]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/mtd/nand/vf610_nfc.c
Merge remote-tracking branch 'u-boot-imx/master'
[karo-tx-uboot.git] / drivers / mtd / nand / vf610_nfc.c
1 /*
2  * Copyright 2009-2014 Freescale Semiconductor, Inc. and others
3  *
4  * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
5  * Ported to U-Boot by Stefan Agner
6  * Based on RFC driver posted on Kernel Mailing list by Bill Pringlemeir
7  * Jason ported to M54418TWR and MVFA5.
8  * Authors: Stefan Agner <stefan.agner@toradex.com>
9  *          Bill Pringlemeir <bpringlemeir@nbsps.com>
10  *          Shaohui Xie <b21989@freescale.com>
11  *          Jason Jin <Jason.jin@freescale.com>
12  *
13  * Based on original driver mpc5121_nfc.c.
14  *
15  * This is free software; you can redistribute it and/or modify it
16  * under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19  *
20  * Limitations:
21  * - Untested on MPC5125 and M54418.
22  * - DMA not used.
23  * - 2K pages or less.
24  * - Only 2K page w. 64+OOB and hardware ECC.
25  */
26
27 #include <common.h>
28 #include <malloc.h>
29
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/nand.h>
32 #include <linux/mtd/partitions.h>
33
34 #include <nand.h>
35 #include <errno.h>
36 #include <asm/io.h>
37
38 /* Register Offsets */
39 #define NFC_FLASH_CMD1                  0x3F00
40 #define NFC_FLASH_CMD2                  0x3F04
41 #define NFC_COL_ADDR                    0x3F08
42 #define NFC_ROW_ADDR                    0x3F0c
43 #define NFC_ROW_ADDR_INC                0x3F14
44 #define NFC_FLASH_STATUS1               0x3F18
45 #define NFC_FLASH_STATUS2               0x3F1c
46 #define NFC_CACHE_SWAP                  0x3F28
47 #define NFC_SECTOR_SIZE                 0x3F2c
48 #define NFC_FLASH_CONFIG                0x3F30
49 #define NFC_IRQ_STATUS                  0x3F38
50
51 /* Addresses for NFC MAIN RAM BUFFER areas */
52 #define NFC_MAIN_AREA(n)                ((n) *  0x1000)
53
54 #define PAGE_2K                         0x0800
55 #define OOB_64                          0x0040
56
57 /*
58  * NFC_CMD2[CODE] values. See section:
59  *  - 31.4.7 Flash Command Code Description, Vybrid manual
60  *  - 23.8.6 Flash Command Sequencer, MPC5125 manual
61  *
62  * Briefly these are bitmasks of controller cycles.
63  */
64 #define READ_PAGE_CMD_CODE              0x7EE0
65 #define PROGRAM_PAGE_CMD_CODE           0x7FC0
66 #define ERASE_CMD_CODE                  0x4EC0
67 #define READ_ID_CMD_CODE                0x4804
68 #define RESET_CMD_CODE                  0x4040
69 #define STATUS_READ_CMD_CODE            0x4068
70
71 /* NFC ECC mode define */
72 #define ECC_BYPASS                      0
73 #define ECC_45_BYTE                     6
74
75 /*** Register Mask and bit definitions */
76
77 /* NFC_FLASH_CMD1 Field */
78 #define CMD_BYTE2_MASK                          0xFF000000
79 #define CMD_BYTE2_SHIFT                         24
80
81 /* NFC_FLASH_CM2 Field */
82 #define CMD_BYTE1_MASK                          0xFF000000
83 #define CMD_BYTE1_SHIFT                         24
84 #define CMD_CODE_MASK                           0x00FFFF00
85 #define CMD_CODE_SHIFT                          8
86 #define BUFNO_MASK                              0x00000006
87 #define BUFNO_SHIFT                             1
88 #define START_BIT                               (1<<0)
89
90 /* NFC_COL_ADDR Field */
91 #define COL_ADDR_MASK                           0x0000FFFF
92 #define COL_ADDR_SHIFT                          0
93
94 /* NFC_ROW_ADDR Field */
95 #define ROW_ADDR_MASK                           0x00FFFFFF
96 #define ROW_ADDR_SHIFT                          0
97 #define ROW_ADDR_CHIP_SEL_RB_MASK               0xF0000000
98 #define ROW_ADDR_CHIP_SEL_RB_SHIFT              28
99 #define ROW_ADDR_CHIP_SEL_MASK                  0x0F000000
100 #define ROW_ADDR_CHIP_SEL_SHIFT                 24
101
102 /* NFC_FLASH_STATUS2 Field */
103 #define STATUS_BYTE1_MASK                       0x000000FF
104
105 /* NFC_FLASH_CONFIG Field */
106 #define CONFIG_ECC_SRAM_ADDR_MASK               0x7FC00000
107 #define CONFIG_ECC_SRAM_ADDR_SHIFT              22
108 #define CONFIG_ECC_SRAM_REQ_BIT                 (1<<21)
109 #define CONFIG_DMA_REQ_BIT                      (1<<20)
110 #define CONFIG_ECC_MODE_MASK                    0x000E0000
111 #define CONFIG_ECC_MODE_SHIFT                   17
112 #define CONFIG_FAST_FLASH_BIT                   (1<<16)
113 #define CONFIG_16BIT                            (1<<7)
114 #define CONFIG_BOOT_MODE_BIT                    (1<<6)
115 #define CONFIG_ADDR_AUTO_INCR_BIT               (1<<5)
116 #define CONFIG_BUFNO_AUTO_INCR_BIT              (1<<4)
117 #define CONFIG_PAGE_CNT_MASK                    0xF
118 #define CONFIG_PAGE_CNT_SHIFT                   0
119
120 /* NFC_IRQ_STATUS Field */
121 #define IDLE_IRQ_BIT                            (1<<29)
122 #define IDLE_EN_BIT                             (1<<20)
123 #define CMD_DONE_CLEAR_BIT                      (1<<18)
124 #define IDLE_CLEAR_BIT                          (1<<17)
125
126 #define NFC_TIMEOUT     (1000)
127
128 /* ECC status placed at end of buffers. */
129 #define ECC_SRAM_ADDR   ((PAGE_2K+256-8) >> 3)
130 #define ECC_STATUS_MASK 0x80
131 #define ECC_ERR_COUNT   0x3F
132
133 /*
134  * ECC status is stored at NFC_CFG[ECCADD] +4 for little-endian
135  * and +7 for big-endian SOC.
136  */
137 #ifdef CONFIG_VF610
138 #define ECC_OFFSET      4
139 #else
140 #define ECC_OFFSET      7
141 #endif
142
143 struct vf610_nfc {
144         struct mtd_info   *mtd;
145         struct nand_chip   chip;
146         void __iomem      *regs;
147         uint               column;
148         int                spareonly;
149         int                page;
150         /* Status and ID are in alternate locations. */
151         int                alt_buf;
152 #define ALT_BUF_ID   1
153 #define ALT_BUF_STAT 2
154         struct clk        *clk;
155 };
156
157 #define mtd_to_nfc(_mtd) \
158         (struct vf610_nfc *)((struct nand_chip *)_mtd->priv)->priv
159
160 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
161 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
162
163 static struct nand_bbt_descr bbt_main_descr = {
164         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
165                    NAND_BBT_2BIT | NAND_BBT_VERSION,
166         .offs = 11,
167         .len = 4,
168         .veroffs = 15,
169         .maxblocks = 4,
170         .pattern = bbt_pattern,
171 };
172
173 static struct nand_bbt_descr bbt_mirror_descr = {
174         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
175                    NAND_BBT_2BIT | NAND_BBT_VERSION,
176         .offs = 11,
177         .len = 4,
178         .veroffs = 15,
179         .maxblocks = 4,
180         .pattern = mirror_pattern,
181 };
182
183 static struct nand_ecclayout vf610_nfc_ecc45 = {
184         .eccbytes = 45,
185         .eccpos = {19, 20, 21, 22, 23,
186                    24, 25, 26, 27, 28, 29, 30, 31,
187                    32, 33, 34, 35, 36, 37, 38, 39,
188                    40, 41, 42, 43, 44, 45, 46, 47,
189                    48, 49, 50, 51, 52, 53, 54, 55,
190                    56, 57, 58, 59, 60, 61, 62, 63},
191         .oobfree = {
192                 {.offset = 8,
193                  .length = 11} }
194 };
195
196 static inline u32 vf610_nfc_read(struct mtd_info *mtd, uint reg)
197 {
198         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
199
200         return readl(nfc->regs + reg);
201 }
202
203 static inline void vf610_nfc_write(struct mtd_info *mtd, uint reg, u32 val)
204 {
205         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
206
207         writel(val, nfc->regs + reg);
208 }
209
210 static inline void vf610_nfc_set(struct mtd_info *mtd, uint reg, u32 bits)
211 {
212         vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) | bits);
213 }
214
215 static inline void vf610_nfc_clear(struct mtd_info *mtd, uint reg, u32 bits)
216 {
217         vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) & ~bits);
218 }
219
220 static inline void vf610_nfc_set_field(struct mtd_info *mtd, u32 reg,
221                                        u32 mask, u32 shift, u32 val)
222 {
223         vf610_nfc_write(mtd, reg,
224                         (vf610_nfc_read(mtd, reg) & (~mask)) | val << shift);
225 }
226
227 static inline void vf610_nfc_memcpy(void *dst, const void *src, size_t n)
228 {
229         /*
230          * Use this accessor for the interal SRAM buffers. On ARM we can
231          * treat the SRAM buffer as if its memory, hence use memcpy
232          */
233         memcpy(dst, src, n);
234 }
235
236 /* Clear flags for upcoming command */
237 static inline void vf610_nfc_clear_status(void __iomem *regbase)
238 {
239         void __iomem *reg = regbase + NFC_IRQ_STATUS;
240         u32 tmp = __raw_readl(reg);
241         tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
242         __raw_writel(tmp, reg);
243 }
244
245 /* Wait for complete operation */
246 static inline void vf610_nfc_done(struct mtd_info *mtd)
247 {
248         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
249         uint start;
250
251         /*
252          * Barrier is needed after this write. This write need
253          * to be done before reading the next register the first
254          * time.
255          * vf610_nfc_set implicates such a barrier by using writel
256          * to write to the register.
257          */
258         vf610_nfc_set(mtd, NFC_FLASH_CMD2, START_BIT);
259
260         start = get_timer(0);
261
262         while (!(vf610_nfc_read(mtd, NFC_IRQ_STATUS) & IDLE_IRQ_BIT)) {
263                 if (get_timer(start) > NFC_TIMEOUT) {
264                         printf("Timeout while waiting for !BUSY.\n");
265                         return;
266                 }
267         }
268         vf610_nfc_clear_status(nfc->regs);
269 }
270
271 static u8 vf610_nfc_get_id(struct mtd_info *mtd, int col)
272 {
273         u32 flash_id;
274
275         if (col < 4) {
276                 flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS1);
277                 return (flash_id >> (3-col)*8) & 0xff;
278         } else {
279                 flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS2);
280                 return flash_id >> 24;
281         }
282 }
283
284 static u8 vf610_nfc_get_status(struct mtd_info *mtd)
285 {
286         return vf610_nfc_read(mtd, NFC_FLASH_STATUS2) & STATUS_BYTE1_MASK;
287 }
288
289 /* Single command */
290 static void vf610_nfc_send_command(void __iomem *regbase, u32 cmd_byte1,
291                                    u32 cmd_code)
292 {
293         void __iomem *reg = regbase + NFC_FLASH_CMD2;
294         u32 tmp;
295         vf610_nfc_clear_status(regbase);
296
297         tmp = __raw_readl(reg);
298         tmp &= ~(CMD_BYTE1_MASK | CMD_CODE_MASK | BUFNO_MASK);
299         tmp |= cmd_byte1 << CMD_BYTE1_SHIFT;
300         tmp |= cmd_code << CMD_CODE_SHIFT;
301         __raw_writel(tmp, reg);
302 }
303
304 /* Two commands */
305 static void vf610_nfc_send_commands(void __iomem *regbase, u32 cmd_byte1,
306                               u32 cmd_byte2, u32 cmd_code)
307 {
308         void __iomem *reg = regbase + NFC_FLASH_CMD1;
309         u32 tmp;
310         vf610_nfc_send_command(regbase, cmd_byte1, cmd_code);
311
312         tmp = __raw_readl(reg);
313         tmp &= ~CMD_BYTE2_MASK;
314         tmp |= cmd_byte2 << CMD_BYTE2_SHIFT;
315         __raw_writel(tmp, reg);
316 }
317
318 static void vf610_nfc_addr_cycle(struct mtd_info *mtd, int column, int page)
319 {
320         if (column != -1) {
321                 struct vf610_nfc *nfc = mtd_to_nfc(mtd);
322                 if (nfc->chip.options | NAND_BUSWIDTH_16)
323                         column = column/2;
324                 vf610_nfc_set_field(mtd, NFC_COL_ADDR, COL_ADDR_MASK,
325                                     COL_ADDR_SHIFT, column);
326         }
327         if (page != -1)
328                 vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK,
329                                     ROW_ADDR_SHIFT, page);
330 }
331
332 /* Send command to NAND chip */
333 static void vf610_nfc_command(struct mtd_info *mtd, unsigned command,
334                               int column, int page)
335 {
336         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
337
338         nfc->column     = max(column, 0);
339         nfc->spareonly  = 0;
340         nfc->alt_buf    = 0;
341
342         switch (command) {
343         case NAND_CMD_PAGEPROG:
344                 nfc->page = -1;
345                 vf610_nfc_send_commands(nfc->regs, NAND_CMD_SEQIN,
346                                         command, PROGRAM_PAGE_CMD_CODE);
347                 vf610_nfc_addr_cycle(mtd, column, page);
348                 break;
349
350         case NAND_CMD_RESET:
351                 vf610_nfc_send_command(nfc->regs, command, RESET_CMD_CODE);
352                 break;
353         /*
354          * NFC does not support sub-page reads and writes,
355          * so emulate them using full page transfers.
356          */
357         case NAND_CMD_READOOB:
358                 nfc->spareonly = 1;
359         case NAND_CMD_SEQIN: /* Pre-read for partial writes. */
360         case NAND_CMD_READ0:
361                 column = 0;
362                 /* Already read? */
363                 if (nfc->page == page)
364                         return;
365                 nfc->page = page;
366                 vf610_nfc_send_commands(nfc->regs, NAND_CMD_READ0,
367                                         NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
368                 vf610_nfc_addr_cycle(mtd, column, page);
369                 break;
370
371         case NAND_CMD_ERASE1:
372                 if (nfc->page == page)
373                         nfc->page = -1;
374                 vf610_nfc_send_commands(nfc->regs, command,
375                                         NAND_CMD_ERASE2, ERASE_CMD_CODE);
376                 vf610_nfc_addr_cycle(mtd, column, page);
377                 break;
378
379         case NAND_CMD_READID:
380                 nfc->alt_buf = ALT_BUF_ID;
381                 vf610_nfc_send_command(nfc->regs, command, READ_ID_CMD_CODE);
382                 break;
383
384         case NAND_CMD_STATUS:
385                 nfc->alt_buf = ALT_BUF_STAT;
386                 vf610_nfc_send_command(nfc->regs, command,
387                                        STATUS_READ_CMD_CODE);
388                 break;
389         default:
390                 return;
391         }
392
393         vf610_nfc_done(mtd);
394 }
395
396 static inline void vf610_nfc_read_spare(struct mtd_info *mtd, void *buf,
397                                         int len)
398 {
399         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
400
401         len = min(mtd->oobsize, (uint)len);
402         if (len > 0)
403                 vf610_nfc_memcpy(buf, nfc->regs + mtd->writesize, len);
404 }
405
406 /* Read data from NFC buffers */
407 static void vf610_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len)
408 {
409         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
410         uint c = nfc->column;
411         uint l;
412
413         /* Handle main area */
414         if (!nfc->spareonly) {
415                 l = min((uint)len, mtd->writesize - c);
416                 nfc->column += l;
417
418                 if (!nfc->alt_buf)
419                         vf610_nfc_memcpy(buf, nfc->regs + NFC_MAIN_AREA(0) + c,
420                                          l);
421                 else
422                         if (nfc->alt_buf & ALT_BUF_ID)
423                                 *buf = vf610_nfc_get_id(mtd, c);
424                         else
425                                 *buf = vf610_nfc_get_status(mtd);
426
427                 buf += l;
428                 len -= l;
429         }
430
431         /* Handle spare area access */
432         if (len) {
433                 nfc->column += len;
434                 vf610_nfc_read_spare(mtd, buf, len);
435         }
436 }
437
438 /* Write data to NFC buffers */
439 static void vf610_nfc_write_buf(struct mtd_info *mtd, const u_char *buf,
440                                 int len)
441 {
442         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
443         uint c = nfc->column;
444         uint l;
445
446         l = min((uint)len, mtd->writesize + mtd->oobsize - c);
447         nfc->column += l;
448         vf610_nfc_memcpy(nfc->regs + NFC_MAIN_AREA(0) + c, buf, l);
449 }
450
451 /* Read byte from NFC buffers */
452 static u8 vf610_nfc_read_byte(struct mtd_info *mtd)
453 {
454         u8 tmp;
455         vf610_nfc_read_buf(mtd, &tmp, sizeof(tmp));
456         return tmp;
457 }
458
459 /* Read word from NFC buffers */
460 static u16 vf610_nfc_read_word(struct mtd_info *mtd)
461 {
462         u16 tmp;
463         vf610_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp));
464         return tmp;
465 }
466
467 /* If not provided, upper layers apply a fixed delay. */
468 static int vf610_nfc_dev_ready(struct mtd_info *mtd)
469 {
470         /* NFC handles R/B internally; always ready.  */
471         return 1;
472 }
473
474 /*
475  * This function supports Vybrid only (MPC5125 would have full RB and four CS)
476  */
477 static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip)
478 {
479 #ifdef CONFIG_VF610
480         u32 tmp = vf610_nfc_read(mtd, NFC_ROW_ADDR);
481         tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
482         tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
483
484         if (chip == 0)
485                 tmp |= 1 << ROW_ADDR_CHIP_SEL_SHIFT;
486         else if (chip == 1)
487                 tmp |= 2 << ROW_ADDR_CHIP_SEL_SHIFT;
488
489         vf610_nfc_write(mtd, NFC_ROW_ADDR, tmp);
490 #endif
491 }
492
493 /* Count the number of 0's in buff upto max_bits */
494 static inline int count_written_bits(uint8_t *buff, int size, int max_bits)
495 {
496         uint32_t *buff32 = (uint32_t *)buff;
497         int k, written_bits = 0;
498
499         for (k = 0; k < (size / 4); k++) {
500                 written_bits += hweight32(~buff32[k]);
501                 if (written_bits > max_bits)
502                         break;
503         }
504
505         return written_bits;
506 }
507
508 static inline int vf610_nfc_correct_data(struct mtd_info *mtd, u_char *dat)
509 {
510         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
511         u8 ecc_status;
512         u8 ecc_count;
513         int flip;
514
515         ecc_status = __raw_readb(nfc->regs + ECC_SRAM_ADDR * 8 + ECC_OFFSET);
516         ecc_count = ecc_status & ECC_ERR_COUNT;
517         if (!(ecc_status & ECC_STATUS_MASK))
518                 return ecc_count;
519
520         /* If 'ecc_count' zero or less then buffer is all 0xff or erased. */
521         flip = count_written_bits(dat, nfc->chip.ecc.size, ecc_count);
522
523         /* ECC failed. */
524         if (flip > ecc_count) {
525                 nfc->page = -1;
526                 return -1;
527         }
528
529         /* Erased page. */
530         memset(dat, 0xff, nfc->chip.ecc.size);
531         return 0;
532 }
533
534
535 static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
536                                 uint8_t *buf, int oob_required, int page)
537 {
538         int eccsize = chip->ecc.size;
539         int stat;
540         uint8_t *p = buf;
541
542
543         vf610_nfc_read_buf(mtd, p, eccsize);
544
545         if (oob_required)
546                 vf610_nfc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
547
548         stat = vf610_nfc_correct_data(mtd, p);
549
550         if (stat < 0)
551                 mtd->ecc_stats.failed++;
552         else
553                 mtd->ecc_stats.corrected += stat;
554
555         return 0;
556 }
557
558 /*
559  * ECC will be calculated automatically
560  */
561 static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
562                                const uint8_t *buf, int oob_required)
563 {
564         vf610_nfc_write_buf(mtd, buf, mtd->writesize);
565         if (oob_required)
566                 vf610_nfc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
567
568         return 0;
569 }
570
571 struct vf610_nfc_config {
572         int hardware_ecc;
573         int width;
574         int flash_bbt;
575 };
576
577 static int vf610_nfc_nand_init(int devnum, void __iomem *addr)
578 {
579         struct mtd_info *mtd = &nand_info[devnum];
580         struct nand_chip *chip;
581         struct vf610_nfc *nfc;
582         int err = 0;
583         int page_sz;
584         struct vf610_nfc_config cfg = {
585                 .hardware_ecc = 1,
586 #ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT
587                 .width = 16,
588 #else
589                 .width = 8,
590 #endif
591                 .flash_bbt = 1,
592         };
593
594         nfc = malloc(sizeof(*nfc));
595         if (!nfc) {
596                 printf(KERN_ERR "%s: Memory exhausted!\n", __func__);
597                 return -ENOMEM;
598         }
599
600         chip = &nfc->chip;
601         nfc->regs = addr;
602
603         mtd->priv = chip;
604         chip->priv = nfc;
605
606         if (cfg.width == 16) {
607                 chip->options |= NAND_BUSWIDTH_16;
608                 vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT);
609         } else {
610                 chip->options &= ~NAND_BUSWIDTH_16;
611                 vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT);
612         }
613
614         chip->dev_ready = vf610_nfc_dev_ready;
615         chip->cmdfunc = vf610_nfc_command;
616         chip->read_byte = vf610_nfc_read_byte;
617         chip->read_word = vf610_nfc_read_word;
618         chip->read_buf = vf610_nfc_read_buf;
619         chip->write_buf = vf610_nfc_write_buf;
620         chip->select_chip = vf610_nfc_select_chip;
621
622         /* Bad block options. */
623         if (cfg.flash_bbt)
624                 chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_CREATE;
625
626         /* Default to software ECC until flash ID. */
627         vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
628                             CONFIG_ECC_MODE_MASK,
629                             CONFIG_ECC_MODE_SHIFT, ECC_BYPASS);
630
631         chip->bbt_td = &bbt_main_descr;
632         chip->bbt_md = &bbt_mirror_descr;
633
634         page_sz = PAGE_2K + OOB_64;
635         page_sz += cfg.width == 16 ? 1 : 0;
636         vf610_nfc_write(mtd, NFC_SECTOR_SIZE, page_sz);
637
638         /* Set configuration register. */
639         vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
640         vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
641         vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
642         vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
643         vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
644
645         /* Enable Idle IRQ */
646         vf610_nfc_set(mtd, NFC_IRQ_STATUS, IDLE_EN_BIT);
647
648         /* PAGE_CNT = 1 */
649         vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
650                             CONFIG_PAGE_CNT_SHIFT, 1);
651
652         /* Set ECC_STATUS offset */
653         vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
654                             CONFIG_ECC_SRAM_ADDR_MASK,
655                             CONFIG_ECC_SRAM_ADDR_SHIFT, ECC_SRAM_ADDR);
656
657         /* first scan to find the device and get the page size */
658         if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL)) {
659                 err = -ENXIO;
660                 goto error;
661         }
662
663         chip->ecc.mode = NAND_ECC_SOFT; /* default */
664
665         page_sz = mtd->writesize + mtd->oobsize;
666
667         /* Single buffer only, max 256 OOB minus ECC status */
668         if (page_sz > PAGE_2K + 256 - 8) {
669                 dev_err(nfc->dev, "Unsupported flash size\n");
670                 err = -ENXIO;
671                 goto error;
672         }
673         page_sz += cfg.width == 16 ? 1 : 0;
674         vf610_nfc_write(mtd, NFC_SECTOR_SIZE, page_sz);
675
676         if (cfg.hardware_ecc) {
677                 if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
678                         dev_err(nfc->dev, "Unsupported flash with hwecc\n");
679                         err = -ENXIO;
680                         goto error;
681                 }
682
683                 chip->ecc.layout = &vf610_nfc_ecc45;
684
685                 /* propagate ecc.layout to mtd_info */
686                 mtd->ecclayout = chip->ecc.layout;
687                 chip->ecc.read_page = vf610_nfc_read_page;
688                 chip->ecc.write_page = vf610_nfc_write_page;
689                 chip->ecc.mode = NAND_ECC_HW;
690
691                 chip->ecc.bytes = 45;
692                 chip->ecc.size = PAGE_2K;
693                 chip->ecc.strength = 24;
694
695                 /* set ECC mode to 45 bytes OOB with 24 bits correction */
696                 vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
697                                     CONFIG_ECC_MODE_MASK,
698                                     CONFIG_ECC_MODE_SHIFT, ECC_45_BYTE);
699
700                 /* Enable ECC_STATUS */
701                 vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
702         }
703
704         /* second phase scan */
705         err = nand_scan_tail(mtd);
706         if (err)
707                 return err;
708
709         err = nand_register(devnum);
710         if (err)
711                 return err;
712
713         return 0;
714
715 error:
716         return err;
717 }
718
719 void board_nand_init(void)
720 {
721         int err = vf610_nfc_nand_init(0, (void __iomem *)CONFIG_SYS_NAND_BASE);
722         if (err)
723                 printf("VF610 NAND init failed (err %d)\n", err);
724 }