]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/mtd/nand/omap_gpmc.c
Merge branch 'u-boot-samsung/master' into 'u-boot-arm/master'
[karo-tx-uboot.git] / drivers / mtd / nand / omap_gpmc.c
1 /*
2  * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
3  * Rohit Choraria <rohitkc@ti.com>
4  *
5  * SPDX-License-Identifier:     GPL-2.0+
6  */
7
8 #include <common.h>
9 #include <asm/io.h>
10 #include <asm/errno.h>
11 #include <asm/arch/mem.h>
12 #include <linux/mtd/omap_gpmc.h>
13 #include <linux/mtd/nand_ecc.h>
14 #include <linux/bch.h>
15 #include <linux/compiler.h>
16 #include <nand.h>
17 #include <linux/mtd/omap_elm.h>
18
19 #define BADBLOCK_MARKER_LENGTH  2
20 #define SECTOR_BYTES            512
21 #define ECCCLEAR                (0x1 << 8)
22 #define ECCRESULTREG1           (0x1 << 0)
23 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
24 #define BCH4_BIT_PAD            4
25
26 #ifdef CONFIG_BCH
27 static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
28                                 0x97, 0x79, 0xe5, 0x24, 0xb5};
29 #endif
30 static uint8_t cs;
31 static __maybe_unused struct nand_ecclayout omap_ecclayout;
32
33 /*
34  * omap_nand_hwcontrol - Set the address pointers corretly for the
35  *                      following address/data/command operation
36  */
37 static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
38                                 uint32_t ctrl)
39 {
40         register struct nand_chip *this = mtd->priv;
41
42         /*
43          * Point the IO_ADDR to DATA and ADDRESS registers instead
44          * of chip address
45          */
46         switch (ctrl) {
47         case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
48                 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
49                 break;
50         case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
51                 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
52                 break;
53         case NAND_CTRL_CHANGE | NAND_NCE:
54                 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
55                 break;
56         }
57
58         if (cmd != NAND_CMD_NONE)
59                 writeb(cmd, this->IO_ADDR_W);
60 }
61
62 #ifdef CONFIG_SPL_BUILD
63 /* Check wait pin as dev ready indicator */
64 int omap_spl_dev_ready(struct mtd_info *mtd)
65 {
66         return gpmc_cfg->status & (1 << 8);
67 }
68 #endif
69
70
71 /*
72  * gen_true_ecc - This function will generate true ECC value, which
73  * can be used when correcting data read from NAND flash memory core
74  *
75  * @ecc_buf:    buffer to store ecc code
76  *
77  * @return:     re-formatted ECC value
78  */
79 static uint32_t gen_true_ecc(uint8_t *ecc_buf)
80 {
81         return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
82                 ((ecc_buf[2] & 0x0F) << 8);
83 }
84
85 /*
86  * omap_correct_data - Compares the ecc read from nand spare area with ECC
87  * registers values and corrects one bit error if it has occured
88  * Further details can be had from OMAP TRM and the following selected links:
89  * http://en.wikipedia.org/wiki/Hamming_code
90  * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
91  *
92  * @mtd:                 MTD device structure
93  * @dat:                 page data
94  * @read_ecc:            ecc read from nand flash
95  * @calc_ecc:            ecc read from ECC registers
96  *
97  * @return 0 if data is OK or corrected, else returns -1
98  */
99 static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
100                                 uint8_t *read_ecc, uint8_t *calc_ecc)
101 {
102         uint32_t orig_ecc, new_ecc, res, hm;
103         uint16_t parity_bits, byte;
104         uint8_t bit;
105
106         /* Regenerate the orginal ECC */
107         orig_ecc = gen_true_ecc(read_ecc);
108         new_ecc = gen_true_ecc(calc_ecc);
109         /* Get the XOR of real ecc */
110         res = orig_ecc ^ new_ecc;
111         if (res) {
112                 /* Get the hamming width */
113                 hm = hweight32(res);
114                 /* Single bit errors can be corrected! */
115                 if (hm == 12) {
116                         /* Correctable data! */
117                         parity_bits = res >> 16;
118                         bit = (parity_bits & 0x7);
119                         byte = (parity_bits >> 3) & 0x1FF;
120                         /* Flip the bit to correct */
121                         dat[byte] ^= (0x1 << bit);
122                 } else if (hm == 1) {
123                         printf("Error: Ecc is wrong\n");
124                         /* ECC itself is corrupted */
125                         return 2;
126                 } else {
127                         /*
128                          * hm distance != parity pairs OR one, could mean 2 bit
129                          * error OR potentially be on a blank page..
130                          * orig_ecc: contains spare area data from nand flash.
131                          * new_ecc: generated ecc while reading data area.
132                          * Note: if the ecc = 0, all data bits from which it was
133                          * generated are 0xFF.
134                          * The 3 byte(24 bits) ecc is generated per 512byte
135                          * chunk of a page. If orig_ecc(from spare area)
136                          * is 0xFF && new_ecc(computed now from data area)=0x0,
137                          * this means that data area is 0xFF and spare area is
138                          * 0xFF. A sure sign of a erased page!
139                          */
140                         if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
141                                 return 0;
142                         printf("Error: Bad compare! failed\n");
143                         /* detected 2 bit error */
144                         return -1;
145                 }
146         }
147         return 0;
148 }
149
150 /*
151  * Generic BCH interface
152  */
153 struct nand_bch_priv {
154         uint8_t mode;
155         uint8_t type;
156         uint8_t nibbles;
157         struct bch_control *control;
158         enum omap_ecc ecc_scheme;
159 };
160
161 /* bch types */
162 #define ECC_BCH4        0
163 #define ECC_BCH8        1
164 #define ECC_BCH16       2
165
166 /* BCH nibbles for diff bch levels */
167 #define ECC_BCH4_NIBBLES        13
168 #define ECC_BCH8_NIBBLES        26
169 #define ECC_BCH16_NIBBLES       52
170
171 /*
172  * This can be a single instance cause all current users have only one NAND
173  * with nearly the same setup (BCH8, some with ELM and others with sw BCH
174  * library).
175  * When some users with other BCH strength will exists this have to change!
176  */
177 static __maybe_unused struct nand_bch_priv bch_priv = {
178         .type = ECC_BCH8,
179         .nibbles = ECC_BCH8_NIBBLES,
180         .control = NULL
181 };
182
183 /*
184  * omap_reverse_list - re-orders list elements in reverse order [internal]
185  * @list:       pointer to start of list
186  * @length:     length of list
187 */
188 void omap_reverse_list(u8 *list, unsigned int length)
189 {
190         unsigned int i, j;
191         unsigned int half_length = length / 2;
192         u8 tmp;
193         for (i = 0, j = length - 1; i < half_length; i++, j--) {
194                 tmp = list[i];
195                 list[i] = list[j];
196                 list[j] = tmp;
197         }
198 }
199
200 /*
201  * omap_enable_hwecc - configures GPMC as per ECC scheme before read/write
202  * @mtd:        MTD device structure
203  * @mode:       Read/Write mode
204  */
205 __maybe_unused
206 static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
207 {
208         struct nand_chip        *nand   = mtd->priv;
209         struct nand_bch_priv    *bch    = nand->priv;
210         unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0;
211         unsigned int ecc_algo = 0;
212         unsigned int bch_type = 0;
213         unsigned int eccsize1 = 0x00, eccsize0 = 0x00, bch_wrapmode = 0x00;
214         u32 ecc_size_config_val = 0;
215         u32 ecc_config_val = 0;
216
217         /* configure GPMC for specific ecc-scheme */
218         switch (bch->ecc_scheme) {
219         case OMAP_ECC_HAM1_CODE_SW:
220                 return;
221         case OMAP_ECC_HAM1_CODE_HW:
222                 ecc_algo = 0x0;
223                 bch_type = 0x0;
224                 bch_wrapmode = 0x00;
225                 eccsize0 = 0xFF;
226                 eccsize1 = 0xFF;
227                 break;
228         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
229         case OMAP_ECC_BCH8_CODE_HW:
230                 ecc_algo = 0x1;
231                 bch_type = 0x1;
232                 if (mode == NAND_ECC_WRITE) {
233                         bch_wrapmode = 0x01;
234                         eccsize0 = 0;  /* extra bits in nibbles per sector */
235                         eccsize1 = 28; /* OOB bits in nibbles per sector */
236                 } else {
237                         bch_wrapmode = 0x01;
238                         eccsize0 = 26; /* ECC bits in nibbles per sector */
239                         eccsize1 = 2;  /* non-ECC bits in nibbles per sector */
240                 }
241                 break;
242         default:
243                 return;
244         }
245         /* Clear ecc and enable bits */
246         writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
247         /* Configure ecc size for BCH */
248         ecc_size_config_val = (eccsize1 << 22) | (eccsize0 << 12);
249         writel(ecc_size_config_val, &gpmc_cfg->ecc_size_config);
250
251         /* Configure device details for BCH engine */
252         ecc_config_val = ((ecc_algo << 16)      | /* HAM1 | BCHx */
253                         (bch_type << 12)        | /* BCH4/BCH8/BCH16 */
254                         (bch_wrapmode << 8)     | /* wrap mode */
255                         (dev_width << 7)        | /* bus width */
256                         (0x0 << 4)              | /* number of sectors */
257                         (cs <<  1)              | /* ECC CS */
258                         (0x1));                   /* enable ECC */
259         writel(ecc_config_val, &gpmc_cfg->ecc_config);
260 }
261
262 /*
263  *  omap_calculate_ecc - Read ECC result
264  *  @mtd:       MTD structure
265  *  @dat:       unused
266  *  @ecc_code:  ecc_code buffer
267  *  Using noninverted ECC can be considered ugly since writing a blank
268  *  page ie. padding will clear the ECC bytes. This is no problem as
269  *  long nobody is trying to write data on the seemingly unused page.
270  *  Reading an erased page will produce an ECC mismatch between
271  *  generated and read ECC bytes that has to be dealt with separately.
272  *  E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
273  *  is used, the result of read will be 0x0 while the ECC offsets of the
274  *  spare area will be 0xFF which will result in an ECC mismatch.
275  */
276 static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
277                                 uint8_t *ecc_code)
278 {
279         struct nand_chip *chip = mtd->priv;
280         struct nand_bch_priv *bch = chip->priv;
281         uint32_t *ptr, val = 0;
282         int8_t i = 0, j;
283
284         switch (bch->ecc_scheme) {
285         case OMAP_ECC_HAM1_CODE_HW:
286                 val = readl(&gpmc_cfg->ecc1_result);
287                 ecc_code[0] = val & 0xFF;
288                 ecc_code[1] = (val >> 16) & 0xFF;
289                 ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
290                 break;
291 #ifdef CONFIG_BCH
292         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
293 #endif
294         case OMAP_ECC_BCH8_CODE_HW:
295                 ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
296                 val = readl(ptr);
297                 ecc_code[i++] = (val >>  0) & 0xFF;
298                 ptr--;
299                 for (j = 0; j < 3; j++) {
300                         val = readl(ptr);
301                         ecc_code[i++] = (val >> 24) & 0xFF;
302                         ecc_code[i++] = (val >> 16) & 0xFF;
303                         ecc_code[i++] = (val >>  8) & 0xFF;
304                         ecc_code[i++] = (val >>  0) & 0xFF;
305                         ptr--;
306                 }
307                 break;
308         default:
309                 return -EINVAL;
310         }
311         /* ECC scheme specific syndrome customizations */
312         switch (bch->ecc_scheme) {
313         case OMAP_ECC_HAM1_CODE_HW:
314                 break;
315 #ifdef CONFIG_BCH
316         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
317
318                 for (i = 0; i < chip->ecc.bytes; i++)
319                         *(ecc_code + i) = *(ecc_code + i) ^
320                                                 bch8_polynomial[i];
321                 break;
322 #endif
323         case OMAP_ECC_BCH8_CODE_HW:
324                 ecc_code[chip->ecc.bytes - 1] = 0x00;
325                 break;
326         default:
327                 return -EINVAL;
328         }
329         return 0;
330 }
331
332 #ifdef CONFIG_NAND_OMAP_ELM
333 /*
334  * omap_correct_data_bch - Compares the ecc read from nand spare area
335  * with ECC registers values and corrects one bit error if it has occured
336  *
337  * @mtd:        MTD device structure
338  * @dat:        page data
339  * @read_ecc:   ecc read from nand flash (ignored)
340  * @calc_ecc:   ecc read from ECC registers
341  *
342  * @return 0 if data is OK or corrected, else returns -1
343  */
344 static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
345                                 uint8_t *read_ecc, uint8_t *calc_ecc)
346 {
347         struct nand_chip *chip = mtd->priv;
348         struct nand_bch_priv *bch = chip->priv;
349         uint32_t eccbytes = chip->ecc.bytes;
350         uint32_t error_count = 0, error_max;
351         uint32_t error_loc[8];
352         uint32_t i, ecc_flag = 0;
353         uint8_t count, err = 0;
354         uint32_t byte_pos, bit_pos;
355
356         /* check calculated ecc */
357         for (i = 0; i < chip->ecc.bytes && !ecc_flag; i++) {
358                 if (calc_ecc[i] != 0x00)
359                         ecc_flag = 1;
360         }
361         if (!ecc_flag)
362                 return 0;
363
364         /* check for whether its a erased-page */
365         ecc_flag = 0;
366         for (i = 0; i < chip->ecc.bytes && !ecc_flag; i++) {
367                 if (read_ecc[i] != 0xff)
368                         ecc_flag = 1;
369         }
370         if (!ecc_flag)
371                 return 0;
372
373         /*
374          * while reading ECC result we read it in big endian.
375          * Hence while loading to ELM we have rotate to get the right endian.
376          */
377         switch (bch->ecc_scheme) {
378         case OMAP_ECC_BCH8_CODE_HW:
379                 omap_reverse_list(calc_ecc, eccbytes - 1);
380                 break;
381         default:
382                 return -EINVAL;
383         }
384         /* use elm module to check for errors */
385         elm_config((enum bch_level)(bch->type));
386         if (elm_check_error(calc_ecc, bch->nibbles, &error_count, error_loc)) {
387                 printf("nand: error: uncorrectable ECC errors\n");
388                 return -EINVAL;
389         }
390         /* correct bch error */
391         for (count = 0; count < error_count; count++) {
392                 switch (bch->type) {
393                 case ECC_BCH8:
394                         /* 14th byte in ECC is reserved to match ROM layout */
395                         error_max = SECTOR_BYTES + (eccbytes - 1);
396                         break;
397                 default:
398                         return -EINVAL;
399                 }
400                 byte_pos = error_max - (error_loc[count] / 8) - 1;
401                 bit_pos  = error_loc[count] % 8;
402                 if (byte_pos < SECTOR_BYTES) {
403                         dat[byte_pos] ^= 1 << bit_pos;
404                         printf("nand: bit-flip corrected @data=%d\n", byte_pos);
405                 } else if (byte_pos < error_max) {
406                         read_ecc[byte_pos - SECTOR_BYTES] ^= 1 << bit_pos;
407                         printf("nand: bit-flip corrected @oob=%d\n", byte_pos -
408                                                                 SECTOR_BYTES);
409                 } else {
410                         err = -EBADMSG;
411                         printf("nand: error: invalid bit-flip location\n");
412                 }
413         }
414         return (err) ? err : error_count;
415 }
416
417 /**
418  * omap_read_page_bch - hardware ecc based page read function
419  * @mtd:        mtd info structure
420  * @chip:       nand chip info structure
421  * @buf:        buffer to store read data
422  * @oob_required: caller expects OOB data read to chip->oob_poi
423  * @page:       page number to read
424  *
425  */
426 static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
427                                 uint8_t *buf, int oob_required, int page)
428 {
429         int i, eccsize = chip->ecc.size;
430         int eccbytes = chip->ecc.bytes;
431         int eccsteps = chip->ecc.steps;
432         uint8_t *p = buf;
433         uint8_t *ecc_calc = chip->buffers->ecccalc;
434         uint8_t *ecc_code = chip->buffers->ecccode;
435         uint32_t *eccpos = chip->ecc.layout->eccpos;
436         uint8_t *oob = chip->oob_poi;
437         uint32_t data_pos;
438         uint32_t oob_pos;
439
440         data_pos = 0;
441         /* oob area start */
442         oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
443         oob += chip->ecc.layout->eccpos[0];
444
445         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
446                                 oob += eccbytes) {
447                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
448                 /* read data */
449                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, page);
450                 chip->read_buf(mtd, p, eccsize);
451
452                 /* read respective ecc from oob area */
453                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, page);
454                 chip->read_buf(mtd, oob, eccbytes);
455                 /* read syndrome */
456                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
457
458                 data_pos += eccsize;
459                 oob_pos += eccbytes;
460         }
461
462         for (i = 0; i < chip->ecc.total; i++)
463                 ecc_code[i] = chip->oob_poi[eccpos[i]];
464
465         eccsteps = chip->ecc.steps;
466         p = buf;
467
468         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
469                 int stat;
470
471                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
472                 if (stat < 0)
473                         mtd->ecc_stats.failed++;
474                 else
475                         mtd->ecc_stats.corrected += stat;
476         }
477         return 0;
478 }
479 #endif /* CONFIG_NAND_OMAP_ELM */
480
481 /*
482  * OMAP3 BCH8 support (with BCH library)
483  */
484 #ifdef CONFIG_BCH
485 /**
486  * omap_correct_data_bch_sw - Decode received data and correct errors
487  * @mtd: MTD device structure
488  * @data: page data
489  * @read_ecc: ecc read from nand flash
490  * @calc_ecc: ecc read from HW ECC registers
491  */
492 static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
493                                  u_char *read_ecc, u_char *calc_ecc)
494 {
495         int i, count;
496         /* cannot correct more than 8 errors */
497         unsigned int errloc[8];
498         struct nand_chip *chip = mtd->priv;
499         struct nand_bch_priv *chip_priv = chip->priv;
500         struct bch_control *bch = chip_priv->control;
501
502         count = decode_bch(bch, NULL, 512, read_ecc, calc_ecc, NULL, errloc);
503         if (count > 0) {
504                 /* correct errors */
505                 for (i = 0; i < count; i++) {
506                         /* correct data only, not ecc bytes */
507                         if (errloc[i] < 8*512)
508                                 data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
509                         printf("corrected bitflip %u\n", errloc[i]);
510 #ifdef DEBUG
511                         puts("read_ecc: ");
512                         /*
513                          * BCH8 have 13 bytes of ECC; BCH4 needs adoption
514                          * here!
515                          */
516                         for (i = 0; i < 13; i++)
517                                 printf("%02x ", read_ecc[i]);
518                         puts("\n");
519                         puts("calc_ecc: ");
520                         for (i = 0; i < 13; i++)
521                                 printf("%02x ", calc_ecc[i]);
522                         puts("\n");
523 #endif
524                 }
525         } else if (count < 0) {
526                 puts("ecc unrecoverable error\n");
527         }
528         return count;
529 }
530
531 /**
532  * omap_free_bch - Release BCH ecc resources
533  * @mtd: MTD device structure
534  */
535 static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
536 {
537         struct nand_chip *chip = mtd->priv;
538         struct nand_bch_priv *chip_priv = chip->priv;
539         struct bch_control *bch = NULL;
540
541         if (chip_priv)
542                 bch = chip_priv->control;
543
544         if (bch) {
545                 free_bch(bch);
546                 chip_priv->control = NULL;
547         }
548 }
549 #endif /* CONFIG_BCH */
550
551 /**
552  * omap_select_ecc_scheme - configures driver for particular ecc-scheme
553  * @nand: NAND chip device structure
554  * @ecc_scheme: ecc scheme to configure
555  * @pagesize: number of main-area bytes per page of NAND device
556  * @oobsize: number of OOB/spare bytes per page of NAND device
557  */
558 static int omap_select_ecc_scheme(struct nand_chip *nand,
559         enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
560         struct nand_bch_priv    *bch            = nand->priv;
561         struct nand_ecclayout   *ecclayout      = &omap_ecclayout;
562         int eccsteps = pagesize / SECTOR_BYTES;
563         int i;
564
565         switch (ecc_scheme) {
566         case OMAP_ECC_HAM1_CODE_SW:
567                 debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
568                 /* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
569                  * initialized in nand_scan_tail(), so just set ecc.mode */
570                 bch_priv.control        = NULL;
571                 bch_priv.type           = 0;
572                 nand->ecc.mode          = NAND_ECC_SOFT;
573                 nand->ecc.layout        = NULL;
574                 nand->ecc.size          = 0;
575                 bch->ecc_scheme         = OMAP_ECC_HAM1_CODE_SW;
576                 break;
577
578         case OMAP_ECC_HAM1_CODE_HW:
579                 debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
580                 /* check ecc-scheme requirements before updating ecc info */
581                 if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
582                         printf("nand: error: insufficient OOB: require=%d\n", (
583                                 (3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
584                         return -EINVAL;
585                 }
586                 bch_priv.control        = NULL;
587                 bch_priv.type           = 0;
588                 /* populate ecc specific fields */
589                 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
590                 nand->ecc.mode          = NAND_ECC_HW;
591                 nand->ecc.strength      = 1;
592                 nand->ecc.size          = SECTOR_BYTES;
593                 nand->ecc.bytes         = 3;
594                 nand->ecc.hwctl         = omap_enable_hwecc;
595                 nand->ecc.correct       = omap_correct_data;
596                 nand->ecc.calculate     = omap_calculate_ecc;
597                 /* define ecc-layout */
598                 ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
599                 for (i = 0; i < ecclayout->eccbytes; i++) {
600                         if (nand->options & NAND_BUSWIDTH_16)
601                                 ecclayout->eccpos[i] = i + 2;
602                         else
603                                 ecclayout->eccpos[i] = i + 1;
604                 }
605                 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
606                 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
607                                                 BADBLOCK_MARKER_LENGTH;
608                 bch->ecc_scheme         = OMAP_ECC_HAM1_CODE_HW;
609                 break;
610
611         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
612 #ifdef CONFIG_BCH
613                 debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
614                 /* check ecc-scheme requirements before updating ecc info */
615                 if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
616                         printf("nand: error: insufficient OOB: require=%d\n", (
617                                 (13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
618                         return -EINVAL;
619                 }
620                 /* check if BCH S/W library can be used for error detection */
621                 bch_priv.control = init_bch(13, 8, 0x201b);
622                 if (!bch_priv.control) {
623                         printf("nand: error: could not init_bch()\n");
624                         return -ENODEV;
625                 }
626                 bch_priv.type = ECC_BCH8;
627                 /* populate ecc specific fields */
628                 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
629                 nand->ecc.mode          = NAND_ECC_HW;
630                 nand->ecc.strength      = 8;
631                 nand->ecc.size          = SECTOR_BYTES;
632                 nand->ecc.bytes         = 13;
633                 nand->ecc.hwctl         = omap_enable_hwecc;
634                 nand->ecc.correct       = omap_correct_data_bch_sw;
635                 nand->ecc.calculate     = omap_calculate_ecc;
636                 /* define ecc-layout */
637                 ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
638                 ecclayout->eccpos[0]    = BADBLOCK_MARKER_LENGTH;
639                 for (i = 1; i < ecclayout->eccbytes; i++) {
640                         if (i % nand->ecc.bytes)
641                                 ecclayout->eccpos[i] =
642                                                 ecclayout->eccpos[i - 1] + 1;
643                         else
644                                 ecclayout->eccpos[i] =
645                                                 ecclayout->eccpos[i - 1] + 2;
646                 }
647                 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
648                 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
649                                                 BADBLOCK_MARKER_LENGTH;
650                 bch->ecc_scheme         = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
651                 break;
652 #else
653                 printf("nand: error: CONFIG_BCH required for ECC\n");
654                 return -EINVAL;
655 #endif
656
657         case OMAP_ECC_BCH8_CODE_HW:
658 #ifdef CONFIG_NAND_OMAP_ELM
659                 debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
660                 /* check ecc-scheme requirements before updating ecc info */
661                 if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
662                         printf("nand: error: insufficient OOB: require=%d\n", (
663                                 (14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
664                         return -EINVAL;
665                 }
666                 /* intialize ELM for ECC error detection */
667                 elm_init();
668                 bch_priv.type           = ECC_BCH8;
669                 /* populate ecc specific fields */
670                 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
671                 nand->ecc.mode          = NAND_ECC_HW;
672                 nand->ecc.strength      = 8;
673                 nand->ecc.size          = SECTOR_BYTES;
674                 nand->ecc.bytes         = 14;
675                 nand->ecc.hwctl         = omap_enable_hwecc;
676                 nand->ecc.correct       = omap_correct_data_bch;
677                 nand->ecc.calculate     = omap_calculate_ecc;
678                 nand->ecc.read_page     = omap_read_page_bch;
679                 /* define ecc-layout */
680                 ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
681                 for (i = 0; i < ecclayout->eccbytes; i++)
682                         ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
683                 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
684                 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
685                                                 BADBLOCK_MARKER_LENGTH;
686                 bch->ecc_scheme         = OMAP_ECC_BCH8_CODE_HW;
687                 break;
688 #else
689                 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
690                 return -EINVAL;
691 #endif
692
693         default:
694                 debug("nand: error: ecc scheme not enabled or supported\n");
695                 return -EINVAL;
696         }
697
698         /* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */
699         if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW)
700                 nand->ecc.layout = ecclayout;
701
702         return 0;
703 }
704
705 #ifndef CONFIG_SPL_BUILD
706 /*
707  * omap_nand_switch_ecc - switch the ECC operation between different engines
708  * (h/w and s/w) and different algorithms (hamming and BCHx)
709  *
710  * @hardware            - true if one of the HW engines should be used
711  * @eccstrength         - the number of bits that could be corrected
712  *                        (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
713  */
714 int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
715 {
716         struct nand_chip *nand;
717         struct mtd_info *mtd;
718         int err = 0;
719
720         if (nand_curr_device < 0 ||
721             nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE ||
722             !nand_info[nand_curr_device].name) {
723                 printf("nand: error: no NAND devices found\n");
724                 return -ENODEV;
725         }
726
727         mtd = &nand_info[nand_curr_device];
728         nand = mtd->priv;
729         nand->options |= NAND_OWN_BUFFERS;
730         nand->options &= ~NAND_SUBPAGE_READ;
731         /* Setup the ecc configurations again */
732         if (hardware) {
733                 if (eccstrength == 1) {
734                         err = omap_select_ecc_scheme(nand,
735                                         OMAP_ECC_HAM1_CODE_HW,
736                                         mtd->writesize, mtd->oobsize);
737                 } else if (eccstrength == 8) {
738                         err = omap_select_ecc_scheme(nand,
739                                         OMAP_ECC_BCH8_CODE_HW,
740                                         mtd->writesize, mtd->oobsize);
741                 } else {
742                         printf("nand: error: unsupported ECC scheme\n");
743                         return -EINVAL;
744                 }
745         } else {
746                 err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
747                                         mtd->writesize, mtd->oobsize);
748         }
749
750         /* Update NAND handling after ECC mode switch */
751         if (!err)
752                 err = nand_scan_tail(mtd);
753         return err;
754 }
755 #endif /* CONFIG_SPL_BUILD */
756
757 /*
758  * Board-specific NAND initialization. The following members of the
759  * argument are board-specific:
760  * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
761  * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
762  * - cmd_ctrl: hardwarespecific function for accesing control-lines
763  * - waitfunc: hardwarespecific function for accesing device ready/busy line
764  * - ecc.hwctl: function to enable (reset) hardware ecc generator
765  * - ecc.mode: mode of ecc, see defines
766  * - chip_delay: chip dependent delay for transfering data from array to
767  *   read regs (tR)
768  * - options: various chip options. They can partly be set to inform
769  *   nand_scan about special functionality. See the defines for further
770  *   explanation
771  */
772 int board_nand_init(struct nand_chip *nand)
773 {
774         int32_t gpmc_config = 0;
775         cs = 0;
776         int err = 0;
777         /*
778          * xloader/Uboot's gpmc configuration would have configured GPMC for
779          * nand type of memory. The following logic scans and latches on to the
780          * first CS with NAND type memory.
781          * TBD: need to make this logic generic to handle multiple CS NAND
782          * devices.
783          */
784         while (cs < GPMC_MAX_CS) {
785                 /* Check if NAND type is set */
786                 if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
787                         /* Found it!! */
788                         break;
789                 }
790                 cs++;
791         }
792         if (cs >= GPMC_MAX_CS) {
793                 printf("nand: error: Unable to find NAND settings in "
794                         "GPMC Configuration - quitting\n");
795                 return -ENODEV;
796         }
797
798         gpmc_config = readl(&gpmc_cfg->config);
799         /* Disable Write protect */
800         gpmc_config |= 0x10;
801         writel(gpmc_config, &gpmc_cfg->config);
802
803         nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
804         nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
805         nand->priv      = &bch_priv;
806         nand->cmd_ctrl  = omap_nand_hwcontrol;
807         nand->options   |= NAND_NO_PADDING | NAND_CACHEPRG;
808         /* If we are 16 bit dev, our gpmc config tells us that */
809         if ((readl(&gpmc_cfg->cs[cs].config1) & 0x3000) == 0x1000)
810                 nand->options |= NAND_BUSWIDTH_16;
811
812         nand->chip_delay = 100;
813         nand->ecc.layout = &omap_ecclayout;
814
815         /* select ECC scheme */
816 #if defined(CONFIG_NAND_OMAP_ECCSCHEME)
817         err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME,
818                         CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
819 #else
820         /* pagesize and oobsize are not required to configure sw ecc-scheme */
821         err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
822                         0, 0);
823 #endif
824         if (err)
825                 return err;
826
827 #ifdef CONFIG_SPL_BUILD
828         if (nand->options & NAND_BUSWIDTH_16)
829                 nand->read_buf = nand_read_buf16;
830         else
831                 nand->read_buf = nand_read_buf;
832         nand->dev_ready = omap_spl_dev_ready;
833 #endif
834
835         return 0;
836 }