]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/mtd/nand/sunxi_nand_spl.c
sunxi_nand_spl: Parametrize lowlevel read functions
[karo-tx-uboot.git] / drivers / mtd / nand / sunxi_nand_spl.c
1 /*
2  * Copyright (c) 2014-2015, Antmicro Ltd <www.antmicro.com>
3  * Copyright (c) 2015, AW-SOM Technologies <www.aw-som.com>
4  *
5  * SPDX-License-Identifier:     GPL-2.0+
6  */
7
8 #include <asm/arch/clock.h>
9 #include <asm/io.h>
10 #include <common.h>
11 #include <config.h>
12 #include <nand.h>
13
14 /* registers */
15 #define NFC_CTL                    0x00000000
16 #define NFC_ST                     0x00000004
17 #define NFC_INT                    0x00000008
18 #define NFC_TIMING_CTL             0x0000000C
19 #define NFC_TIMING_CFG             0x00000010
20 #define NFC_ADDR_LOW               0x00000014
21 #define NFC_ADDR_HIGH              0x00000018
22 #define NFC_SECTOR_NUM             0x0000001C
23 #define NFC_CNT                    0x00000020
24 #define NFC_CMD                    0x00000024
25 #define NFC_RCMD_SET               0x00000028
26 #define NFC_WCMD_SET               0x0000002C
27 #define NFC_IO_DATA                0x00000030
28 #define NFC_ECC_CTL                0x00000034
29 #define NFC_ECC_ST                 0x00000038
30 #define NFC_DEBUG                  0x0000003C
31 #define NFC_ECC_CNT0               0x00000040
32 #define NFC_ECC_CNT1               0x00000044
33 #define NFC_ECC_CNT2               0x00000048
34 #define NFC_ECC_CNT3               0x0000004C
35 #define NFC_USER_DATA_BASE         0x00000050
36 #define NFC_EFNAND_STATUS          0x00000090
37 #define NFC_SPARE_AREA             0x000000A0
38 #define NFC_PATTERN_ID             0x000000A4
39 #define NFC_RAM0_BASE              0x00000400
40 #define NFC_RAM1_BASE              0x00000800
41
42 #define NFC_CTL_EN                 (1 << 0)
43 #define NFC_CTL_RESET              (1 << 1)
44 #define NFC_CTL_RAM_METHOD         (1 << 14)
45 #define NFC_CTL_PAGE_SIZE_MASK     (0xf << 8)
46 #define NFC_CTL_PAGE_SIZE(a)       ((fls(a) - 11) << 8)
47
48
49 #define NFC_ECC_EN                 (1 << 0)
50 #define NFC_ECC_PIPELINE           (1 << 3)
51 #define NFC_ECC_EXCEPTION          (1 << 4)
52 #define NFC_ECC_BLOCK_SIZE         (1 << 5)
53 #define NFC_ECC_RANDOM_EN          (1 << 9)
54 #define NFC_ECC_RANDOM_DIRECTION   (1 << 10)
55
56
57 #define NFC_ADDR_NUM_OFFSET        16
58 #define NFC_SEND_ADR               (1 << 19)
59 #define NFC_ACCESS_DIR             (1 << 20)
60 #define NFC_DATA_TRANS             (1 << 21)
61 #define NFC_SEND_CMD1              (1 << 22)
62 #define NFC_WAIT_FLAG              (1 << 23)
63 #define NFC_SEND_CMD2              (1 << 24)
64 #define NFC_SEQ                    (1 << 25)
65 #define NFC_DATA_SWAP_METHOD       (1 << 26)
66 #define NFC_ROW_AUTO_INC           (1 << 27)
67 #define NFC_SEND_CMD3              (1 << 28)
68 #define NFC_SEND_CMD4              (1 << 29)
69
70 #define NFC_CMD_INT_FLAG           (1 << 1)
71
72 #define NFC_READ_CMD_OFFSET         0
73 #define NFC_RANDOM_READ_CMD0_OFFSET 8
74 #define NFC_RANDOM_READ_CMD1_OFFSET 16
75
76 #define NFC_CMD_RNDOUTSTART        0xE0
77 #define NFC_CMD_RNDOUT             0x05
78 #define NFC_CMD_READSTART          0x30
79
80
81 #define NFC_PAGE_CMD               (2 << 30)
82
83 #define SUNXI_DMA_CFG_REG0              0x300
84 #define SUNXI_DMA_SRC_START_ADDR_REG0   0x304
85 #define SUNXI_DMA_DEST_START_ADDRR_REG0 0x308
86 #define SUNXI_DMA_DDMA_BC_REG0          0x30C
87 #define SUNXI_DMA_DDMA_PARA_REG0        0x318
88
89 #define SUNXI_DMA_DDMA_CFG_REG_LOADING  (1 << 31)
90 #define SUNXI_DMA_DDMA_CFG_REG_DMA_DEST_DATA_WIDTH_32 (2 << 25)
91 #define SUNXI_DMA_DDMA_CFG_REG_DDMA_DST_DRQ_TYPE_DRAM (1 << 16)
92 #define SUNXI_DMA_DDMA_CFG_REG_DMA_SRC_DATA_WIDTH_32 (2 << 9)
93 #define SUNXI_DMA_DDMA_CFG_REG_DMA_SRC_ADDR_MODE_IO (1 << 5)
94 #define SUNXI_DMA_DDMA_CFG_REG_DDMA_SRC_DRQ_TYPE_NFC (3 << 0)
95
96 #define SUNXI_DMA_DDMA_PARA_REG_SRC_WAIT_CYC (0x0F << 0)
97 #define SUNXI_DMA_DDMA_PARA_REG_SRC_BLK_SIZE (0x7F << 8)
98
99 /* minimal "boot0" style NAND support for Allwinner A20 */
100
101 /* random seed used by linux */
102 const uint16_t random_seed[128] = {
103         0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72,
104         0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436,
105         0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d,
106         0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130,
107         0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56,
108         0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55,
109         0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb,
110         0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17,
111         0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62,
112         0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064,
113         0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126,
114         0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e,
115         0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3,
116         0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b,
117         0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d,
118         0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db,
119 };
120
121 /* random seed used for syndrome calls */
122 const uint16_t random_seed_syndrome = 0x4a80;
123
124 #define MAX_RETRIES 10
125
126 static int check_value_inner(int offset, int expected_bits,
127                                 int max_number_of_retries, int negation)
128 {
129         int retries = 0;
130         do {
131                 int val = readl(offset) & expected_bits;
132                 if (negation ? !val : val)
133                         return 1;
134                 mdelay(1);
135                 retries++;
136         } while (retries < max_number_of_retries);
137
138         return 0;
139 }
140
141 static inline int check_value(int offset, int expected_bits,
142                                 int max_number_of_retries)
143 {
144         return check_value_inner(offset, expected_bits,
145                                         max_number_of_retries, 0);
146 }
147
148 static inline int check_value_negated(int offset, int unexpected_bits,
149                                         int max_number_of_retries)
150 {
151         return check_value_inner(offset, unexpected_bits,
152                                         max_number_of_retries, 1);
153 }
154
155 void nand_init(void)
156 {
157         uint32_t val;
158
159         board_nand_init();
160
161         val = readl(SUNXI_NFC_BASE + NFC_CTL);
162         /* enable and reset CTL */
163         writel(val | NFC_CTL_EN | NFC_CTL_RESET,
164                SUNXI_NFC_BASE + NFC_CTL);
165
166         if (!check_value_negated(SUNXI_NFC_BASE + NFC_CTL,
167                                  NFC_CTL_RESET, MAX_RETRIES)) {
168                 printf("Couldn't initialize nand\n");
169         }
170
171         /* reset NAND */
172         writel(NFC_SEND_CMD1 | NFC_WAIT_FLAG | NAND_CMD_RESET,
173                SUNXI_NFC_BASE + NFC_CMD);
174
175         if (!check_value(SUNXI_NFC_BASE + NFC_ST, NFC_CMD_INT_FLAG,
176                          MAX_RETRIES)) {
177                 printf("Error timeout waiting for nand reset\n");
178                 return;
179         }
180 }
181
182 static int nand_read_page(int page_size, int ecc_strength, int ecc_page_size,
183         int addr_cycles, uint32_t real_addr, dma_addr_t dst, int syndrome)
184 {
185         uint32_t val;
186         int i, ecc_off = 0;
187         uint16_t ecc_mode = 0;
188         uint16_t rand_seed;
189         uint32_t page;
190         uint16_t column;
191         static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
192
193         for (i = 0; i < ARRAY_SIZE(strengths); i++) {
194                 if (ecc_strength == strengths[i]) {
195                         ecc_mode = i;
196                         break;
197                 }
198         }
199
200         /* HW ECC always request ECC bytes for 1024 bytes blocks */
201         ecc_off = DIV_ROUND_UP(ecc_strength * fls(8 * 1024), 8);
202         /* HW ECC always work with even numbers of ECC bytes */
203         ecc_off += (ecc_off & 1);
204         ecc_off += 4; /* prepad */
205
206         page = real_addr / page_size;
207         column = real_addr % page_size;
208
209         if (syndrome)
210                 column += (column / ecc_page_size) * ecc_off;
211
212         /* clear ecc status */
213         writel(0, SUNXI_NFC_BASE + NFC_ECC_ST);
214
215         /* Choose correct seed */
216         if (syndrome)
217                 rand_seed = random_seed_syndrome;
218         else
219                 rand_seed = random_seed[page % 128];
220
221         writel((rand_seed << 16) | NFC_ECC_RANDOM_EN | NFC_ECC_EN
222                 | NFC_ECC_PIPELINE | (ecc_mode << 12),
223                 SUNXI_NFC_BASE + NFC_ECC_CTL);
224
225         val = readl(SUNXI_NFC_BASE + NFC_CTL);
226         writel(val | NFC_CTL_RAM_METHOD, SUNXI_NFC_BASE + NFC_CTL);
227
228         if (!syndrome)
229                 writel(page_size + (column / ecc_page_size) * ecc_off,
230                        SUNXI_NFC_BASE + NFC_SPARE_AREA);
231
232         flush_dcache_range(dst, ALIGN(dst + ecc_page_size, ARCH_DMA_MINALIGN));
233
234         /* SUNXI_DMA */
235         writel(0x0, SUNXI_DMA_BASE + SUNXI_DMA_CFG_REG0); /* clr dma cmd */
236         /* read from REG_IO_DATA */
237         writel(SUNXI_NFC_BASE + NFC_IO_DATA,
238                SUNXI_DMA_BASE + SUNXI_DMA_SRC_START_ADDR_REG0);
239         /* read to RAM */
240         writel(dst, SUNXI_DMA_BASE + SUNXI_DMA_DEST_START_ADDRR_REG0);
241         writel(SUNXI_DMA_DDMA_PARA_REG_SRC_WAIT_CYC
242                         | SUNXI_DMA_DDMA_PARA_REG_SRC_BLK_SIZE,
243                         SUNXI_DMA_BASE + SUNXI_DMA_DDMA_PARA_REG0);
244         writel(ecc_page_size,
245                SUNXI_DMA_BASE + SUNXI_DMA_DDMA_BC_REG0); /* 1kB */
246         writel(SUNXI_DMA_DDMA_CFG_REG_LOADING
247                 | SUNXI_DMA_DDMA_CFG_REG_DMA_DEST_DATA_WIDTH_32
248                 | SUNXI_DMA_DDMA_CFG_REG_DDMA_DST_DRQ_TYPE_DRAM
249                 | SUNXI_DMA_DDMA_CFG_REG_DMA_SRC_DATA_WIDTH_32
250                 | SUNXI_DMA_DDMA_CFG_REG_DMA_SRC_ADDR_MODE_IO
251                 | SUNXI_DMA_DDMA_CFG_REG_DDMA_SRC_DRQ_TYPE_NFC,
252                 SUNXI_DMA_BASE + SUNXI_DMA_CFG_REG0);
253
254         writel((NFC_CMD_RNDOUTSTART << NFC_RANDOM_READ_CMD1_OFFSET)
255                 | (NFC_CMD_RNDOUT << NFC_RANDOM_READ_CMD0_OFFSET)
256                 | (NFC_CMD_READSTART | NFC_READ_CMD_OFFSET), SUNXI_NFC_BASE
257                         + NFC_RCMD_SET);
258         writel(1, SUNXI_NFC_BASE + NFC_SECTOR_NUM);
259         writel(((page & 0xFFFF) << 16) | column,
260                SUNXI_NFC_BASE + NFC_ADDR_LOW);
261         writel((page >> 16) & 0xFF, SUNXI_NFC_BASE + NFC_ADDR_HIGH);
262         writel(NFC_SEND_CMD1 | NFC_SEND_CMD2 | NFC_DATA_TRANS |
263                 NFC_PAGE_CMD | NFC_WAIT_FLAG |
264                 ((addr_cycles - 1) << NFC_ADDR_NUM_OFFSET) |
265                 NFC_SEND_ADR | NFC_DATA_SWAP_METHOD | (syndrome ? NFC_SEQ : 0),
266                 SUNXI_NFC_BASE + NFC_CMD);
267
268         if (!check_value(SUNXI_NFC_BASE + NFC_ST, (1 << 2),
269                          MAX_RETRIES)) {
270                 printf("Error while initializing dma interrupt\n");
271                 return -1;
272         }
273
274         if (!check_value_negated(SUNXI_DMA_BASE + SUNXI_DMA_CFG_REG0,
275                                  SUNXI_DMA_DDMA_CFG_REG_LOADING, MAX_RETRIES)) {
276                 printf("Error while waiting for dma transfer to finish\n");
277                 return -1;
278         }
279
280         invalidate_dcache_range(dst,
281                                 ALIGN(dst + ecc_page_size, ARCH_DMA_MINALIGN));
282
283         if (readl(SUNXI_NFC_BASE + NFC_ECC_ST))
284                 return -1;
285
286         return 0;
287 }
288
289 static int nand_read_ecc(int page_size, int ecc_strength, int ecc_page_size,
290         int addr_cycles, uint32_t offs, uint32_t size, void *dest, int syndrome)
291 {
292         void *end = dest + size;
293
294         clrsetbits_le32(SUNXI_NFC_BASE + NFC_CTL, NFC_CTL_PAGE_SIZE_MASK,
295                         NFC_CTL_PAGE_SIZE(page_size));
296
297         for ( ;dest < end; dest += ecc_page_size, offs += ecc_page_size) {
298                 if (nand_read_page(page_size, ecc_strength, ecc_page_size,
299                                    addr_cycles, offs, (dma_addr_t)dest,
300                                    syndrome))
301                         return -1;
302         }
303
304         return 0;
305 }
306
307 static int nand_read_buffer(uint32_t offs, unsigned int size, void *dest,
308                             int syndrome)
309 {
310         return nand_read_ecc(CONFIG_NAND_SUNXI_SPL_PAGE_SIZE,
311                              CONFIG_NAND_SUNXI_SPL_ECC_STRENGTH,
312                              CONFIG_NAND_SUNXI_SPL_ECC_PAGE_SIZE,
313                              5, offs, size, dest, syndrome);
314 }
315
316 int nand_spl_load_image(uint32_t offs, unsigned int size, void *dest)
317 {
318         int syndrome = offs < CONFIG_NAND_SUNXI_SPL_SYNDROME_PARTITIONS_END;
319
320         return nand_read_buffer(offs, size, dest, syndrome);
321 }
322
323 void nand_deselect(void)
324 {
325         struct sunxi_ccm_reg *const ccm =
326                 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
327
328         clrbits_le32(&ccm->ahb_gate0, (CLK_GATE_OPEN << AHB_GATE_OFFSET_NAND0));
329 #ifdef CONFIG_MACH_SUN9I
330         clrbits_le32(&ccm->ahb_gate1, (1 << AHB_GATE_OFFSET_DMA));
331 #else
332         clrbits_le32(&ccm->ahb_gate0, (1 << AHB_GATE_OFFSET_DMA));
333 #endif
334         clrbits_le32(&ccm->nand0_clk_cfg, CCM_NAND_CTRL_ENABLE | AHB_DIV_1);
335 }