]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/mtd/nand/tegra_nand.c
sunxi_nand_spl: Remove NAND_SUNXI_SPL_SYNDROME_PARTITIONS_END
[karo-tx-uboot.git] / drivers / mtd / nand / tegra_nand.c
1 /*
2  * Copyright (c) 2011 The Chromium OS Authors.
3  * (C) Copyright 2011 NVIDIA Corporation <www.nvidia.com>
4  * (C) Copyright 2006 Detlev Zundel, dzu@denx.de
5  * (C) Copyright 2006 DENX Software Engineering
6  *
7  * SPDX-License-Identifier:     GPL-2.0+
8  */
9
10 #include <common.h>
11 #include <asm/io.h>
12 #include <nand.h>
13 #include <asm/arch/clock.h>
14 #include <asm/arch/funcmux.h>
15 #include <asm/arch-tegra/clk_rst.h>
16 #include <asm/errno.h>
17 #include <asm/gpio.h>
18 #include <fdtdec.h>
19 #include <bouncebuf.h>
20 #include "tegra_nand.h"
21
22 DECLARE_GLOBAL_DATA_PTR;
23
24 #define NAND_CMD_TIMEOUT_MS             10
25
26 #define SKIPPED_SPARE_BYTES             4
27
28 /* ECC bytes to be generated for tag data */
29 #define TAG_ECC_BYTES                   4
30
31 /* 64 byte oob block info for large page (== 2KB) device
32  *
33  * OOB flash layout for Tegra with Reed-Solomon 4 symbol correct ECC:
34  *      Skipped bytes(4)
35  *      Main area Ecc(36)
36  *      Tag data(20)
37  *      Tag data Ecc(4)
38  *
39  * Yaffs2 will use 16 tag bytes.
40  */
41 static struct nand_ecclayout eccoob = {
42         .eccbytes = 36,
43         .eccpos = {
44                 4,  5,  6,  7,  8,  9,  10, 11, 12,
45                 13, 14, 15, 16, 17, 18, 19, 20, 21,
46                 22, 23, 24, 25, 26, 27, 28, 29, 30,
47                 31, 32, 33, 34, 35, 36, 37, 38, 39,
48         },
49         .oobavail = 20,
50         .oobfree = {
51                         {
52                         .offset = 40,
53                         .length = 20,
54                         },
55         }
56 };
57
58 enum {
59         ECC_OK,
60         ECC_TAG_ERROR = 1 << 0,
61         ECC_DATA_ERROR = 1 << 1
62 };
63
64 /* Timing parameters */
65 enum {
66         FDT_NAND_MAX_TRP_TREA,
67         FDT_NAND_TWB,
68         FDT_NAND_MAX_TCR_TAR_TRR,
69         FDT_NAND_TWHR,
70         FDT_NAND_MAX_TCS_TCH_TALS_TALH,
71         FDT_NAND_TWH,
72         FDT_NAND_TWP,
73         FDT_NAND_TRH,
74         FDT_NAND_TADL,
75
76         FDT_NAND_TIMING_COUNT
77 };
78
79 /* Information about an attached NAND chip */
80 struct fdt_nand {
81         struct nand_ctlr *reg;
82         int enabled;            /* 1 to enable, 0 to disable */
83         struct gpio_desc wp_gpio;       /* write-protect GPIO */
84         s32 width;              /* bit width, normally 8 */
85         u32 timing[FDT_NAND_TIMING_COUNT];
86 };
87
88 struct nand_drv {
89         struct nand_ctlr *reg;
90         struct fdt_nand config;
91 };
92
93 static struct nand_drv nand_ctrl;
94 static struct mtd_info *our_mtd;
95 static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
96
97 /**
98  * Wait for command completion
99  *
100  * @param reg   nand_ctlr structure
101  * @return
102  *      1 - Command completed
103  *      0 - Timeout
104  */
105 static int nand_waitfor_cmd_completion(struct nand_ctlr *reg)
106 {
107         u32 reg_val;
108         int running;
109         int i;
110
111         for (i = 0; i < NAND_CMD_TIMEOUT_MS * 1000; i++) {
112                 if ((readl(&reg->command) & CMD_GO) ||
113                                 !(readl(&reg->status) & STATUS_RBSY0) ||
114                                 !(readl(&reg->isr) & ISR_IS_CMD_DONE)) {
115                         udelay(1);
116                         continue;
117                 }
118                 reg_val = readl(&reg->dma_mst_ctrl);
119                 /*
120                  * If DMA_MST_CTRL_EN_A_ENABLE or DMA_MST_CTRL_EN_B_ENABLE
121                  * is set, that means DMA engine is running.
122                  *
123                  * Then we have to wait until DMA_MST_CTRL_IS_DMA_DONE
124                  * is cleared, indicating DMA transfer completion.
125                  */
126                 running = reg_val & (DMA_MST_CTRL_EN_A_ENABLE |
127                                 DMA_MST_CTRL_EN_B_ENABLE);
128                 if (!running || (reg_val & DMA_MST_CTRL_IS_DMA_DONE))
129                         return 1;
130                 udelay(1);
131         }
132         return 0;
133 }
134
135 /**
136  * Read one byte from the chip
137  *
138  * @param mtd   MTD device structure
139  * @return      data byte
140  *
141  * Read function for 8bit bus-width
142  */
143 static uint8_t read_byte(struct mtd_info *mtd)
144 {
145         struct nand_chip *chip = mtd->priv;
146         struct nand_drv *info;
147
148         info = (struct nand_drv *)chip->priv;
149
150         writel(CMD_GO | CMD_PIO | CMD_RX | CMD_CE0 | CMD_A_VALID,
151                &info->reg->command);
152         if (!nand_waitfor_cmd_completion(info->reg))
153                 printf("Command timeout\n");
154
155         return (uint8_t)readl(&info->reg->resp);
156 }
157
158 /**
159  * Read len bytes from the chip into a buffer
160  *
161  * @param mtd   MTD device structure
162  * @param buf   buffer to store data to
163  * @param len   number of bytes to read
164  *
165  * Read function for 8bit bus-width
166  */
167 static void read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
168 {
169         int i, s;
170         unsigned int reg;
171         struct nand_chip *chip = mtd->priv;
172         struct nand_drv *info = (struct nand_drv *)chip->priv;
173
174         for (i = 0; i < len; i += 4) {
175                 s = (len - i) > 4 ? 4 : len - i;
176                 writel(CMD_PIO | CMD_RX | CMD_A_VALID | CMD_CE0 |
177                         ((s - 1) << CMD_TRANS_SIZE_SHIFT) | CMD_GO,
178                         &info->reg->command);
179                 if (!nand_waitfor_cmd_completion(info->reg))
180                         puts("Command timeout during read_buf\n");
181                 reg = readl(&info->reg->resp);
182                 memcpy(buf + i, &reg, s);
183         }
184 }
185
186 /**
187  * Check NAND status to see if it is ready or not
188  *
189  * @param mtd   MTD device structure
190  * @return
191  *      1 - ready
192  *      0 - not ready
193  */
194 static int nand_dev_ready(struct mtd_info *mtd)
195 {
196         struct nand_chip *chip = mtd->priv;
197         int reg_val;
198         struct nand_drv *info;
199
200         info = (struct nand_drv *)chip->priv;
201
202         reg_val = readl(&info->reg->status);
203         if (reg_val & STATUS_RBSY0)
204                 return 1;
205         else
206                 return 0;
207 }
208
209 /* Dummy implementation: we don't support multiple chips */
210 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
211 {
212         switch (chipnr) {
213         case -1:
214         case 0:
215                 break;
216
217         default:
218                 BUG();
219         }
220 }
221
222 /**
223  * Clear all interrupt status bits
224  *
225  * @param reg   nand_ctlr structure
226  */
227 static void nand_clear_interrupt_status(struct nand_ctlr *reg)
228 {
229         u32 reg_val;
230
231         /* Clear interrupt status */
232         reg_val = readl(&reg->isr);
233         writel(reg_val, &reg->isr);
234 }
235
236 /**
237  * Send command to NAND device
238  *
239  * @param mtd           MTD device structure
240  * @param command       the command to be sent
241  * @param column        the column address for this command, -1 if none
242  * @param page_addr     the page address for this command, -1 if none
243  */
244 static void nand_command(struct mtd_info *mtd, unsigned int command,
245         int column, int page_addr)
246 {
247         struct nand_chip *chip = mtd->priv;
248         struct nand_drv *info;
249
250         info = (struct nand_drv *)chip->priv;
251
252         /*
253          * Write out the command to the device.
254          *
255          * Only command NAND_CMD_RESET or NAND_CMD_READID will come
256          * here before mtd->writesize is initialized.
257          */
258
259         /* Emulate NAND_CMD_READOOB */
260         if (command == NAND_CMD_READOOB) {
261                 assert(mtd->writesize != 0);
262                 column += mtd->writesize;
263                 command = NAND_CMD_READ0;
264         }
265
266         /* Adjust columns for 16 bit bus-width */
267         if (column != -1 && (chip->options & NAND_BUSWIDTH_16))
268                 column >>= 1;
269
270         nand_clear_interrupt_status(info->reg);
271
272         /* Stop DMA engine, clear DMA completion status */
273         writel(DMA_MST_CTRL_EN_A_DISABLE
274                 | DMA_MST_CTRL_EN_B_DISABLE
275                 | DMA_MST_CTRL_IS_DMA_DONE,
276                 &info->reg->dma_mst_ctrl);
277
278         /*
279          * Program and erase have their own busy handlers
280          * status and sequential in needs no delay
281          */
282         switch (command) {
283         case NAND_CMD_READID:
284                 writel(NAND_CMD_READID, &info->reg->cmd_reg1);
285                 writel(column & 0xFF, &info->reg->addr_reg1);
286                 writel(CMD_GO | CMD_CLE | CMD_ALE | CMD_CE0,
287                        &info->reg->command);
288                 break;
289         case NAND_CMD_PARAM:
290                 writel(NAND_CMD_PARAM, &info->reg->cmd_reg1);
291                 writel(column & 0xFF, &info->reg->addr_reg1);
292                 writel(CMD_GO | CMD_CLE | CMD_ALE | CMD_CE0,
293                         &info->reg->command);
294                 break;
295         case NAND_CMD_READ0:
296                 writel(NAND_CMD_READ0, &info->reg->cmd_reg1);
297                 writel(NAND_CMD_READSTART, &info->reg->cmd_reg2);
298                 writel((page_addr << 16) | (column & 0xFFFF),
299                         &info->reg->addr_reg1);
300                 writel(page_addr >> 16, &info->reg->addr_reg2);
301                 return;
302         case NAND_CMD_SEQIN:
303                 writel(NAND_CMD_SEQIN, &info->reg->cmd_reg1);
304                 writel(NAND_CMD_PAGEPROG, &info->reg->cmd_reg2);
305                 writel((page_addr << 16) | (column & 0xFFFF),
306                         &info->reg->addr_reg1);
307                 writel(page_addr >> 16,
308                         &info->reg->addr_reg2);
309                 return;
310         case NAND_CMD_PAGEPROG:
311                 return;
312         case NAND_CMD_ERASE1:
313                 writel(NAND_CMD_ERASE1, &info->reg->cmd_reg1);
314                 writel(NAND_CMD_ERASE2, &info->reg->cmd_reg2);
315                 writel(page_addr, &info->reg->addr_reg1);
316                 writel(CMD_GO | CMD_CLE | CMD_ALE |
317                         CMD_SEC_CMD | CMD_CE0 | CMD_ALE_BYTES3,
318                         &info->reg->command);
319                 break;
320         case NAND_CMD_ERASE2:
321                 return;
322         case NAND_CMD_STATUS:
323                 writel(NAND_CMD_STATUS, &info->reg->cmd_reg1);
324                 writel(CMD_GO | CMD_CLE | CMD_PIO | CMD_RX
325                         | ((1 - 0) << CMD_TRANS_SIZE_SHIFT)
326                         | CMD_CE0,
327                         &info->reg->command);
328                 break;
329         case NAND_CMD_RESET:
330                 writel(NAND_CMD_RESET, &info->reg->cmd_reg1);
331                 writel(CMD_GO | CMD_CLE | CMD_CE0,
332                         &info->reg->command);
333                 break;
334         case NAND_CMD_RNDOUT:
335         default:
336                 printf("%s: Unsupported command %d\n", __func__, command);
337                 return;
338         }
339         if (!nand_waitfor_cmd_completion(info->reg))
340                 printf("Command 0x%02X timeout\n", command);
341 }
342
343 /**
344  * Check whether the pointed buffer are all 0xff (blank).
345  *
346  * @param buf   data buffer for blank check
347  * @param len   length of the buffer in byte
348  * @return
349  *      1 - blank
350  *      0 - non-blank
351  */
352 static int blank_check(u8 *buf, int len)
353 {
354         int i;
355
356         for (i = 0; i < len; i++)
357                 if (buf[i] != 0xFF)
358                         return 0;
359         return 1;
360 }
361
362 /**
363  * After a DMA transfer for read, we call this function to see whether there
364  * is any uncorrectable error on the pointed data buffer or oob buffer.
365  *
366  * @param reg           nand_ctlr structure
367  * @param databuf       data buffer
368  * @param a_len         data buffer length
369  * @param oobbuf        oob buffer
370  * @param b_len         oob buffer length
371  * @return
372  *      ECC_OK - no ECC error or correctable ECC error
373  *      ECC_TAG_ERROR - uncorrectable tag ECC error
374  *      ECC_DATA_ERROR - uncorrectable data ECC error
375  *      ECC_DATA_ERROR + ECC_TAG_ERROR - uncorrectable data+tag ECC error
376  */
377 static int check_ecc_error(struct nand_ctlr *reg, u8 *databuf,
378         int a_len, u8 *oobbuf, int b_len)
379 {
380         int return_val = ECC_OK;
381         u32 reg_val;
382
383         if (!(readl(&reg->isr) & ISR_IS_ECC_ERR))
384                 return ECC_OK;
385
386         /*
387          * Area A is used for the data block (databuf). Area B is used for
388          * the spare block (oobbuf)
389          */
390         reg_val = readl(&reg->dec_status);
391         if ((reg_val & DEC_STATUS_A_ECC_FAIL) && databuf) {
392                 reg_val = readl(&reg->bch_dec_status_buf);
393                 /*
394                  * If uncorrectable error occurs on data area, then see whether
395                  * they are all FF. If all are FF, it's a blank page.
396                  * Not error.
397                  */
398                 if ((reg_val & BCH_DEC_STATUS_FAIL_SEC_FLAG_MASK) &&
399                                 !blank_check(databuf, a_len))
400                         return_val |= ECC_DATA_ERROR;
401         }
402
403         if ((reg_val & DEC_STATUS_B_ECC_FAIL) && oobbuf) {
404                 reg_val = readl(&reg->bch_dec_status_buf);
405                 /*
406                  * If uncorrectable error occurs on tag area, then see whether
407                  * they are all FF. If all are FF, it's a blank page.
408                  * Not error.
409                  */
410                 if ((reg_val & BCH_DEC_STATUS_FAIL_TAG_MASK) &&
411                                 !blank_check(oobbuf, b_len))
412                         return_val |= ECC_TAG_ERROR;
413         }
414
415         return return_val;
416 }
417
418 /**
419  * Set GO bit to send command to device
420  *
421  * @param reg   nand_ctlr structure
422  */
423 static void start_command(struct nand_ctlr *reg)
424 {
425         u32 reg_val;
426
427         reg_val = readl(&reg->command);
428         reg_val |= CMD_GO;
429         writel(reg_val, &reg->command);
430 }
431
432 /**
433  * Clear command GO bit, DMA GO bit, and DMA completion status
434  *
435  * @param reg   nand_ctlr structure
436  */
437 static void stop_command(struct nand_ctlr *reg)
438 {
439         /* Stop command */
440         writel(0, &reg->command);
441
442         /* Stop DMA engine and clear DMA completion status */
443         writel(DMA_MST_CTRL_GO_DISABLE
444                 | DMA_MST_CTRL_IS_DMA_DONE,
445                 &reg->dma_mst_ctrl);
446 }
447
448 /**
449  * Set up NAND bus width and page size
450  *
451  * @param info          nand_info structure
452  * @param *reg_val      address of reg_val
453  * @return 0 if ok, -1 on error
454  */
455 static int set_bus_width_page_size(struct fdt_nand *config,
456         u32 *reg_val)
457 {
458         if (config->width == 8)
459                 *reg_val = CFG_BUS_WIDTH_8BIT;
460         else if (config->width == 16)
461                 *reg_val = CFG_BUS_WIDTH_16BIT;
462         else {
463                 debug("%s: Unsupported bus width %d\n", __func__,
464                       config->width);
465                 return -1;
466         }
467
468         if (our_mtd->writesize == 512)
469                 *reg_val |= CFG_PAGE_SIZE_512;
470         else if (our_mtd->writesize == 2048)
471                 *reg_val |= CFG_PAGE_SIZE_2048;
472         else if (our_mtd->writesize == 4096)
473                 *reg_val |= CFG_PAGE_SIZE_4096;
474         else {
475                 debug("%s: Unsupported page size %d\n", __func__,
476                       our_mtd->writesize);
477                 return -1;
478         }
479
480         return 0;
481 }
482
483 /**
484  * Page read/write function
485  *
486  * @param mtd           mtd info structure
487  * @param chip          nand chip info structure
488  * @param buf           data buffer
489  * @param page          page number
490  * @param with_ecc      1 to enable ECC, 0 to disable ECC
491  * @param is_writing    0 for read, 1 for write
492  * @return      0 when successfully completed
493  *              -EIO when command timeout
494  */
495 static int nand_rw_page(struct mtd_info *mtd, struct nand_chip *chip,
496         uint8_t *buf, int page, int with_ecc, int is_writing)
497 {
498         u32 reg_val;
499         int tag_size;
500         struct nand_oobfree *free = chip->ecc.layout->oobfree;
501         /* 4*128=512 (byte) is the value that our HW can support. */
502         ALLOC_CACHE_ALIGN_BUFFER(u32, tag_buf, 128);
503         char *tag_ptr;
504         struct nand_drv *info;
505         struct fdt_nand *config;
506         unsigned int bbflags;
507         struct bounce_buffer bbstate, bbstate_oob;
508
509         if ((uintptr_t)buf & 0x03) {
510                 printf("buf %p has to be 4-byte aligned\n", buf);
511                 return -EINVAL;
512         }
513
514         info = (struct nand_drv *)chip->priv;
515         config = &info->config;
516         if (set_bus_width_page_size(config, &reg_val))
517                 return -EINVAL;
518
519         /* Need to be 4-byte aligned */
520         tag_ptr = (char *)tag_buf;
521
522         stop_command(info->reg);
523
524         if (is_writing)
525                 bbflags = GEN_BB_READ;
526         else
527                 bbflags = GEN_BB_WRITE;
528
529         bounce_buffer_start(&bbstate, (void *)buf, 1 << chip->page_shift,
530                             bbflags);
531         writel((1 << chip->page_shift) - 1, &info->reg->dma_cfg_a);
532         writel(virt_to_phys(bbstate.bounce_buffer), &info->reg->data_block_ptr);
533
534         /* Set ECC selection, configure ECC settings */
535         if (with_ecc) {
536                 if (is_writing)
537                         memcpy(tag_ptr, chip->oob_poi + free->offset,
538                                chip->ecc.layout->oobavail + TAG_ECC_BYTES);
539                 tag_size = chip->ecc.layout->oobavail + TAG_ECC_BYTES;
540                 reg_val |= (CFG_SKIP_SPARE_SEL_4
541                         | CFG_SKIP_SPARE_ENABLE
542                         | CFG_HW_ECC_CORRECTION_ENABLE
543                         | CFG_ECC_EN_TAG_DISABLE
544                         | CFG_HW_ECC_SEL_RS
545                         | CFG_HW_ECC_ENABLE
546                         | CFG_TVAL4
547                         | (tag_size - 1));
548
549                 if (!is_writing)
550                         tag_size += SKIPPED_SPARE_BYTES;
551                 bounce_buffer_start(&bbstate_oob, (void *)tag_ptr, tag_size,
552                                     bbflags);
553         } else {
554                 tag_size = mtd->oobsize;
555                 reg_val |= (CFG_SKIP_SPARE_DISABLE
556                         | CFG_HW_ECC_CORRECTION_DISABLE
557                         | CFG_ECC_EN_TAG_DISABLE
558                         | CFG_HW_ECC_DISABLE
559                         | (tag_size - 1));
560                 bounce_buffer_start(&bbstate_oob, (void *)chip->oob_poi,
561                                     tag_size, bbflags);
562         }
563         writel(reg_val, &info->reg->config);
564         writel(virt_to_phys(bbstate_oob.bounce_buffer), &info->reg->tag_ptr);
565         writel(BCH_CONFIG_BCH_ECC_DISABLE, &info->reg->bch_config);
566         writel(tag_size - 1, &info->reg->dma_cfg_b);
567
568         nand_clear_interrupt_status(info->reg);
569
570         reg_val = CMD_CLE | CMD_ALE
571                 | CMD_SEC_CMD
572                 | (CMD_ALE_BYTES5 << CMD_ALE_BYTE_SIZE_SHIFT)
573                 | CMD_A_VALID
574                 | CMD_B_VALID
575                 | (CMD_TRANS_SIZE_PAGE << CMD_TRANS_SIZE_SHIFT)
576                 | CMD_CE0;
577         if (!is_writing)
578                 reg_val |= (CMD_AFT_DAT_DISABLE | CMD_RX);
579         else
580                 reg_val |= (CMD_AFT_DAT_ENABLE | CMD_TX);
581         writel(reg_val, &info->reg->command);
582
583         /* Setup DMA engine */
584         reg_val = DMA_MST_CTRL_GO_ENABLE
585                 | DMA_MST_CTRL_BURST_8WORDS
586                 | DMA_MST_CTRL_EN_A_ENABLE
587                 | DMA_MST_CTRL_EN_B_ENABLE;
588
589         if (!is_writing)
590                 reg_val |= DMA_MST_CTRL_DIR_READ;
591         else
592                 reg_val |= DMA_MST_CTRL_DIR_WRITE;
593
594         writel(reg_val, &info->reg->dma_mst_ctrl);
595
596         start_command(info->reg);
597
598         if (!nand_waitfor_cmd_completion(info->reg)) {
599                 if (!is_writing)
600                         printf("Read Page 0x%X timeout ", page);
601                 else
602                         printf("Write Page 0x%X timeout ", page);
603                 if (with_ecc)
604                         printf("with ECC");
605                 else
606                         printf("without ECC");
607                 printf("\n");
608                 return -EIO;
609         }
610
611         bounce_buffer_stop(&bbstate_oob);
612         bounce_buffer_stop(&bbstate);
613
614         if (with_ecc && !is_writing) {
615                 memcpy(chip->oob_poi, tag_ptr,
616                         SKIPPED_SPARE_BYTES);
617                 memcpy(chip->oob_poi + free->offset,
618                         tag_ptr + SKIPPED_SPARE_BYTES,
619                         chip->ecc.layout->oobavail);
620                 reg_val = (u32)check_ecc_error(info->reg, (u8 *)buf,
621                         1 << chip->page_shift,
622                         (u8 *)(tag_ptr + SKIPPED_SPARE_BYTES),
623                         chip->ecc.layout->oobavail);
624                 if (reg_val & ECC_TAG_ERROR)
625                         printf("Read Page 0x%X tag ECC error\n", page);
626                 if (reg_val & ECC_DATA_ERROR)
627                         printf("Read Page 0x%X data ECC error\n",
628                                 page);
629                 if (reg_val & (ECC_DATA_ERROR | ECC_TAG_ERROR))
630                         return -EIO;
631         }
632         return 0;
633 }
634
635 /**
636  * Hardware ecc based page read function
637  *
638  * @param mtd   mtd info structure
639  * @param chip  nand chip info structure
640  * @param buf   buffer to store read data
641  * @param page  page number to read
642  * @return      0 when successfully completed
643  *              -EIO when command timeout
644  */
645 static int nand_read_page_hwecc(struct mtd_info *mtd,
646         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
647 {
648         return nand_rw_page(mtd, chip, buf, page, 1, 0);
649 }
650
651 /**
652  * Hardware ecc based page write function
653  *
654  * @param mtd   mtd info structure
655  * @param chip  nand chip info structure
656  * @param buf   data buffer
657  */
658 static int nand_write_page_hwecc(struct mtd_info *mtd,
659         struct nand_chip *chip, const uint8_t *buf, int oob_required)
660 {
661         int page;
662         struct nand_drv *info;
663
664         info = (struct nand_drv *)chip->priv;
665
666         page = (readl(&info->reg->addr_reg1) >> 16) |
667                 (readl(&info->reg->addr_reg2) << 16);
668
669         nand_rw_page(mtd, chip, (uint8_t *)buf, page, 1, 1);
670         return 0;
671 }
672
673
674 /**
675  * Read raw page data without ecc
676  *
677  * @param mtd   mtd info structure
678  * @param chip  nand chip info structure
679  * @param buf   buffer to store read data
680  * @param page  page number to read
681  * @return      0 when successfully completed
682  *              -EINVAL when chip->oob_poi is not double-word aligned
683  *              -EIO when command timeout
684  */
685 static int nand_read_page_raw(struct mtd_info *mtd,
686         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
687 {
688         return nand_rw_page(mtd, chip, buf, page, 0, 0);
689 }
690
691 /**
692  * Raw page write function
693  *
694  * @param mtd   mtd info structure
695  * @param chip  nand chip info structure
696  * @param buf   data buffer
697  */
698 static int nand_write_page_raw(struct mtd_info *mtd,
699                 struct nand_chip *chip, const uint8_t *buf, int oob_required)
700 {
701         int page;
702         struct nand_drv *info;
703
704         info = (struct nand_drv *)chip->priv;
705         page = (readl(&info->reg->addr_reg1) >> 16) |
706                 (readl(&info->reg->addr_reg2) << 16);
707
708         nand_rw_page(mtd, chip, (uint8_t *)buf, page, 0, 1);
709         return 0;
710 }
711
712 /**
713  * OOB data read/write function
714  *
715  * @param mtd           mtd info structure
716  * @param chip          nand chip info structure
717  * @param page          page number to read
718  * @param with_ecc      1 to enable ECC, 0 to disable ECC
719  * @param is_writing    0 for read, 1 for write
720  * @return      0 when successfully completed
721  *              -EINVAL when chip->oob_poi is not double-word aligned
722  *              -EIO when command timeout
723  */
724 static int nand_rw_oob(struct mtd_info *mtd, struct nand_chip *chip,
725         int page, int with_ecc, int is_writing)
726 {
727         u32 reg_val;
728         int tag_size;
729         struct nand_oobfree *free = chip->ecc.layout->oobfree;
730         struct nand_drv *info;
731         unsigned int bbflags;
732         struct bounce_buffer bbstate_oob;
733
734         if (((int)chip->oob_poi) & 0x03)
735                 return -EINVAL;
736         info = (struct nand_drv *)chip->priv;
737         if (set_bus_width_page_size(&info->config, &reg_val))
738                 return -EINVAL;
739
740         stop_command(info->reg);
741
742         /* Set ECC selection */
743         tag_size = mtd->oobsize;
744         if (with_ecc)
745                 reg_val |= CFG_ECC_EN_TAG_ENABLE;
746         else
747                 reg_val |= (CFG_ECC_EN_TAG_DISABLE);
748
749         reg_val |= ((tag_size - 1) |
750                 CFG_SKIP_SPARE_DISABLE |
751                 CFG_HW_ECC_CORRECTION_DISABLE |
752                 CFG_HW_ECC_DISABLE);
753         writel(reg_val, &info->reg->config);
754
755         if (is_writing && with_ecc)
756                 tag_size -= TAG_ECC_BYTES;
757
758         if (is_writing)
759                 bbflags = GEN_BB_READ;
760         else
761                 bbflags = GEN_BB_WRITE;
762
763         bounce_buffer_start(&bbstate_oob, (void *)chip->oob_poi, tag_size,
764                             bbflags);
765         writel(virt_to_phys(bbstate_oob.bounce_buffer), &info->reg->tag_ptr);
766
767         writel(BCH_CONFIG_BCH_ECC_DISABLE, &info->reg->bch_config);
768
769         writel(tag_size - 1, &info->reg->dma_cfg_b);
770
771         nand_clear_interrupt_status(info->reg);
772
773         reg_val = CMD_CLE | CMD_ALE
774                 | CMD_SEC_CMD
775                 | (CMD_ALE_BYTES5 << CMD_ALE_BYTE_SIZE_SHIFT)
776                 | CMD_B_VALID
777                 | CMD_CE0;
778         if (!is_writing)
779                 reg_val |= (CMD_AFT_DAT_DISABLE | CMD_RX);
780         else
781                 reg_val |= (CMD_AFT_DAT_ENABLE | CMD_TX);
782         writel(reg_val, &info->reg->command);
783
784         /* Setup DMA engine */
785         reg_val = DMA_MST_CTRL_GO_ENABLE
786                 | DMA_MST_CTRL_BURST_8WORDS
787                 | DMA_MST_CTRL_EN_B_ENABLE;
788         if (!is_writing)
789                 reg_val |= DMA_MST_CTRL_DIR_READ;
790         else
791                 reg_val |= DMA_MST_CTRL_DIR_WRITE;
792
793         writel(reg_val, &info->reg->dma_mst_ctrl);
794
795         start_command(info->reg);
796
797         if (!nand_waitfor_cmd_completion(info->reg)) {
798                 if (!is_writing)
799                         printf("Read OOB of Page 0x%X timeout\n", page);
800                 else
801                         printf("Write OOB of Page 0x%X timeout\n", page);
802                 return -EIO;
803         }
804
805         bounce_buffer_stop(&bbstate_oob);
806
807         if (with_ecc && !is_writing) {
808                 reg_val = (u32)check_ecc_error(info->reg, 0, 0,
809                         (u8 *)(chip->oob_poi + free->offset),
810                         chip->ecc.layout->oobavail);
811                 if (reg_val & ECC_TAG_ERROR)
812                         printf("Read OOB of Page 0x%X tag ECC error\n", page);
813         }
814         return 0;
815 }
816
817 /**
818  * OOB data read function
819  *
820  * @param mtd           mtd info structure
821  * @param chip          nand chip info structure
822  * @param page          page number to read
823  */
824 static int nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
825         int page)
826 {
827         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
828         nand_rw_oob(mtd, chip, page, 0, 0);
829         return 0;
830 }
831
832 /**
833  * OOB data write function
834  *
835  * @param mtd   mtd info structure
836  * @param chip  nand chip info structure
837  * @param page  page number to write
838  * @return      0 when successfully completed
839  *              -EINVAL when chip->oob_poi is not double-word aligned
840  *              -EIO when command timeout
841  */
842 static int nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
843         int page)
844 {
845         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
846
847         return nand_rw_oob(mtd, chip, page, 0, 1);
848 }
849
850 /**
851  * Set up NAND memory timings according to the provided parameters
852  *
853  * @param timing        Timing parameters
854  * @param reg           NAND controller register address
855  */
856 static void setup_timing(unsigned timing[FDT_NAND_TIMING_COUNT],
857                          struct nand_ctlr *reg)
858 {
859         u32 reg_val, clk_rate, clk_period, time_val;
860
861         clk_rate = (u32)clock_get_periph_rate(PERIPH_ID_NDFLASH,
862                 CLOCK_ID_PERIPH) / 1000000;
863         clk_period = 1000 / clk_rate;
864         reg_val = ((timing[FDT_NAND_MAX_TRP_TREA] / clk_period) <<
865                 TIMING_TRP_RESP_CNT_SHIFT) & TIMING_TRP_RESP_CNT_MASK;
866         reg_val |= ((timing[FDT_NAND_TWB] / clk_period) <<
867                 TIMING_TWB_CNT_SHIFT) & TIMING_TWB_CNT_MASK;
868         time_val = timing[FDT_NAND_MAX_TCR_TAR_TRR] / clk_period;
869         if (time_val > 2)
870                 reg_val |= ((time_val - 2) << TIMING_TCR_TAR_TRR_CNT_SHIFT) &
871                         TIMING_TCR_TAR_TRR_CNT_MASK;
872         reg_val |= ((timing[FDT_NAND_TWHR] / clk_period) <<
873                 TIMING_TWHR_CNT_SHIFT) & TIMING_TWHR_CNT_MASK;
874         time_val = timing[FDT_NAND_MAX_TCS_TCH_TALS_TALH] / clk_period;
875         if (time_val > 1)
876                 reg_val |= ((time_val - 1) << TIMING_TCS_CNT_SHIFT) &
877                         TIMING_TCS_CNT_MASK;
878         reg_val |= ((timing[FDT_NAND_TWH] / clk_period) <<
879                 TIMING_TWH_CNT_SHIFT) & TIMING_TWH_CNT_MASK;
880         reg_val |= ((timing[FDT_NAND_TWP] / clk_period) <<
881                 TIMING_TWP_CNT_SHIFT) & TIMING_TWP_CNT_MASK;
882         reg_val |= ((timing[FDT_NAND_TRH] / clk_period) <<
883                 TIMING_TRH_CNT_SHIFT) & TIMING_TRH_CNT_MASK;
884         reg_val |= ((timing[FDT_NAND_MAX_TRP_TREA] / clk_period) <<
885                 TIMING_TRP_CNT_SHIFT) & TIMING_TRP_CNT_MASK;
886         writel(reg_val, &reg->timing);
887
888         reg_val = 0;
889         time_val = timing[FDT_NAND_TADL] / clk_period;
890         if (time_val > 2)
891                 reg_val = (time_val - 2) & TIMING2_TADL_CNT_MASK;
892         writel(reg_val, &reg->timing2);
893 }
894
895 /**
896  * Decode NAND parameters from the device tree
897  *
898  * @param blob  Device tree blob
899  * @param node  Node containing "nand-flash" compatble node
900  * @return 0 if ok, -ve on error (FDT_ERR_...)
901  */
902 static int fdt_decode_nand(const void *blob, int node, struct fdt_nand *config)
903 {
904         int err;
905
906         config->reg = (struct nand_ctlr *)fdtdec_get_addr(blob, node, "reg");
907         config->enabled = fdtdec_get_is_enabled(blob, node);
908         config->width = fdtdec_get_int(blob, node, "nvidia,nand-width", 8);
909         err = gpio_request_by_name_nodev(blob, node, "nvidia,wp-gpios", 0,
910                                  &config->wp_gpio, GPIOD_IS_OUT);
911         if (err)
912                 return err;
913         err = fdtdec_get_int_array(blob, node, "nvidia,timing",
914                         config->timing, FDT_NAND_TIMING_COUNT);
915         if (err < 0)
916                 return err;
917
918         /* Now look up the controller and decode that */
919         node = fdt_next_node(blob, node, NULL);
920         if (node < 0)
921                 return node;
922
923         return 0;
924 }
925
926 /**
927  * Board-specific NAND initialization
928  *
929  * @param nand  nand chip info structure
930  * @return 0, after initialized, -1 on error
931  */
932 int tegra_nand_init(struct nand_chip *nand, int devnum)
933 {
934         struct nand_drv *info = &nand_ctrl;
935         struct fdt_nand *config = &info->config;
936         int node, ret;
937
938         node = fdtdec_next_compatible(gd->fdt_blob, 0,
939                                       COMPAT_NVIDIA_TEGRA20_NAND);
940         if (node < 0)
941                 return -1;
942         if (fdt_decode_nand(gd->fdt_blob, node, config)) {
943                 printf("Could not decode nand-flash in device tree\n");
944                 return -1;
945         }
946         if (!config->enabled)
947                 return -1;
948         info->reg = config->reg;
949         nand->ecc.mode = NAND_ECC_HW;
950         nand->ecc.layout = &eccoob;
951
952         nand->options = LP_OPTIONS;
953         nand->cmdfunc = nand_command;
954         nand->read_byte = read_byte;
955         nand->read_buf = read_buf;
956         nand->ecc.read_page = nand_read_page_hwecc;
957         nand->ecc.write_page = nand_write_page_hwecc;
958         nand->ecc.read_page_raw = nand_read_page_raw;
959         nand->ecc.write_page_raw = nand_write_page_raw;
960         nand->ecc.read_oob = nand_read_oob;
961         nand->ecc.write_oob = nand_write_oob;
962         nand->ecc.strength = 1;
963         nand->select_chip = nand_select_chip;
964         nand->dev_ready  = nand_dev_ready;
965         nand->priv = &nand_ctrl;
966
967         /* Disable subpage writes as we do not provide ecc->hwctl */
968         nand->options |= NAND_NO_SUBPAGE_WRITE;
969
970         /* Adjust controller clock rate */
971         clock_start_periph_pll(PERIPH_ID_NDFLASH, CLOCK_ID_PERIPH, 52000000);
972
973         /* Adjust timing for NAND device */
974         setup_timing(config->timing, info->reg);
975
976         dm_gpio_set_value(&config->wp_gpio, 1);
977
978         our_mtd = &nand_info[devnum];
979         our_mtd->priv = nand;
980         ret = nand_scan_ident(our_mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
981         if (ret)
982                 return ret;
983
984         nand->ecc.size = our_mtd->writesize;
985         nand->ecc.bytes = our_mtd->oobsize;
986
987         ret = nand_scan_tail(our_mtd);
988         if (ret)
989                 return ret;
990
991         ret = nand_register(devnum);
992         if (ret)
993                 return ret;
994
995         return 0;
996 }
997
998 void board_nand_init(void)
999 {
1000         struct nand_chip *nand = &nand_chip[0];
1001
1002         if (tegra_nand_init(nand, 0))
1003                 puts("Tegra NAND init failed\n");
1004 }