;
306         default:
307                 return -EINVAL;
308         }
309         /* ECC scheme specific syndrome customizations */
310         switch (info->ecc_scheme) {
311         case OMAP_ECC_HAM1_CODE_HW:
312                 break;
313 #ifdef CONFIG_BCH
314         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
315
316                 for (i = 0; i < chip->ecc.bytes; i++)
317                         *(ecc_code + i) = *(ecc_code + i) ^
318                                                 bch8_polynomial[i];
319                 break;
320 #endif
321         case OMAP_ECC_BCH8_CODE_HW:
322                 ecc_code[chip->ecc.bytes - 1] = 0x00;
323                 break;
324         case OMAP_ECC_BCH16_CODE_HW:
325                 break;
326         default:
327                 return -EINVAL;
328         }
329         return 0;
330 }
331
332 #ifdef CONFIG_NAND_OMAP_ELM
333 /*
334  * omap_reverse_list - re-orders list elements in reverse order [internal]
335  * @list:       pointer to start of list
336  * @length:     length of list
337 */
338 static void omap_reverse_list(u8 *list, unsigned int length)
339 {
340         unsigned int i, j;
341         unsigned int half_length = length / 2;
342         u8 tmp;
343         for (i = 0, j = length - 1; i < half_length; i++, j--) {
344                 tmp = list[i];
345                 list[i] = list[j];
346                 list[j] = tmp;
347         }
348 }
349
350 /*
351  * omap_correct_data_bch - Compares the ecc read from nand spare area
352  * with ECC registers values and corrects one bit error if it has occured
353  *
354  * @mtd:        MTD device structure
355  * @dat:        page data
356  * @read_ecc:   ecc read from nand flash (ignored)
357  * @calc_ecc:   ecc read from ECC registers
358  *
359  * @return 0 if data is OK or corrected, else returns -1
360  */
361 static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
362                                 uint8_t *read_ecc, uint8_t *calc_ecc)
363 {
364         struct nand_chip *chip = mtd->priv;
365         struct omap_nand_info *info = chip->priv;
366         struct nand_ecc_ctrl *ecc = &chip->ecc;
367         uint32_t error_count = 0, error_max;
368         uint32_t error_loc[ELM_MAX_ERROR_COUNT];
369         enum bch_level bch_type;
370         uint32_t i, ecc_flag = 0;
371         uint8_t count, err = 0;
372         uint32_t byte_pos, bit_pos;
373
374         /* check calculated ecc */
375         for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
376                 if (calc_ecc[i] != 0x00)
377                         ecc_flag = 1;
378         }
379         if (!ecc_flag)
380                 return 0;
381
382         /* check for whether its a erased-page */
383         ecc_flag = 0;
384         for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
385                 if (read_ecc[i] != 0xff)
386                         ecc_flag = 1;
387         }
388         if (!ecc_flag)
389                 return 0;
390
391         /*
392          * while reading ECC result we read it in big endian.
393          * Hence while loading to ELM we have rotate to get the right endian.
394          */
395         switch (info->ecc_scheme) {
396         case OMAP_ECC_BCH8_CODE_HW:
397                 bch_type = BCH_8_BIT;
398                 omap_reverse_list(calc_ecc, ecc->bytes - 1);
399                 break;
400         case OMAP_ECC_BCH16_CODE_HW:
401                 bch_type = BCH_16_BIT;
402                 omap_reverse_list(calc_ecc, ecc->bytes);
403                 break;
404         default:
405                 return -EINVAL;
406         }
407         /* use elm module to check for errors */
408         elm_config(bch_type);
409         err = elm_check_error(calc_ecc, bch_type, &error_count, error_loc);
410         if (err)
411                 return err;
412
413         /* correct bch error */
414         for (count = 0; count < error_count; count++) {
415                 switch (info->ecc_scheme) {
416                 case OMAP_ECC_BCH8_CODE_HW:
417                         /* 14th byte in ECC is reserved to match ROM layout */
418                         error_max = SECTOR_BYTES + (ecc->bytes - 1);
419                         break;
420                 case OMAP_ECC_BCH16_CODE_HW:
421                         error_max = SECTOR_BYTES + ecc->bytes;
422                         break;
423                 default:
424                         return -EINVAL;
425                 }
426                 byte_pos = error_max - (error_loc[count] / 8) - 1;
427                 bit_pos  = error_loc[count] % 8;
428                 if (byte_pos < SECTOR_BYTES) {
429                         dat[byte_pos] ^= 1 << bit_pos;
430                         printf("nand: bit-flip corrected @data=%d\n", byte_pos);
431                 } else if (byte_pos < error_max) {
432                         read_ecc[byte_pos - SECTOR_BYTES] ^= 1 << bit_pos;
433                         printf("nand: bit-flip corrected @oob=%d\n", byte_pos -
434                                                                 SECTOR_BYTES);
435                 } else {
436                         err = -EBADMSG;
437                         printf("nand: error: invalid bit-flip location\n");
438                 }
439         }
440         return (err) ? err : error_count;
441 }
442
443 /**
444  * omap_read_page_bch - hardware ecc based page read function
445  * @mtd:        mtd info structure
446  * @chip:       nand chip info structure
447  * @buf:        buffer to store read data
448  * @oob_required: caller expects OOB data read to chip->oob_poi
449  * @page:       page number to read
450  *
451  */
452 static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
453                                 uint8_t *buf, int oob_required, int page)
454 {
455         int i, eccsize = chip->ecc.size;
456         int eccbytes = chip->ecc.bytes;
457         int eccsteps = chip->ecc.steps;
458         uint8_t *p = buf;
459         uint8_t *ecc_calc = chip->buffers->ecccalc;
460         uint8_t *ecc_code = chip->buffers->ecccode;
461         uint32_t *eccpos = chip->ecc.layout->eccpos;
462         uint8_t *oob = chip->oob_poi;
463         uint32_t data_pos;
464         uint32_t oob_pos;
465
466         data_pos = 0;
467         /* oob area start */
468         oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
469         oob += chip->ecc.layout->eccpos[0];
470
471         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
472                                 oob += eccbytes) {
473                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
474                 /* read data */
475                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, -1);
476                 chip->read_buf(mtd, p, eccsize);
477
478                 /* read respective ecc from oob area */
479                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
480                 chip->read_buf(mtd, oob, eccbytes);
481                 /* read syndrome */
482                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
483
484                 data_pos += eccsize;
485                 oob_pos += eccbytes;
486         }
487
488         for (i = 0; i < chip->ecc.total; i++)
489                 ecc_code[i] = chip->oob_poi[eccpos[i]];
490
491         eccsteps = chip->ecc.steps;
492         p = buf;
493
494         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
495                 int stat;
496
497                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
498                 if (stat < 0)
499                         mtd->ecc_stats.failed++;
500                 else
501                         mtd->ecc_stats.corrected += stat;
502         }
503         return 0;
504 }
505 #endif /* CONFIG_NAND_OMAP_ELM */
506
507 /*
508  * OMAP3 BCH8 support (with BCH library)
509  */
510 #ifdef CONFIG_BCH
511 /**
512  * omap_correct_data_bch_sw - Decode received data and correct errors
513  * @mtd: MTD device structure
514  * @data: page data
515  * @read_ecc: ecc read from nand flash
516  * @calc_ecc: ecc read from HW ECC registers
517  */
518 static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
519                                  u_char *read_ecc, u_char *calc_ecc)
520 {
521         int i, count;
522         /* cannot correct more than 8 errors */
523         unsigned int errloc[8];
524         struct nand_chip *chip = mtd->priv;
525         struct omap_nand_info *info = chip->priv;
526
527         count = decode_bch(info->control, NULL, 512, read_ecc, calc_ecc,
528                                                         NULL, errloc);
529         if (count > 0) {
530                 /* correct errors */
531                 for (i = 0; i < count; i++) {
532                         /* correct data only, not ecc bytes */
533                         if (errloc[i] < 8*512)
534                                 data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
535                         printf("corrected bitflip %u\n", errloc[i]);
536 #ifdef DEBUG
537                         puts("read_ecc: ");
538                         /*
539                          * BCH8 have 13 bytes of ECC; BCH4 needs adoption
540                          * here!
541                          */
542                         for (i = 0; i < 13; i++)
543                                 printf("%02x ", read_ecc[i]);
544                         puts("\n");
545                         puts("calc_ecc: ");
546                         for (i = 0; i < 13; i++)
547                                 printf("%02x ", calc_ecc[i]);
548                         puts("\n");
549 #endif
550                 }
551         } else if (count < 0) {
552                 puts("ecc unrecoverable error\n");
553         }
554         return count;
555 }
556
557 /**
558  * omap_free_bch - Release BCH ecc resources
559  * @mtd: MTD device structure
560  */
561 static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
562 {
563         struct nand_chip *chip = mtd->priv;
564         struct omap_nand_info *info = chip->priv;
565
566         if (info->control) {
567                 free_bch(info->control);
568                 info->control = NULL;
569         }
570 }
571 #endif /* CONFIG_BCH */
572
573 /**
574  * omap_select_ecc_scheme - configures driver for particular ecc-scheme
575  * @nand: NAND chip device structure
576  * @ecc_scheme: ecc scheme to configure
577  * @pagesize: number of main-area bytes per page of NAND device
578  * @oobsize: number of OOB/spare bytes per page of NAND device
579  */
580 static int omap_select_ecc_scheme(struct nand_chip *nand,
581         enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
582         struct omap_nand_info   *info           = nand->priv;
583         struct nand_ecclayout   *ecclayout      = &omap_ecclayout;
584         int eccsteps = pagesize / SECTOR_BYTES;
585         int i;
586
587         switch (ecc_scheme) {
588         case OMAP_ECC_HAM1_CODE_SW:
589                 debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
590                 /* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
591                  * initialized in nand_scan_tail(), so just set ecc.mode */
592                 info->control           = NULL;
593                 nand->ecc.mode          = NAND_ECC_SOFT;
594                 nand->ecc.layout        = NULL;
595                 nand->ecc.size          = 0;
596                 break;
597
598         case OMAP_ECC_HAM1_CODE_HW:
599                 debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
600                 /* check ecc-scheme requirements before updating ecc info */
601                 if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
602                         printf("nand: error: insufficient OOB: require=%d\n", (
603                                 (3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
604                         return -EINVAL;
605                 }
606                 info->control           = NULL;
607                 /* populate ecc specific fields */
608                 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
609                 nand->ecc.mode          = NAND_ECC_HW;
610                 nand->ecc.strength      = 1;
611                 nand->ecc.size          = SECTOR_BYTES;
612                 nand->ecc.bytes         = 3;
613                 nand->ecc.hwctl         = omap_enable_hwecc;
614                 nand->ecc.correct       = omap_correct_data;
615                 nand->ecc.calculate     = omap_calculate_ecc;
616                 /* define ecc-layout */
617                 ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
618                 for (i = 0; i < ecclayout->eccbytes; i++) {
619                         if (nand->options & NAND_BUSWIDTH_16)
620                                 ecclayout->eccpos[i] = i + 2;
621                         else
622                                 ecclayout->eccpos[i] = i + 1;
623                 }
624                 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
625                 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
626                                                 BADBLOCK_MARKER_LENGTH;
627                 break;
628
629         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
630 #ifdef CONFIG_BCH
631                 debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
632                 /* check ecc-scheme requirements before updating ecc info */
633                 if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
634                         printf("nand: error: insufficient OOB: require=%d\n", (
635                                 (13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
636                         return -EINVAL;
637                 }
638                 /* check if BCH S/W library can be used for error detection */
639                 info->control = init_bch(13, 8, 0x201b);
640                 if (!info->control) {
641                         printf("nand: error: could not init_bch()\n");
642                         return -ENODEV;
643                 }
644                 /* populate ecc specific fields */
645                 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
646                 nand->ecc.mode          = NAND_ECC_HW;
647                 nand->ecc.strength      = 8;
648                 nand->ecc.size          = SECTOR_BYTES;
649                 nand->ecc.bytes         = 13;
650                 nand->ecc.hwctl         = omap_enable_hwecc;
651                 nand->ecc.correct       = omap_correct_data_bch_sw;
652                 nand->ecc.calculate     = omap_calculate_ecc;
653                 /* define ecc-layout */
654                 ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
655                 ecclayout->eccpos[0]    = BADBLOCK_MARKER_LENGTH;
656                 for (i = 1; i < ecclayout->eccbytes; i++) {
657                         if (i % nand->ecc.bytes)
658                                 ecclayout->eccpos[i] =
659                                                 ecclayout->eccpos[i - 1] + 1;
660                         else
661                                 ecclayout->eccpos[i] =
662                                                 ecclayout->eccpos[i - 1] + 2;
663                 }
664                 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
665                 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
666                                                 BADBLOCK_MARKER_LENGTH;
667                 break;
668 #else
669                 printf("nand: error: CONFIG_BCH required for ECC\n");
670                 return -EINVAL;
671 #endif
672
673         case OMAP_ECC_BCH8_CODE_HW:
674 #ifdef CONFIG_NAND_OMAP_ELM
675                 debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
676                 /* check ecc-scheme requirements before updating ecc info */
677                 if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
678                         printf("nand: error: insufficient OOB: require=%d\n", (
679                                 (14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
680                         return -EINVAL;
681                 }
682                 /* intialize ELM for ECC error detection */
683                 elm_init();
684                 info->control           = NULL;
685                 /* populate ecc specific fields */
686                 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
687                 nand->ecc.mode          = NAND_ECC_HW;
688                 nand->ecc.strength      = 8;
689                 nand->ecc.size          = SECTOR_BYTES;
690                 nand->ecc.bytes         = 14;
691                 nand->ecc.hwctl         = omap_enable_hwecc;
692                 nand->ecc.correct       = omap_correct_data_bch;
693                 nand->ecc.calculate     = omap_calculate_ecc;
694                 nand->ecc.read_page     = omap_read_page_bch;
695                 /* define ecc-layout */
696                 ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
697                 for (i = 0; i < ecclayout->eccbytes; i++)
698                         ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
699                 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
700                 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
701                                                 BADBLOCK_MARKER_LENGTH;
702                 break;
703 #else
704                 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
705                 return -EINVAL;
706 #endif
707
708         case OMAP_ECC_BCH16_CODE_HW:
709 #ifdef CONFIG_NAND_OMAP_ELM
710                 debug("nand: using OMAP_ECC_BCH16_CODE_HW\n");
711                 /* check ecc-scheme requirements before updating ecc info */
712                 if ((26 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
713                         printf("nand: error: insufficient OOB: require=%d\n", (
714                                 (26 * eccsteps) + BADBLOCK_MARKER_LENGTH));
715                         return -EINVAL;
716                 }
717                 /* intialize ELM for ECC error detection */
718                 elm_init();
719                 /* populate ecc specific fields */
720                 nand->ecc.mode          = NAND_ECC_HW;
721                 nand->ecc.size          = SECTOR_BYTES;
722                 nand->ecc.bytes         = 26;
723                 nand->ecc.strength      = 16;
724                 nand->ecc.hwctl         = omap_enable_hwecc;
725                 nand->ecc.correct       = omap_correct_data_bch;
726                 nand->ecc.calculate     = omap_calculate_ecc;
727                 nand->ecc.read_page     = omap_read_page_bch;
728                 /* define ecc-layout */
729                 ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
730                 for (i = 0; i < ecclayout->eccbytes; i++)
731                         ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
732                 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
733                 ecclayout->oobfree[0].length = oobsize - nand->ecc.bytes -
734                                                 BADBLOCK_MARKER_LENGTH;
735                 break;
736 #else
737                 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
738                 return -EINVAL;
739 #endif
740         default:
741                 debug("nand: error: ecc scheme not enabled or supported\n");
742                 return -EINVAL;
743         }
744
745         /* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */
746         if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW)
747                 nand->ecc.layout = ecclayout;
748
749         info->ecc_scheme = ecc_scheme;
750         return 0;
751 }
752
753 #ifndef CONFIG_SPL_BUILD
754 /*
755  * omap_nand_switch_ecc - switch the ECC operation between different engines
756  * (h/w and s/w) and different algorithms (hamming and BCHx)
757  *
758  * @hardware            - true if one of the HW engines should be used
759  * @eccstrength         - the number of bits that could be corrected
760  *                        (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
761  */
762 int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
763 {
764         struct nand_chip *nand;
765         struct mtd_info *mtd;
766         int err = 0;
767
768         if (nand_curr_device < 0 ||
769             nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE ||
770             !nand_info[nand_curr_device].name) {
771                 printf("nand: error: no NAND devices found\n");
772                 return -ENODEV;
773         }
774
775         mtd = &nand_info[nand_curr_device];
776         nand = mtd->priv;
777         nand->options |= NAND_OWN_BUFFERS;
778         nand->options &= ~NAND_SUBPAGE_READ;
779         /* Setup the ecc configurations again */
780         if (hardware) {
781                 if (eccstrength == 1) {
782                         err = omap_select_ecc_scheme(nand,
783                                         OMAP_ECC_HAM1_CODE_HW,
784                                         mtd->writesize, mtd->oobsize);
785                 } else if (eccstrength == 8) {
786                         err = omap_select_ecc_scheme(nand,
787                                         OMAP_ECC_BCH8_CODE_HW,
788                                         mtd->writesize, mtd->oobsize);
789                 } else {
790                         printf("nand: error: unsupported ECC scheme\n");
791                         return -EINVAL;
792                 }
793         } else {
794                 err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
795                                         mtd->writesize, mtd->oobsize);
796         }
797
798         /* Update NAND handling after ECC mode switch */
799         if (!err)
800                 err = nand_scan_tail(mtd);
801         return err;
802 }
803 #endif /* CONFIG_SPL_BUILD */
804
805 /*
806  * Board-specific NAND initialization. The following members of the
807  * argument are board-specific:
808  * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
809  * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
810  * - cmd_ctrl: hardwarespecific function for accesing control-lines
811  * - waitfunc: hardwarespecific function for accesing device ready/busy line
812  * - ecc.hwctl: function to enable (reset) hardware ecc generator
813  * - ecc.mode: mode of ecc, see defines
814  * - chip_delay: chip dependent delay for transfering data from array to
815  *   read regs (tR)
816  * - options: various chip options. They can partly be set to inform
817  *   nand_scan about special functionality. See the defines for further
818  *   explanation
819  */
820 int board_nand_init(struct nand_chip *nand)
821 {
822         int32_t gpmc_config = 0;
823         int cs = cs_next++;
824         int err = 0;
825         /*
826          * xloader/Uboot's gpmc configuration would have configured GPMC for
827          * nand type of memory. The following logic scans and latches on to the
828          * first CS with NAND type memory.
829          * TBD: need to make this logic generic to handle multiple CS NAND
830          * devices.
831          */
832         while (cs < GPMC_MAX_CS) {
833                 /* Check if NAND type is set */
834                 if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
835                         /* Found it!! */
836                         break;
837                 }
838                 cs++;
839         }
840         if (cs >= GPMC_MAX_CS) {
841                 printf("nand: error: Unable to find NAND settings in "
842                         "GPMC Configuration - quitting\n");
843                 return -ENODEV;
844         }
845
846         gpmc_config = readl(&gpmc_cfg->config);
847         /* Disable Write protect */
848         gpmc_config |= 0x10;
849         writel(gpmc_config, &gpmc_cfg->config);
850
851         nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
852         nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
853         omap_nand_info[cs].control = NULL;
854         omap_nand_info[cs].cs = cs;
855         nand->priv      = &omap_nand_info[cs];
856         nand->cmd_ctrl  = omap_nand_hwcontrol;
857         nand->options   |= NAND_NO_PADDING | NAND_CACHEPRG;
858         nand->chip_delay = 100;
859         nand->ecc.layout = &omap_ecclayout;
860
861         /* configure driver and controller based on NAND device bus-width */
862         gpmc_config = readl(&gpmc_cfg->cs[cs].config1);
863 #if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
864         nand->options |= NAND_BUSWIDTH_16;
865         writel(gpmc_config | (0x1 << 12), &gpmc_cfg->cs[cs].config1);
866 #else
867         nand->options &= ~NAND_BUSWIDTH_16;
868         writel(gpmc_config & ~(0x1 << 12), &gpmc_cfg->cs[cs].config1);
869 #endif
870         /* select ECC scheme */
871 #if defined(CONFIG_NAND_OMAP_ECCSCHEME)
872         err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME,
873                         CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
874 #else
875         /* pagesize and oobsize are not required to configure sw ecc-scheme */
876         err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
877                         0, 0);
878 #endif
879         if (err)
880                 return err;
881
882 #ifdef CONFIG_SPL_BUILD
883         if (nand->options & NAND_BUSWIDTH_16)
884                 nand->read_buf = nand_read_buf16;
885         else
886                 nand->read_buf = nand_read_buf;
887 #endif
888
889         nand->dev_ready = omap_dev_ready;
890
891         return 0;
892 }