]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/mtd/onenand/onenand_base.c
Merge branch 'master' of git://www.denx.de/git/u-boot-imx
[karo-tx-uboot.git] / drivers / mtd / onenand / onenand_base.c
1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright (C) 2005-2007 Samsung Electronics
5  *  Kyungmin Park <kyungmin.park@samsung.com>
6  *
7  *  Credits:
8  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
9  *      auto-placement support, read-while load support, various fixes
10  *      Copyright (C) Nokia Corporation, 2007
11  *
12  *      Rohit Hagargundgi <h.rohit at samsung.com>,
13  *      Amul Kumar Saha <amul.saha@samsung.com>:
14  *      Flex-OneNAND support
15  *      Copyright (C) Samsung Electronics, 2009
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License version 2 as
19  * published by the Free Software Foundation.
20  */
21
22 #include <common.h>
23 #include <linux/compat.h>
24 #include <linux/mtd/mtd.h>
25 #include "linux/mtd/flashchip.h"
26 #include <linux/mtd/onenand.h>
27
28 #include <asm/io.h>
29 #include <asm/errno.h>
30 #include <malloc.h>
31
32 /* It should access 16-bit instead of 8-bit */
33 static void *memcpy_16(void *dst, const void *src, unsigned int len)
34 {
35         void *ret = dst;
36         short *d = dst;
37         const short *s = src;
38
39         len >>= 1;
40         while (len-- > 0)
41                 *d++ = *s++;
42         return ret;
43 }
44
45 /**
46  *  onenand_oob_128 - oob info for Flex-Onenand with 4KB page
47  *  For now, we expose only 64 out of 80 ecc bytes
48  */
49 static struct nand_ecclayout onenand_oob_128 = {
50         .eccbytes       = 64,
51         .eccpos         = {
52                 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
53                 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
54                 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
55                 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
56                 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
57                 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
58                 102, 103, 104, 105
59                 },
60         .oobfree        = {
61                 {2, 4}, {18, 4}, {34, 4}, {50, 4},
62                 {66, 4}, {82, 4}, {98, 4}, {114, 4}
63         }
64 };
65
66 /**
67  * onenand_oob_64 - oob info for large (2KB) page
68  */
69 static struct nand_ecclayout onenand_oob_64 = {
70         .eccbytes       = 20,
71         .eccpos         = {
72                 8, 9, 10, 11, 12,
73                 24, 25, 26, 27, 28,
74                 40, 41, 42, 43, 44,
75                 56, 57, 58, 59, 60,
76                 },
77         .oobfree        = {
78                 {2, 3}, {14, 2}, {18, 3}, {30, 2},
79                 {34, 3}, {46, 2}, {50, 3}, {62, 2}
80         }
81 };
82
83 /**
84  * onenand_oob_32 - oob info for middle (1KB) page
85  */
86 static struct nand_ecclayout onenand_oob_32 = {
87         .eccbytes       = 10,
88         .eccpos         = {
89                 8, 9, 10, 11, 12,
90                 24, 25, 26, 27, 28,
91                 },
92         .oobfree        = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
93 };
94
95 /*
96  * Warning! This array is used with the memcpy_16() function, thus
97  * it must be aligned to 2 bytes. GCC can make this array unaligned
98  * as the array is made of unsigned char, which memcpy16() doesn't
99  * like and will cause unaligned access.
100  */
101 static const unsigned char __aligned(2) ffchars[] = {
102         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
103         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
104         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
105         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
106         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
107         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
108         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
109         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
110         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
111         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
112         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
113         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
114         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
115         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
116         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
117         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
118 };
119
120 /**
121  * onenand_readw - [OneNAND Interface] Read OneNAND register
122  * @param addr          address to read
123  *
124  * Read OneNAND register
125  */
126 static unsigned short onenand_readw(void __iomem * addr)
127 {
128         return readw(addr);
129 }
130
131 /**
132  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
133  * @param value         value to write
134  * @param addr          address to write
135  *
136  * Write OneNAND register with value
137  */
138 static void onenand_writew(unsigned short value, void __iomem * addr)
139 {
140         writew(value, addr);
141 }
142
143 /**
144  * onenand_block_address - [DEFAULT] Get block address
145  * @param device        the device id
146  * @param block         the block
147  * @return              translated block address if DDP, otherwise same
148  *
149  * Setup Start Address 1 Register (F100h)
150  */
151 static int onenand_block_address(struct onenand_chip *this, int block)
152 {
153         /* Device Flash Core select, NAND Flash Block Address */
154         if (block & this->density_mask)
155                 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
156
157         return block;
158 }
159
160 /**
161  * onenand_bufferram_address - [DEFAULT] Get bufferram address
162  * @param device        the device id
163  * @param block         the block
164  * @return              set DBS value if DDP, otherwise 0
165  *
166  * Setup Start Address 2 Register (F101h) for DDP
167  */
168 static int onenand_bufferram_address(struct onenand_chip *this, int block)
169 {
170         /* Device BufferRAM Select */
171         if (block & this->density_mask)
172                 return ONENAND_DDP_CHIP1;
173
174         return ONENAND_DDP_CHIP0;
175 }
176
177 /**
178  * onenand_page_address - [DEFAULT] Get page address
179  * @param page          the page address
180  * @param sector        the sector address
181  * @return              combined page and sector address
182  *
183  * Setup Start Address 8 Register (F107h)
184  */
185 static int onenand_page_address(int page, int sector)
186 {
187         /* Flash Page Address, Flash Sector Address */
188         int fpa, fsa;
189
190         fpa = page & ONENAND_FPA_MASK;
191         fsa = sector & ONENAND_FSA_MASK;
192
193         return ((fpa << ONENAND_FPA_SHIFT) | fsa);
194 }
195
196 /**
197  * onenand_buffer_address - [DEFAULT] Get buffer address
198  * @param dataram1      DataRAM index
199  * @param sectors       the sector address
200  * @param count         the number of sectors
201  * @return              the start buffer value
202  *
203  * Setup Start Buffer Register (F200h)
204  */
205 static int onenand_buffer_address(int dataram1, int sectors, int count)
206 {
207         int bsa, bsc;
208
209         /* BufferRAM Sector Address */
210         bsa = sectors & ONENAND_BSA_MASK;
211
212         if (dataram1)
213                 bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
214         else
215                 bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
216
217         /* BufferRAM Sector Count */
218         bsc = count & ONENAND_BSC_MASK;
219
220         return ((bsa << ONENAND_BSA_SHIFT) | bsc);
221 }
222
223 /**
224  * flexonenand_block - Return block number for flash address
225  * @param this          - OneNAND device structure
226  * @param addr          - Address for which block number is needed
227  */
228 static unsigned int flexonenand_block(struct onenand_chip *this, loff_t addr)
229 {
230         unsigned int boundary, blk, die = 0;
231
232         if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
233                 die = 1;
234                 addr -= this->diesize[0];
235         }
236
237         boundary = this->boundary[die];
238
239         blk = addr >> (this->erase_shift - 1);
240         if (blk > boundary)
241                 blk = (blk + boundary + 1) >> 1;
242
243         blk += die ? this->density_mask : 0;
244         return blk;
245 }
246
247 unsigned int onenand_block(struct onenand_chip *this, loff_t addr)
248 {
249         if (!FLEXONENAND(this))
250                 return addr >> this->erase_shift;
251         return flexonenand_block(this, addr);
252 }
253
254 /**
255  * flexonenand_addr - Return address of the block
256  * @this:               OneNAND device structure
257  * @block:              Block number on Flex-OneNAND
258  *
259  * Return address of the block
260  */
261 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
262 {
263         loff_t ofs = 0;
264         int die = 0, boundary;
265
266         if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
267                 block -= this->density_mask;
268                 die = 1;
269                 ofs = this->diesize[0];
270         }
271
272         boundary = this->boundary[die];
273         ofs += (loff_t) block << (this->erase_shift - 1);
274         if (block > (boundary + 1))
275                 ofs += (loff_t) (block - boundary - 1)
276                         << (this->erase_shift - 1);
277         return ofs;
278 }
279
280 loff_t onenand_addr(struct onenand_chip *this, int block)
281 {
282         if (!FLEXONENAND(this))
283                 return (loff_t) block << this->erase_shift;
284         return flexonenand_addr(this, block);
285 }
286
287 /**
288  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
289  * @param mtd           MTD device structure
290  * @param addr          address whose erase region needs to be identified
291  */
292 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
293 {
294         int i;
295
296         for (i = 0; i < mtd->numeraseregions; i++)
297                 if (addr < mtd->eraseregions[i].offset)
298                         break;
299         return i - 1;
300 }
301
302 /**
303  * onenand_get_density - [DEFAULT] Get OneNAND density
304  * @param dev_id        OneNAND device ID
305  *
306  * Get OneNAND density from device ID
307  */
308 static inline int onenand_get_density(int dev_id)
309 {
310         int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
311         return (density & ONENAND_DEVICE_DENSITY_MASK);
312 }
313
314 /**
315  * onenand_command - [DEFAULT] Send command to OneNAND device
316  * @param mtd           MTD device structure
317  * @param cmd           the command to be sent
318  * @param addr          offset to read from or write to
319  * @param len           number of bytes to read or write
320  *
321  * Send command to OneNAND device. This function is used for middle/large page
322  * devices (1KB/2KB Bytes per page)
323  */
324 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
325                            size_t len)
326 {
327         struct onenand_chip *this = mtd->priv;
328         int value;
329         int block, page;
330
331         /* Now we use page size operation */
332         int sectors = 0, count = 0;
333
334         /* Address translation */
335         switch (cmd) {
336         case ONENAND_CMD_UNLOCK:
337         case ONENAND_CMD_LOCK:
338         case ONENAND_CMD_LOCK_TIGHT:
339         case ONENAND_CMD_UNLOCK_ALL:
340                 block = -1;
341                 page = -1;
342                 break;
343
344         case FLEXONENAND_CMD_PI_ACCESS:
345                 /* addr contains die index */
346                 block = addr * this->density_mask;
347                 page = -1;
348                 break;
349
350         case ONENAND_CMD_ERASE:
351         case ONENAND_CMD_BUFFERRAM:
352                 block = onenand_block(this, addr);
353                 page = -1;
354                 break;
355
356         case FLEXONENAND_CMD_READ_PI:
357                 cmd = ONENAND_CMD_READ;
358                 block = addr * this->density_mask;
359                 page = 0;
360                 break;
361
362         default:
363                 block = onenand_block(this, addr);
364                 page = (int) (addr
365                         - onenand_addr(this, block)) >> this->page_shift;
366                 page &= this->page_mask;
367                 break;
368         }
369
370         /* NOTE: The setting order of the registers is very important! */
371         if (cmd == ONENAND_CMD_BUFFERRAM) {
372                 /* Select DataRAM for DDP */
373                 value = onenand_bufferram_address(this, block);
374                 this->write_word(value,
375                                  this->base + ONENAND_REG_START_ADDRESS2);
376
377                 if (ONENAND_IS_4KB_PAGE(this))
378                         ONENAND_SET_BUFFERRAM0(this);
379                 else
380                         /* Switch to the next data buffer */
381                         ONENAND_SET_NEXT_BUFFERRAM(this);
382
383                 return 0;
384         }
385
386         if (block != -1) {
387                 /* Write 'DFS, FBA' of Flash */
388                 value = onenand_block_address(this, block);
389                 this->write_word(value,
390                                  this->base + ONENAND_REG_START_ADDRESS1);
391
392                 /* Select DataRAM for DDP */
393                 value = onenand_bufferram_address(this, block);
394                 this->write_word(value,
395                                  this->base + ONENAND_REG_START_ADDRESS2);
396         }
397
398         if (page != -1) {
399                 int dataram;
400
401                 switch (cmd) {
402                 case FLEXONENAND_CMD_RECOVER_LSB:
403                 case ONENAND_CMD_READ:
404                 case ONENAND_CMD_READOOB:
405                         if (ONENAND_IS_4KB_PAGE(this))
406                                 dataram = ONENAND_SET_BUFFERRAM0(this);
407                         else
408                                 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
409
410                         break;
411
412                 default:
413                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
414                         break;
415                 }
416
417                 /* Write 'FPA, FSA' of Flash */
418                 value = onenand_page_address(page, sectors);
419                 this->write_word(value,
420                                  this->base + ONENAND_REG_START_ADDRESS8);
421
422                 /* Write 'BSA, BSC' of DataRAM */
423                 value = onenand_buffer_address(dataram, sectors, count);
424                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
425         }
426
427         /* Interrupt clear */
428         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
429         /* Write command */
430         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
431
432         return 0;
433 }
434
435 /**
436  * onenand_read_ecc - return ecc status
437  * @param this          onenand chip structure
438  */
439 static int onenand_read_ecc(struct onenand_chip *this)
440 {
441         int ecc, i;
442
443         if (!FLEXONENAND(this))
444                 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
445
446         for (i = 0; i < 4; i++) {
447                 ecc = this->read_word(this->base
448                                 + ((ONENAND_REG_ECC_STATUS + i) << 1));
449                 if (likely(!ecc))
450                         continue;
451                 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
452                         return ONENAND_ECC_2BIT_ALL;
453         }
454
455         return 0;
456 }
457
458 /**
459  * onenand_wait - [DEFAULT] wait until the command is done
460  * @param mtd           MTD device structure
461  * @param state         state to select the max. timeout value
462  *
463  * Wait for command done. This applies to all OneNAND command
464  * Read can take up to 30us, erase up to 2ms and program up to 350us
465  * according to general OneNAND specs
466  */
467 static int onenand_wait(struct mtd_info *mtd, int state)
468 {
469         struct onenand_chip *this = mtd->priv;
470         unsigned int flags = ONENAND_INT_MASTER;
471         unsigned int interrupt = 0;
472         unsigned int ctrl;
473
474         while (1) {
475                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
476                 if (interrupt & flags)
477                         break;
478         }
479
480         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
481
482         if (interrupt & ONENAND_INT_READ) {
483                 int ecc = onenand_read_ecc(this);
484                 if (ecc & ONENAND_ECC_2BIT_ALL) {
485                         printk("onenand_wait: ECC error = 0x%04x\n", ecc);
486                         return -EBADMSG;
487                 }
488         }
489
490         if (ctrl & ONENAND_CTRL_ERROR) {
491                 printk("onenand_wait: controller error = 0x%04x\n", ctrl);
492                 if (ctrl & ONENAND_CTRL_LOCK)
493                         printk("onenand_wait: it's locked error = 0x%04x\n",
494                                 ctrl);
495
496                 return -EIO;
497         }
498
499
500         return 0;
501 }
502
503 /**
504  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
505  * @param mtd           MTD data structure
506  * @param area          BufferRAM area
507  * @return              offset given area
508  *
509  * Return BufferRAM offset given area
510  */
511 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
512 {
513         struct onenand_chip *this = mtd->priv;
514
515         if (ONENAND_CURRENT_BUFFERRAM(this)) {
516                 if (area == ONENAND_DATARAM)
517                         return mtd->writesize;
518                 if (area == ONENAND_SPARERAM)
519                         return mtd->oobsize;
520         }
521
522         return 0;
523 }
524
525 /**
526  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
527  * @param mtd           MTD data structure
528  * @param area          BufferRAM area
529  * @param buffer        the databuffer to put/get data
530  * @param offset        offset to read from or write to
531  * @param count         number of bytes to read/write
532  *
533  * Read the BufferRAM area
534  */
535 static int onenand_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
536                                   unsigned char *buffer, int offset,
537                                   size_t count)
538 {
539         struct onenand_chip *this = mtd->priv;
540         void __iomem *bufferram;
541
542         bufferram = this->base + area;
543         bufferram += onenand_bufferram_offset(mtd, area);
544
545         memcpy_16(buffer, bufferram + offset, count);
546
547         return 0;
548 }
549
550 /**
551  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
552  * @param mtd           MTD data structure
553  * @param area          BufferRAM area
554  * @param buffer        the databuffer to put/get data
555  * @param offset        offset to read from or write to
556  * @param count         number of bytes to read/write
557  *
558  * Read the BufferRAM area with Sync. Burst Mode
559  */
560 static int onenand_sync_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
561                                        unsigned char *buffer, int offset,
562                                        size_t count)
563 {
564         struct onenand_chip *this = mtd->priv;
565         void __iomem *bufferram;
566
567         bufferram = this->base + area;
568         bufferram += onenand_bufferram_offset(mtd, area);
569
570         this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
571
572         memcpy_16(buffer, bufferram + offset, count);
573
574         this->mmcontrol(mtd, 0);
575
576         return 0;
577 }
578
579 /**
580  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
581  * @param mtd           MTD data structure
582  * @param area          BufferRAM area
583  * @param buffer        the databuffer to put/get data
584  * @param offset        offset to read from or write to
585  * @param count         number of bytes to read/write
586  *
587  * Write the BufferRAM area
588  */
589 static int onenand_write_bufferram(struct mtd_info *mtd, loff_t addr, int area,
590                                    const unsigned char *buffer, int offset,
591                                    size_t count)
592 {
593         struct onenand_chip *this = mtd->priv;
594         void __iomem *bufferram;
595
596         bufferram = this->base + area;
597         bufferram += onenand_bufferram_offset(mtd, area);
598
599         memcpy_16(bufferram + offset, buffer, count);
600
601         return 0;
602 }
603
604 /**
605  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
606  * @param mtd           MTD data structure
607  * @param addr          address to check
608  * @return              blockpage address
609  *
610  * Get blockpage address at 2x program mode
611  */
612 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
613 {
614         struct onenand_chip *this = mtd->priv;
615         int blockpage, block, page;
616
617         /* Calculate the even block number */
618         block = (int) (addr >> this->erase_shift) & ~1;
619         /* Is it the odd plane? */
620         if (addr & this->writesize)
621                 block++;
622         page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
623         blockpage = (block << 7) | page;
624
625         return blockpage;
626 }
627
628 /**
629  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
630  * @param mtd           MTD data structure
631  * @param addr          address to check
632  * @return              1 if there are valid data, otherwise 0
633  *
634  * Check bufferram if there is data we required
635  */
636 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
637 {
638         struct onenand_chip *this = mtd->priv;
639         int blockpage, found = 0;
640         unsigned int i;
641
642         if (ONENAND_IS_2PLANE(this))
643                 blockpage = onenand_get_2x_blockpage(mtd, addr);
644         else
645                 blockpage = (int) (addr >> this->page_shift);
646
647         /* Is there valid data? */
648         i = ONENAND_CURRENT_BUFFERRAM(this);
649         if (this->bufferram[i].blockpage == blockpage)
650                 found = 1;
651         else {
652                 /* Check another BufferRAM */
653                 i = ONENAND_NEXT_BUFFERRAM(this);
654                 if (this->bufferram[i].blockpage == blockpage) {
655                         ONENAND_SET_NEXT_BUFFERRAM(this);
656                         found = 1;
657                 }
658         }
659
660         if (found && ONENAND_IS_DDP(this)) {
661                 /* Select DataRAM for DDP */
662                 int block = onenand_block(this, addr);
663                 int value = onenand_bufferram_address(this, block);
664                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
665         }
666
667         return found;
668 }
669
670 /**
671  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
672  * @param mtd           MTD data structure
673  * @param addr          address to update
674  * @param valid         valid flag
675  *
676  * Update BufferRAM information
677  */
678 static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
679                                     int valid)
680 {
681         struct onenand_chip *this = mtd->priv;
682         int blockpage;
683         unsigned int i;
684
685         if (ONENAND_IS_2PLANE(this))
686                 blockpage = onenand_get_2x_blockpage(mtd, addr);
687         else
688                 blockpage = (int)(addr >> this->page_shift);
689
690         /* Invalidate another BufferRAM */
691         i = ONENAND_NEXT_BUFFERRAM(this);
692         if (this->bufferram[i].blockpage == blockpage)
693                 this->bufferram[i].blockpage = -1;
694
695         /* Update BufferRAM */
696         i = ONENAND_CURRENT_BUFFERRAM(this);
697         if (valid)
698                 this->bufferram[i].blockpage = blockpage;
699         else
700                 this->bufferram[i].blockpage = -1;
701
702         return 0;
703 }
704
705 /**
706  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
707  * @param mtd           MTD data structure
708  * @param addr          start address to invalidate
709  * @param len           length to invalidate
710  *
711  * Invalidate BufferRAM information
712  */
713 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
714                                          unsigned int len)
715 {
716         struct onenand_chip *this = mtd->priv;
717         int i;
718         loff_t end_addr = addr + len;
719
720         /* Invalidate BufferRAM */
721         for (i = 0; i < MAX_BUFFERRAM; i++) {
722                 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
723
724                 if (buf_addr >= addr && buf_addr < end_addr)
725                         this->bufferram[i].blockpage = -1;
726         }
727 }
728
729 /**
730  * onenand_get_device - [GENERIC] Get chip for selected access
731  * @param mtd           MTD device structure
732  * @param new_state     the state which is requested
733  *
734  * Get the device and lock it for exclusive access
735  */
736 static void onenand_get_device(struct mtd_info *mtd, int new_state)
737 {
738         /* Do nothing */
739 }
740
741 /**
742  * onenand_release_device - [GENERIC] release chip
743  * @param mtd           MTD device structure
744  *
745  * Deselect, release chip lock and wake up anyone waiting on the device
746  */
747 static void onenand_release_device(struct mtd_info *mtd)
748 {
749         /* Do nothing */
750 }
751
752 /**
753  * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
754  * @param mtd           MTD device structure
755  * @param buf           destination address
756  * @param column        oob offset to read from
757  * @param thislen       oob length to read
758  */
759 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf,
760                                         int column, int thislen)
761 {
762         struct onenand_chip *this = mtd->priv;
763         struct nand_oobfree *free;
764         int readcol = column;
765         int readend = column + thislen;
766         int lastgap = 0;
767         unsigned int i;
768         uint8_t *oob_buf = this->oob_buf;
769
770         free = this->ecclayout->oobfree;
771         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
772              i++, free++) {
773                 if (readcol >= lastgap)
774                         readcol += free->offset - lastgap;
775                 if (readend >= lastgap)
776                         readend += free->offset - lastgap;
777                 lastgap = free->offset + free->length;
778         }
779         this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
780         free = this->ecclayout->oobfree;
781         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
782              i++, free++) {
783                 int free_end = free->offset + free->length;
784                 if (free->offset < readend && free_end > readcol) {
785                         int st = max_t(int,free->offset,readcol);
786                         int ed = min_t(int,free_end,readend);
787                         int n = ed - st;
788                         memcpy(buf, oob_buf + st, n);
789                         buf += n;
790                 } else if (column == 0)
791                         break;
792         }
793         return 0;
794 }
795
796 /**
797  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
798  * @param mtd           MTD device structure
799  * @param addr          address to recover
800  * @param status        return value from onenand_wait
801  *
802  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
803  * lower page address and MSB page has higher page address in paired pages.
804  * If power off occurs during MSB page program, the paired LSB page data can
805  * become corrupt. LSB page recovery read is a way to read LSB page though page
806  * data are corrupted. When uncorrectable error occurs as a result of LSB page
807  * read after power up, issue LSB page recovery read.
808  */
809 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
810 {
811         struct onenand_chip *this = mtd->priv;
812         int i;
813
814         /* Recovery is only for Flex-OneNAND */
815         if (!FLEXONENAND(this))
816                 return status;
817
818         /* check if we failed due to uncorrectable error */
819         if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
820                 return status;
821
822         /* check if address lies in MLC region */
823         i = flexonenand_region(mtd, addr);
824         if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
825                 return status;
826
827         printk("onenand_recover_lsb:"
828                 "Attempting to recover from uncorrectable read\n");
829
830         /* Issue the LSB page recovery command */
831         this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
832         return this->wait(mtd, FL_READING);
833 }
834
835 /**
836  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
837  * @param mtd           MTD device structure
838  * @param from          offset to read from
839  * @param ops           oob operation description structure
840  *
841  * OneNAND read main and/or out-of-band data
842  */
843 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
844                 struct mtd_oob_ops *ops)
845 {
846         struct onenand_chip *this = mtd->priv;
847         struct mtd_ecc_stats stats;
848         size_t len = ops->len;
849         size_t ooblen = ops->ooblen;
850         u_char *buf = ops->datbuf;
851         u_char *oobbuf = ops->oobbuf;
852         int read = 0, column, thislen;
853         int oobread = 0, oobcolumn, thisooblen, oobsize;
854         int ret = 0, boundary = 0;
855         int writesize = this->writesize;
856
857         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
858
859         if (ops->mode == MTD_OPS_AUTO_OOB)
860                 oobsize = this->ecclayout->oobavail;
861         else
862                 oobsize = mtd->oobsize;
863
864         oobcolumn = from & (mtd->oobsize - 1);
865
866         /* Do not allow reads past end of device */
867         if ((from + len) > mtd->size) {
868                 printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
869                 ops->retlen = 0;
870                 ops->oobretlen = 0;
871                 return -EINVAL;
872         }
873
874         stats = mtd->ecc_stats;
875
876         /* Read-while-load method */
877         /* Note: We can't use this feature in MLC */
878
879         /* Do first load to bufferRAM */
880         if (read < len) {
881                 if (!onenand_check_bufferram(mtd, from)) {
882                         this->main_buf = buf;
883                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
884                         ret = this->wait(mtd, FL_READING);
885                         if (unlikely(ret))
886                                 ret = onenand_recover_lsb(mtd, from, ret);
887                         onenand_update_bufferram(mtd, from, !ret);
888                         if (ret == -EBADMSG)
889                                 ret = 0;
890                 }
891         }
892
893         thislen = min_t(int, writesize, len - read);
894         column = from & (writesize - 1);
895         if (column + thislen > writesize)
896                 thislen = writesize - column;
897
898         while (!ret) {
899                 /* If there is more to load then start next load */
900                 from += thislen;
901                 if (!ONENAND_IS_4KB_PAGE(this) && read + thislen < len) {
902                         this->main_buf = buf + thislen;
903                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
904                         /*
905                          * Chip boundary handling in DDP
906                          * Now we issued chip 1 read and pointed chip 1
907                          * bufferam so we have to point chip 0 bufferam.
908                          */
909                         if (ONENAND_IS_DDP(this) &&
910                                         unlikely(from == (this->chipsize >> 1))) {
911                                 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
912                                 boundary = 1;
913                         } else
914                                 boundary = 0;
915                         ONENAND_SET_PREV_BUFFERRAM(this);
916                 }
917
918                 /* While load is going, read from last bufferRAM */
919                 this->read_bufferram(mtd, from - thislen, ONENAND_DATARAM, buf, column, thislen);
920
921                 /* Read oob area if needed */
922                 if (oobbuf) {
923                         thisooblen = oobsize - oobcolumn;
924                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
925
926                         if (ops->mode == MTD_OPS_AUTO_OOB)
927                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
928                         else
929                                 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
930                         oobread += thisooblen;
931                         oobbuf += thisooblen;
932                         oobcolumn = 0;
933                 }
934
935                 if (ONENAND_IS_4KB_PAGE(this) && (read + thislen < len)) {
936                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
937                         ret = this->wait(mtd, FL_READING);
938                         if (unlikely(ret))
939                                 ret = onenand_recover_lsb(mtd, from, ret);
940                         onenand_update_bufferram(mtd, from, !ret);
941                         if (mtd_is_eccerr(ret))
942                                 ret = 0;
943                 }
944
945                 /* See if we are done */
946                 read += thislen;
947                 if (read == len)
948                         break;
949                 /* Set up for next read from bufferRAM */
950                 if (unlikely(boundary))
951                         this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
952                 if (!ONENAND_IS_4KB_PAGE(this))
953                         ONENAND_SET_NEXT_BUFFERRAM(this);
954                 buf += thislen;
955                 thislen = min_t(int, writesize, len - read);
956                 column = 0;
957
958                 if (!ONENAND_IS_4KB_PAGE(this)) {
959                         /* Now wait for load */
960                         ret = this->wait(mtd, FL_READING);
961                         onenand_update_bufferram(mtd, from, !ret);
962                         if (mtd_is_eccerr(ret))
963                                 ret = 0;
964                 }
965         }
966
967         /*
968          * Return success, if no ECC failures, else -EBADMSG
969          * fs driver will take care of that, because
970          * retlen == desired len and result == -EBADMSG
971          */
972         ops->retlen = read;
973         ops->oobretlen = oobread;
974
975         if (ret)
976                 return ret;
977
978         if (mtd->ecc_stats.failed - stats.failed)
979                 return -EBADMSG;
980
981         /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
982         return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
983 }
984
985 /**
986  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
987  * @param mtd           MTD device structure
988  * @param from          offset to read from
989  * @param ops           oob operation description structure
990  *
991  * OneNAND read out-of-band data from the spare area
992  */
993 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
994                 struct mtd_oob_ops *ops)
995 {
996         struct onenand_chip *this = mtd->priv;
997         struct mtd_ecc_stats stats;
998         int read = 0, thislen, column, oobsize;
999         size_t len = ops->ooblen;
1000         unsigned int mode = ops->mode;
1001         u_char *buf = ops->oobbuf;
1002         int ret = 0, readcmd;
1003
1004         from += ops->ooboffs;
1005
1006         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1007
1008         /* Initialize return length value */
1009         ops->oobretlen = 0;
1010
1011         if (mode == MTD_OPS_AUTO_OOB)
1012                 oobsize = this->ecclayout->oobavail;
1013         else
1014                 oobsize = mtd->oobsize;
1015
1016         column = from & (mtd->oobsize - 1);
1017
1018         if (unlikely(column >= oobsize)) {
1019                 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
1020                 return -EINVAL;
1021         }
1022
1023         /* Do not allow reads past end of device */
1024         if (unlikely(from >= mtd->size ||
1025                 column + len > ((mtd->size >> this->page_shift) -
1026                                 (from >> this->page_shift)) * oobsize)) {
1027                 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
1028                 return -EINVAL;
1029         }
1030
1031         stats = mtd->ecc_stats;
1032
1033         readcmd = ONENAND_IS_4KB_PAGE(this) ?
1034                 ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1035
1036         while (read < len) {
1037                 thislen = oobsize - column;
1038                 thislen = min_t(int, thislen, len);
1039
1040                 this->spare_buf = buf;
1041                 this->command(mtd, readcmd, from, mtd->oobsize);
1042
1043                 onenand_update_bufferram(mtd, from, 0);
1044
1045                 ret = this->wait(mtd, FL_READING);
1046                 if (unlikely(ret))
1047                         ret = onenand_recover_lsb(mtd, from, ret);
1048
1049                 if (ret && ret != -EBADMSG) {
1050                         printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1051                         break;
1052                 }
1053
1054                 if (mode == MTD_OPS_AUTO_OOB)
1055                         onenand_transfer_auto_oob(mtd, buf, column, thislen);
1056                 else
1057                         this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1058
1059                 read += thislen;
1060
1061                 if (read == len)
1062                         break;
1063
1064                 buf += thislen;
1065
1066                 /* Read more? */
1067                 if (read < len) {
1068                         /* Page size */
1069                         from += mtd->writesize;
1070                         column = 0;
1071                 }
1072         }
1073
1074         ops->oobretlen = read;
1075
1076         if (ret)
1077                 return ret;
1078
1079         if (mtd->ecc_stats.failed - stats.failed)
1080                 return -EBADMSG;
1081
1082         return 0;
1083 }
1084
1085 /**
1086  * onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc
1087  * @param mtd           MTD device structure
1088  * @param from          offset to read from
1089  * @param len           number of bytes to read
1090  * @param retlen        pointer to variable to store the number of read bytes
1091  * @param buf           the databuffer to put data
1092  *
1093  * This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL
1094 */
1095 int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1096                  size_t * retlen, u_char * buf)
1097 {
1098         struct mtd_oob_ops ops = {
1099                 .len    = len,
1100                 .ooblen = 0,
1101                 .datbuf = buf,
1102                 .oobbuf = NULL,
1103         };
1104         int ret;
1105
1106         onenand_get_device(mtd, FL_READING);
1107         ret = onenand_read_ops_nolock(mtd, from, &ops);
1108         onenand_release_device(mtd);
1109
1110         *retlen = ops.retlen;
1111         return ret;
1112 }
1113
1114 /**
1115  * onenand_read_oob - [MTD Interface] OneNAND read out-of-band
1116  * @param mtd           MTD device structure
1117  * @param from          offset to read from
1118  * @param ops           oob operations description structure
1119  *
1120  * OneNAND main and/or out-of-band
1121  */
1122 int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1123                         struct mtd_oob_ops *ops)
1124 {
1125         int ret;
1126
1127         switch (ops->mode) {
1128         case MTD_OPS_PLACE_OOB:
1129         case MTD_OPS_AUTO_OOB:
1130                 break;
1131         case MTD_OPS_RAW:
1132                 /* Not implemented yet */
1133         default:
1134                 return -EINVAL;
1135         }
1136
1137         onenand_get_device(mtd, FL_READING);
1138         if (ops->datbuf)
1139                 ret = onenand_read_ops_nolock(mtd, from, ops);
1140         else
1141                 ret = onenand_read_oob_nolock(mtd, from, ops);
1142         onenand_release_device(mtd);
1143
1144         return ret;
1145 }
1146
1147 /**
1148  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1149  * @param mtd           MTD device structure
1150  * @param state         state to select the max. timeout value
1151  *
1152  * Wait for command done.
1153  */
1154 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1155 {
1156         struct onenand_chip *this = mtd->priv;
1157         unsigned int flags = ONENAND_INT_MASTER;
1158         unsigned int interrupt;
1159         unsigned int ctrl;
1160
1161         while (1) {
1162                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1163                 if (interrupt & flags)
1164                         break;
1165         }
1166
1167         /* To get correct interrupt status in timeout case */
1168         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1169         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1170
1171         if (interrupt & ONENAND_INT_READ) {
1172                 int ecc = onenand_read_ecc(this);
1173                 if (ecc & ONENAND_ECC_2BIT_ALL) {
1174                         printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x"
1175                                 ", controller = 0x%04x\n", ecc, ctrl);
1176                         return ONENAND_BBT_READ_ERROR;
1177                 }
1178         } else {
1179                 printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1180                                 "ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1181                 return ONENAND_BBT_READ_FATAL_ERROR;
1182         }
1183
1184         /* Initial bad block case: 0x2400 or 0x0400 */
1185         if (ctrl & ONENAND_CTRL_ERROR) {
1186                 printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
1187                 return ONENAND_BBT_READ_ERROR;
1188         }
1189
1190         return 0;
1191 }
1192
1193 /**
1194  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1195  * @param mtd           MTD device structure
1196  * @param from          offset to read from
1197  * @param ops           oob operation description structure
1198  *
1199  * OneNAND read out-of-band data from the spare area for bbt scan
1200  */
1201 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1202                 struct mtd_oob_ops *ops)
1203 {
1204         struct onenand_chip *this = mtd->priv;
1205         int read = 0, thislen, column;
1206         int ret = 0, readcmd;
1207         size_t len = ops->ooblen;
1208         u_char *buf = ops->oobbuf;
1209
1210         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1211
1212         readcmd = ONENAND_IS_4KB_PAGE(this) ?
1213                 ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1214
1215         /* Initialize return value */
1216         ops->oobretlen = 0;
1217
1218         /* Do not allow reads past end of device */
1219         if (unlikely((from + len) > mtd->size)) {
1220                 printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1221                 return ONENAND_BBT_READ_FATAL_ERROR;
1222         }
1223
1224         /* Grab the lock and see if the device is available */
1225         onenand_get_device(mtd, FL_READING);
1226
1227         column = from & (mtd->oobsize - 1);
1228
1229         while (read < len) {
1230
1231                 thislen = mtd->oobsize - column;
1232                 thislen = min_t(int, thislen, len);
1233
1234                 this->spare_buf = buf;
1235                 this->command(mtd, readcmd, from, mtd->oobsize);
1236
1237                 onenand_update_bufferram(mtd, from, 0);
1238
1239                 ret = this->bbt_wait(mtd, FL_READING);
1240                 if (unlikely(ret))
1241                         ret = onenand_recover_lsb(mtd, from, ret);
1242
1243                 if (ret)
1244                         break;
1245
1246                 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1247                 read += thislen;
1248                 if (read == len)
1249                         break;
1250
1251                 buf += thislen;
1252
1253                 /* Read more? */
1254                 if (read < len) {
1255                         /* Update Page size */
1256                         from += this->writesize;
1257                         column = 0;
1258                 }
1259         }
1260
1261         /* Deselect and wake up anyone waiting on the device */
1262         onenand_release_device(mtd);
1263
1264         ops->oobretlen = read;
1265         return ret;
1266 }
1267
1268
1269 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1270 /**
1271  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1272  * @param mtd           MTD device structure
1273  * @param buf           the databuffer to verify
1274  * @param to            offset to read from
1275  */
1276 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1277 {
1278         struct onenand_chip *this = mtd->priv;
1279         u_char *oob_buf = this->oob_buf;
1280         int status, i, readcmd;
1281
1282         readcmd = ONENAND_IS_4KB_PAGE(this) ?
1283                 ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1284
1285         this->command(mtd, readcmd, to, mtd->oobsize);
1286         onenand_update_bufferram(mtd, to, 0);
1287         status = this->wait(mtd, FL_READING);
1288         if (status)
1289                 return status;
1290
1291         this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1292         for (i = 0; i < mtd->oobsize; i++)
1293                 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1294                         return -EBADMSG;
1295
1296         return 0;
1297 }
1298
1299 /**
1300  * onenand_verify - [GENERIC] verify the chip contents after a write
1301  * @param mtd          MTD device structure
1302  * @param buf          the databuffer to verify
1303  * @param addr         offset to read from
1304  * @param len          number of bytes to read and compare
1305  */
1306 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1307 {
1308         struct onenand_chip *this = mtd->priv;
1309         void __iomem *dataram;
1310         int ret = 0;
1311         int thislen, column;
1312
1313         while (len != 0) {
1314                 thislen = min_t(int, this->writesize, len);
1315                 column = addr & (this->writesize - 1);
1316                 if (column + thislen > this->writesize)
1317                         thislen = this->writesize - column;
1318
1319                 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1320
1321                 onenand_update_bufferram(mtd, addr, 0);
1322
1323                 ret = this->wait(mtd, FL_READING);
1324                 if (ret)
1325                         return ret;
1326
1327                 onenand_update_bufferram(mtd, addr, 1);
1328
1329                 dataram = this->base + ONENAND_DATARAM;
1330                 dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1331
1332                 if (memcmp(buf, dataram + column, thislen))
1333                         return -EBADMSG;
1334
1335                 len -= thislen;
1336                 buf += thislen;
1337                 addr += thislen;
1338         }
1339
1340         return 0;
1341 }
1342 #else
1343 #define onenand_verify(...)             (0)
1344 #define onenand_verify_oob(...)         (0)
1345 #endif
1346
1347 #define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1348
1349 /**
1350  * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1351  * @param mtd           MTD device structure
1352  * @param oob_buf       oob buffer
1353  * @param buf           source address
1354  * @param column        oob offset to write to
1355  * @param thislen       oob length to write
1356  */
1357 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1358                 const u_char *buf, int column, int thislen)
1359 {
1360         struct onenand_chip *this = mtd->priv;
1361         struct nand_oobfree *free;
1362         int writecol = column;
1363         int writeend = column + thislen;
1364         int lastgap = 0;
1365         unsigned int i;
1366
1367         free = this->ecclayout->oobfree;
1368         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
1369              i++, free++) {
1370                 if (writecol >= lastgap)
1371                         writecol += free->offset - lastgap;
1372                 if (writeend >= lastgap)
1373                         writeend += free->offset - lastgap;
1374                 lastgap = free->offset + free->length;
1375         }
1376         free = this->ecclayout->oobfree;
1377         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
1378              i++, free++) {
1379                 int free_end = free->offset + free->length;
1380                 if (free->offset < writeend && free_end > writecol) {
1381                         int st = max_t(int,free->offset,writecol);
1382                         int ed = min_t(int,free_end,writeend);
1383                         int n = ed - st;
1384                         memcpy(oob_buf + st, buf, n);
1385                         buf += n;
1386                 } else if (column == 0)
1387                         break;
1388         }
1389         return 0;
1390 }
1391
1392 /**
1393  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1394  * @param mtd           MTD device structure
1395  * @param to            offset to write to
1396  * @param ops           oob operation description structure
1397  *
1398  * Write main and/or oob with ECC
1399  */
1400 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1401                 struct mtd_oob_ops *ops)
1402 {
1403         struct onenand_chip *this = mtd->priv;
1404         int written = 0, column, thislen, subpage;
1405         int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1406         size_t len = ops->len;
1407         size_t ooblen = ops->ooblen;
1408         const u_char *buf = ops->datbuf;
1409         const u_char *oob = ops->oobbuf;
1410         u_char *oobbuf;
1411         int ret = 0;
1412
1413         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1414
1415         /* Initialize retlen, in case of early exit */
1416         ops->retlen = 0;
1417         ops->oobretlen = 0;
1418
1419         /* Reject writes, which are not page aligned */
1420         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1421                 printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1422                 return -EINVAL;
1423         }
1424
1425         if (ops->mode == MTD_OPS_AUTO_OOB)
1426                 oobsize = this->ecclayout->oobavail;
1427         else
1428                 oobsize = mtd->oobsize;
1429
1430         oobcolumn = to & (mtd->oobsize - 1);
1431
1432         column = to & (mtd->writesize - 1);
1433
1434         /* Loop until all data write */
1435         while (written < len) {
1436                 u_char *wbuf = (u_char *) buf;
1437
1438                 thislen = min_t(int, mtd->writesize - column, len - written);
1439                 thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1440
1441                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1442
1443                 /* Partial page write */
1444                 subpage = thislen < mtd->writesize;
1445                 if (subpage) {
1446                         memset(this->page_buf, 0xff, mtd->writesize);
1447                         memcpy(this->page_buf + column, buf, thislen);
1448                         wbuf = this->page_buf;
1449                 }
1450
1451                 this->write_bufferram(mtd, to, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1452
1453                 if (oob) {
1454                         oobbuf = this->oob_buf;
1455
1456                         /* We send data to spare ram with oobsize
1457                          *                          * to prevent byte access */
1458                         memset(oobbuf, 0xff, mtd->oobsize);
1459                         if (ops->mode == MTD_OPS_AUTO_OOB)
1460                                 onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1461                         else
1462                                 memcpy(oobbuf + oobcolumn, oob, thisooblen);
1463
1464                         oobwritten += thisooblen;
1465                         oob += thisooblen;
1466                         oobcolumn = 0;
1467                 } else
1468                         oobbuf = (u_char *) ffchars;
1469
1470                 this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1471
1472                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1473
1474                 ret = this->wait(mtd, FL_WRITING);
1475
1476                 /* In partial page write we don't update bufferram */
1477                 onenand_update_bufferram(mtd, to, !ret && !subpage);
1478                 if (ONENAND_IS_2PLANE(this)) {
1479                         ONENAND_SET_BUFFERRAM1(this);
1480                         onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1481                 }
1482
1483                 if (ret) {
1484                         printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1485                         break;
1486                 }
1487
1488                 /* Only check verify write turn on */
1489                 ret = onenand_verify(mtd, buf, to, thislen);
1490                 if (ret) {
1491                         printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1492                         break;
1493                 }
1494
1495                 written += thislen;
1496
1497                 if (written == len)
1498                         break;
1499
1500                 column = 0;
1501                 to += thislen;
1502                 buf += thislen;
1503         }
1504
1505         ops->retlen = written;
1506
1507         return ret;
1508 }
1509
1510 /**
1511  * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1512  * @param mtd           MTD device structure
1513  * @param to            offset to write to
1514  * @param len           number of bytes to write
1515  * @param retlen        pointer to variable to store the number of written bytes
1516  * @param buf           the data to write
1517  * @param mode          operation mode
1518  *
1519  * OneNAND write out-of-band
1520  */
1521 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1522                 struct mtd_oob_ops *ops)
1523 {
1524         struct onenand_chip *this = mtd->priv;
1525         int column, ret = 0, oobsize;
1526         int written = 0, oobcmd;
1527         u_char *oobbuf;
1528         size_t len = ops->ooblen;
1529         const u_char *buf = ops->oobbuf;
1530         unsigned int mode = ops->mode;
1531
1532         to += ops->ooboffs;
1533
1534         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1535
1536         /* Initialize retlen, in case of early exit */
1537         ops->oobretlen = 0;
1538
1539         if (mode == MTD_OPS_AUTO_OOB)
1540                 oobsize = this->ecclayout->oobavail;
1541         else
1542                 oobsize = mtd->oobsize;
1543
1544         column = to & (mtd->oobsize - 1);
1545
1546         if (unlikely(column >= oobsize)) {
1547                 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1548                 return -EINVAL;
1549         }
1550
1551         /* For compatibility with NAND: Do not allow write past end of page */
1552         if (unlikely(column + len > oobsize)) {
1553                 printk(KERN_ERR "onenand_write_oob_nolock: "
1554                                 "Attempt to write past end of page\n");
1555                 return -EINVAL;
1556         }
1557
1558         /* Do not allow reads past end of device */
1559         if (unlikely(to >= mtd->size ||
1560                                 column + len > ((mtd->size >> this->page_shift) -
1561                                         (to >> this->page_shift)) * oobsize)) {
1562                 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
1563                 return -EINVAL;
1564         }
1565
1566         oobbuf = this->oob_buf;
1567
1568         oobcmd = ONENAND_IS_4KB_PAGE(this) ?
1569                 ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
1570
1571         /* Loop until all data write */
1572         while (written < len) {
1573                 int thislen = min_t(int, oobsize, len - written);
1574
1575                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1576
1577                 /* We send data to spare ram with oobsize
1578                  * to prevent byte access */
1579                 memset(oobbuf, 0xff, mtd->oobsize);
1580                 if (mode == MTD_OPS_AUTO_OOB)
1581                         onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1582                 else
1583                         memcpy(oobbuf + column, buf, thislen);
1584                 this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1585
1586                 if (ONENAND_IS_4KB_PAGE(this)) {
1587                         /* Set main area of DataRAM to 0xff*/
1588                         memset(this->page_buf, 0xff, mtd->writesize);
1589                         this->write_bufferram(mtd, 0, ONENAND_DATARAM,
1590                                 this->page_buf, 0, mtd->writesize);
1591                 }
1592
1593                 this->command(mtd, oobcmd, to, mtd->oobsize);
1594
1595                 onenand_update_bufferram(mtd, to, 0);
1596                 if (ONENAND_IS_2PLANE(this)) {
1597                         ONENAND_SET_BUFFERRAM1(this);
1598                         onenand_update_bufferram(mtd, to + this->writesize, 0);
1599                 }
1600
1601                 ret = this->wait(mtd, FL_WRITING);
1602                 if (ret) {
1603                         printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
1604                         break;
1605                 }
1606
1607                 ret = onenand_verify_oob(mtd, oobbuf, to);
1608                 if (ret) {
1609                         printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
1610                         break;
1611                 }
1612
1613                 written += thislen;
1614                 if (written == len)
1615                         break;
1616
1617                 to += mtd->writesize;
1618                 buf += thislen;
1619                 column = 0;
1620         }
1621
1622         ops->oobretlen = written;
1623
1624         return ret;
1625 }
1626
1627 /**
1628  * onenand_write - [MTD Interface] compability function for onenand_write_ecc
1629  * @param mtd           MTD device structure
1630  * @param to            offset to write to
1631  * @param len           number of bytes to write
1632  * @param retlen        pointer to variable to store the number of written bytes
1633  * @param buf           the data to write
1634  *
1635  * Write with ECC
1636  */
1637 int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1638                   size_t * retlen, const u_char * buf)
1639 {
1640         struct mtd_oob_ops ops = {
1641                 .len    = len,
1642                 .ooblen = 0,
1643                 .datbuf = (u_char *) buf,
1644                 .oobbuf = NULL,
1645         };
1646         int ret;
1647
1648         onenand_get_device(mtd, FL_WRITING);
1649         ret = onenand_write_ops_nolock(mtd, to, &ops);
1650         onenand_release_device(mtd);
1651
1652         *retlen = ops.retlen;
1653         return ret;
1654 }
1655
1656 /**
1657  * onenand_write_oob - [MTD Interface] OneNAND write out-of-band
1658  * @param mtd           MTD device structure
1659  * @param to            offset to write to
1660  * @param ops           oob operation description structure
1661  *
1662  * OneNAND write main and/or out-of-band
1663  */
1664 int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1665                         struct mtd_oob_ops *ops)
1666 {
1667         int ret;
1668
1669         switch (ops->mode) {
1670         case MTD_OPS_PLACE_OOB:
1671         case MTD_OPS_AUTO_OOB:
1672                 break;
1673         case MTD_OPS_RAW:
1674                 /* Not implemented yet */
1675         default:
1676                 return -EINVAL;
1677         }
1678
1679         onenand_get_device(mtd, FL_WRITING);
1680         if (ops->datbuf)
1681                 ret = onenand_write_ops_nolock(mtd, to, ops);
1682         else
1683                 ret = onenand_write_oob_nolock(mtd, to, ops);
1684         onenand_release_device(mtd);
1685
1686         return ret;
1687
1688 }
1689
1690 /**
1691  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
1692  * @param mtd           MTD device structure
1693  * @param ofs           offset from device start
1694  * @param allowbbt      1, if its allowed to access the bbt area
1695  *
1696  * Check, if the block is bad, Either by reading the bad block table or
1697  * calling of the scan function.
1698  */
1699 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1700 {
1701         struct onenand_chip *this = mtd->priv;
1702         struct bbm_info *bbm = this->bbm;
1703
1704         /* Return info from the table */
1705         return bbm->isbad_bbt(mtd, ofs, allowbbt);
1706 }
1707
1708
1709 /**
1710  * onenand_erase - [MTD Interface] erase block(s)
1711  * @param mtd           MTD device structure
1712  * @param instr         erase instruction
1713  *
1714  * Erase one ore more blocks
1715  */
1716 int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1717 {
1718         struct onenand_chip *this = mtd->priv;
1719         unsigned int block_size;
1720         loff_t addr = instr->addr;
1721         unsigned int len = instr->len;
1722         int ret = 0, i;
1723         struct mtd_erase_region_info *region = NULL;
1724         unsigned int region_end = 0;
1725
1726         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n",
1727                         (unsigned int) addr, len);
1728
1729         if (FLEXONENAND(this)) {
1730                 /* Find the eraseregion of this address */
1731                 i = flexonenand_region(mtd, addr);
1732                 region = &mtd->eraseregions[i];
1733
1734                 block_size = region->erasesize;
1735                 region_end = region->offset
1736                         + region->erasesize * region->numblocks;
1737
1738                 /* Start address within region must align on block boundary.
1739                  * Erase region's start offset is always block start address.
1740                  */
1741                 if (unlikely((addr - region->offset) & (block_size - 1))) {
1742                         MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1743                                 " Unaligned address\n");
1744                         return -EINVAL;
1745                 }
1746         } else {
1747                 block_size = 1 << this->erase_shift;
1748
1749                 /* Start address must align on block boundary */
1750                 if (unlikely(addr & (block_size - 1))) {
1751                         MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1752                                                 "Unaligned address\n");
1753                         return -EINVAL;
1754                 }
1755         }
1756
1757         /* Length must align on block boundary */
1758         if (unlikely(len & (block_size - 1))) {
1759                 MTDDEBUG (MTD_DEBUG_LEVEL0,
1760                          "onenand_erase: Length not block aligned\n");
1761                 return -EINVAL;
1762         }
1763
1764         /* Grab the lock and see if the device is available */
1765         onenand_get_device(mtd, FL_ERASING);
1766
1767         /* Loop throught the pages */
1768         instr->state = MTD_ERASING;
1769
1770         while (len) {
1771
1772                 /* Check if we have a bad block, we do not erase bad blocks */
1773                 if (instr->priv == 0 && onenand_block_isbad_nolock(mtd, addr, 0)) {
1774                         printk(KERN_WARNING "onenand_erase: attempt to erase"
1775                                 " a bad block at addr 0x%08x\n",
1776                                 (unsigned int) addr);
1777                         instr->state = MTD_ERASE_FAILED;
1778                         goto erase_exit;
1779                 }
1780
1781                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1782
1783                 onenand_invalidate_bufferram(mtd, addr, block_size);
1784
1785                 ret = this->wait(mtd, FL_ERASING);
1786                 /* Check, if it is write protected */
1787                 if (ret) {
1788                         if (ret == -EPERM)
1789                                 MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1790                                           "Device is write protected!!!\n");
1791                         else
1792                                 MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1793                                           "Failed erase, block %d\n",
1794                                         onenand_block(this, addr));
1795                         instr->state = MTD_ERASE_FAILED;
1796                         instr->fail_addr = addr;
1797
1798                         goto erase_exit;
1799                 }
1800
1801                 len -= block_size;
1802                 addr += block_size;
1803
1804                 if (addr == region_end) {
1805                         if (!len)
1806                                 break;
1807                         region++;
1808
1809                         block_size = region->erasesize;
1810                         region_end = region->offset
1811                                 + region->erasesize * region->numblocks;
1812
1813                         if (len & (block_size - 1)) {
1814                                 /* This has been checked at MTD
1815                                  * partitioning level. */
1816                                 printk("onenand_erase: Unaligned address\n");
1817                                 goto erase_exit;
1818                         }
1819                 }
1820         }
1821
1822         instr->state = MTD_ERASE_DONE;
1823
1824 erase_exit:
1825
1826         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1827         /* Do call back function */
1828         if (!ret)
1829                 mtd_erase_callback(instr);
1830
1831         /* Deselect and wake up anyone waiting on the device */
1832         onenand_release_device(mtd);
1833
1834         return ret;
1835 }
1836
1837 /**
1838  * onenand_sync - [MTD Interface] sync
1839  * @param mtd           MTD device structure
1840  *
1841  * Sync is actually a wait for chip ready function
1842  */
1843 void onenand_sync(struct mtd_info *mtd)
1844 {
1845         MTDDEBUG (MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1846
1847         /* Grab the lock and see if the device is available */
1848         onenand_get_device(mtd, FL_SYNCING);
1849
1850         /* Release it and go back */
1851         onenand_release_device(mtd);
1852 }
1853
1854 /**
1855  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1856  * @param mtd           MTD device structure
1857  * @param ofs           offset relative to mtd start
1858  *
1859  * Check whether the block is bad
1860  */
1861 int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1862 {
1863         int ret;
1864
1865         /* Check for invalid offset */
1866         if (ofs > mtd->size)
1867                 return -EINVAL;
1868
1869         onenand_get_device(mtd, FL_READING);
1870         ret = onenand_block_isbad_nolock(mtd,ofs, 0);
1871         onenand_release_device(mtd);
1872         return ret;
1873 }
1874
1875 /**
1876  * onenand_default_block_markbad - [DEFAULT] mark a block bad
1877  * @param mtd           MTD device structure
1878  * @param ofs           offset from device start
1879  *
1880  * This is the default implementation, which can be overridden by
1881  * a hardware specific driver.
1882  */
1883 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1884 {
1885         struct onenand_chip *this = mtd->priv;
1886         struct bbm_info *bbm = this->bbm;
1887         u_char buf[2] = {0, 0};
1888         struct mtd_oob_ops ops = {
1889                 .mode = MTD_OPS_PLACE_OOB,
1890                 .ooblen = 2,
1891                 .oobbuf = buf,
1892                 .ooboffs = 0,
1893         };
1894         int block;
1895
1896         /* Get block number */
1897         block = onenand_block(this, ofs);
1898         if (bbm->bbt)
1899                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1900
1901         /* We write two bytes, so we dont have to mess with 16 bit access */
1902         ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1903         return onenand_write_oob_nolock(mtd, ofs, &ops);
1904 }
1905
1906 /**
1907  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1908  * @param mtd           MTD device structure
1909  * @param ofs           offset relative to mtd start
1910  *
1911  * Mark the block as bad
1912  */
1913 int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1914 {
1915         int ret;
1916
1917         ret = onenand_block_isbad(mtd, ofs);
1918         if (ret) {
1919                 /* If it was bad already, return success and do nothing */
1920                 if (ret > 0)
1921                         return 0;
1922                 return ret;
1923         }
1924
1925         ret = mtd_block_markbad(mtd, ofs);
1926         return ret;
1927 }
1928
1929 /**
1930  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1931  * @param mtd           MTD device structure
1932  * @param ofs           offset relative to mtd start
1933  * @param len           number of bytes to lock or unlock
1934  * @param cmd           lock or unlock command
1935  *
1936  * Lock or unlock one or more blocks
1937  */
1938 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1939 {
1940         struct onenand_chip *this = mtd->priv;
1941         int start, end, block, value, status;
1942
1943         start = onenand_block(this, ofs);
1944         end = onenand_block(this, ofs + len);
1945
1946         /* Continuous lock scheme */
1947         if (this->options & ONENAND_HAS_CONT_LOCK) {
1948                 /* Set start block address */
1949                 this->write_word(start,
1950                                  this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1951                 /* Set end block address */
1952                 this->write_word(end - 1,
1953                                  this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1954                 /* Write unlock command */
1955                 this->command(mtd, cmd, 0, 0);
1956
1957                 /* There's no return value */
1958                 this->wait(mtd, FL_UNLOCKING);
1959
1960                 /* Sanity check */
1961                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1962                        & ONENAND_CTRL_ONGO)
1963                         continue;
1964
1965                 /* Check lock status */
1966                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1967                 if (!(status & ONENAND_WP_US))
1968                         printk(KERN_ERR "wp status = 0x%x\n", status);
1969
1970                 return 0;
1971         }
1972
1973         /* Block lock scheme */
1974         for (block = start; block < end; block++) {
1975                 /* Set block address */
1976                 value = onenand_block_address(this, block);
1977                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1978                 /* Select DataRAM for DDP */
1979                 value = onenand_bufferram_address(this, block);
1980                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1981
1982                 /* Set start block address */
1983                 this->write_word(block,
1984                                  this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1985                 /* Write unlock command */
1986                 this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0);
1987
1988                 /* There's no return value */
1989                 this->wait(mtd, FL_UNLOCKING);
1990
1991                 /* Sanity check */
1992                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1993                        & ONENAND_CTRL_ONGO)
1994                         continue;
1995
1996                 /* Check lock status */
1997                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1998                 if (!(status & ONENAND_WP_US))
1999                         printk(KERN_ERR "block = %d, wp status = 0x%x\n",
2000                                block, status);
2001         }
2002
2003         return 0;
2004 }
2005
2006 #ifdef ONENAND_LINUX
2007 /**
2008  * onenand_lock - [MTD Interface] Lock block(s)
2009  * @param mtd           MTD device structure
2010  * @param ofs           offset relative to mtd start
2011  * @param len           number of bytes to unlock
2012  *
2013  * Lock one or more blocks
2014  */
2015 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
2016 {
2017         int ret;
2018
2019         onenand_get_device(mtd, FL_LOCKING);
2020         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2021         onenand_release_device(mtd);
2022         return ret;
2023 }
2024
2025 /**
2026  * onenand_unlock - [MTD Interface] Unlock block(s)
2027  * @param mtd           MTD device structure
2028  * @param ofs           offset relative to mtd start
2029  * @param len           number of bytes to unlock
2030  *
2031  * Unlock one or more blocks
2032  */
2033 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
2034 {
2035         int ret;
2036
2037         onenand_get_device(mtd, FL_LOCKING);
2038         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2039         onenand_release_device(mtd);
2040         return ret;
2041 }
2042 #endif
2043
2044 /**
2045  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2046  * @param this          onenand chip data structure
2047  *
2048  * Check lock status
2049  */
2050 static int onenand_check_lock_status(struct onenand_chip *this)
2051 {
2052         unsigned int value, block, status;
2053         unsigned int end;
2054
2055         end = this->chipsize >> this->erase_shift;
2056         for (block = 0; block < end; block++) {
2057                 /* Set block address */
2058                 value = onenand_block_address(this, block);
2059                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2060                 /* Select DataRAM for DDP */
2061                 value = onenand_bufferram_address(this, block);
2062                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2063                 /* Set start block address */
2064                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2065
2066                 /* Check lock status */
2067                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2068                 if (!(status & ONENAND_WP_US)) {
2069                         printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2070                         return 0;
2071                 }
2072         }
2073
2074         return 1;
2075 }
2076
2077 /**
2078  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2079  * @param mtd           MTD device structure
2080  *
2081  * Unlock all blocks
2082  */
2083 static void onenand_unlock_all(struct mtd_info *mtd)
2084 {
2085         struct onenand_chip *this = mtd->priv;
2086         loff_t ofs = 0;
2087         size_t len = mtd->size;
2088
2089         if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2090                 /* Set start block address */
2091                 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2092                 /* Write unlock command */
2093                 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2094
2095                 /* There's no return value */
2096                 this->wait(mtd, FL_LOCKING);
2097
2098                 /* Sanity check */
2099                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2100                                 & ONENAND_CTRL_ONGO)
2101                         continue;
2102
2103                 /* Check lock status */
2104                 if (onenand_check_lock_status(this))
2105                         return;
2106
2107                 /* Workaround for all block unlock in DDP */
2108                 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2109                         /* All blocks on another chip */
2110                         ofs = this->chipsize >> 1;
2111                         len = this->chipsize >> 1;
2112                 }
2113         }
2114
2115         onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2116 }
2117
2118
2119 /**
2120  * onenand_check_features - Check and set OneNAND features
2121  * @param mtd           MTD data structure
2122  *
2123  * Check and set OneNAND features
2124  * - lock scheme
2125  * - two plane
2126  */
2127 static void onenand_check_features(struct mtd_info *mtd)
2128 {
2129         struct onenand_chip *this = mtd->priv;
2130         unsigned int density, process;
2131
2132         /* Lock scheme depends on density and process */
2133         density = onenand_get_density(this->device_id);
2134         process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2135
2136         /* Lock scheme */
2137         switch (density) {
2138         case ONENAND_DEVICE_DENSITY_4Gb:
2139                 if (ONENAND_IS_DDP(this))
2140                         this->options |= ONENAND_HAS_2PLANE;
2141                 else
2142                         this->options |= ONENAND_HAS_4KB_PAGE;
2143
2144         case ONENAND_DEVICE_DENSITY_2Gb:
2145                 /* 2Gb DDP don't have 2 plane */
2146                 if (!ONENAND_IS_DDP(this))
2147                         this->options |= ONENAND_HAS_2PLANE;
2148                 this->options |= ONENAND_HAS_UNLOCK_ALL;
2149
2150         case ONENAND_DEVICE_DENSITY_1Gb:
2151                 /* A-Die has all block unlock */
2152                 if (process)
2153                         this->options |= ONENAND_HAS_UNLOCK_ALL;
2154                 break;
2155
2156         default:
2157                 /* Some OneNAND has continuous lock scheme */
2158                 if (!process)
2159                         this->options |= ONENAND_HAS_CONT_LOCK;
2160                 break;
2161         }
2162
2163         if (ONENAND_IS_MLC(this))
2164                 this->options |= ONENAND_HAS_4KB_PAGE;
2165
2166         if (ONENAND_IS_4KB_PAGE(this))
2167                 this->options &= ~ONENAND_HAS_2PLANE;
2168
2169         if (FLEXONENAND(this)) {
2170                 this->options &= ~ONENAND_HAS_CONT_LOCK;
2171                 this->options |= ONENAND_HAS_UNLOCK_ALL;
2172         }
2173
2174         if (this->options & ONENAND_HAS_CONT_LOCK)
2175                 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
2176         if (this->options & ONENAND_HAS_UNLOCK_ALL)
2177                 printk(KERN_DEBUG "Chip support all block unlock\n");
2178         if (this->options & ONENAND_HAS_2PLANE)
2179                 printk(KERN_DEBUG "Chip has 2 plane\n");
2180         if (this->options & ONENAND_HAS_4KB_PAGE)
2181                 printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
2182
2183 }
2184
2185 /**
2186  * onenand_print_device_info - Print device ID
2187  * @param device        device ID
2188  *
2189  * Print device ID
2190  */
2191 char *onenand_print_device_info(int device, int version)
2192 {
2193         int vcc, demuxed, ddp, density, flexonenand;
2194         char *dev_info = malloc(80);
2195         char *p = dev_info;
2196
2197         vcc = device & ONENAND_DEVICE_VCC_MASK;
2198         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2199         ddp = device & ONENAND_DEVICE_IS_DDP;
2200         density = onenand_get_density(device);
2201         flexonenand = device & DEVICE_IS_FLEXONENAND;
2202         p += sprintf(dev_info, "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)",
2203                demuxed ? "" : "Muxed ",
2204                flexonenand ? "Flex-" : "",
2205                ddp ? "(DDP)" : "",
2206                (16 << density), vcc ? "2.65/3.3" : "1.8", device);
2207
2208         sprintf(p, "\nOneNAND version = 0x%04x", version);
2209         printk("%s\n", dev_info);
2210
2211         return dev_info;
2212 }
2213
2214 static const struct onenand_manufacturers onenand_manuf_ids[] = {
2215         {ONENAND_MFR_NUMONYX, "Numonyx"},
2216         {ONENAND_MFR_SAMSUNG, "Samsung"},
2217 };
2218
2219 /**
2220  * onenand_check_maf - Check manufacturer ID
2221  * @param manuf         manufacturer ID
2222  *
2223  * Check manufacturer ID
2224  */
2225 static int onenand_check_maf(int manuf)
2226 {
2227         int size = ARRAY_SIZE(onenand_manuf_ids);
2228         int i;
2229 #ifdef ONENAND_DEBUG
2230         char *name;
2231 #endif
2232
2233         for (i = 0; i < size; i++)
2234                 if (manuf == onenand_manuf_ids[i].id)
2235                         break;
2236
2237 #ifdef ONENAND_DEBUG
2238         if (i < size)
2239                 name = onenand_manuf_ids[i].name;
2240         else
2241                 name = "Unknown";
2242
2243         printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2244 #endif
2245
2246         return i == size;
2247 }
2248
2249 /**
2250 * flexonenand_get_boundary      - Reads the SLC boundary
2251 * @param onenand_info           - onenand info structure
2252 *
2253 * Fill up boundary[] field in onenand_chip
2254 **/
2255 static int flexonenand_get_boundary(struct mtd_info *mtd)
2256 {
2257         struct onenand_chip *this = mtd->priv;
2258         unsigned int die, bdry;
2259         int syscfg, locked;
2260
2261         /* Disable ECC */
2262         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2263         this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
2264
2265         for (die = 0; die < this->dies; die++) {
2266                 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2267                 this->wait(mtd, FL_SYNCING);
2268
2269                 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2270                 this->wait(mtd, FL_READING);
2271
2272                 bdry = this->read_word(this->base + ONENAND_DATARAM);
2273                 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
2274                         locked = 0;
2275                 else
2276                         locked = 1;
2277                 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
2278
2279                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2280                 this->wait(mtd, FL_RESETING);
2281
2282                 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
2283                        this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
2284         }
2285
2286         /* Enable ECC */
2287         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2288         return 0;
2289 }
2290
2291 /**
2292  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
2293  *                        boundary[], diesize[], mtd->size, mtd->erasesize,
2294  *                        mtd->eraseregions
2295  * @param mtd           - MTD device structure
2296  */
2297 static void flexonenand_get_size(struct mtd_info *mtd)
2298 {
2299         struct onenand_chip *this = mtd->priv;
2300         int die, i, eraseshift, density;
2301         int blksperdie, maxbdry;
2302         loff_t ofs;
2303
2304         density = onenand_get_density(this->device_id);
2305         blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
2306         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2307         maxbdry = blksperdie - 1;
2308         eraseshift = this->erase_shift - 1;
2309
2310         mtd->numeraseregions = this->dies << 1;
2311
2312         /* This fills up the device boundary */
2313         flexonenand_get_boundary(mtd);
2314         die = 0;
2315         ofs = 0;
2316         i = -1;
2317         for (; die < this->dies; die++) {
2318                 if (!die || this->boundary[die-1] != maxbdry) {
2319                         i++;
2320                         mtd->eraseregions[i].offset = ofs;
2321                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
2322                         mtd->eraseregions[i].numblocks =
2323                                                         this->boundary[die] + 1;
2324                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
2325                         eraseshift++;
2326                 } else {
2327                         mtd->numeraseregions -= 1;
2328                         mtd->eraseregions[i].numblocks +=
2329                                                         this->boundary[die] + 1;
2330                         ofs += (this->boundary[die] + 1) << (eraseshift - 1);
2331                 }
2332                 if (this->boundary[die] != maxbdry) {
2333                         i++;
2334                         mtd->eraseregions[i].offset = ofs;
2335                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
2336                         mtd->eraseregions[i].numblocks = maxbdry ^
2337                                                          this->boundary[die];
2338                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
2339                         eraseshift--;
2340                 } else
2341                         mtd->numeraseregions -= 1;
2342         }
2343
2344         /* Expose MLC erase size except when all blocks are SLC */
2345         mtd->erasesize = 1 << this->erase_shift;
2346         if (mtd->numeraseregions == 1)
2347                 mtd->erasesize >>= 1;
2348
2349         printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
2350         for (i = 0; i < mtd->numeraseregions; i++)
2351                 printk(KERN_INFO "[offset: 0x%08llx, erasesize: 0x%05x,"
2352                         " numblocks: %04u]\n", mtd->eraseregions[i].offset,
2353                         mtd->eraseregions[i].erasesize,
2354                         mtd->eraseregions[i].numblocks);
2355
2356         for (die = 0, mtd->size = 0; die < this->dies; die++) {
2357                 this->diesize[die] = (loff_t) (blksperdie << this->erase_shift);
2358                 this->diesize[die] -= (loff_t) (this->boundary[die] + 1)
2359                                                  << (this->erase_shift - 1);
2360                 mtd->size += this->diesize[die];
2361         }
2362 }
2363
2364 /**
2365  * flexonenand_check_blocks_erased - Check if blocks are erased
2366  * @param mtd_info      - mtd info structure
2367  * @param start         - first erase block to check
2368  * @param end           - last erase block to check
2369  *
2370  * Converting an unerased block from MLC to SLC
2371  * causes byte values to change. Since both data and its ECC
2372  * have changed, reads on the block give uncorrectable error.
2373  * This might lead to the block being detected as bad.
2374  *
2375  * Avoid this by ensuring that the block to be converted is
2376  * erased.
2377  */
2378 static int flexonenand_check_blocks_erased(struct mtd_info *mtd,
2379                                         int start, int end)
2380 {
2381         struct onenand_chip *this = mtd->priv;
2382         int i, ret;
2383         int block;
2384         struct mtd_oob_ops ops = {
2385                 .mode = MTD_OPS_PLACE_OOB,
2386                 .ooboffs = 0,
2387                 .ooblen = mtd->oobsize,
2388                 .datbuf = NULL,
2389                 .oobbuf = this->oob_buf,
2390         };
2391         loff_t addr;
2392
2393         printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
2394
2395         for (block = start; block <= end; block++) {
2396                 addr = flexonenand_addr(this, block);
2397                 if (onenand_block_isbad_nolock(mtd, addr, 0))
2398                         continue;
2399
2400                 /*
2401                  * Since main area write results in ECC write to spare,
2402                  * it is sufficient to check only ECC bytes for change.
2403                  */
2404                 ret = onenand_read_oob_nolock(mtd, addr, &ops);
2405                 if (ret)
2406                         return ret;
2407
2408                 for (i = 0; i < mtd->oobsize; i++)
2409                         if (this->oob_buf[i] != 0xff)
2410                                 break;
2411
2412                 if (i != mtd->oobsize) {
2413                         printk(KERN_WARNING "Block %d not erased.\n", block);
2414                         return 1;
2415                 }
2416         }
2417
2418         return 0;
2419 }
2420
2421 /**
2422  * flexonenand_set_boundary     - Writes the SLC boundary
2423  * @param mtd                   - mtd info structure
2424  */
2425 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
2426                                     int boundary, int lock)
2427 {
2428         struct onenand_chip *this = mtd->priv;
2429         int ret, density, blksperdie, old, new, thisboundary;
2430         loff_t addr;
2431
2432         if (die >= this->dies)
2433                 return -EINVAL;
2434
2435         if (boundary == this->boundary[die])
2436                 return 0;
2437
2438         density = onenand_get_density(this->device_id);
2439         blksperdie = ((16 << density) << 20) >> this->erase_shift;
2440         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2441
2442         if (boundary >= blksperdie) {
2443                 printk("flexonenand_set_boundary:"
2444                         "Invalid boundary value. "
2445                         "Boundary not changed.\n");
2446                 return -EINVAL;
2447         }
2448
2449         /* Check if converting blocks are erased */
2450         old = this->boundary[die] + (die * this->density_mask);
2451         new = boundary + (die * this->density_mask);
2452         ret = flexonenand_check_blocks_erased(mtd, min(old, new)
2453                                                 + 1, max(old, new));
2454         if (ret) {
2455                 printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n");
2456                 return ret;
2457         }
2458
2459         this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2460         this->wait(mtd, FL_SYNCING);
2461
2462         /* Check is boundary is locked */
2463         this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2464         ret = this->wait(mtd, FL_READING);
2465
2466         thisboundary = this->read_word(this->base + ONENAND_DATARAM);
2467         if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
2468                 printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n");
2469                 goto out;
2470         }
2471
2472         printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n",
2473                         die, boundary, lock ? "(Locked)" : "(Unlocked)");
2474
2475         boundary &= FLEXONENAND_PI_MASK;
2476         boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
2477
2478         addr = die ? this->diesize[0] : 0;
2479         this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
2480         ret = this->wait(mtd, FL_ERASING);
2481         if (ret) {
2482                 printk("flexonenand_set_boundary:"
2483                         "Failed PI erase for Die %d\n", die);
2484                 goto out;
2485         }
2486
2487         this->write_word(boundary, this->base + ONENAND_DATARAM);
2488         this->command(mtd, ONENAND_CMD_PROG, addr, 0);
2489         ret = this->wait(mtd, FL_WRITING);
2490         if (ret) {
2491                 printk("flexonenand_set_boundary:"
2492                         "Failed PI write for Die %d\n", die);
2493                 goto out;
2494         }
2495
2496         this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
2497         ret = this->wait(mtd, FL_WRITING);
2498 out:
2499         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
2500         this->wait(mtd, FL_RESETING);
2501         if (!ret)
2502                 /* Recalculate device size on boundary change*/
2503                 flexonenand_get_size(mtd);
2504
2505         return ret;
2506 }
2507
2508 /**
2509  * onenand_chip_probe - [OneNAND Interface] Probe the OneNAND chip
2510  * @param mtd           MTD device structure
2511  *
2512  * OneNAND detection method:
2513  *   Compare the the values from command with ones from register
2514  */
2515 static int onenand_chip_probe(struct mtd_info *mtd)
2516 {
2517         struct onenand_chip *this = mtd->priv;
2518         int bram_maf_id, bram_dev_id, maf_id, dev_id;
2519         int syscfg;
2520
2521         /* Save system configuration 1 */
2522         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2523
2524         /* Clear Sync. Burst Read mode to read BootRAM */
2525         this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ),
2526                          this->base + ONENAND_REG_SYS_CFG1);
2527
2528         /* Send the command for reading device ID from BootRAM */
2529         this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2530
2531         /* Read manufacturer and device IDs from BootRAM */
2532         bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2533         bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2534
2535         /* Reset OneNAND to read default register values */
2536         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2537
2538         /* Wait reset */
2539         this->wait(mtd, FL_RESETING);
2540
2541         /* Restore system configuration 1 */
2542         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2543
2544         /* Check manufacturer ID */
2545         if (onenand_check_maf(bram_maf_id))
2546                 return -ENXIO;
2547
2548         /* Read manufacturer and device IDs from Register */
2549         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2550         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2551
2552         /* Check OneNAND device */
2553         if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2554                 return -ENXIO;
2555
2556         return 0;
2557 }
2558
2559 /**
2560  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2561  * @param mtd           MTD device structure
2562  *
2563  * OneNAND detection method:
2564  *   Compare the the values from command with ones from register
2565  */
2566 int onenand_probe(struct mtd_info *mtd)
2567 {
2568         struct onenand_chip *this = mtd->priv;
2569         int dev_id, ver_id;
2570         int density;
2571         int ret;
2572
2573         ret = this->chip_probe(mtd);
2574         if (ret)
2575                 return ret;
2576
2577         /* Read device IDs from Register */
2578         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2579         ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2580         this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
2581
2582         /* Flash device information */
2583         mtd->name = onenand_print_device_info(dev_id, ver_id);
2584         this->device_id = dev_id;
2585         this->version_id = ver_id;
2586
2587         /* Check OneNAND features */
2588         onenand_check_features(mtd);
2589
2590         density = onenand_get_density(dev_id);
2591         if (FLEXONENAND(this)) {
2592                 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
2593                 /* Maximum possible erase regions */
2594                 mtd->numeraseregions = this->dies << 1;
2595                 mtd->eraseregions = malloc(sizeof(struct mtd_erase_region_info)
2596                                         * (this->dies << 1));
2597                 if (!mtd->eraseregions)
2598                         return -ENOMEM;
2599         }
2600
2601         /*
2602          * For Flex-OneNAND, chipsize represents maximum possible device size.
2603          * mtd->size represents the actual device size.
2604          */
2605         this->chipsize = (16 << density) << 20;
2606
2607         /* OneNAND page size & block size */
2608         /* The data buffer size is equal to page size */
2609         mtd->writesize =
2610             this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2611         /* We use the full BufferRAM */
2612         if (ONENAND_IS_4KB_PAGE(this))
2613                 mtd->writesize <<= 1;
2614
2615         mtd->oobsize = mtd->writesize >> 5;
2616         /* Pagers per block is always 64 in OneNAND */
2617         mtd->erasesize = mtd->writesize << 6;
2618         /*
2619          * Flex-OneNAND SLC area has 64 pages per block.
2620          * Flex-OneNAND MLC area has 128 pages per block.
2621          * Expose MLC erase size to find erase_shift and page_mask.
2622          */
2623         if (FLEXONENAND(this))
2624                 mtd->erasesize <<= 1;
2625
2626         this->erase_shift = ffs(mtd->erasesize) - 1;
2627         this->page_shift = ffs(mtd->writesize) - 1;
2628         this->ppb_shift = (this->erase_shift - this->page_shift);
2629         this->page_mask = (mtd->erasesize / mtd->writesize) - 1;
2630         /* Set density mask. it is used for DDP */
2631         if (ONENAND_IS_DDP(this))
2632                 this->density_mask = this->chipsize >> (this->erase_shift + 1);
2633         /* It's real page size */
2634         this->writesize = mtd->writesize;
2635
2636         /* REVIST: Multichip handling */
2637
2638         if (FLEXONENAND(this))
2639                 flexonenand_get_size(mtd);
2640         else
2641                 mtd->size = this->chipsize;
2642
2643         mtd->flags = MTD_CAP_NANDFLASH;
2644         mtd->_erase = onenand_erase;
2645         mtd->_read = onenand_read;
2646         mtd->_write = onenand_write;
2647         mtd->_read_oob = onenand_read_oob;
2648         mtd->_write_oob = onenand_write_oob;
2649         mtd->_sync = onenand_sync;
2650         mtd->_block_isbad = onenand_block_isbad;
2651         mtd->_block_markbad = onenand_block_markbad;
2652
2653         return 0;
2654 }
2655
2656 /**
2657  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2658  * @param mtd           MTD device structure
2659  * @param maxchips      Number of chips to scan for
2660  *
2661  * This fills out all the not initialized function pointers
2662  * with the defaults.
2663  * The flash ID is read and the mtd/chip structures are
2664  * filled with the appropriate values.
2665  */
2666 int onenand_scan(struct mtd_info *mtd, int maxchips)
2667 {
2668         int i;
2669         struct onenand_chip *this = mtd->priv;
2670
2671         if (!this->read_word)
2672                 this->read_word = onenand_readw;
2673         if (!this->write_word)
2674                 this->write_word = onenand_writew;
2675
2676         if (!this->command)
2677                 this->command = onenand_command;
2678         if (!this->wait)
2679                 this->wait = onenand_wait;
2680         if (!this->bbt_wait)
2681                 this->bbt_wait = onenand_bbt_wait;
2682
2683         if (!this->read_bufferram)
2684                 this->read_bufferram = onenand_read_bufferram;
2685         if (!this->write_bufferram)
2686                 this->write_bufferram = onenand_write_bufferram;
2687
2688         if (!this->chip_probe)
2689                 this->chip_probe = onenand_chip_probe;
2690
2691         if (!this->block_markbad)
2692                 this->block_markbad = onenand_default_block_markbad;
2693         if (!this->scan_bbt)
2694                 this->scan_bbt = onenand_default_bbt;
2695
2696         if (onenand_probe(mtd))
2697                 return -ENXIO;
2698
2699         /* Set Sync. Burst Read after probing */
2700         if (this->mmcontrol) {
2701                 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2702                 this->read_bufferram = onenand_sync_read_bufferram;
2703         }
2704
2705         /* Allocate buffers, if necessary */
2706         if (!this->page_buf) {
2707                 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2708                 if (!this->page_buf) {
2709                         printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2710                         return -ENOMEM;
2711                 }
2712                 this->options |= ONENAND_PAGEBUF_ALLOC;
2713         }
2714         if (!this->oob_buf) {
2715                 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
2716                 if (!this->oob_buf) {
2717                         printk(KERN_ERR "onenand_scan: Can't allocate oob_buf\n");
2718                         if (this->options & ONENAND_PAGEBUF_ALLOC) {
2719                                 this->options &= ~ONENAND_PAGEBUF_ALLOC;
2720                                 kfree(this->page_buf);
2721                         }
2722                         return -ENOMEM;
2723                 }
2724                 this->options |= ONENAND_OOBBUF_ALLOC;
2725         }
2726
2727         this->state = FL_READY;
2728
2729         /*
2730          * Allow subpage writes up to oobsize.
2731          */
2732         switch (mtd->oobsize) {
2733         case 128:
2734                 this->ecclayout = &onenand_oob_128;
2735                 mtd->subpage_sft = 0;
2736                 break;
2737
2738         case 64:
2739                 this->ecclayout = &onenand_oob_64;
2740                 mtd->subpage_sft = 2;
2741                 break;
2742
2743         case 32:
2744                 this->ecclayout = &onenand_oob_32;
2745                 mtd->subpage_sft = 1;
2746                 break;
2747
2748         default:
2749                 printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2750                         mtd->oobsize);
2751                 mtd->subpage_sft = 0;
2752                 /* To prevent kernel oops */
2753                 this->ecclayout = &onenand_oob_32;
2754                 break;
2755         }
2756
2757         this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2758
2759         /*
2760          * The number of bytes available for a client to place data into
2761          * the out of band area
2762          */
2763         this->ecclayout->oobavail = 0;
2764
2765         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE &&
2766             this->ecclayout->oobfree[i].length; i++)
2767                 this->ecclayout->oobavail +=
2768                         this->ecclayout->oobfree[i].length;
2769         mtd->oobavail = this->ecclayout->oobavail;
2770
2771         mtd->ecclayout = this->ecclayout;
2772
2773         /* Unlock whole block */
2774         onenand_unlock_all(mtd);
2775
2776         return this->scan_bbt(mtd);
2777 }
2778
2779 /**
2780  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2781  * @param mtd           MTD device structure
2782  */
2783 void onenand_release(struct mtd_info *mtd)
2784 {
2785 }