]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/mtd/onenand/onenand_base.c
omap5912-osk: Fix get_timer() and CONFIG_SYS_HZ
[karo-tx-uboot.git] / drivers / mtd / onenand / onenand_base.c
1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright (C) 2005-2007 Samsung Electronics
5  *  Kyungmin Park <kyungmin.park@samsung.com>
6  *
7  *  Credits:
8  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
9  *      auto-placement support, read-while load support, various fixes
10  *      Copyright (C) Nokia Corporation, 2007
11  *
12  *      Rohit Hagargundgi <h.rohit at samsung.com>,
13  *      Amul Kumar Saha <amul.saha@samsung.com>:
14  *      Flex-OneNAND support
15  *      Copyright (C) Samsung Electronics, 2009
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License version 2 as
19  * published by the Free Software Foundation.
20  */
21
22 #include <common.h>
23 #include <linux/compat.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/onenand.h>
26
27 #include <asm/io.h>
28 #include <asm/errno.h>
29 #include <malloc.h>
30
31 /* It should access 16-bit instead of 8-bit */
32 static void *memcpy_16(void *dst, const void *src, unsigned int len)
33 {
34         void *ret = dst;
35         short *d = dst;
36         const short *s = src;
37
38         len >>= 1;
39         while (len-- > 0)
40                 *d++ = *s++;
41         return ret;
42 }
43
44 /**
45  *  onenand_oob_128 - oob info for Flex-Onenand with 4KB page
46  *  For now, we expose only 64 out of 80 ecc bytes
47  */
48 static struct nand_ecclayout onenand_oob_128 = {
49         .eccbytes       = 64,
50         .eccpos         = {
51                 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
52                 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
53                 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
54                 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
55                 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
56                 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
57                 102, 103, 104, 105
58                 },
59         .oobfree        = {
60                 {2, 4}, {18, 4}, {34, 4}, {50, 4},
61                 {66, 4}, {82, 4}, {98, 4}, {114, 4}
62         }
63 };
64
65 /**
66  * onenand_oob_64 - oob info for large (2KB) page
67  */
68 static struct nand_ecclayout onenand_oob_64 = {
69         .eccbytes       = 20,
70         .eccpos         = {
71                 8, 9, 10, 11, 12,
72                 24, 25, 26, 27, 28,
73                 40, 41, 42, 43, 44,
74                 56, 57, 58, 59, 60,
75                 },
76         .oobfree        = {
77                 {2, 3}, {14, 2}, {18, 3}, {30, 2},
78                 {34, 3}, {46, 2}, {50, 3}, {62, 2}
79         }
80 };
81
82 /**
83  * onenand_oob_32 - oob info for middle (1KB) page
84  */
85 static struct nand_ecclayout onenand_oob_32 = {
86         .eccbytes       = 10,
87         .eccpos         = {
88                 8, 9, 10, 11, 12,
89                 24, 25, 26, 27, 28,
90                 },
91         .oobfree        = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
92 };
93
94 static const unsigned char ffchars[] = {
95         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
96         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
97         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
98         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
99         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
100         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
101         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
102         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
103         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
104         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
105         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
106         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
107         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
108         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
109         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
110         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
111 };
112
113 /**
114  * onenand_readw - [OneNAND Interface] Read OneNAND register
115  * @param addr          address to read
116  *
117  * Read OneNAND register
118  */
119 static unsigned short onenand_readw(void __iomem * addr)
120 {
121         return readw(addr);
122 }
123
124 /**
125  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
126  * @param value         value to write
127  * @param addr          address to write
128  *
129  * Write OneNAND register with value
130  */
131 static void onenand_writew(unsigned short value, void __iomem * addr)
132 {
133         writew(value, addr);
134 }
135
136 /**
137  * onenand_block_address - [DEFAULT] Get block address
138  * @param device        the device id
139  * @param block         the block
140  * @return              translated block address if DDP, otherwise same
141  *
142  * Setup Start Address 1 Register (F100h)
143  */
144 static int onenand_block_address(struct onenand_chip *this, int block)
145 {
146         /* Device Flash Core select, NAND Flash Block Address */
147         if (block & this->density_mask)
148                 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
149
150         return block;
151 }
152
153 /**
154  * onenand_bufferram_address - [DEFAULT] Get bufferram address
155  * @param device        the device id
156  * @param block         the block
157  * @return              set DBS value if DDP, otherwise 0
158  *
159  * Setup Start Address 2 Register (F101h) for DDP
160  */
161 static int onenand_bufferram_address(struct onenand_chip *this, int block)
162 {
163         /* Device BufferRAM Select */
164         if (block & this->density_mask)
165                 return ONENAND_DDP_CHIP1;
166
167         return ONENAND_DDP_CHIP0;
168 }
169
170 /**
171  * onenand_page_address - [DEFAULT] Get page address
172  * @param page          the page address
173  * @param sector        the sector address
174  * @return              combined page and sector address
175  *
176  * Setup Start Address 8 Register (F107h)
177  */
178 static int onenand_page_address(int page, int sector)
179 {
180         /* Flash Page Address, Flash Sector Address */
181         int fpa, fsa;
182
183         fpa = page & ONENAND_FPA_MASK;
184         fsa = sector & ONENAND_FSA_MASK;
185
186         return ((fpa << ONENAND_FPA_SHIFT) | fsa);
187 }
188
189 /**
190  * onenand_buffer_address - [DEFAULT] Get buffer address
191  * @param dataram1      DataRAM index
192  * @param sectors       the sector address
193  * @param count         the number of sectors
194  * @return              the start buffer value
195  *
196  * Setup Start Buffer Register (F200h)
197  */
198 static int onenand_buffer_address(int dataram1, int sectors, int count)
199 {
200         int bsa, bsc;
201
202         /* BufferRAM Sector Address */
203         bsa = sectors & ONENAND_BSA_MASK;
204
205         if (dataram1)
206                 bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
207         else
208                 bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
209
210         /* BufferRAM Sector Count */
211         bsc = count & ONENAND_BSC_MASK;
212
213         return ((bsa << ONENAND_BSA_SHIFT) | bsc);
214 }
215
216 /**
217  * flexonenand_block - Return block number for flash address
218  * @param this          - OneNAND device structure
219  * @param addr          - Address for which block number is needed
220  */
221 static unsigned int flexonenand_block(struct onenand_chip *this, loff_t addr)
222 {
223         unsigned int boundary, blk, die = 0;
224
225         if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
226                 die = 1;
227                 addr -= this->diesize[0];
228         }
229
230         boundary = this->boundary[die];
231
232         blk = addr >> (this->erase_shift - 1);
233         if (blk > boundary)
234                 blk = (blk + boundary + 1) >> 1;
235
236         blk += die ? this->density_mask : 0;
237         return blk;
238 }
239
240 unsigned int onenand_block(struct onenand_chip *this, loff_t addr)
241 {
242         if (!FLEXONENAND(this))
243                 return addr >> this->erase_shift;
244         return flexonenand_block(this, addr);
245 }
246
247 /**
248  * flexonenand_addr - Return address of the block
249  * @this:               OneNAND device structure
250  * @block:              Block number on Flex-OneNAND
251  *
252  * Return address of the block
253  */
254 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
255 {
256         loff_t ofs = 0;
257         int die = 0, boundary;
258
259         if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
260                 block -= this->density_mask;
261                 die = 1;
262                 ofs = this->diesize[0];
263         }
264
265         boundary = this->boundary[die];
266         ofs += (loff_t) block << (this->erase_shift - 1);
267         if (block > (boundary + 1))
268                 ofs += (loff_t) (block - boundary - 1)
269                         << (this->erase_shift - 1);
270         return ofs;
271 }
272
273 loff_t onenand_addr(struct onenand_chip *this, int block)
274 {
275         if (!FLEXONENAND(this))
276                 return (loff_t) block << this->erase_shift;
277         return flexonenand_addr(this, block);
278 }
279
280 /**
281  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
282  * @param mtd           MTD device structure
283  * @param addr          address whose erase region needs to be identified
284  */
285 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
286 {
287         int i;
288
289         for (i = 0; i < mtd->numeraseregions; i++)
290                 if (addr < mtd->eraseregions[i].offset)
291                         break;
292         return i - 1;
293 }
294
295 /**
296  * onenand_get_density - [DEFAULT] Get OneNAND density
297  * @param dev_id        OneNAND device ID
298  *
299  * Get OneNAND density from device ID
300  */
301 static inline int onenand_get_density(int dev_id)
302 {
303         int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
304         return (density & ONENAND_DEVICE_DENSITY_MASK);
305 }
306
307 /**
308  * onenand_command - [DEFAULT] Send command to OneNAND device
309  * @param mtd           MTD device structure
310  * @param cmd           the command to be sent
311  * @param addr          offset to read from or write to
312  * @param len           number of bytes to read or write
313  *
314  * Send command to OneNAND device. This function is used for middle/large page
315  * devices (1KB/2KB Bytes per page)
316  */
317 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
318                            size_t len)
319 {
320         struct onenand_chip *this = mtd->priv;
321         int value;
322         int block, page;
323
324         /* Now we use page size operation */
325         int sectors = 0, count = 0;
326
327         /* Address translation */
328         switch (cmd) {
329         case ONENAND_CMD_UNLOCK:
330         case ONENAND_CMD_LOCK:
331         case ONENAND_CMD_LOCK_TIGHT:
332         case ONENAND_CMD_UNLOCK_ALL:
333                 block = -1;
334                 page = -1;
335                 break;
336
337         case FLEXONENAND_CMD_PI_ACCESS:
338                 /* addr contains die index */
339                 block = addr * this->density_mask;
340                 page = -1;
341                 break;
342
343         case ONENAND_CMD_ERASE:
344         case ONENAND_CMD_BUFFERRAM:
345                 block = onenand_block(this, addr);
346                 page = -1;
347                 break;
348
349         case FLEXONENAND_CMD_READ_PI:
350                 cmd = ONENAND_CMD_READ;
351                 block = addr * this->density_mask;
352                 page = 0;
353                 break;
354
355         default:
356                 block = onenand_block(this, addr);
357                 page = (int) (addr
358                         - onenand_addr(this, block)) >> this->page_shift;
359                 page &= this->page_mask;
360                 break;
361         }
362
363         /* NOTE: The setting order of the registers is very important! */
364         if (cmd == ONENAND_CMD_BUFFERRAM) {
365                 /* Select DataRAM for DDP */
366                 value = onenand_bufferram_address(this, block);
367                 this->write_word(value,
368                                  this->base + ONENAND_REG_START_ADDRESS2);
369
370                 if (ONENAND_IS_4KB_PAGE(this))
371                         ONENAND_SET_BUFFERRAM0(this);
372                 else
373                         /* Switch to the next data buffer */
374                         ONENAND_SET_NEXT_BUFFERRAM(this);
375
376                 return 0;
377         }
378
379         if (block != -1) {
380                 /* Write 'DFS, FBA' of Flash */
381                 value = onenand_block_address(this, block);
382                 this->write_word(value,
383                                  this->base + ONENAND_REG_START_ADDRESS1);
384
385                 /* Select DataRAM for DDP */
386                 value = onenand_bufferram_address(this, block);
387                 this->write_word(value,
388                                  this->base + ONENAND_REG_START_ADDRESS2);
389         }
390
391         if (page != -1) {
392                 int dataram;
393
394                 switch (cmd) {
395                 case FLEXONENAND_CMD_RECOVER_LSB:
396                 case ONENAND_CMD_READ:
397                 case ONENAND_CMD_READOOB:
398                         if (ONENAND_IS_4KB_PAGE(this))
399                                 dataram = ONENAND_SET_BUFFERRAM0(this);
400                         else
401                                 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
402
403                         break;
404
405                 default:
406                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
407                         break;
408                 }
409
410                 /* Write 'FPA, FSA' of Flash */
411                 value = onenand_page_address(page, sectors);
412                 this->write_word(value,
413                                  this->base + ONENAND_REG_START_ADDRESS8);
414
415                 /* Write 'BSA, BSC' of DataRAM */
416                 value = onenand_buffer_address(dataram, sectors, count);
417                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
418         }
419
420         /* Interrupt clear */
421         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
422         /* Write command */
423         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
424
425         return 0;
426 }
427
428 /**
429  * onenand_read_ecc - return ecc status
430  * @param this          onenand chip structure
431  */
432 static int onenand_read_ecc(struct onenand_chip *this)
433 {
434         int ecc, i;
435
436         if (!FLEXONENAND(this))
437                 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
438
439         for (i = 0; i < 4; i++) {
440                 ecc = this->read_word(this->base
441                                 + ((ONENAND_REG_ECC_STATUS + i) << 1));
442                 if (likely(!ecc))
443                         continue;
444                 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
445                         return ONENAND_ECC_2BIT_ALL;
446         }
447
448         return 0;
449 }
450
451 /**
452  * onenand_wait - [DEFAULT] wait until the command is done
453  * @param mtd           MTD device structure
454  * @param state         state to select the max. timeout value
455  *
456  * Wait for command done. This applies to all OneNAND command
457  * Read can take up to 30us, erase up to 2ms and program up to 350us
458  * according to general OneNAND specs
459  */
460 static int onenand_wait(struct mtd_info *mtd, int state)
461 {
462         struct onenand_chip *this = mtd->priv;
463         unsigned int flags = ONENAND_INT_MASTER;
464         unsigned int interrupt = 0;
465         unsigned int ctrl;
466
467         while (1) {
468                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
469                 if (interrupt & flags)
470                         break;
471         }
472
473         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
474
475         if (interrupt & ONENAND_INT_READ) {
476                 int ecc = onenand_read_ecc(this);
477                 if (ecc & ONENAND_ECC_2BIT_ALL) {
478                         printk("onenand_wait: ECC error = 0x%04x\n", ecc);
479                         return -EBADMSG;
480                 }
481         }
482
483         if (ctrl & ONENAND_CTRL_ERROR) {
484                 printk("onenand_wait: controller error = 0x%04x\n", ctrl);
485                 if (ctrl & ONENAND_CTRL_LOCK)
486                         printk("onenand_wait: it's locked error = 0x%04x\n",
487                                 ctrl);
488
489                 return -EIO;
490         }
491
492
493         return 0;
494 }
495
496 /**
497  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
498  * @param mtd           MTD data structure
499  * @param area          BufferRAM area
500  * @return              offset given area
501  *
502  * Return BufferRAM offset given area
503  */
504 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
505 {
506         struct onenand_chip *this = mtd->priv;
507
508         if (ONENAND_CURRENT_BUFFERRAM(this)) {
509                 if (area == ONENAND_DATARAM)
510                         return mtd->writesize;
511                 if (area == ONENAND_SPARERAM)
512                         return mtd->oobsize;
513         }
514
515         return 0;
516 }
517
518 /**
519  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
520  * @param mtd           MTD data structure
521  * @param area          BufferRAM area
522  * @param buffer        the databuffer to put/get data
523  * @param offset        offset to read from or write to
524  * @param count         number of bytes to read/write
525  *
526  * Read the BufferRAM area
527  */
528 static int onenand_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
529                                   unsigned char *buffer, int offset,
530                                   size_t count)
531 {
532         struct onenand_chip *this = mtd->priv;
533         void __iomem *bufferram;
534
535         bufferram = this->base + area;
536         bufferram += onenand_bufferram_offset(mtd, area);
537
538         memcpy_16(buffer, bufferram + offset, count);
539
540         return 0;
541 }
542
543 /**
544  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
545  * @param mtd           MTD data structure
546  * @param area          BufferRAM area
547  * @param buffer        the databuffer to put/get data
548  * @param offset        offset to read from or write to
549  * @param count         number of bytes to read/write
550  *
551  * Read the BufferRAM area with Sync. Burst Mode
552  */
553 static int onenand_sync_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
554                                        unsigned char *buffer, int offset,
555                                        size_t count)
556 {
557         struct onenand_chip *this = mtd->priv;
558         void __iomem *bufferram;
559
560         bufferram = this->base + area;
561         bufferram += onenand_bufferram_offset(mtd, area);
562
563         this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
564
565         memcpy_16(buffer, bufferram + offset, count);
566
567         this->mmcontrol(mtd, 0);
568
569         return 0;
570 }
571
572 /**
573  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
574  * @param mtd           MTD data structure
575  * @param area          BufferRAM area
576  * @param buffer        the databuffer to put/get data
577  * @param offset        offset to read from or write to
578  * @param count         number of bytes to read/write
579  *
580  * Write the BufferRAM area
581  */
582 static int onenand_write_bufferram(struct mtd_info *mtd, loff_t addr, int area,
583                                    const unsigned char *buffer, int offset,
584                                    size_t count)
585 {
586         struct onenand_chip *this = mtd->priv;
587         void __iomem *bufferram;
588
589         bufferram = this->base + area;
590         bufferram += onenand_bufferram_offset(mtd, area);
591
592         memcpy_16(bufferram + offset, buffer, count);
593
594         return 0;
595 }
596
597 /**
598  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
599  * @param mtd           MTD data structure
600  * @param addr          address to check
601  * @return              blockpage address
602  *
603  * Get blockpage address at 2x program mode
604  */
605 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
606 {
607         struct onenand_chip *this = mtd->priv;
608         int blockpage, block, page;
609
610         /* Calculate the even block number */
611         block = (int) (addr >> this->erase_shift) & ~1;
612         /* Is it the odd plane? */
613         if (addr & this->writesize)
614                 block++;
615         page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
616         blockpage = (block << 7) | page;
617
618         return blockpage;
619 }
620
621 /**
622  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
623  * @param mtd           MTD data structure
624  * @param addr          address to check
625  * @return              1 if there are valid data, otherwise 0
626  *
627  * Check bufferram if there is data we required
628  */
629 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
630 {
631         struct onenand_chip *this = mtd->priv;
632         int blockpage, found = 0;
633         unsigned int i;
634
635 #ifdef CONFIG_S3C64XX
636         return 0;
637 #endif
638
639         if (ONENAND_IS_2PLANE(this))
640                 blockpage = onenand_get_2x_blockpage(mtd, addr);
641         else
642                 blockpage = (int) (addr >> this->page_shift);
643
644         /* Is there valid data? */
645         i = ONENAND_CURRENT_BUFFERRAM(this);
646         if (this->bufferram[i].blockpage == blockpage)
647                 found = 1;
648         else {
649                 /* Check another BufferRAM */
650                 i = ONENAND_NEXT_BUFFERRAM(this);
651                 if (this->bufferram[i].blockpage == blockpage) {
652                         ONENAND_SET_NEXT_BUFFERRAM(this);
653                         found = 1;
654                 }
655         }
656
657         if (found && ONENAND_IS_DDP(this)) {
658                 /* Select DataRAM for DDP */
659                 int block = onenand_block(this, addr);
660                 int value = onenand_bufferram_address(this, block);
661                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
662         }
663
664         return found;
665 }
666
667 /**
668  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
669  * @param mtd           MTD data structure
670  * @param addr          address to update
671  * @param valid         valid flag
672  *
673  * Update BufferRAM information
674  */
675 static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
676                                     int valid)
677 {
678         struct onenand_chip *this = mtd->priv;
679         int blockpage;
680         unsigned int i;
681
682         if (ONENAND_IS_2PLANE(this))
683                 blockpage = onenand_get_2x_blockpage(mtd, addr);
684         else
685                 blockpage = (int)(addr >> this->page_shift);
686
687         /* Invalidate another BufferRAM */
688         i = ONENAND_NEXT_BUFFERRAM(this);
689         if (this->bufferram[i].blockpage == blockpage)
690                 this->bufferram[i].blockpage = -1;
691
692         /* Update BufferRAM */
693         i = ONENAND_CURRENT_BUFFERRAM(this);
694         if (valid)
695                 this->bufferram[i].blockpage = blockpage;
696         else
697                 this->bufferram[i].blockpage = -1;
698
699         return 0;
700 }
701
702 /**
703  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
704  * @param mtd           MTD data structure
705  * @param addr          start address to invalidate
706  * @param len           length to invalidate
707  *
708  * Invalidate BufferRAM information
709  */
710 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
711                                          unsigned int len)
712 {
713         struct onenand_chip *this = mtd->priv;
714         int i;
715         loff_t end_addr = addr + len;
716
717         /* Invalidate BufferRAM */
718         for (i = 0; i < MAX_BUFFERRAM; i++) {
719                 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
720
721                 if (buf_addr >= addr && buf_addr < end_addr)
722                         this->bufferram[i].blockpage = -1;
723         }
724 }
725
726 /**
727  * onenand_get_device - [GENERIC] Get chip for selected access
728  * @param mtd           MTD device structure
729  * @param new_state     the state which is requested
730  *
731  * Get the device and lock it for exclusive access
732  */
733 static void onenand_get_device(struct mtd_info *mtd, int new_state)
734 {
735         /* Do nothing */
736 }
737
738 /**
739  * onenand_release_device - [GENERIC] release chip
740  * @param mtd           MTD device structure
741  *
742  * Deselect, release chip lock and wake up anyone waiting on the device
743  */
744 static void onenand_release_device(struct mtd_info *mtd)
745 {
746         /* Do nothing */
747 }
748
749 /**
750  * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
751  * @param mtd           MTD device structure
752  * @param buf           destination address
753  * @param column        oob offset to read from
754  * @param thislen       oob length to read
755  */
756 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf,
757                                         int column, int thislen)
758 {
759         struct onenand_chip *this = mtd->priv;
760         struct nand_oobfree *free;
761         int readcol = column;
762         int readend = column + thislen;
763         int lastgap = 0;
764         unsigned int i;
765         uint8_t *oob_buf = this->oob_buf;
766
767         free = this->ecclayout->oobfree;
768         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
769                 if (readcol >= lastgap)
770                         readcol += free->offset - lastgap;
771                 if (readend >= lastgap)
772                         readend += free->offset - lastgap;
773                 lastgap = free->offset + free->length;
774         }
775         this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
776         free = this->ecclayout->oobfree;
777         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
778                 int free_end = free->offset + free->length;
779                 if (free->offset < readend && free_end > readcol) {
780                         int st = max_t(int,free->offset,readcol);
781                         int ed = min_t(int,free_end,readend);
782                         int n = ed - st;
783                         memcpy(buf, oob_buf + st, n);
784                         buf += n;
785                 } else if (column == 0)
786                         break;
787         }
788         return 0;
789 }
790
791 /**
792  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
793  * @param mtd           MTD device structure
794  * @param addr          address to recover
795  * @param status        return value from onenand_wait
796  *
797  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
798  * lower page address and MSB page has higher page address in paired pages.
799  * If power off occurs during MSB page program, the paired LSB page data can
800  * become corrupt. LSB page recovery read is a way to read LSB page though page
801  * data are corrupted. When uncorrectable error occurs as a result of LSB page
802  * read after power up, issue LSB page recovery read.
803  */
804 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
805 {
806         struct onenand_chip *this = mtd->priv;
807         int i;
808
809         /* Recovery is only for Flex-OneNAND */
810         if (!FLEXONENAND(this))
811                 return status;
812
813         /* check if we failed due to uncorrectable error */
814         if (status != -EBADMSG && status != ONENAND_BBT_READ_ECC_ERROR)
815                 return status;
816
817         /* check if address lies in MLC region */
818         i = flexonenand_region(mtd, addr);
819         if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
820                 return status;
821
822         printk("onenand_recover_lsb:"
823                 "Attempting to recover from uncorrectable read\n");
824
825         /* Issue the LSB page recovery command */
826         this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
827         return this->wait(mtd, FL_READING);
828 }
829
830 /**
831  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
832  * @param mtd           MTD device structure
833  * @param from          offset to read from
834  * @param ops           oob operation description structure
835  *
836  * OneNAND read main and/or out-of-band data
837  */
838 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
839                 struct mtd_oob_ops *ops)
840 {
841         struct onenand_chip *this = mtd->priv;
842         struct mtd_ecc_stats stats;
843         size_t len = ops->len;
844         size_t ooblen = ops->ooblen;
845         u_char *buf = ops->datbuf;
846         u_char *oobbuf = ops->oobbuf;
847         int read = 0, column, thislen;
848         int oobread = 0, oobcolumn, thisooblen, oobsize;
849         int ret = 0, boundary = 0;
850         int writesize = this->writesize;
851
852         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
853
854         if (ops->mode == MTD_OOB_AUTO)
855                 oobsize = this->ecclayout->oobavail;
856         else
857                 oobsize = mtd->oobsize;
858
859         oobcolumn = from & (mtd->oobsize - 1);
860
861         /* Do not allow reads past end of device */
862         if ((from + len) > mtd->size) {
863                 printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
864                 ops->retlen = 0;
865                 ops->oobretlen = 0;
866                 return -EINVAL;
867         }
868
869         stats = mtd->ecc_stats;
870
871         /* Read-while-load method */
872         /* Note: We can't use this feature in MLC */
873
874         /* Do first load to bufferRAM */
875         if (read < len) {
876                 if (!onenand_check_bufferram(mtd, from)) {
877                         this->main_buf = buf;
878                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
879                         ret = this->wait(mtd, FL_READING);
880                         if (unlikely(ret))
881                                 ret = onenand_recover_lsb(mtd, from, ret);
882                         onenand_update_bufferram(mtd, from, !ret);
883                         if (ret == -EBADMSG)
884                                 ret = 0;
885                 }
886         }
887
888         thislen = min_t(int, writesize, len - read);
889         column = from & (writesize - 1);
890         if (column + thislen > writesize)
891                 thislen = writesize - column;
892
893         while (!ret) {
894                 /* If there is more to load then start next load */
895                 from += thislen;
896                 if (!ONENAND_IS_4KB_PAGE(this) && read + thislen < len) {
897                         this->main_buf = buf + thislen;
898                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
899                         /*
900                          * Chip boundary handling in DDP
901                          * Now we issued chip 1 read and pointed chip 1
902                          * bufferam so we have to point chip 0 bufferam.
903                          */
904                         if (ONENAND_IS_DDP(this) &&
905                                         unlikely(from == (this->chipsize >> 1))) {
906                                 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
907                                 boundary = 1;
908                         } else
909                                 boundary = 0;
910                         ONENAND_SET_PREV_BUFFERRAM(this);
911                 }
912
913                 /* While load is going, read from last bufferRAM */
914                 this->read_bufferram(mtd, from - thislen, ONENAND_DATARAM, buf, column, thislen);
915
916                 /* Read oob area if needed */
917                 if (oobbuf) {
918                         thisooblen = oobsize - oobcolumn;
919                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
920
921                         if (ops->mode == MTD_OOB_AUTO)
922                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
923                         else
924                                 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
925                         oobread += thisooblen;
926                         oobbuf += thisooblen;
927                         oobcolumn = 0;
928                 }
929
930                 if (ONENAND_IS_4KB_PAGE(this) && (read + thislen < len)) {
931                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
932                         ret = this->wait(mtd, FL_READING);
933                         if (unlikely(ret))
934                                 ret = onenand_recover_lsb(mtd, from, ret);
935                         onenand_update_bufferram(mtd, from, !ret);
936                         if (ret == -EBADMSG)
937                                 ret = 0;
938                 }
939
940                 /* See if we are done */
941                 read += thislen;
942                 if (read == len)
943                         break;
944                 /* Set up for next read from bufferRAM */
945                 if (unlikely(boundary))
946                         this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
947                 if (!ONENAND_IS_4KB_PAGE(this))
948                         ONENAND_SET_NEXT_BUFFERRAM(this);
949                 buf += thislen;
950                 thislen = min_t(int, writesize, len - read);
951                 column = 0;
952
953                 if (!ONENAND_IS_4KB_PAGE(this)) {
954                         /* Now wait for load */
955                         ret = this->wait(mtd, FL_READING);
956                         onenand_update_bufferram(mtd, from, !ret);
957                         if (ret == -EBADMSG)
958                                 ret = 0;
959                 }
960         }
961
962         /*
963          * Return success, if no ECC failures, else -EBADMSG
964          * fs driver will take care of that, because
965          * retlen == desired len and result == -EBADMSG
966          */
967         ops->retlen = read;
968         ops->oobretlen = oobread;
969
970         if (ret)
971                 return ret;
972
973         if (mtd->ecc_stats.failed - stats.failed)
974                 return -EBADMSG;
975
976         return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
977 }
978
979 /**
980  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
981  * @param mtd           MTD device structure
982  * @param from          offset to read from
983  * @param ops           oob operation description structure
984  *
985  * OneNAND read out-of-band data from the spare area
986  */
987 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
988                 struct mtd_oob_ops *ops)
989 {
990         struct onenand_chip *this = mtd->priv;
991         struct mtd_ecc_stats stats;
992         int read = 0, thislen, column, oobsize;
993         size_t len = ops->ooblen;
994         mtd_oob_mode_t mode = ops->mode;
995         u_char *buf = ops->oobbuf;
996         int ret = 0, readcmd;
997
998         from += ops->ooboffs;
999
1000         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1001
1002         /* Initialize return length value */
1003         ops->oobretlen = 0;
1004
1005         if (mode == MTD_OOB_AUTO)
1006                 oobsize = this->ecclayout->oobavail;
1007         else
1008                 oobsize = mtd->oobsize;
1009
1010         column = from & (mtd->oobsize - 1);
1011
1012         if (unlikely(column >= oobsize)) {
1013                 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
1014                 return -EINVAL;
1015         }
1016
1017         /* Do not allow reads past end of device */
1018         if (unlikely(from >= mtd->size ||
1019                 column + len > ((mtd->size >> this->page_shift) -
1020                                 (from >> this->page_shift)) * oobsize)) {
1021                 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
1022                 return -EINVAL;
1023         }
1024
1025         stats = mtd->ecc_stats;
1026
1027         readcmd = ONENAND_IS_4KB_PAGE(this) ?
1028                 ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1029
1030         while (read < len) {
1031                 thislen = oobsize - column;
1032                 thislen = min_t(int, thislen, len);
1033
1034                 this->spare_buf = buf;
1035                 this->command(mtd, readcmd, from, mtd->oobsize);
1036
1037                 onenand_update_bufferram(mtd, from, 0);
1038
1039                 ret = this->wait(mtd, FL_READING);
1040                 if (unlikely(ret))
1041                         ret = onenand_recover_lsb(mtd, from, ret);
1042
1043                 if (ret && ret != -EBADMSG) {
1044                         printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1045                         break;
1046                 }
1047
1048                 if (mode == MTD_OOB_AUTO)
1049                         onenand_transfer_auto_oob(mtd, buf, column, thislen);
1050                 else
1051                         this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1052
1053                 read += thislen;
1054
1055                 if (read == len)
1056                         break;
1057
1058                 buf += thislen;
1059
1060                 /* Read more? */
1061                 if (read < len) {
1062                         /* Page size */
1063                         from += mtd->writesize;
1064                         column = 0;
1065                 }
1066         }
1067
1068         ops->oobretlen = read;
1069
1070         if (ret)
1071                 return ret;
1072
1073         if (mtd->ecc_stats.failed - stats.failed)
1074                 return -EBADMSG;
1075
1076         return 0;
1077 }
1078
1079 /**
1080  * onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc
1081  * @param mtd           MTD device structure
1082  * @param from          offset to read from
1083  * @param len           number of bytes to read
1084  * @param retlen        pointer to variable to store the number of read bytes
1085  * @param buf           the databuffer to put data
1086  *
1087  * This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL
1088 */
1089 int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1090                  size_t * retlen, u_char * buf)
1091 {
1092         struct mtd_oob_ops ops = {
1093                 .len    = len,
1094                 .ooblen = 0,
1095                 .datbuf = buf,
1096                 .oobbuf = NULL,
1097         };
1098         int ret;
1099
1100         onenand_get_device(mtd, FL_READING);
1101         ret = onenand_read_ops_nolock(mtd, from, &ops);
1102         onenand_release_device(mtd);
1103
1104         *retlen = ops.retlen;
1105         return ret;
1106 }
1107
1108 /**
1109  * onenand_read_oob - [MTD Interface] OneNAND read out-of-band
1110  * @param mtd           MTD device structure
1111  * @param from          offset to read from
1112  * @param ops           oob operations description structure
1113  *
1114  * OneNAND main and/or out-of-band
1115  */
1116 int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1117                         struct mtd_oob_ops *ops)
1118 {
1119         int ret;
1120
1121         switch (ops->mode) {
1122         case MTD_OOB_PLACE:
1123         case MTD_OOB_AUTO:
1124                 break;
1125         case MTD_OOB_RAW:
1126                 /* Not implemented yet */
1127         default:
1128                 return -EINVAL;
1129         }
1130
1131         onenand_get_device(mtd, FL_READING);
1132         if (ops->datbuf)
1133                 ret = onenand_read_ops_nolock(mtd, from, ops);
1134         else
1135                 ret = onenand_read_oob_nolock(mtd, from, ops);
1136         onenand_release_device(mtd);
1137
1138         return ret;
1139 }
1140
1141 /**
1142  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1143  * @param mtd           MTD device structure
1144  * @param state         state to select the max. timeout value
1145  *
1146  * Wait for command done.
1147  */
1148 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1149 {
1150         struct onenand_chip *this = mtd->priv;
1151         unsigned int flags = ONENAND_INT_MASTER;
1152         unsigned int interrupt;
1153         unsigned int ctrl;
1154
1155         while (1) {
1156                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1157                 if (interrupt & flags)
1158                         break;
1159         }
1160
1161         /* To get correct interrupt status in timeout case */
1162         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1163         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1164
1165         if (interrupt & ONENAND_INT_READ) {
1166                 int ecc = onenand_read_ecc(this);
1167                 if (ecc & ONENAND_ECC_2BIT_ALL) {
1168                         printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x"
1169                                 ", controller = 0x%04x\n", ecc, ctrl);
1170                         return ONENAND_BBT_READ_ERROR;
1171                 }
1172         } else {
1173                 printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1174                                 "ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1175                 return ONENAND_BBT_READ_FATAL_ERROR;
1176         }
1177
1178         /* Initial bad block case: 0x2400 or 0x0400 */
1179         if (ctrl & ONENAND_CTRL_ERROR) {
1180                 printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
1181                 return ONENAND_BBT_READ_ERROR;
1182         }
1183
1184         return 0;
1185 }
1186
1187 /**
1188  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1189  * @param mtd           MTD device structure
1190  * @param from          offset to read from
1191  * @param ops           oob operation description structure
1192  *
1193  * OneNAND read out-of-band data from the spare area for bbt scan
1194  */
1195 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1196                 struct mtd_oob_ops *ops)
1197 {
1198         struct onenand_chip *this = mtd->priv;
1199         int read = 0, thislen, column;
1200         int ret = 0, readcmd;
1201         size_t len = ops->ooblen;
1202         u_char *buf = ops->oobbuf;
1203
1204         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1205
1206         readcmd = ONENAND_IS_4KB_PAGE(this) ?
1207                 ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1208
1209         /* Initialize return value */
1210         ops->oobretlen = 0;
1211
1212         /* Do not allow reads past end of device */
1213         if (unlikely((from + len) > mtd->size)) {
1214                 printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1215                 return ONENAND_BBT_READ_FATAL_ERROR;
1216         }
1217
1218         /* Grab the lock and see if the device is available */
1219         onenand_get_device(mtd, FL_READING);
1220
1221         column = from & (mtd->oobsize - 1);
1222
1223         while (read < len) {
1224
1225                 thislen = mtd->oobsize - column;
1226                 thislen = min_t(int, thislen, len);
1227
1228                 this->spare_buf = buf;
1229                 this->command(mtd, readcmd, from, mtd->oobsize);
1230
1231                 onenand_update_bufferram(mtd, from, 0);
1232
1233                 ret = this->bbt_wait(mtd, FL_READING);
1234                 if (unlikely(ret))
1235                         ret = onenand_recover_lsb(mtd, from, ret);
1236
1237                 if (ret)
1238                         break;
1239
1240                 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1241                 read += thislen;
1242                 if (read == len)
1243                         break;
1244
1245                 buf += thislen;
1246
1247                 /* Read more? */
1248                 if (read < len) {
1249                         /* Update Page size */
1250                         from += this->writesize;
1251                         column = 0;
1252                 }
1253         }
1254
1255         /* Deselect and wake up anyone waiting on the device */
1256         onenand_release_device(mtd);
1257
1258         ops->oobretlen = read;
1259         return ret;
1260 }
1261
1262
1263 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1264 /**
1265  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1266  * @param mtd           MTD device structure
1267  * @param buf           the databuffer to verify
1268  * @param to            offset to read from
1269  */
1270 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1271 {
1272         struct onenand_chip *this = mtd->priv;
1273         u_char *oob_buf = this->oob_buf;
1274         int status, i, readcmd;
1275
1276         readcmd = ONENAND_IS_4KB_PAGE(this) ?
1277                 ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1278
1279         this->command(mtd, readcmd, to, mtd->oobsize);
1280         onenand_update_bufferram(mtd, to, 0);
1281         status = this->wait(mtd, FL_READING);
1282         if (status)
1283                 return status;
1284
1285         this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1286         for (i = 0; i < mtd->oobsize; i++)
1287                 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1288                         return -EBADMSG;
1289
1290         return 0;
1291 }
1292
1293 /**
1294  * onenand_verify - [GENERIC] verify the chip contents after a write
1295  * @param mtd          MTD device structure
1296  * @param buf          the databuffer to verify
1297  * @param addr         offset to read from
1298  * @param len          number of bytes to read and compare
1299  */
1300 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1301 {
1302         struct onenand_chip *this = mtd->priv;
1303         void __iomem *dataram;
1304         int ret = 0;
1305         int thislen, column;
1306
1307         while (len != 0) {
1308                 thislen = min_t(int, this->writesize, len);
1309                 column = addr & (this->writesize - 1);
1310                 if (column + thislen > this->writesize)
1311                         thislen = this->writesize - column;
1312
1313                 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1314
1315                 onenand_update_bufferram(mtd, addr, 0);
1316
1317                 ret = this->wait(mtd, FL_READING);
1318                 if (ret)
1319                         return ret;
1320
1321                 onenand_update_bufferram(mtd, addr, 1);
1322
1323                 dataram = this->base + ONENAND_DATARAM;
1324                 dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1325
1326                 if (memcmp(buf, dataram + column, thislen))
1327                         return -EBADMSG;
1328
1329                 len -= thislen;
1330                 buf += thislen;
1331                 addr += thislen;
1332         }
1333
1334         return 0;
1335 }
1336 #else
1337 #define onenand_verify(...)             (0)
1338 #define onenand_verify_oob(...)         (0)
1339 #endif
1340
1341 #define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1342
1343 /**
1344  * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1345  * @param mtd           MTD device structure
1346  * @param oob_buf       oob buffer
1347  * @param buf           source address
1348  * @param column        oob offset to write to
1349  * @param thislen       oob length to write
1350  */
1351 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1352                 const u_char *buf, int column, int thislen)
1353 {
1354         struct onenand_chip *this = mtd->priv;
1355         struct nand_oobfree *free;
1356         int writecol = column;
1357         int writeend = column + thislen;
1358         int lastgap = 0;
1359         unsigned int i;
1360
1361         free = this->ecclayout->oobfree;
1362         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1363                 if (writecol >= lastgap)
1364                         writecol += free->offset - lastgap;
1365                 if (writeend >= lastgap)
1366                         writeend += free->offset - lastgap;
1367                 lastgap = free->offset + free->length;
1368         }
1369         free = this->ecclayout->oobfree;
1370         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1371                 int free_end = free->offset + free->length;
1372                 if (free->offset < writeend && free_end > writecol) {
1373                         int st = max_t(int,free->offset,writecol);
1374                         int ed = min_t(int,free_end,writeend);
1375                         int n = ed - st;
1376                         memcpy(oob_buf + st, buf, n);
1377                         buf += n;
1378                 } else if (column == 0)
1379                         break;
1380         }
1381         return 0;
1382 }
1383
1384 /**
1385  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1386  * @param mtd           MTD device structure
1387  * @param to            offset to write to
1388  * @param ops           oob operation description structure
1389  *
1390  * Write main and/or oob with ECC
1391  */
1392 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1393                 struct mtd_oob_ops *ops)
1394 {
1395         struct onenand_chip *this = mtd->priv;
1396         int written = 0, column, thislen, subpage;
1397         int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1398         size_t len = ops->len;
1399         size_t ooblen = ops->ooblen;
1400         const u_char *buf = ops->datbuf;
1401         const u_char *oob = ops->oobbuf;
1402         u_char *oobbuf;
1403         int ret = 0;
1404
1405         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1406
1407         /* Initialize retlen, in case of early exit */
1408         ops->retlen = 0;
1409         ops->oobretlen = 0;
1410
1411         /* Do not allow writes past end of device */
1412         if (unlikely((to + len) > mtd->size)) {
1413                 printk(KERN_ERR "onenand_write_ops_nolock: Attempt write to past end of device\n");
1414                 return -EINVAL;
1415         }
1416
1417         /* Reject writes, which are not page aligned */
1418         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1419                 printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1420                 return -EINVAL;
1421         }
1422
1423         if (ops->mode == MTD_OOB_AUTO)
1424                 oobsize = this->ecclayout->oobavail;
1425         else
1426                 oobsize = mtd->oobsize;
1427
1428         oobcolumn = to & (mtd->oobsize - 1);
1429
1430         column = to & (mtd->writesize - 1);
1431
1432         /* Loop until all data write */
1433         while (written < len) {
1434                 u_char *wbuf = (u_char *) buf;
1435
1436                 thislen = min_t(int, mtd->writesize - column, len - written);
1437                 thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1438
1439                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1440
1441                 /* Partial page write */
1442                 subpage = thislen < mtd->writesize;
1443                 if (subpage) {
1444                         memset(this->page_buf, 0xff, mtd->writesize);
1445                         memcpy(this->page_buf + column, buf, thislen);
1446                         wbuf = this->page_buf;
1447                 }
1448
1449                 this->write_bufferram(mtd, to, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1450
1451                 if (oob) {
1452                         oobbuf = this->oob_buf;
1453
1454                         /* We send data to spare ram with oobsize
1455                          *                          * to prevent byte access */
1456                         memset(oobbuf, 0xff, mtd->oobsize);
1457                         if (ops->mode == MTD_OOB_AUTO)
1458                                 onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1459                         else
1460                                 memcpy(oobbuf + oobcolumn, oob, thisooblen);
1461
1462                         oobwritten += thisooblen;
1463                         oob += thisooblen;
1464                         oobcolumn = 0;
1465                 } else
1466                         oobbuf = (u_char *) ffchars;
1467
1468                 this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1469
1470                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1471
1472                 ret = this->wait(mtd, FL_WRITING);
1473
1474                 /* In partial page write we don't update bufferram */
1475                 onenand_update_bufferram(mtd, to, !ret && !subpage);
1476                 if (ONENAND_IS_2PLANE(this)) {
1477                         ONENAND_SET_BUFFERRAM1(this);
1478                         onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1479                 }
1480
1481                 if (ret) {
1482                         printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1483                         break;
1484                 }
1485
1486                 /* Only check verify write turn on */
1487                 ret = onenand_verify(mtd, buf, to, thislen);
1488                 if (ret) {
1489                         printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1490                         break;
1491                 }
1492
1493                 written += thislen;
1494
1495                 if (written == len)
1496                         break;
1497
1498                 column = 0;
1499                 to += thislen;
1500                 buf += thislen;
1501         }
1502
1503         ops->retlen = written;
1504
1505         return ret;
1506 }
1507
1508 /**
1509  * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
1510  * @param mtd           MTD device structure
1511  * @param to            offset to write to
1512  * @param len           number of bytes to write
1513  * @param retlen        pointer to variable to store the number of written bytes
1514  * @param buf           the data to write
1515  * @param mode          operation mode
1516  *
1517  * OneNAND write out-of-band
1518  */
1519 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1520                 struct mtd_oob_ops *ops)
1521 {
1522         struct onenand_chip *this = mtd->priv;
1523         int column, ret = 0, oobsize;
1524         int written = 0, oobcmd;
1525         u_char *oobbuf;
1526         size_t len = ops->ooblen;
1527         const u_char *buf = ops->oobbuf;
1528         mtd_oob_mode_t mode = ops->mode;
1529
1530         to += ops->ooboffs;
1531
1532         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1533
1534         /* Initialize retlen, in case of early exit */
1535         ops->oobretlen = 0;
1536
1537         if (mode == MTD_OOB_AUTO)
1538                 oobsize = this->ecclayout->oobavail;
1539         else
1540                 oobsize = mtd->oobsize;
1541
1542         column = to & (mtd->oobsize - 1);
1543
1544         if (unlikely(column >= oobsize)) {
1545                 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1546                 return -EINVAL;
1547         }
1548
1549         /* For compatibility with NAND: Do not allow write past end of page */
1550         if (unlikely(column + len > oobsize)) {
1551                 printk(KERN_ERR "onenand_write_oob_nolock: "
1552                                 "Attempt to write past end of page\n");
1553                 return -EINVAL;
1554         }
1555
1556         /* Do not allow reads past end of device */
1557         if (unlikely(to >= mtd->size ||
1558                                 column + len > ((mtd->size >> this->page_shift) -
1559                                         (to >> this->page_shift)) * oobsize)) {
1560                 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
1561                 return -EINVAL;
1562         }
1563
1564         oobbuf = this->oob_buf;
1565
1566         oobcmd = ONENAND_IS_4KB_PAGE(this) ?
1567                 ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
1568
1569         /* Loop until all data write */
1570         while (written < len) {
1571                 int thislen = min_t(int, oobsize, len - written);
1572
1573                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1574
1575                 /* We send data to spare ram with oobsize
1576                  * to prevent byte access */
1577                 memset(oobbuf, 0xff, mtd->oobsize);
1578                 if (mode == MTD_OOB_AUTO)
1579                         onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1580                 else
1581                         memcpy(oobbuf + column, buf, thislen);
1582                 this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1583
1584                 if (ONENAND_IS_4KB_PAGE(this)) {
1585                         /* Set main area of DataRAM to 0xff*/
1586                         memset(this->page_buf, 0xff, mtd->writesize);
1587                         this->write_bufferram(mtd, 0, ONENAND_DATARAM,
1588                                 this->page_buf, 0, mtd->writesize);
1589                 }
1590
1591                 this->command(mtd, oobcmd, to, mtd->oobsize);
1592
1593                 onenand_update_bufferram(mtd, to, 0);
1594                 if (ONENAND_IS_2PLANE(this)) {
1595                         ONENAND_SET_BUFFERRAM1(this);
1596                         onenand_update_bufferram(mtd, to + this->writesize, 0);
1597                 }
1598
1599                 ret = this->wait(mtd, FL_WRITING);
1600                 if (ret) {
1601                         printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
1602                         break;
1603                 }
1604
1605                 ret = onenand_verify_oob(mtd, oobbuf, to);
1606                 if (ret) {
1607                         printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
1608                         break;
1609                 }
1610
1611                 written += thislen;
1612                 if (written == len)
1613                         break;
1614
1615                 to += mtd->writesize;
1616                 buf += thislen;
1617                 column = 0;
1618         }
1619
1620         ops->oobretlen = written;
1621
1622         return ret;
1623 }
1624
1625 /**
1626  * onenand_write - [MTD Interface] compability function for onenand_write_ecc
1627  * @param mtd           MTD device structure
1628  * @param to            offset to write to
1629  * @param len           number of bytes to write
1630  * @param retlen        pointer to variable to store the number of written bytes
1631  * @param buf           the data to write
1632  *
1633  * Write with ECC
1634  */
1635 int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1636                   size_t * retlen, const u_char * buf)
1637 {
1638         struct mtd_oob_ops ops = {
1639                 .len    = len,
1640                 .ooblen = 0,
1641                 .datbuf = (u_char *) buf,
1642                 .oobbuf = NULL,
1643         };
1644         int ret;
1645
1646         onenand_get_device(mtd, FL_WRITING);
1647         ret = onenand_write_ops_nolock(mtd, to, &ops);
1648         onenand_release_device(mtd);
1649
1650         *retlen = ops.retlen;
1651         return ret;
1652 }
1653
1654 /**
1655  * onenand_write_oob - [MTD Interface] OneNAND write out-of-band
1656  * @param mtd           MTD device structure
1657  * @param to            offset to write to
1658  * @param ops           oob operation description structure
1659  *
1660  * OneNAND write main and/or out-of-band
1661  */
1662 int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1663                         struct mtd_oob_ops *ops)
1664 {
1665         int ret;
1666
1667         switch (ops->mode) {
1668         case MTD_OOB_PLACE:
1669         case MTD_OOB_AUTO:
1670                 break;
1671         case MTD_OOB_RAW:
1672                 /* Not implemented yet */
1673         default:
1674                 return -EINVAL;
1675         }
1676
1677         onenand_get_device(mtd, FL_WRITING);
1678         if (ops->datbuf)
1679                 ret = onenand_write_ops_nolock(mtd, to, ops);
1680         else
1681                 ret = onenand_write_oob_nolock(mtd, to, ops);
1682         onenand_release_device(mtd);
1683
1684         return ret;
1685
1686 }
1687
1688 /**
1689  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
1690  * @param mtd           MTD device structure
1691  * @param ofs           offset from device start
1692  * @param allowbbt      1, if its allowed to access the bbt area
1693  *
1694  * Check, if the block is bad, Either by reading the bad block table or
1695  * calling of the scan function.
1696  */
1697 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1698 {
1699         struct onenand_chip *this = mtd->priv;
1700         struct bbm_info *bbm = this->bbm;
1701
1702         /* Return info from the table */
1703         return bbm->isbad_bbt(mtd, ofs, allowbbt);
1704 }
1705
1706
1707 /**
1708  * onenand_erase - [MTD Interface] erase block(s)
1709  * @param mtd           MTD device structure
1710  * @param instr         erase instruction
1711  *
1712  * Erase one ore more blocks
1713  */
1714 int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1715 {
1716         struct onenand_chip *this = mtd->priv;
1717         unsigned int block_size;
1718         loff_t addr = instr->addr;
1719         unsigned int len = instr->len;
1720         int ret = 0, i;
1721         struct mtd_erase_region_info *region = NULL;
1722         unsigned int region_end = 0;
1723
1724         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n",
1725                         (unsigned int) addr, len);
1726
1727         /* Do not allow erase past end of device */
1728         if (unlikely((len + addr) > mtd->size)) {
1729                 MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1730                                         "Erase past end of device\n");
1731                 return -EINVAL;
1732         }
1733
1734         if (FLEXONENAND(this)) {
1735                 /* Find the eraseregion of this address */
1736                 i = flexonenand_region(mtd, addr);
1737                 region = &mtd->eraseregions[i];
1738
1739                 block_size = region->erasesize;
1740                 region_end = region->offset
1741                         + region->erasesize * region->numblocks;
1742
1743                 /* Start address within region must align on block boundary.
1744                  * Erase region's start offset is always block start address.
1745                  */
1746                 if (unlikely((addr - region->offset) & (block_size - 1))) {
1747                         MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1748                                 " Unaligned address\n");
1749                         return -EINVAL;
1750                 }
1751         } else {
1752                 block_size = 1 << this->erase_shift;
1753
1754                 /* Start address must align on block boundary */
1755                 if (unlikely(addr & (block_size - 1))) {
1756                         MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1757                                                 "Unaligned address\n");
1758                         return -EINVAL;
1759                 }
1760         }
1761
1762         /* Length must align on block boundary */
1763         if (unlikely(len & (block_size - 1))) {
1764                 MTDDEBUG (MTD_DEBUG_LEVEL0,
1765                          "onenand_erase: Length not block aligned\n");
1766                 return -EINVAL;
1767         }
1768
1769         instr->fail_addr = 0xffffffff;
1770
1771         /* Grab the lock and see if the device is available */
1772         onenand_get_device(mtd, FL_ERASING);
1773
1774         /* Loop throught the pages */
1775         instr->state = MTD_ERASING;
1776
1777         while (len) {
1778
1779                 /* Check if we have a bad block, we do not erase bad blocks */
1780                 if (instr->priv == 0 && onenand_block_isbad_nolock(mtd, addr, 0)) {
1781                         printk(KERN_WARNING "onenand_erase: attempt to erase"
1782                                 " a bad block at addr 0x%08x\n",
1783                                 (unsigned int) addr);
1784                         instr->state = MTD_ERASE_FAILED;
1785                         goto erase_exit;
1786                 }
1787
1788                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1789
1790                 onenand_invalidate_bufferram(mtd, addr, block_size);
1791
1792                 ret = this->wait(mtd, FL_ERASING);
1793                 /* Check, if it is write protected */
1794                 if (ret) {
1795                         if (ret == -EPERM)
1796                                 MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1797                                           "Device is write protected!!!\n");
1798                         else
1799                                 MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1800                                           "Failed erase, block %d\n",
1801                                         onenand_block(this, addr));
1802                         instr->state = MTD_ERASE_FAILED;
1803                         instr->fail_addr = addr;
1804
1805                         goto erase_exit;
1806                 }
1807
1808                 len -= block_size;
1809                 addr += block_size;
1810
1811                 if (addr == region_end) {
1812                         if (!len)
1813                                 break;
1814                         region++;
1815
1816                         block_size = region->erasesize;
1817                         region_end = region->offset
1818                                 + region->erasesize * region->numblocks;
1819
1820                         if (len & (block_size - 1)) {
1821                                 /* This has been checked at MTD
1822                                  * partitioning level. */
1823                                 printk("onenand_erase: Unaligned address\n");
1824                                 goto erase_exit;
1825                         }
1826                 }
1827         }
1828
1829         instr->state = MTD_ERASE_DONE;
1830
1831 erase_exit:
1832
1833         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1834         /* Do call back function */
1835         if (!ret)
1836                 mtd_erase_callback(instr);
1837
1838         /* Deselect and wake up anyone waiting on the device */
1839         onenand_release_device(mtd);
1840
1841         return ret;
1842 }
1843
1844 /**
1845  * onenand_sync - [MTD Interface] sync
1846  * @param mtd           MTD device structure
1847  *
1848  * Sync is actually a wait for chip ready function
1849  */
1850 void onenand_sync(struct mtd_info *mtd)
1851 {
1852         MTDDEBUG (MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1853
1854         /* Grab the lock and see if the device is available */
1855         onenand_get_device(mtd, FL_SYNCING);
1856
1857         /* Release it and go back */
1858         onenand_release_device(mtd);
1859 }
1860
1861 /**
1862  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1863  * @param mtd           MTD device structure
1864  * @param ofs           offset relative to mtd start
1865  *
1866  * Check whether the block is bad
1867  */
1868 int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1869 {
1870         int ret;
1871
1872         /* Check for invalid offset */
1873         if (ofs > mtd->size)
1874                 return -EINVAL;
1875
1876         onenand_get_device(mtd, FL_READING);
1877         ret = onenand_block_isbad_nolock(mtd,ofs, 0);
1878         onenand_release_device(mtd);
1879         return ret;
1880 }
1881
1882 /**
1883  * onenand_default_block_markbad - [DEFAULT] mark a block bad
1884  * @param mtd           MTD device structure
1885  * @param ofs           offset from device start
1886  *
1887  * This is the default implementation, which can be overridden by
1888  * a hardware specific driver.
1889  */
1890 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1891 {
1892         struct onenand_chip *this = mtd->priv;
1893         struct bbm_info *bbm = this->bbm;
1894         u_char buf[2] = {0, 0};
1895         struct mtd_oob_ops ops = {
1896                 .mode = MTD_OOB_PLACE,
1897                 .ooblen = 2,
1898                 .oobbuf = buf,
1899                 .ooboffs = 0,
1900         };
1901         int block;
1902
1903         /* Get block number */
1904         block = onenand_block(this, ofs);
1905         if (bbm->bbt)
1906                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1907
1908         /* We write two bytes, so we dont have to mess with 16 bit access */
1909         ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1910         return onenand_write_oob_nolock(mtd, ofs, &ops);
1911 }
1912
1913 /**
1914  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1915  * @param mtd           MTD device structure
1916  * @param ofs           offset relative to mtd start
1917  *
1918  * Mark the block as bad
1919  */
1920 int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1921 {
1922         struct onenand_chip *this = mtd->priv;
1923         int ret;
1924
1925         ret = onenand_block_isbad(mtd, ofs);
1926         if (ret) {
1927                 /* If it was bad already, return success and do nothing */
1928                 if (ret > 0)
1929                         return 0;
1930                 return ret;
1931         }
1932
1933         ret = this->block_markbad(mtd, ofs);
1934         return ret;
1935 }
1936
1937 /**
1938  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1939  * @param mtd           MTD device structure
1940  * @param ofs           offset relative to mtd start
1941  * @param len           number of bytes to lock or unlock
1942  * @param cmd           lock or unlock command
1943  *
1944  * Lock or unlock one or more blocks
1945  */
1946 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1947 {
1948         struct onenand_chip *this = mtd->priv;
1949         int start, end, block, value, status;
1950
1951         start = onenand_block(this, ofs);
1952         end = onenand_block(this, ofs + len);
1953
1954         /* Continuous lock scheme */
1955         if (this->options & ONENAND_HAS_CONT_LOCK) {
1956                 /* Set start block address */
1957                 this->write_word(start,
1958                                  this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1959                 /* Set end block address */
1960                 this->write_word(end - 1,
1961                                  this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1962                 /* Write unlock command */
1963                 this->command(mtd, cmd, 0, 0);
1964
1965                 /* There's no return value */
1966                 this->wait(mtd, FL_UNLOCKING);
1967
1968                 /* Sanity check */
1969                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1970                        & ONENAND_CTRL_ONGO)
1971                         continue;
1972
1973                 /* Check lock status */
1974                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1975                 if (!(status & ONENAND_WP_US))
1976                         printk(KERN_ERR "wp status = 0x%x\n", status);
1977
1978                 return 0;
1979         }
1980
1981         /* Block lock scheme */
1982         for (block = start; block < end; block++) {
1983                 /* Set block address */
1984                 value = onenand_block_address(this, block);
1985                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1986                 /* Select DataRAM for DDP */
1987                 value = onenand_bufferram_address(this, block);
1988                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1989
1990                 /* Set start block address */
1991                 this->write_word(block,
1992                                  this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1993                 /* Write unlock command */
1994                 this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0);
1995
1996                 /* There's no return value */
1997                 this->wait(mtd, FL_UNLOCKING);
1998
1999                 /* Sanity check */
2000                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2001                        & ONENAND_CTRL_ONGO)
2002                         continue;
2003
2004                 /* Check lock status */
2005                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2006                 if (!(status & ONENAND_WP_US))
2007                         printk(KERN_ERR "block = %d, wp status = 0x%x\n",
2008                                block, status);
2009         }
2010
2011         return 0;
2012 }
2013
2014 #ifdef ONENAND_LINUX
2015 /**
2016  * onenand_lock - [MTD Interface] Lock block(s)
2017  * @param mtd           MTD device structure
2018  * @param ofs           offset relative to mtd start
2019  * @param len           number of bytes to unlock
2020  *
2021  * Lock one or more blocks
2022  */
2023 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
2024 {
2025         int ret;
2026
2027         onenand_get_device(mtd, FL_LOCKING);
2028         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2029         onenand_release_device(mtd);
2030         return ret;
2031 }
2032
2033 /**
2034  * onenand_unlock - [MTD Interface] Unlock block(s)
2035  * @param mtd           MTD device structure
2036  * @param ofs           offset relative to mtd start
2037  * @param len           number of bytes to unlock
2038  *
2039  * Unlock one or more blocks
2040  */
2041 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
2042 {
2043         int ret;
2044
2045         onenand_get_device(mtd, FL_LOCKING);
2046         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2047         onenand_release_device(mtd);
2048         return ret;
2049 }
2050 #endif
2051
2052 /**
2053  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2054  * @param this          onenand chip data structure
2055  *
2056  * Check lock status
2057  */
2058 static int onenand_check_lock_status(struct onenand_chip *this)
2059 {
2060         unsigned int value, block, status;
2061         unsigned int end;
2062
2063         end = this->chipsize >> this->erase_shift;
2064         for (block = 0; block < end; block++) {
2065                 /* Set block address */
2066                 value = onenand_block_address(this, block);
2067                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2068                 /* Select DataRAM for DDP */
2069                 value = onenand_bufferram_address(this, block);
2070                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2071                 /* Set start block address */
2072                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2073
2074                 /* Check lock status */
2075                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2076                 if (!(status & ONENAND_WP_US)) {
2077                         printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2078                         return 0;
2079                 }
2080         }
2081
2082         return 1;
2083 }
2084
2085 /**
2086  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2087  * @param mtd           MTD device structure
2088  *
2089  * Unlock all blocks
2090  */
2091 static void onenand_unlock_all(struct mtd_info *mtd)
2092 {
2093         struct onenand_chip *this = mtd->priv;
2094         loff_t ofs = 0;
2095         size_t len = mtd->size;
2096
2097         if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2098                 /* Set start block address */
2099                 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2100                 /* Write unlock command */
2101                 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2102
2103                 /* There's no return value */
2104                 this->wait(mtd, FL_LOCKING);
2105
2106                 /* Sanity check */
2107                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2108                                 & ONENAND_CTRL_ONGO)
2109                         continue;
2110
2111                 /* Check lock status */
2112                 if (onenand_check_lock_status(this))
2113                         return;
2114
2115                 /* Workaround for all block unlock in DDP */
2116                 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2117                         /* All blocks on another chip */
2118                         ofs = this->chipsize >> 1;
2119                         len = this->chipsize >> 1;
2120                 }
2121         }
2122
2123         onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2124 }
2125
2126
2127 /**
2128  * onenand_check_features - Check and set OneNAND features
2129  * @param mtd           MTD data structure
2130  *
2131  * Check and set OneNAND features
2132  * - lock scheme
2133  * - two plane
2134  */
2135 static void onenand_check_features(struct mtd_info *mtd)
2136 {
2137         struct onenand_chip *this = mtd->priv;
2138         unsigned int density, process;
2139
2140         /* Lock scheme depends on density and process */
2141         density = onenand_get_density(this->device_id);
2142         process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2143
2144         /* Lock scheme */
2145         switch (density) {
2146         case ONENAND_DEVICE_DENSITY_4Gb:
2147                 if (ONENAND_IS_DDP(this))
2148                         this->options |= ONENAND_HAS_2PLANE;
2149                 else
2150                         this->options |= ONENAND_HAS_4KB_PAGE;
2151
2152         case ONENAND_DEVICE_DENSITY_2Gb:
2153                 /* 2Gb DDP don't have 2 plane */
2154                 if (!ONENAND_IS_DDP(this))
2155                         this->options |= ONENAND_HAS_2PLANE;
2156                 this->options |= ONENAND_HAS_UNLOCK_ALL;
2157
2158         case ONENAND_DEVICE_DENSITY_1Gb:
2159                 /* A-Die has all block unlock */
2160                 if (process)
2161                         this->options |= ONENAND_HAS_UNLOCK_ALL;
2162                 break;
2163
2164         default:
2165                 /* Some OneNAND has continuous lock scheme */
2166                 if (!process)
2167                         this->options |= ONENAND_HAS_CONT_LOCK;
2168                 break;
2169         }
2170
2171         if (ONENAND_IS_MLC(this))
2172                 this->options |= ONENAND_HAS_4KB_PAGE;
2173
2174         if (ONENAND_IS_4KB_PAGE(this))
2175                 this->options &= ~ONENAND_HAS_2PLANE;
2176
2177         if (FLEXONENAND(this)) {
2178                 this->options &= ~ONENAND_HAS_CONT_LOCK;
2179                 this->options |= ONENAND_HAS_UNLOCK_ALL;
2180         }
2181
2182         if (this->options & ONENAND_HAS_CONT_LOCK)
2183                 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
2184         if (this->options & ONENAND_HAS_UNLOCK_ALL)
2185                 printk(KERN_DEBUG "Chip support all block unlock\n");
2186         if (this->options & ONENAND_HAS_2PLANE)
2187                 printk(KERN_DEBUG "Chip has 2 plane\n");
2188         if (this->options & ONENAND_HAS_4KB_PAGE)
2189                 printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
2190
2191 }
2192
2193 /**
2194  * onenand_print_device_info - Print device ID
2195  * @param device        device ID
2196  *
2197  * Print device ID
2198  */
2199 char *onenand_print_device_info(int device, int version)
2200 {
2201         int vcc, demuxed, ddp, density, flexonenand;
2202         char *dev_info = malloc(80);
2203         char *p = dev_info;
2204
2205         vcc = device & ONENAND_DEVICE_VCC_MASK;
2206         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2207         ddp = device & ONENAND_DEVICE_IS_DDP;
2208         density = onenand_get_density(device);
2209         flexonenand = device & DEVICE_IS_FLEXONENAND;
2210         p += sprintf(dev_info, "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)",
2211                demuxed ? "" : "Muxed ",
2212                flexonenand ? "Flex-" : "",
2213                ddp ? "(DDP)" : "",
2214                (16 << density), vcc ? "2.65/3.3" : "1.8", device);
2215
2216         sprintf(p, "\nOneNAND version = 0x%04x", version);
2217         printk("%s\n", dev_info);
2218
2219         return dev_info;
2220 }
2221
2222 static const struct onenand_manufacturers onenand_manuf_ids[] = {
2223         {ONENAND_MFR_NUMONYX, "Numonyx"},
2224         {ONENAND_MFR_SAMSUNG, "Samsung"},
2225 };
2226
2227 /**
2228  * onenand_check_maf - Check manufacturer ID
2229  * @param manuf         manufacturer ID
2230  *
2231  * Check manufacturer ID
2232  */
2233 static int onenand_check_maf(int manuf)
2234 {
2235         int size = ARRAY_SIZE(onenand_manuf_ids);
2236         int i;
2237 #ifdef ONENAND_DEBUG
2238         char *name;
2239 #endif
2240
2241         for (i = 0; i < size; i++)
2242                 if (manuf == onenand_manuf_ids[i].id)
2243                         break;
2244
2245 #ifdef ONENAND_DEBUG
2246         if (i < size)
2247                 name = onenand_manuf_ids[i].name;
2248         else
2249                 name = "Unknown";
2250
2251         printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2252 #endif
2253
2254         return i == size;
2255 }
2256
2257 /**
2258 * flexonenand_get_boundary      - Reads the SLC boundary
2259 * @param onenand_info           - onenand info structure
2260 *
2261 * Fill up boundary[] field in onenand_chip
2262 **/
2263 static int flexonenand_get_boundary(struct mtd_info *mtd)
2264 {
2265         struct onenand_chip *this = mtd->priv;
2266         unsigned int die, bdry;
2267         int syscfg, locked;
2268
2269         /* Disable ECC */
2270         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2271         this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
2272
2273         for (die = 0; die < this->dies; die++) {
2274                 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2275                 this->wait(mtd, FL_SYNCING);
2276
2277                 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2278                 this->wait(mtd, FL_READING);
2279
2280                 bdry = this->read_word(this->base + ONENAND_DATARAM);
2281                 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
2282                         locked = 0;
2283                 else
2284                         locked = 1;
2285                 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
2286
2287                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2288                 this->wait(mtd, FL_RESETING);
2289
2290                 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
2291                        this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
2292         }
2293
2294         /* Enable ECC */
2295         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2296         return 0;
2297 }
2298
2299 /**
2300  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
2301  *                        boundary[], diesize[], mtd->size, mtd->erasesize,
2302  *                        mtd->eraseregions
2303  * @param mtd           - MTD device structure
2304  */
2305 static void flexonenand_get_size(struct mtd_info *mtd)
2306 {
2307         struct onenand_chip *this = mtd->priv;
2308         int die, i, eraseshift, density;
2309         int blksperdie, maxbdry;
2310         loff_t ofs;
2311
2312         density = onenand_get_density(this->device_id);
2313         blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
2314         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2315         maxbdry = blksperdie - 1;
2316         eraseshift = this->erase_shift - 1;
2317
2318         mtd->numeraseregions = this->dies << 1;
2319
2320         /* This fills up the device boundary */
2321         flexonenand_get_boundary(mtd);
2322         die = 0;
2323         ofs = 0;
2324         i = -1;
2325         for (; die < this->dies; die++) {
2326                 if (!die || this->boundary[die-1] != maxbdry) {
2327                         i++;
2328                         mtd->eraseregions[i].offset = ofs;
2329                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
2330                         mtd->eraseregions[i].numblocks =
2331                                                         this->boundary[die] + 1;
2332                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
2333                         eraseshift++;
2334                 } else {
2335                         mtd->numeraseregions -= 1;
2336                         mtd->eraseregions[i].numblocks +=
2337                                                         this->boundary[die] + 1;
2338                         ofs += (this->boundary[die] + 1) << (eraseshift - 1);
2339                 }
2340                 if (this->boundary[die] != maxbdry) {
2341                         i++;
2342                         mtd->eraseregions[i].offset = ofs;
2343                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
2344                         mtd->eraseregions[i].numblocks = maxbdry ^
2345                                                          this->boundary[die];
2346                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
2347                         eraseshift--;
2348                 } else
2349                         mtd->numeraseregions -= 1;
2350         }
2351
2352         /* Expose MLC erase size except when all blocks are SLC */
2353         mtd->erasesize = 1 << this->erase_shift;
2354         if (mtd->numeraseregions == 1)
2355                 mtd->erasesize >>= 1;
2356
2357         printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
2358         for (i = 0; i < mtd->numeraseregions; i++)
2359                 printk(KERN_INFO "[offset: 0x%08llx, erasesize: 0x%05x,"
2360                         " numblocks: %04u]\n", mtd->eraseregions[i].offset,
2361                         mtd->eraseregions[i].erasesize,
2362                         mtd->eraseregions[i].numblocks);
2363
2364         for (die = 0, mtd->size = 0; die < this->dies; die++) {
2365                 this->diesize[die] = (loff_t) (blksperdie << this->erase_shift);
2366                 this->diesize[die] -= (loff_t) (this->boundary[die] + 1)
2367                                                  << (this->erase_shift - 1);
2368                 mtd->size += this->diesize[die];
2369         }
2370 }
2371
2372 /**
2373  * flexonenand_check_blocks_erased - Check if blocks are erased
2374  * @param mtd_info      - mtd info structure
2375  * @param start         - first erase block to check
2376  * @param end           - last erase block to check
2377  *
2378  * Converting an unerased block from MLC to SLC
2379  * causes byte values to change. Since both data and its ECC
2380  * have changed, reads on the block give uncorrectable error.
2381  * This might lead to the block being detected as bad.
2382  *
2383  * Avoid this by ensuring that the block to be converted is
2384  * erased.
2385  */
2386 static int flexonenand_check_blocks_erased(struct mtd_info *mtd,
2387                                         int start, int end)
2388 {
2389         struct onenand_chip *this = mtd->priv;
2390         int i, ret;
2391         int block;
2392         struct mtd_oob_ops ops = {
2393                 .mode = MTD_OOB_PLACE,
2394                 .ooboffs = 0,
2395                 .ooblen = mtd->oobsize,
2396                 .datbuf = NULL,
2397                 .oobbuf = this->oob_buf,
2398         };
2399         loff_t addr;
2400
2401         printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
2402
2403         for (block = start; block <= end; block++) {
2404                 addr = flexonenand_addr(this, block);
2405                 if (onenand_block_isbad_nolock(mtd, addr, 0))
2406                         continue;
2407
2408                 /*
2409                  * Since main area write results in ECC write to spare,
2410                  * it is sufficient to check only ECC bytes for change.
2411                  */
2412                 ret = onenand_read_oob_nolock(mtd, addr, &ops);
2413                 if (ret)
2414                         return ret;
2415
2416                 for (i = 0; i < mtd->oobsize; i++)
2417                         if (this->oob_buf[i] != 0xff)
2418                                 break;
2419
2420                 if (i != mtd->oobsize) {
2421                         printk(KERN_WARNING "Block %d not erased.\n", block);
2422                         return 1;
2423                 }
2424         }
2425
2426         return 0;
2427 }
2428
2429 /**
2430  * flexonenand_set_boundary     - Writes the SLC boundary
2431  * @param mtd                   - mtd info structure
2432  */
2433 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
2434                                     int boundary, int lock)
2435 {
2436         struct onenand_chip *this = mtd->priv;
2437         int ret, density, blksperdie, old, new, thisboundary;
2438         loff_t addr;
2439
2440         if (die >= this->dies)
2441                 return -EINVAL;
2442
2443         if (boundary == this->boundary[die])
2444                 return 0;
2445
2446         density = onenand_get_density(this->device_id);
2447         blksperdie = ((16 << density) << 20) >> this->erase_shift;
2448         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2449
2450         if (boundary >= blksperdie) {
2451                 printk("flexonenand_set_boundary:"
2452                         "Invalid boundary value. "
2453                         "Boundary not changed.\n");
2454                 return -EINVAL;
2455         }
2456
2457         /* Check if converting blocks are erased */
2458         old = this->boundary[die] + (die * this->density_mask);
2459         new = boundary + (die * this->density_mask);
2460         ret = flexonenand_check_blocks_erased(mtd, min(old, new)
2461                                                 + 1, max(old, new));
2462         if (ret) {
2463                 printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n");
2464                 return ret;
2465         }
2466
2467         this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2468         this->wait(mtd, FL_SYNCING);
2469
2470         /* Check is boundary is locked */
2471         this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2472         ret = this->wait(mtd, FL_READING);
2473
2474         thisboundary = this->read_word(this->base + ONENAND_DATARAM);
2475         if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
2476                 printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n");
2477                 goto out;
2478         }
2479
2480         printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n",
2481                         die, boundary, lock ? "(Locked)" : "(Unlocked)");
2482
2483         boundary &= FLEXONENAND_PI_MASK;
2484         boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
2485
2486         addr = die ? this->diesize[0] : 0;
2487         this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
2488         ret = this->wait(mtd, FL_ERASING);
2489         if (ret) {
2490                 printk("flexonenand_set_boundary:"
2491                         "Failed PI erase for Die %d\n", die);
2492                 goto out;
2493         }
2494
2495         this->write_word(boundary, this->base + ONENAND_DATARAM);
2496         this->command(mtd, ONENAND_CMD_PROG, addr, 0);
2497         ret = this->wait(mtd, FL_WRITING);
2498         if (ret) {
2499                 printk("flexonenand_set_boundary:"
2500                         "Failed PI write for Die %d\n", die);
2501                 goto out;
2502         }
2503
2504         this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
2505         ret = this->wait(mtd, FL_WRITING);
2506 out:
2507         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
2508         this->wait(mtd, FL_RESETING);
2509         if (!ret)
2510                 /* Recalculate device size on boundary change*/
2511                 flexonenand_get_size(mtd);
2512
2513         return ret;
2514 }
2515
2516 /**
2517  * onenand_chip_probe - [OneNAND Interface] Probe the OneNAND chip
2518  * @param mtd           MTD device structure
2519  *
2520  * OneNAND detection method:
2521  *   Compare the the values from command with ones from register
2522  */
2523 static int onenand_chip_probe(struct mtd_info *mtd)
2524 {
2525         struct onenand_chip *this = mtd->priv;
2526         int bram_maf_id, bram_dev_id, maf_id, dev_id;
2527         int syscfg;
2528
2529         /* Save system configuration 1 */
2530         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2531
2532         /* Clear Sync. Burst Read mode to read BootRAM */
2533         this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ),
2534                          this->base + ONENAND_REG_SYS_CFG1);
2535
2536         /* Send the command for reading device ID from BootRAM */
2537         this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2538
2539         /* Read manufacturer and device IDs from BootRAM */
2540         bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2541         bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2542
2543         /* Reset OneNAND to read default register values */
2544         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2545
2546         /* Wait reset */
2547         this->wait(mtd, FL_RESETING);
2548
2549         /* Restore system configuration 1 */
2550         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2551
2552         /* Check manufacturer ID */
2553         if (onenand_check_maf(bram_maf_id))
2554                 return -ENXIO;
2555
2556         /* Read manufacturer and device IDs from Register */
2557         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2558         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2559
2560         /* Check OneNAND device */
2561         if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2562                 return -ENXIO;
2563
2564         return 0;
2565 }
2566
2567 /**
2568  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2569  * @param mtd           MTD device structure
2570  *
2571  * OneNAND detection method:
2572  *   Compare the the values from command with ones from register
2573  */
2574 int onenand_probe(struct mtd_info *mtd)
2575 {
2576         struct onenand_chip *this = mtd->priv;
2577         int dev_id, ver_id;
2578         int density;
2579         int ret;
2580
2581         ret = this->chip_probe(mtd);
2582         if (ret)
2583                 return ret;
2584
2585         /* Read device IDs from Register */
2586         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2587         ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2588         this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
2589
2590         /* Flash device information */
2591         mtd->name = onenand_print_device_info(dev_id, ver_id);
2592         this->device_id = dev_id;
2593         this->version_id = ver_id;
2594
2595         /* Check OneNAND features */
2596         onenand_check_features(mtd);
2597
2598         density = onenand_get_density(dev_id);
2599         if (FLEXONENAND(this)) {
2600                 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
2601                 /* Maximum possible erase regions */
2602                 mtd->numeraseregions = this->dies << 1;
2603                 mtd->eraseregions = malloc(sizeof(struct mtd_erase_region_info)
2604                                         * (this->dies << 1));
2605                 if (!mtd->eraseregions)
2606                         return -ENOMEM;
2607         }
2608
2609         /*
2610          * For Flex-OneNAND, chipsize represents maximum possible device size.
2611          * mtd->size represents the actual device size.
2612          */
2613         this->chipsize = (16 << density) << 20;
2614
2615         /* OneNAND page size & block size */
2616         /* The data buffer size is equal to page size */
2617         mtd->writesize =
2618             this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2619         /* We use the full BufferRAM */
2620         if (ONENAND_IS_4KB_PAGE(this))
2621                 mtd->writesize <<= 1;
2622
2623         mtd->oobsize = mtd->writesize >> 5;
2624         /* Pagers per block is always 64 in OneNAND */
2625         mtd->erasesize = mtd->writesize << 6;
2626         /*
2627          * Flex-OneNAND SLC area has 64 pages per block.
2628          * Flex-OneNAND MLC area has 128 pages per block.
2629          * Expose MLC erase size to find erase_shift and page_mask.
2630          */
2631         if (FLEXONENAND(this))
2632                 mtd->erasesize <<= 1;
2633
2634         this->erase_shift = ffs(mtd->erasesize) - 1;
2635         this->page_shift = ffs(mtd->writesize) - 1;
2636         this->ppb_shift = (this->erase_shift - this->page_shift);
2637         this->page_mask = (mtd->erasesize / mtd->writesize) - 1;
2638         /* Set density mask. it is used for DDP */
2639         if (ONENAND_IS_DDP(this))
2640                 this->density_mask = this->chipsize >> (this->erase_shift + 1);
2641         /* It's real page size */
2642         this->writesize = mtd->writesize;
2643
2644         /* REVIST: Multichip handling */
2645
2646         if (FLEXONENAND(this))
2647                 flexonenand_get_size(mtd);
2648         else
2649                 mtd->size = this->chipsize;
2650
2651         mtd->flags = MTD_CAP_NANDFLASH;
2652         mtd->erase = onenand_erase;
2653         mtd->read = onenand_read;
2654         mtd->write = onenand_write;
2655         mtd->read_oob = onenand_read_oob;
2656         mtd->write_oob = onenand_write_oob;
2657         mtd->sync = onenand_sync;
2658         mtd->block_isbad = onenand_block_isbad;
2659         mtd->block_markbad = onenand_block_markbad;
2660
2661         return 0;
2662 }
2663
2664 /**
2665  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2666  * @param mtd           MTD device structure
2667  * @param maxchips      Number of chips to scan for
2668  *
2669  * This fills out all the not initialized function pointers
2670  * with the defaults.
2671  * The flash ID is read and the mtd/chip structures are
2672  * filled with the appropriate values.
2673  */
2674 int onenand_scan(struct mtd_info *mtd, int maxchips)
2675 {
2676         int i;
2677         struct onenand_chip *this = mtd->priv;
2678
2679         if (!this->read_word)
2680                 this->read_word = onenand_readw;
2681         if (!this->write_word)
2682                 this->write_word = onenand_writew;
2683
2684         if (!this->command)
2685                 this->command = onenand_command;
2686         if (!this->wait)
2687                 this->wait = onenand_wait;
2688         if (!this->bbt_wait)
2689                 this->bbt_wait = onenand_bbt_wait;
2690
2691         if (!this->read_bufferram)
2692                 this->read_bufferram = onenand_read_bufferram;
2693         if (!this->write_bufferram)
2694                 this->write_bufferram = onenand_write_bufferram;
2695
2696         if (!this->chip_probe)
2697                 this->chip_probe = onenand_chip_probe;
2698
2699         if (!this->block_markbad)
2700                 this->block_markbad = onenand_default_block_markbad;
2701         if (!this->scan_bbt)
2702                 this->scan_bbt = onenand_default_bbt;
2703
2704         if (onenand_probe(mtd))
2705                 return -ENXIO;
2706
2707         /* Set Sync. Burst Read after probing */
2708         if (this->mmcontrol) {
2709                 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2710                 this->read_bufferram = onenand_sync_read_bufferram;
2711         }
2712
2713         /* Allocate buffers, if necessary */
2714         if (!this->page_buf) {
2715                 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2716                 if (!this->page_buf) {
2717                         printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2718                         return -ENOMEM;
2719                 }
2720                 this->options |= ONENAND_PAGEBUF_ALLOC;
2721         }
2722         if (!this->oob_buf) {
2723                 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
2724                 if (!this->oob_buf) {
2725                         printk(KERN_ERR "onenand_scan: Can't allocate oob_buf\n");
2726                         if (this->options & ONENAND_PAGEBUF_ALLOC) {
2727                                 this->options &= ~ONENAND_PAGEBUF_ALLOC;
2728                                 kfree(this->page_buf);
2729                         }
2730                         return -ENOMEM;
2731                 }
2732                 this->options |= ONENAND_OOBBUF_ALLOC;
2733         }
2734
2735         this->state = FL_READY;
2736
2737         /*
2738          * Allow subpage writes up to oobsize.
2739          */
2740         switch (mtd->oobsize) {
2741         case 128:
2742                 this->ecclayout = &onenand_oob_128;
2743                 mtd->subpage_sft = 0;
2744                 break;
2745
2746         case 64:
2747                 this->ecclayout = &onenand_oob_64;
2748                 mtd->subpage_sft = 2;
2749                 break;
2750
2751         case 32:
2752                 this->ecclayout = &onenand_oob_32;
2753                 mtd->subpage_sft = 1;
2754                 break;
2755
2756         default:
2757                 printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2758                         mtd->oobsize);
2759                 mtd->subpage_sft = 0;
2760                 /* To prevent kernel oops */
2761                 this->ecclayout = &onenand_oob_32;
2762                 break;
2763         }
2764
2765         this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2766
2767         /*
2768          * The number of bytes available for a client to place data into
2769          * the out of band area
2770          */
2771         this->ecclayout->oobavail = 0;
2772         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
2773             this->ecclayout->oobfree[i].length; i++)
2774                 this->ecclayout->oobavail +=
2775                         this->ecclayout->oobfree[i].length;
2776         mtd->oobavail = this->ecclayout->oobavail;
2777
2778         mtd->ecclayout = this->ecclayout;
2779
2780         /* Unlock whole block */
2781         onenand_unlock_all(mtd);
2782
2783         return this->scan_bbt(mtd);
2784 }
2785
2786 /**
2787  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2788  * @param mtd           MTD device structure
2789  */
2790 void onenand_release(struct mtd_info *mtd)
2791 {
2792 }