]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/mtd/nand/tegra_nand.c
Merge branch 'master' of git://git.denx.de/u-boot-video
[karo-tx-uboot.git] / drivers / mtd / nand / tegra_nand.c
1 /*
2  * Copyright (c) 2011 The Chromium OS Authors.
3  * (C) Copyright 2011 NVIDIA Corporation <www.nvidia.com>
4  * (C) Copyright 2006 Detlev Zundel, dzu@denx.de
5  * (C) Copyright 2006 DENX Software Engineering
6  *
7  * See file CREDITS for list of people who contributed to this
8  * project.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of
13  * the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
23  * MA 02111-1307 USA
24  */
25
26 #include <common.h>
27 #include <asm/io.h>
28 #include <nand.h>
29 #include <asm/arch/clk_rst.h>
30 #include <asm/arch/clock.h>
31 #include <asm/arch/funcmux.h>
32 #include <asm/arch/gpio.h>
33 #include <asm/errno.h>
34 #include <asm-generic/gpio.h>
35 #include <fdtdec.h>
36 #include "tegra_nand.h"
37
38 DECLARE_GLOBAL_DATA_PTR;
39
40 #define NAND_CMD_TIMEOUT_MS             10
41
42 #define SKIPPED_SPARE_BYTES             4
43
44 /* ECC bytes to be generated for tag data */
45 #define TAG_ECC_BYTES                   4
46
47 /* 64 byte oob block info for large page (== 2KB) device
48  *
49  * OOB flash layout for Tegra with Reed-Solomon 4 symbol correct ECC:
50  *      Skipped bytes(4)
51  *      Main area Ecc(36)
52  *      Tag data(20)
53  *      Tag data Ecc(4)
54  *
55  * Yaffs2 will use 16 tag bytes.
56  */
57 static struct nand_ecclayout eccoob = {
58         .eccbytes = 36,
59         .eccpos = {
60                 4,  5,  6,  7,  8,  9,  10, 11, 12,
61                 13, 14, 15, 16, 17, 18, 19, 20, 21,
62                 22, 23, 24, 25, 26, 27, 28, 29, 30,
63                 31, 32, 33, 34, 35, 36, 37, 38, 39,
64         },
65         .oobavail = 20,
66         .oobfree = {
67                         {
68                         .offset = 40,
69                         .length = 20,
70                         },
71         }
72 };
73
74 enum {
75         ECC_OK,
76         ECC_TAG_ERROR = 1 << 0,
77         ECC_DATA_ERROR = 1 << 1
78 };
79
80 /* Timing parameters */
81 enum {
82         FDT_NAND_MAX_TRP_TREA,
83         FDT_NAND_TWB,
84         FDT_NAND_MAX_TCR_TAR_TRR,
85         FDT_NAND_TWHR,
86         FDT_NAND_MAX_TCS_TCH_TALS_TALH,
87         FDT_NAND_TWH,
88         FDT_NAND_TWP,
89         FDT_NAND_TRH,
90         FDT_NAND_TADL,
91
92         FDT_NAND_TIMING_COUNT
93 };
94
95 /* Information about an attached NAND chip */
96 struct fdt_nand {
97         struct nand_ctlr *reg;
98         int enabled;            /* 1 to enable, 0 to disable */
99         struct fdt_gpio_state wp_gpio;  /* write-protect GPIO */
100         s32 width;              /* bit width, normally 8 */
101         u32 timing[FDT_NAND_TIMING_COUNT];
102 };
103
104 struct nand_drv {
105         struct nand_ctlr *reg;
106
107         /*
108         * When running in PIO mode to get READ ID bytes from register
109         * RESP_0, we need this variable as an index to know which byte in
110         * register RESP_0 should be read.
111         * Because common code in nand_base.c invokes read_byte function two
112         * times for NAND_CMD_READID.
113         * And our controller returns 4 bytes at once in register RESP_0.
114         */
115         int pio_byte_index;
116         struct fdt_nand config;
117 };
118
119 static struct nand_drv nand_ctrl;
120 static struct mtd_info *our_mtd;
121 static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
122
123 #ifdef CONFIG_SYS_DCACHE_OFF
124 static inline void dma_prepare(void *start, unsigned long length,
125                                int is_writing)
126 {
127 }
128 #else
129 /**
130  * Prepare for a DMA transaction
131  *
132  * For a write we flush out our data. For a read we invalidate, since we
133  * need to do this before we read from the buffer after the DMA has
134  * completed, so may as well do it now.
135  *
136  * @param start         Start address for DMA buffer (should be cache-aligned)
137  * @param length        Length of DMA buffer in bytes
138  * @param is_writing    0 if reading, non-zero if writing
139  */
140 static void dma_prepare(void *start, unsigned long length, int is_writing)
141 {
142         unsigned long addr = (unsigned long)start;
143
144         length = ALIGN(length, ARCH_DMA_MINALIGN);
145         if (is_writing)
146                 flush_dcache_range(addr, addr + length);
147         else
148                 invalidate_dcache_range(addr, addr + length);
149 }
150 #endif
151
152 /**
153  * Wait for command completion
154  *
155  * @param reg   nand_ctlr structure
156  * @return
157  *      1 - Command completed
158  *      0 - Timeout
159  */
160 static int nand_waitfor_cmd_completion(struct nand_ctlr *reg)
161 {
162         u32 reg_val;
163         int running;
164         int i;
165
166         for (i = 0; i < NAND_CMD_TIMEOUT_MS * 1000; i++) {
167                 if ((readl(&reg->command) & CMD_GO) ||
168                                 !(readl(&reg->status) & STATUS_RBSY0) ||
169                                 !(readl(&reg->isr) & ISR_IS_CMD_DONE)) {
170                         udelay(1);
171                         continue;
172                 }
173                 reg_val = readl(&reg->dma_mst_ctrl);
174                 /*
175                  * If DMA_MST_CTRL_EN_A_ENABLE or DMA_MST_CTRL_EN_B_ENABLE
176                  * is set, that means DMA engine is running.
177                  *
178                  * Then we have to wait until DMA_MST_CTRL_IS_DMA_DONE
179                  * is cleared, indicating DMA transfer completion.
180                  */
181                 running = reg_val & (DMA_MST_CTRL_EN_A_ENABLE |
182                                 DMA_MST_CTRL_EN_B_ENABLE);
183                 if (!running || (reg_val & DMA_MST_CTRL_IS_DMA_DONE))
184                         return 1;
185                 udelay(1);
186         }
187         return 0;
188 }
189
190 /**
191  * Read one byte from the chip
192  *
193  * @param mtd   MTD device structure
194  * @return      data byte
195  *
196  * Read function for 8bit bus-width
197  */
198 static uint8_t read_byte(struct mtd_info *mtd)
199 {
200         struct nand_chip *chip = mtd->priv;
201         u32 dword_read;
202         struct nand_drv *info;
203
204         info = (struct nand_drv *)chip->priv;
205
206         /* In PIO mode, only 4 bytes can be transferred with single CMD_GO. */
207         if (info->pio_byte_index > 3) {
208                 info->pio_byte_index = 0;
209                 writel(CMD_GO | CMD_PIO
210                         | CMD_RX | CMD_CE0,
211                         &info->reg->command);
212                 if (!nand_waitfor_cmd_completion(info->reg))
213                         printf("Command timeout\n");
214         }
215
216         dword_read = readl(&info->reg->resp);
217         dword_read = dword_read >> (8 * info->pio_byte_index);
218         info->pio_byte_index++;
219         return (uint8_t)dword_read;
220 }
221
222 /**
223  * Check NAND status to see if it is ready or not
224  *
225  * @param mtd   MTD device structure
226  * @return
227  *      1 - ready
228  *      0 - not ready
229  */
230 static int nand_dev_ready(struct mtd_info *mtd)
231 {
232         struct nand_chip *chip = mtd->priv;
233         int reg_val;
234         struct nand_drv *info;
235
236         info = (struct nand_drv *)chip->priv;
237
238         reg_val = readl(&info->reg->status);
239         if (reg_val & STATUS_RBSY0)
240                 return 1;
241         else
242                 return 0;
243 }
244
245 /* Dummy implementation: we don't support multiple chips */
246 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
247 {
248         switch (chipnr) {
249         case -1:
250         case 0:
251                 break;
252
253         default:
254                 BUG();
255         }
256 }
257
258 /**
259  * Clear all interrupt status bits
260  *
261  * @param reg   nand_ctlr structure
262  */
263 static void nand_clear_interrupt_status(struct nand_ctlr *reg)
264 {
265         u32 reg_val;
266
267         /* Clear interrupt status */
268         reg_val = readl(&reg->isr);
269         writel(reg_val, &reg->isr);
270 }
271
272 /**
273  * Send command to NAND device
274  *
275  * @param mtd           MTD device structure
276  * @param command       the command to be sent
277  * @param column        the column address for this command, -1 if none
278  * @param page_addr     the page address for this command, -1 if none
279  */
280 static void nand_command(struct mtd_info *mtd, unsigned int command,
281         int column, int page_addr)
282 {
283         struct nand_chip *chip = mtd->priv;
284         struct nand_drv *info;
285
286         info = (struct nand_drv *)chip->priv;
287
288         /*
289          * Write out the command to the device.
290          *
291          * Only command NAND_CMD_RESET or NAND_CMD_READID will come
292          * here before mtd->writesize is initialized.
293          */
294
295         /* Emulate NAND_CMD_READOOB */
296         if (command == NAND_CMD_READOOB) {
297                 assert(mtd->writesize != 0);
298                 column += mtd->writesize;
299                 command = NAND_CMD_READ0;
300         }
301
302         /* Adjust columns for 16 bit bus-width */
303         if (column != -1 && (chip->options & NAND_BUSWIDTH_16))
304                 column >>= 1;
305
306         nand_clear_interrupt_status(info->reg);
307
308         /* Stop DMA engine, clear DMA completion status */
309         writel(DMA_MST_CTRL_EN_A_DISABLE
310                 | DMA_MST_CTRL_EN_B_DISABLE
311                 | DMA_MST_CTRL_IS_DMA_DONE,
312                 &info->reg->dma_mst_ctrl);
313
314         /*
315          * Program and erase have their own busy handlers
316          * status and sequential in needs no delay
317          */
318         switch (command) {
319         case NAND_CMD_READID:
320                 writel(NAND_CMD_READID, &info->reg->cmd_reg1);
321                 writel(CMD_GO | CMD_CLE | CMD_ALE | CMD_PIO
322                         | CMD_RX |
323                         ((4 - 1) << CMD_TRANS_SIZE_SHIFT)
324                         | CMD_CE0,
325                         &info->reg->command);
326                 info->pio_byte_index = 0;
327                 break;
328         case NAND_CMD_READ0:
329                 writel(NAND_CMD_READ0, &info->reg->cmd_reg1);
330                 writel(NAND_CMD_READSTART, &info->reg->cmd_reg2);
331                 writel((page_addr << 16) | (column & 0xFFFF),
332                         &info->reg->addr_reg1);
333                 writel(page_addr >> 16, &info->reg->addr_reg2);
334                 return;
335         case NAND_CMD_SEQIN:
336                 writel(NAND_CMD_SEQIN, &info->reg->cmd_reg1);
337                 writel(NAND_CMD_PAGEPROG, &info->reg->cmd_reg2);
338                 writel((page_addr << 16) | (column & 0xFFFF),
339                         &info->reg->addr_reg1);
340                 writel(page_addr >> 16,
341                         &info->reg->addr_reg2);
342                 return;
343         case NAND_CMD_PAGEPROG:
344                 return;
345         case NAND_CMD_ERASE1:
346                 writel(NAND_CMD_ERASE1, &info->reg->cmd_reg1);
347                 writel(NAND_CMD_ERASE2, &info->reg->cmd_reg2);
348                 writel(page_addr, &info->reg->addr_reg1);
349                 writel(CMD_GO | CMD_CLE | CMD_ALE |
350                         CMD_SEC_CMD | CMD_CE0 | CMD_ALE_BYTES3,
351                         &info->reg->command);
352                 break;
353         case NAND_CMD_ERASE2:
354                 return;
355         case NAND_CMD_STATUS:
356                 writel(NAND_CMD_STATUS, &info->reg->cmd_reg1);
357                 writel(CMD_GO | CMD_CLE | CMD_PIO | CMD_RX
358                         | ((1 - 0) << CMD_TRANS_SIZE_SHIFT)
359                         | CMD_CE0,
360                         &info->reg->command);
361                 info->pio_byte_index = 0;
362                 break;
363         case NAND_CMD_RESET:
364                 writel(NAND_CMD_RESET, &info->reg->cmd_reg1);
365                 writel(CMD_GO | CMD_CLE | CMD_CE0,
366                         &info->reg->command);
367                 break;
368         case NAND_CMD_RNDOUT:
369         default:
370                 printf("%s: Unsupported command %d\n", __func__, command);
371                 return;
372         }
373         if (!nand_waitfor_cmd_completion(info->reg))
374                 printf("Command 0x%02X timeout\n", command);
375 }
376
377 /**
378  * Check whether the pointed buffer are all 0xff (blank).
379  *
380  * @param buf   data buffer for blank check
381  * @param len   length of the buffer in byte
382  * @return
383  *      1 - blank
384  *      0 - non-blank
385  */
386 static int blank_check(u8 *buf, int len)
387 {
388         int i;
389
390         for (i = 0; i < len; i++)
391                 if (buf[i] != 0xFF)
392                         return 0;
393         return 1;
394 }
395
396 /**
397  * After a DMA transfer for read, we call this function to see whether there
398  * is any uncorrectable error on the pointed data buffer or oob buffer.
399  *
400  * @param reg           nand_ctlr structure
401  * @param databuf       data buffer
402  * @param a_len         data buffer length
403  * @param oobbuf        oob buffer
404  * @param b_len         oob buffer length
405  * @return
406  *      ECC_OK - no ECC error or correctable ECC error
407  *      ECC_TAG_ERROR - uncorrectable tag ECC error
408  *      ECC_DATA_ERROR - uncorrectable data ECC error
409  *      ECC_DATA_ERROR + ECC_TAG_ERROR - uncorrectable data+tag ECC error
410  */
411 static int check_ecc_error(struct nand_ctlr *reg, u8 *databuf,
412         int a_len, u8 *oobbuf, int b_len)
413 {
414         int return_val = ECC_OK;
415         u32 reg_val;
416
417         if (!(readl(&reg->isr) & ISR_IS_ECC_ERR))
418                 return ECC_OK;
419
420         /*
421          * Area A is used for the data block (databuf). Area B is used for
422          * the spare block (oobbuf)
423          */
424         reg_val = readl(&reg->dec_status);
425         if ((reg_val & DEC_STATUS_A_ECC_FAIL) && databuf) {
426                 reg_val = readl(&reg->bch_dec_status_buf);
427                 /*
428                  * If uncorrectable error occurs on data area, then see whether
429                  * they are all FF. If all are FF, it's a blank page.
430                  * Not error.
431                  */
432                 if ((reg_val & BCH_DEC_STATUS_FAIL_SEC_FLAG_MASK) &&
433                                 !blank_check(databuf, a_len))
434                         return_val |= ECC_DATA_ERROR;
435         }
436
437         if ((reg_val & DEC_STATUS_B_ECC_FAIL) && oobbuf) {
438                 reg_val = readl(&reg->bch_dec_status_buf);
439                 /*
440                  * If uncorrectable error occurs on tag area, then see whether
441                  * they are all FF. If all are FF, it's a blank page.
442                  * Not error.
443                  */
444                 if ((reg_val & BCH_DEC_STATUS_FAIL_TAG_MASK) &&
445                                 !blank_check(oobbuf, b_len))
446                         return_val |= ECC_TAG_ERROR;
447         }
448
449         return return_val;
450 }
451
452 /**
453  * Set GO bit to send command to device
454  *
455  * @param reg   nand_ctlr structure
456  */
457 static void start_command(struct nand_ctlr *reg)
458 {
459         u32 reg_val;
460
461         reg_val = readl(&reg->command);
462         reg_val |= CMD_GO;
463         writel(reg_val, &reg->command);
464 }
465
466 /**
467  * Clear command GO bit, DMA GO bit, and DMA completion status
468  *
469  * @param reg   nand_ctlr structure
470  */
471 static void stop_command(struct nand_ctlr *reg)
472 {
473         /* Stop command */
474         writel(0, &reg->command);
475
476         /* Stop DMA engine and clear DMA completion status */
477         writel(DMA_MST_CTRL_GO_DISABLE
478                 | DMA_MST_CTRL_IS_DMA_DONE,
479                 &reg->dma_mst_ctrl);
480 }
481
482 /**
483  * Set up NAND bus width and page size
484  *
485  * @param info          nand_info structure
486  * @param *reg_val      address of reg_val
487  * @return 0 if ok, -1 on error
488  */
489 static int set_bus_width_page_size(struct fdt_nand *config,
490         u32 *reg_val)
491 {
492         if (config->width == 8)
493                 *reg_val = CFG_BUS_WIDTH_8BIT;
494         else if (config->width == 16)
495                 *reg_val = CFG_BUS_WIDTH_16BIT;
496         else {
497                 debug("%s: Unsupported bus width %d\n", __func__,
498                       config->width);
499                 return -1;
500         }
501
502         if (our_mtd->writesize == 512)
503                 *reg_val |= CFG_PAGE_SIZE_512;
504         else if (our_mtd->writesize == 2048)
505                 *reg_val |= CFG_PAGE_SIZE_2048;
506         else if (our_mtd->writesize == 4096)
507                 *reg_val |= CFG_PAGE_SIZE_4096;
508         else {
509                 debug("%s: Unsupported page size %d\n", __func__,
510                       our_mtd->writesize);
511                 return -1;
512         }
513
514         return 0;
515 }
516
517 /**
518  * Page read/write function
519  *
520  * @param mtd           mtd info structure
521  * @param chip          nand chip info structure
522  * @param buf           data buffer
523  * @param page          page number
524  * @param with_ecc      1 to enable ECC, 0 to disable ECC
525  * @param is_writing    0 for read, 1 for write
526  * @return      0 when successfully completed
527  *              -EIO when command timeout
528  */
529 static int nand_rw_page(struct mtd_info *mtd, struct nand_chip *chip,
530         uint8_t *buf, int page, int with_ecc, int is_writing)
531 {
532         u32 reg_val;
533         int tag_size;
534         struct nand_oobfree *free = chip->ecc.layout->oobfree;
535         /* 4*128=512 (byte) is the value that our HW can support. */
536         ALLOC_CACHE_ALIGN_BUFFER(u32, tag_buf, 128);
537         char *tag_ptr;
538         struct nand_drv *info;
539         struct fdt_nand *config;
540
541         if ((uintptr_t)buf & 0x03) {
542                 printf("buf %p has to be 4-byte aligned\n", buf);
543                 return -EINVAL;
544         }
545
546         info = (struct nand_drv *)chip->priv;
547         config = &info->config;
548         if (set_bus_width_page_size(config, &reg_val))
549                 return -EINVAL;
550
551         /* Need to be 4-byte aligned */
552         tag_ptr = (char *)tag_buf;
553
554         stop_command(info->reg);
555
556         writel((1 << chip->page_shift) - 1, &info->reg->dma_cfg_a);
557         writel(virt_to_phys(buf), &info->reg->data_block_ptr);
558
559         if (with_ecc) {
560                 writel(virt_to_phys(tag_ptr), &info->reg->tag_ptr);
561                 if (is_writing)
562                         memcpy(tag_ptr, chip->oob_poi + free->offset,
563                                 chip->ecc.layout->oobavail +
564                                 TAG_ECC_BYTES);
565         } else {
566                 writel(virt_to_phys(chip->oob_poi), &info->reg->tag_ptr);
567         }
568
569         /* Set ECC selection, configure ECC settings */
570         if (with_ecc) {
571                 tag_size = chip->ecc.layout->oobavail + TAG_ECC_BYTES;
572                 reg_val |= (CFG_SKIP_SPARE_SEL_4
573                         | CFG_SKIP_SPARE_ENABLE
574                         | CFG_HW_ECC_CORRECTION_ENABLE
575                         | CFG_ECC_EN_TAG_DISABLE
576                         | CFG_HW_ECC_SEL_RS
577                         | CFG_HW_ECC_ENABLE
578                         | CFG_TVAL4
579                         | (tag_size - 1));
580
581                 if (!is_writing)
582                         tag_size += SKIPPED_SPARE_BYTES;
583                 dma_prepare(tag_ptr, tag_size, is_writing);
584         } else {
585                 tag_size = mtd->oobsize;
586                 reg_val |= (CFG_SKIP_SPARE_DISABLE
587                         | CFG_HW_ECC_CORRECTION_DISABLE
588                         | CFG_ECC_EN_TAG_DISABLE
589                         | CFG_HW_ECC_DISABLE
590                         | (tag_size - 1));
591                 dma_prepare(chip->oob_poi, tag_size, is_writing);
592         }
593         writel(reg_val, &info->reg->config);
594
595         dma_prepare(buf, 1 << chip->page_shift, is_writing);
596
597         writel(BCH_CONFIG_BCH_ECC_DISABLE, &info->reg->bch_config);
598
599         writel(tag_size - 1, &info->reg->dma_cfg_b);
600
601         nand_clear_interrupt_status(info->reg);
602
603         reg_val = CMD_CLE | CMD_ALE
604                 | CMD_SEC_CMD
605                 | (CMD_ALE_BYTES5 << CMD_ALE_BYTE_SIZE_SHIFT)
606                 | CMD_A_VALID
607                 | CMD_B_VALID
608                 | (CMD_TRANS_SIZE_PAGE << CMD_TRANS_SIZE_SHIFT)
609                 | CMD_CE0;
610         if (!is_writing)
611                 reg_val |= (CMD_AFT_DAT_DISABLE | CMD_RX);
612         else
613                 reg_val |= (CMD_AFT_DAT_ENABLE | CMD_TX);
614         writel(reg_val, &info->reg->command);
615
616         /* Setup DMA engine */
617         reg_val = DMA_MST_CTRL_GO_ENABLE
618                 | DMA_MST_CTRL_BURST_8WORDS
619                 | DMA_MST_CTRL_EN_A_ENABLE
620                 | DMA_MST_CTRL_EN_B_ENABLE;
621
622         if (!is_writing)
623                 reg_val |= DMA_MST_CTRL_DIR_READ;
624         else
625                 reg_val |= DMA_MST_CTRL_DIR_WRITE;
626
627         writel(reg_val, &info->reg->dma_mst_ctrl);
628
629         start_command(info->reg);
630
631         if (!nand_waitfor_cmd_completion(info->reg)) {
632                 if (!is_writing)
633                         printf("Read Page 0x%X timeout ", page);
634                 else
635                         printf("Write Page 0x%X timeout ", page);
636                 if (with_ecc)
637                         printf("with ECC");
638                 else
639                         printf("without ECC");
640                 printf("\n");
641                 return -EIO;
642         }
643
644         if (with_ecc && !is_writing) {
645                 memcpy(chip->oob_poi, tag_ptr,
646                         SKIPPED_SPARE_BYTES);
647                 memcpy(chip->oob_poi + free->offset,
648                         tag_ptr + SKIPPED_SPARE_BYTES,
649                         chip->ecc.layout->oobavail);
650                 reg_val = (u32)check_ecc_error(info->reg, (u8 *)buf,
651                         1 << chip->page_shift,
652                         (u8 *)(tag_ptr + SKIPPED_SPARE_BYTES),
653                         chip->ecc.layout->oobavail);
654                 if (reg_val & ECC_TAG_ERROR)
655                         printf("Read Page 0x%X tag ECC error\n", page);
656                 if (reg_val & ECC_DATA_ERROR)
657                         printf("Read Page 0x%X data ECC error\n",
658                                 page);
659                 if (reg_val & (ECC_DATA_ERROR | ECC_TAG_ERROR))
660                         return -EIO;
661         }
662         return 0;
663 }
664
665 /**
666  * Hardware ecc based page read function
667  *
668  * @param mtd   mtd info structure
669  * @param chip  nand chip info structure
670  * @param buf   buffer to store read data
671  * @param page  page number to read
672  * @return      0 when successfully completed
673  *              -EIO when command timeout
674  */
675 static int nand_read_page_hwecc(struct mtd_info *mtd,
676         struct nand_chip *chip, uint8_t *buf, int page)
677 {
678         return nand_rw_page(mtd, chip, buf, page, 1, 0);
679 }
680
681 /**
682  * Hardware ecc based page write function
683  *
684  * @param mtd   mtd info structure
685  * @param chip  nand chip info structure
686  * @param buf   data buffer
687  */
688 static void nand_write_page_hwecc(struct mtd_info *mtd,
689         struct nand_chip *chip, const uint8_t *buf)
690 {
691         int page;
692         struct nand_drv *info;
693
694         info = (struct nand_drv *)chip->priv;
695
696         page = (readl(&info->reg->addr_reg1) >> 16) |
697                 (readl(&info->reg->addr_reg2) << 16);
698
699         nand_rw_page(mtd, chip, (uint8_t *)buf, page, 1, 1);
700 }
701
702
703 /**
704  * Read raw page data without ecc
705  *
706  * @param mtd   mtd info structure
707  * @param chip  nand chip info structure
708  * @param buf   buffer to store read data
709  * @param page  page number to read
710  * @return      0 when successfully completed
711  *              -EINVAL when chip->oob_poi is not double-word aligned
712  *              -EIO when command timeout
713  */
714 static int nand_read_page_raw(struct mtd_info *mtd,
715         struct nand_chip *chip, uint8_t *buf, int page)
716 {
717         return nand_rw_page(mtd, chip, buf, page, 0, 0);
718 }
719
720 /**
721  * Raw page write function
722  *
723  * @param mtd   mtd info structure
724  * @param chip  nand chip info structure
725  * @param buf   data buffer
726  */
727 static void nand_write_page_raw(struct mtd_info *mtd,
728                 struct nand_chip *chip, const uint8_t *buf)
729 {
730         int page;
731         struct nand_drv *info;
732
733         info = (struct nand_drv *)chip->priv;
734         page = (readl(&info->reg->addr_reg1) >> 16) |
735                 (readl(&info->reg->addr_reg2) << 16);
736
737         nand_rw_page(mtd, chip, (uint8_t *)buf, page, 0, 1);
738 }
739
740 /**
741  * OOB data read/write function
742  *
743  * @param mtd           mtd info structure
744  * @param chip          nand chip info structure
745  * @param page          page number to read
746  * @param with_ecc      1 to enable ECC, 0 to disable ECC
747  * @param is_writing    0 for read, 1 for write
748  * @return      0 when successfully completed
749  *              -EINVAL when chip->oob_poi is not double-word aligned
750  *              -EIO when command timeout
751  */
752 static int nand_rw_oob(struct mtd_info *mtd, struct nand_chip *chip,
753         int page, int with_ecc, int is_writing)
754 {
755         u32 reg_val;
756         int tag_size;
757         struct nand_oobfree *free = chip->ecc.layout->oobfree;
758         struct nand_drv *info;
759
760         if (((int)chip->oob_poi) & 0x03)
761                 return -EINVAL;
762         info = (struct nand_drv *)chip->priv;
763         if (set_bus_width_page_size(&info->config, &reg_val))
764                 return -EINVAL;
765
766         stop_command(info->reg);
767
768         writel(virt_to_phys(chip->oob_poi), &info->reg->tag_ptr);
769
770         /* Set ECC selection */
771         tag_size = mtd->oobsize;
772         if (with_ecc)
773                 reg_val |= CFG_ECC_EN_TAG_ENABLE;
774         else
775                 reg_val |= (CFG_ECC_EN_TAG_DISABLE);
776
777         reg_val |= ((tag_size - 1) |
778                 CFG_SKIP_SPARE_DISABLE |
779                 CFG_HW_ECC_CORRECTION_DISABLE |
780                 CFG_HW_ECC_DISABLE);
781         writel(reg_val, &info->reg->config);
782
783         dma_prepare(chip->oob_poi, tag_size, is_writing);
784
785         writel(BCH_CONFIG_BCH_ECC_DISABLE, &info->reg->bch_config);
786
787         if (is_writing && with_ecc)
788                 tag_size -= TAG_ECC_BYTES;
789
790         writel(tag_size - 1, &info->reg->dma_cfg_b);
791
792         nand_clear_interrupt_status(info->reg);
793
794         reg_val = CMD_CLE | CMD_ALE
795                 | CMD_SEC_CMD
796                 | (CMD_ALE_BYTES5 << CMD_ALE_BYTE_SIZE_SHIFT)
797                 | CMD_B_VALID
798                 | CMD_CE0;
799         if (!is_writing)
800                 reg_val |= (CMD_AFT_DAT_DISABLE | CMD_RX);
801         else
802                 reg_val |= (CMD_AFT_DAT_ENABLE | CMD_TX);
803         writel(reg_val, &info->reg->command);
804
805         /* Setup DMA engine */
806         reg_val = DMA_MST_CTRL_GO_ENABLE
807                 | DMA_MST_CTRL_BURST_8WORDS
808                 | DMA_MST_CTRL_EN_B_ENABLE;
809         if (!is_writing)
810                 reg_val |= DMA_MST_CTRL_DIR_READ;
811         else
812                 reg_val |= DMA_MST_CTRL_DIR_WRITE;
813
814         writel(reg_val, &info->reg->dma_mst_ctrl);
815
816         start_command(info->reg);
817
818         if (!nand_waitfor_cmd_completion(info->reg)) {
819                 if (!is_writing)
820                         printf("Read OOB of Page 0x%X timeout\n", page);
821                 else
822                         printf("Write OOB of Page 0x%X timeout\n", page);
823                 return -EIO;
824         }
825
826         if (with_ecc && !is_writing) {
827                 reg_val = (u32)check_ecc_error(info->reg, 0, 0,
828                         (u8 *)(chip->oob_poi + free->offset),
829                         chip->ecc.layout->oobavail);
830                 if (reg_val & ECC_TAG_ERROR)
831                         printf("Read OOB of Page 0x%X tag ECC error\n", page);
832         }
833         return 0;
834 }
835
836 /**
837  * OOB data read function
838  *
839  * @param mtd           mtd info structure
840  * @param chip          nand chip info structure
841  * @param page          page number to read
842  * @param sndcmd        flag whether to issue read command or not
843  * @return      1 - issue read command next time
844  *              0 - not to issue
845  */
846 static int nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
847         int page, int sndcmd)
848 {
849         if (sndcmd) {
850                 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
851                 sndcmd = 0;
852         }
853         nand_rw_oob(mtd, chip, page, 0, 0);
854         return sndcmd;
855 }
856
857 /**
858  * OOB data write function
859  *
860  * @param mtd   mtd info structure
861  * @param chip  nand chip info structure
862  * @param page  page number to write
863  * @return      0 when successfully completed
864  *              -EINVAL when chip->oob_poi is not double-word aligned
865  *              -EIO when command timeout
866  */
867 static int nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
868         int page)
869 {
870         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
871
872         return nand_rw_oob(mtd, chip, page, 0, 1);
873 }
874
875 /**
876  * Set up NAND memory timings according to the provided parameters
877  *
878  * @param timing        Timing parameters
879  * @param reg           NAND controller register address
880  */
881 static void setup_timing(unsigned timing[FDT_NAND_TIMING_COUNT],
882                          struct nand_ctlr *reg)
883 {
884         u32 reg_val, clk_rate, clk_period, time_val;
885
886         clk_rate = (u32)clock_get_periph_rate(PERIPH_ID_NDFLASH,
887                 CLOCK_ID_PERIPH) / 1000000;
888         clk_period = 1000 / clk_rate;
889         reg_val = ((timing[FDT_NAND_MAX_TRP_TREA] / clk_period) <<
890                 TIMING_TRP_RESP_CNT_SHIFT) & TIMING_TRP_RESP_CNT_MASK;
891         reg_val |= ((timing[FDT_NAND_TWB] / clk_period) <<
892                 TIMING_TWB_CNT_SHIFT) & TIMING_TWB_CNT_MASK;
893         time_val = timing[FDT_NAND_MAX_TCR_TAR_TRR] / clk_period;
894         if (time_val > 2)
895                 reg_val |= ((time_val - 2) << TIMING_TCR_TAR_TRR_CNT_SHIFT) &
896                         TIMING_TCR_TAR_TRR_CNT_MASK;
897         reg_val |= ((timing[FDT_NAND_TWHR] / clk_period) <<
898                 TIMING_TWHR_CNT_SHIFT) & TIMING_TWHR_CNT_MASK;
899         time_val = timing[FDT_NAND_MAX_TCS_TCH_TALS_TALH] / clk_period;
900         if (time_val > 1)
901                 reg_val |= ((time_val - 1) << TIMING_TCS_CNT_SHIFT) &
902                         TIMING_TCS_CNT_MASK;
903         reg_val |= ((timing[FDT_NAND_TWH] / clk_period) <<
904                 TIMING_TWH_CNT_SHIFT) & TIMING_TWH_CNT_MASK;
905         reg_val |= ((timing[FDT_NAND_TWP] / clk_period) <<
906                 TIMING_TWP_CNT_SHIFT) & TIMING_TWP_CNT_MASK;
907         reg_val |= ((timing[FDT_NAND_TRH] / clk_period) <<
908                 TIMING_TRH_CNT_SHIFT) & TIMING_TRH_CNT_MASK;
909         reg_val |= ((timing[FDT_NAND_MAX_TRP_TREA] / clk_period) <<
910                 TIMING_TRP_CNT_SHIFT) & TIMING_TRP_CNT_MASK;
911         writel(reg_val, &reg->timing);
912
913         reg_val = 0;
914         time_val = timing[FDT_NAND_TADL] / clk_period;
915         if (time_val > 2)
916                 reg_val = (time_val - 2) & TIMING2_TADL_CNT_MASK;
917         writel(reg_val, &reg->timing2);
918 }
919
920 /**
921  * Decode NAND parameters from the device tree
922  *
923  * @param blob  Device tree blob
924  * @param node  Node containing "nand-flash" compatble node
925  * @return 0 if ok, -ve on error (FDT_ERR_...)
926  */
927 static int fdt_decode_nand(const void *blob, int node, struct fdt_nand *config)
928 {
929         int err;
930
931         config->reg = (struct nand_ctlr *)fdtdec_get_addr(blob, node, "reg");
932         config->enabled = fdtdec_get_is_enabled(blob, node);
933         config->width = fdtdec_get_int(blob, node, "nvidia,nand-width", 8);
934         err = fdtdec_decode_gpio(blob, node, "nvidia,wp-gpios",
935                                  &config->wp_gpio);
936         if (err)
937                 return err;
938         err = fdtdec_get_int_array(blob, node, "nvidia,timing",
939                         config->timing, FDT_NAND_TIMING_COUNT);
940         if (err < 0)
941                 return err;
942
943         /* Now look up the controller and decode that */
944         node = fdt_next_node(blob, node, NULL);
945         if (node < 0)
946                 return node;
947
948         return 0;
949 }
950
951 /**
952  * Board-specific NAND initialization
953  *
954  * @param nand  nand chip info structure
955  * @return 0, after initialized, -1 on error
956  */
957 int tegra_nand_init(struct nand_chip *nand, int devnum)
958 {
959         struct nand_drv *info = &nand_ctrl;
960         struct fdt_nand *config = &info->config;
961         int node, ret;
962
963         node = fdtdec_next_compatible(gd->fdt_blob, 0,
964                                       COMPAT_NVIDIA_TEGRA20_NAND);
965         if (node < 0)
966                 return -1;
967         if (fdt_decode_nand(gd->fdt_blob, node, config)) {
968                 printf("Could not decode nand-flash in device tree\n");
969                 return -1;
970         }
971         if (!config->enabled)
972                 return -1;
973         info->reg = config->reg;
974         nand->ecc.mode = NAND_ECC_HW;
975         nand->ecc.layout = &eccoob;
976
977         nand->options = LP_OPTIONS;
978         nand->cmdfunc = nand_command;
979         nand->read_byte = read_byte;
980         nand->ecc.read_page = nand_read_page_hwecc;
981         nand->ecc.write_page = nand_write_page_hwecc;
982         nand->ecc.read_page_raw = nand_read_page_raw;
983         nand->ecc.write_page_raw = nand_write_page_raw;
984         nand->ecc.read_oob = nand_read_oob;
985         nand->ecc.write_oob = nand_write_oob;
986         nand->select_chip = nand_select_chip;
987         nand->dev_ready  = nand_dev_ready;
988         nand->priv = &nand_ctrl;
989
990         /* Adjust controller clock rate */
991         clock_start_periph_pll(PERIPH_ID_NDFLASH, CLOCK_ID_PERIPH, 52000000);
992
993         /* Adjust timing for NAND device */
994         setup_timing(config->timing, info->reg);
995
996         funcmux_select(PERIPH_ID_NDFLASH, FUNCMUX_DEFAULT);
997         fdtdec_setup_gpio(&config->wp_gpio);
998         gpio_direction_output(config->wp_gpio.gpio, 1);
999
1000         our_mtd = &nand_info[devnum];
1001         our_mtd->priv = nand;
1002         ret = nand_scan_ident(our_mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
1003         if (ret)
1004                 return ret;
1005
1006         nand->ecc.size = our_mtd->writesize;
1007         nand->ecc.bytes = our_mtd->oobsize;
1008
1009         ret = nand_scan_tail(our_mtd);
1010         if (ret)
1011                 return ret;
1012
1013         ret = nand_register(devnum);
1014         if (ret)
1015                 return ret;
1016
1017         return 0;
1018 }
1019
1020 void board_nand_init(void)
1021 {
1022         struct nand_chip *nand = &nand_chip[0];
1023
1024         if (tegra_nand_init(nand, 0))
1025                 puts("Tegra NAND init failed\n");
1026 }