]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/mtd/onenand/onenand_base.c
Merge branch 'u-boot-imx/master' into 'u-boot-arm/master'
[karo-tx-uboot.git] / drivers / mtd / onenand / onenand_base.c
1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright (C) 2005-2007 Samsung Electronics
5  *  Kyungmin Park <kyungmin.park@samsung.com>
6  *
7  *  Credits:
8  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
9  *      auto-placement support, read-while load support, various fixes
10  *      Copyright (C) Nokia Corporation, 2007
11  *
12  *      Rohit Hagargundgi <h.rohit at samsung.com>,
13  *      Amul Kumar Saha <amul.saha@samsung.com>:
14  *      Flex-OneNAND support
15  *      Copyright (C) Samsung Electronics, 2009
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License version 2 as
19  * published by the Free Software Foundation.
20  */
21
22 #include <common.h>
23 #include <linux/compat.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/onenand.h>
26
27 #include <asm/io.h>
28 #include <asm/errno.h>
29 #include <malloc.h>
30
31 /* It should access 16-bit instead of 8-bit */
32 static void *memcpy_16(void *dst, const void *src, unsigned int len)
33 {
34         void *ret = dst;
35         short *d = dst;
36         const short *s = src;
37
38         len >>= 1;
39         while (len-- > 0)
40                 *d++ = *s++;
41         return ret;
42 }
43
44 /**
45  *  onenand_oob_128 - oob info for Flex-Onenand with 4KB page
46  *  For now, we expose only 64 out of 80 ecc bytes
47  */
48 static struct nand_ecclayout onenand_oob_128 = {
49         .eccbytes       = 64,
50         .eccpos         = {
51                 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
52                 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
53                 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
54                 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
55                 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
56                 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
57                 102, 103, 104, 105
58                 },
59         .oobfree        = {
60                 {2, 4}, {18, 4}, {34, 4}, {50, 4},
61                 {66, 4}, {82, 4}, {98, 4}, {114, 4}
62         }
63 };
64
65 /**
66  * onenand_oob_64 - oob info for large (2KB) page
67  */
68 static struct nand_ecclayout onenand_oob_64 = {
69         .eccbytes       = 20,
70         .eccpos         = {
71                 8, 9, 10, 11, 12,
72                 24, 25, 26, 27, 28,
73                 40, 41, 42, 43, 44,
74                 56, 57, 58, 59, 60,
75                 },
76         .oobfree        = {
77                 {2, 3}, {14, 2}, {18, 3}, {30, 2},
78                 {34, 3}, {46, 2}, {50, 3}, {62, 2}
79         }
80 };
81
82 /**
83  * onenand_oob_32 - oob info for middle (1KB) page
84  */
85 static struct nand_ecclayout onenand_oob_32 = {
86         .eccbytes       = 10,
87         .eccpos         = {
88                 8, 9, 10, 11, 12,
89                 24, 25, 26, 27, 28,
90                 },
91         .oobfree        = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
92 };
93
94 static const unsigned char ffchars[] = {
95         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
96         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
97         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
98         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
99         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
100         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
101         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
102         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
103         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
104         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
105         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
106         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
107         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
108         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
109         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
110         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
111 };
112
113 /**
114  * onenand_readw - [OneNAND Interface] Read OneNAND register
115  * @param addr          address to read
116  *
117  * Read OneNAND register
118  */
119 static unsigned short onenand_readw(void __iomem * addr)
120 {
121         return readw(addr);
122 }
123
124 /**
125  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
126  * @param value         value to write
127  * @param addr          address to write
128  *
129  * Write OneNAND register with value
130  */
131 static void onenand_writew(unsigned short value, void __iomem * addr)
132 {
133         writew(value, addr);
134 }
135
136 /**
137  * onenand_block_address - [DEFAULT] Get block address
138  * @param device        the device id
139  * @param block         the block
140  * @return              translated block address if DDP, otherwise same
141  *
142  * Setup Start Address 1 Register (F100h)
143  */
144 static int onenand_block_address(struct onenand_chip *this, int block)
145 {
146         /* Device Flash Core select, NAND Flash Block Address */
147         if (block & this->density_mask)
148                 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
149
150         return block;
151 }
152
153 /**
154  * onenand_bufferram_address - [DEFAULT] Get bufferram address
155  * @param device        the device id
156  * @param block         the block
157  * @return              set DBS value if DDP, otherwise 0
158  *
159  * Setup Start Address 2 Register (F101h) for DDP
160  */
161 static int onenand_bufferram_address(struct onenand_chip *this, int block)
162 {
163         /* Device BufferRAM Select */
164         if (block & this->density_mask)
165                 return ONENAND_DDP_CHIP1;
166
167         return ONENAND_DDP_CHIP0;
168 }
169
170 /**
171  * onenand_page_address - [DEFAULT] Get page address
172  * @param page          the page address
173  * @param sector        the sector address
174  * @return              combined page and sector address
175  *
176  * Setup Start Address 8 Register (F107h)
177  */
178 static int onenand_page_address(int page, int sector)
179 {
180         /* Flash Page Address, Flash Sector Address */
181         int fpa, fsa;
182
183         fpa = page & ONENAND_FPA_MASK;
184         fsa = sector & ONENAND_FSA_MASK;
185
186         return ((fpa << ONENAND_FPA_SHIFT) | fsa);
187 }
188
189 /**
190  * onenand_buffer_address - [DEFAULT] Get buffer address
191  * @param dataram1      DataRAM index
192  * @param sectors       the sector address
193  * @param count         the number of sectors
194  * @return              the start buffer value
195  *
196  * Setup Start Buffer Register (F200h)
197  */
198 static int onenand_buffer_address(int dataram1, int sectors, int count)
199 {
200         int bsa, bsc;
201
202         /* BufferRAM Sector Address */
203         bsa = sectors & ONENAND_BSA_MASK;
204
205         if (dataram1)
206                 bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
207         else
208                 bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
209
210         /* BufferRAM Sector Count */
211         bsc = count & ONENAND_BSC_MASK;
212
213         return ((bsa << ONENAND_BSA_SHIFT) | bsc);
214 }
215
216 /**
217  * flexonenand_block - Return block number for flash address
218  * @param this          - OneNAND device structure
219  * @param addr          - Address for which block number is needed
220  */
221 static unsigned int flexonenand_block(struct onenand_chip *this, loff_t addr)
222 {
223         unsigned int boundary, blk, die = 0;
224
225         if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
226                 die = 1;
227                 addr -= this->diesize[0];
228         }
229
230         boundary = this->boundary[die];
231
232         blk = addr >> (this->erase_shift - 1);
233         if (blk > boundary)
234                 blk = (blk + boundary + 1) >> 1;
235
236         blk += die ? this->density_mask : 0;
237         return blk;
238 }
239
240 unsigned int onenand_block(struct onenand_chip *this, loff_t addr)
241 {
242         if (!FLEXONENAND(this))
243                 return addr >> this->erase_shift;
244         return flexonenand_block(this, addr);
245 }
246
247 /**
248  * flexonenand_addr - Return address of the block
249  * @this:               OneNAND device structure
250  * @block:              Block number on Flex-OneNAND
251  *
252  * Return address of the block
253  */
254 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
255 {
256         loff_t ofs = 0;
257         int die = 0, boundary;
258
259         if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
260                 block -= this->density_mask;
261                 die = 1;
262                 ofs = this->diesize[0];
263         }
264
265         boundary = this->boundary[die];
266         ofs += (loff_t) block << (this->erase_shift - 1);
267         if (block > (boundary + 1))
268                 ofs += (loff_t) (block - boundary - 1)
269                         << (this->erase_shift - 1);
270         return ofs;
271 }
272
273 loff_t onenand_addr(struct onenand_chip *this, int block)
274 {
275         if (!FLEXONENAND(this))
276                 return (loff_t) block << this->erase_shift;
277         return flexonenand_addr(this, block);
278 }
279
280 /**
281  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
282  * @param mtd           MTD device structure
283  * @param addr          address whose erase region needs to be identified
284  */
285 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
286 {
287         int i;
288
289         for (i = 0; i < mtd->numeraseregions; i++)
290                 if (addr < mtd->eraseregions[i].offset)
291                         break;
292         return i - 1;
293 }
294
295 /**
296  * onenand_get_density - [DEFAULT] Get OneNAND density
297  * @param dev_id        OneNAND device ID
298  *
299  * Get OneNAND density from device ID
300  */
301 static inline int onenand_get_density(int dev_id)
302 {
303         int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
304         return (density & ONENAND_DEVICE_DENSITY_MASK);
305 }
306
307 /**
308  * onenand_command - [DEFAULT] Send command to OneNAND device
309  * @param mtd           MTD device structure
310  * @param cmd           the command to be sent
311  * @param addr          offset to read from or write to
312  * @param len           number of bytes to read or write
313  *
314  * Send command to OneNAND device. This function is used for middle/large page
315  * devices (1KB/2KB Bytes per page)
316  */
317 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
318                            size_t len)
319 {
320         struct onenand_chip *this = mtd->priv;
321         int value;
322         int block, page;
323
324         /* Now we use page size operation */
325         int sectors = 0, count = 0;
326
327         /* Address translation */
328         switch (cmd) {
329         case ONENAND_CMD_UNLOCK:
330         case ONENAND_CMD_LOCK:
331         case ONENAND_CMD_LOCK_TIGHT:
332         case ONENAND_CMD_UNLOCK_ALL:
333                 block = -1;
334                 page = -1;
335                 break;
336
337         case FLEXONENAND_CMD_PI_ACCESS:
338                 /* addr contains die index */
339                 block = addr * this->density_mask;
340                 page = -1;
341                 break;
342
343         case ONENAND_CMD_ERASE:
344         case ONENAND_CMD_BUFFERRAM:
345                 block = onenand_block(this, addr);
346                 page = -1;
347                 break;
348
349         case FLEXONENAND_CMD_READ_PI:
350                 cmd = ONENAND_CMD_READ;
351                 block = addr * this->density_mask;
352                 page = 0;
353                 break;
354
355         default:
356                 block = onenand_block(this, addr);
357                 page = (int) (addr
358                         - onenand_addr(this, block)) >> this->page_shift;
359                 page &= this->page_mask;
360                 break;
361         }
362
363         /* NOTE: The setting order of the registers is very important! */
364         if (cmd == ONENAND_CMD_BUFFERRAM) {
365                 /* Select DataRAM for DDP */
366                 value = onenand_bufferram_address(this, block);
367                 this->write_word(value,
368                                  this->base + ONENAND_REG_START_ADDRESS2);
369
370                 if (ONENAND_IS_4KB_PAGE(this))
371                         ONENAND_SET_BUFFERRAM0(this);
372                 else
373                         /* Switch to the next data buffer */
374                         ONENAND_SET_NEXT_BUFFERRAM(this);
375
376                 return 0;
377         }
378
379         if (block != -1) {
380                 /* Write 'DFS, FBA' of Flash */
381                 value = onenand_block_address(this, block);
382                 this->write_word(value,
383                                  this->base + ONENAND_REG_START_ADDRESS1);
384
385                 /* Select DataRAM for DDP */
386                 value = onenand_bufferram_address(this, block);
387                 this->write_word(value,
388                                  this->base + ONENAND_REG_START_ADDRESS2);
389         }
390
391         if (page != -1) {
392                 int dataram;
393
394                 switch (cmd) {
395                 case FLEXONENAND_CMD_RECOVER_LSB:
396                 case ONENAND_CMD_READ:
397                 case ONENAND_CMD_READOOB:
398                         if (ONENAND_IS_4KB_PAGE(this))
399                                 dataram = ONENAND_SET_BUFFERRAM0(this);
400                         else
401                                 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
402
403                         break;
404
405                 default:
406                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
407                         break;
408                 }
409
410                 /* Write 'FPA, FSA' of Flash */
411                 value = onenand_page_address(page, sectors);
412                 this->write_word(value,
413                                  this->base + ONENAND_REG_START_ADDRESS8);
414
415                 /* Write 'BSA, BSC' of DataRAM */
416                 value = onenand_buffer_address(dataram, sectors, count);
417                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
418         }
419
420         /* Interrupt clear */
421         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
422         /* Write command */
423         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
424
425         return 0;
426 }
427
428 /**
429  * onenand_read_ecc - return ecc status
430  * @param this          onenand chip structure
431  */
432 static int onenand_read_ecc(struct onenand_chip *this)
433 {
434         int ecc, i;
435
436         if (!FLEXONENAND(this))
437                 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
438
439         for (i = 0; i < 4; i++) {
440                 ecc = this->read_word(this->base
441                                 + ((ONENAND_REG_ECC_STATUS + i) << 1));
442                 if (likely(!ecc))
443                         continue;
444                 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
445                         return ONENAND_ECC_2BIT_ALL;
446         }
447
448         return 0;
449 }
450
451 /**
452  * onenand_wait - [DEFAULT] wait until the command is done
453  * @param mtd           MTD device structure
454  * @param state         state to select the max. timeout value
455  *
456  * Wait for command done. This applies to all OneNAND command
457  * Read can take up to 30us, erase up to 2ms and program up to 350us
458  * according to general OneNAND specs
459  */
460 static int onenand_wait(struct mtd_info *mtd, int state)
461 {
462         struct onenand_chip *this = mtd->priv;
463         unsigned int flags = ONENAND_INT_MASTER;
464         unsigned int interrupt = 0;
465         unsigned int ctrl;
466
467         while (1) {
468                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
469                 if (interrupt & flags)
470                         break;
471         }
472
473         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
474
475         if (interrupt & ONENAND_INT_READ) {
476                 int ecc = onenand_read_ecc(this);
477                 if (ecc & ONENAND_ECC_2BIT_ALL) {
478                         printk("onenand_wait: ECC error = 0x%04x\n", ecc);
479                         return -EBADMSG;
480                 }
481         }
482
483         if (ctrl & ONENAND_CTRL_ERROR) {
484                 printk("onenand_wait: controller error = 0x%04x\n", ctrl);
485                 if (ctrl & ONENAND_CTRL_LOCK)
486                         printk("onenand_wait: it's locked error = 0x%04x\n",
487                                 ctrl);
488
489                 return -EIO;
490         }
491
492
493         return 0;
494 }
495
496 /**
497  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
498  * @param mtd           MTD data structure
499  * @param area          BufferRAM area
500  * @return              offset given area
501  *
502  * Return BufferRAM offset given area
503  */
504 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
505 {
506         struct onenand_chip *this = mtd->priv;
507
508         if (ONENAND_CURRENT_BUFFERRAM(this)) {
509                 if (area == ONENAND_DATARAM)
510                         return mtd->writesize;
511                 if (area == ONENAND_SPARERAM)
512                         return mtd->oobsize;
513         }
514
515         return 0;
516 }
517
518 /**
519  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
520  * @param mtd           MTD data structure
521  * @param area          BufferRAM area
522  * @param buffer        the databuffer to put/get data
523  * @param offset        offset to read from or write to
524  * @param count         number of bytes to read/write
525  *
526  * Read the BufferRAM area
527  */
528 static int onenand_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
529                                   unsigned char *buffer, int offset,
530                                   size_t count)
531 {
532         struct onenand_chip *this = mtd->priv;
533         void __iomem *bufferram;
534
535         bufferram = this->base + area;
536         bufferram += onenand_bufferram_offset(mtd, area);
537
538         memcpy_16(buffer, bufferram + offset, count);
539
540         return 0;
541 }
542
543 /**
544  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
545  * @param mtd           MTD data structure
546  * @param area          BufferRAM area
547  * @param buffer        the databuffer to put/get data
548  * @param offset        offset to read from or write to
549  * @param count         number of bytes to read/write
550  *
551  * Read the BufferRAM area with Sync. Burst Mode
552  */
553 static int onenand_sync_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
554                                        unsigned char *buffer, int offset,
555                                        size_t count)
556 {
557         struct onenand_chip *this = mtd->priv;
558         void __iomem *bufferram;
559
560         bufferram = this->base + area;
561         bufferram += onenand_bufferram_offset(mtd, area);
562
563         this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
564
565         memcpy_16(buffer, bufferram + offset, count);
566
567         this->mmcontrol(mtd, 0);
568
569         return 0;
570 }
571
572 /**
573  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
574  * @param mtd           MTD data structure
575  * @param area          BufferRAM area
576  * @param buffer        the databuffer to put/get data
577  * @param offset        offset to read from or write to
578  * @param count         number of bytes to read/write
579  *
580  * Write the BufferRAM area
581  */
582 static int onenand_write_bufferram(struct mtd_info *mtd, loff_t addr, int area,
583                                    const unsigned char *buffer, int offset,
584                                    size_t count)
585 {
586         struct onenand_chip *this = mtd->priv;
587         void __iomem *bufferram;
588
589         bufferram = this->base + area;
590         bufferram += onenand_bufferram_offset(mtd, area);
591
592         memcpy_16(bufferram + offset, buffer, count);
593
594         return 0;
595 }
596
597 /**
598  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
599  * @param mtd           MTD data structure
600  * @param addr          address to check
601  * @return              blockpage address
602  *
603  * Get blockpage address at 2x program mode
604  */
605 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
606 {
607         struct onenand_chip *this = mtd->priv;
608         int blockpage, block, page;
609
610         /* Calculate the even block number */
611         block = (int) (addr >> this->erase_shift) & ~1;
612         /* Is it the odd plane? */
613         if (addr & this->writesize)
614                 block++;
615         page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
616         blockpage = (block << 7) | page;
617
618         return blockpage;
619 }
620
621 /**
622  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
623  * @param mtd           MTD data structure
624  * @param addr          address to check
625  * @return              1 if there are valid data, otherwise 0
626  *
627  * Check bufferram if there is data we required
628  */
629 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
630 {
631         struct onenand_chip *this = mtd->priv;
632         int blockpage, found = 0;
633         unsigned int i;
634
635         if (ONENAND_IS_2PLANE(this))
636                 blockpage = onenand_get_2x_blockpage(mtd, addr);
637         else
638                 blockpage = (int) (addr >> this->page_shift);
639
640         /* Is there valid data? */
641         i = ONENAND_CURRENT_BUFFERRAM(this);
642         if (this->bufferram[i].blockpage == blockpage)
643                 found = 1;
644         else {
645                 /* Check another BufferRAM */
646                 i = ONENAND_NEXT_BUFFERRAM(this);
647                 if (this->bufferram[i].blockpage == blockpage) {
648                         ONENAND_SET_NEXT_BUFFERRAM(this);
649                         found = 1;
650                 }
651         }
652
653         if (found && ONENAND_IS_DDP(this)) {
654                 /* Select DataRAM for DDP */
655                 int block = onenand_block(this, addr);
656                 int value = onenand_bufferram_address(this, block);
657                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
658         }
659
660         return found;
661 }
662
663 /**
664  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
665  * @param mtd           MTD data structure
666  * @param addr          address to update
667  * @param valid         valid flag
668  *
669  * Update BufferRAM information
670  */
671 static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
672                                     int valid)
673 {
674         struct onenand_chip *this = mtd->priv;
675         int blockpage;
676         unsigned int i;
677
678         if (ONENAND_IS_2PLANE(this))
679                 blockpage = onenand_get_2x_blockpage(mtd, addr);
680         else
681                 blockpage = (int)(addr >> this->page_shift);
682
683         /* Invalidate another BufferRAM */
684         i = ONENAND_NEXT_BUFFERRAM(this);
685         if (this->bufferram[i].blockpage == blockpage)
686                 this->bufferram[i].blockpage = -1;
687
688         /* Update BufferRAM */
689         i = ONENAND_CURRENT_BUFFERRAM(this);
690         if (valid)
691                 this->bufferram[i].blockpage = blockpage;
692         else
693                 this->bufferram[i].blockpage = -1;
694
695         return 0;
696 }
697
698 /**
699  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
700  * @param mtd           MTD data structure
701  * @param addr          start address to invalidate
702  * @param len           length to invalidate
703  *
704  * Invalidate BufferRAM information
705  */
706 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
707                                          unsigned int len)
708 {
709         struct onenand_chip *this = mtd->priv;
710         int i;
711         loff_t end_addr = addr + len;
712
713         /* Invalidate BufferRAM */
714         for (i = 0; i < MAX_BUFFERRAM; i++) {
715                 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
716
717                 if (buf_addr >= addr && buf_addr < end_addr)
718                         this->bufferram[i].blockpage = -1;
719         }
720 }
721
722 /**
723  * onenand_get_device - [GENERIC] Get chip for selected access
724  * @param mtd           MTD device structure
725  * @param new_state     the state which is requested
726  *
727  * Get the device and lock it for exclusive access
728  */
729 static void onenand_get_device(struct mtd_info *mtd, int new_state)
730 {
731         /* Do nothing */
732 }
733
734 /**
735  * onenand_release_device - [GENERIC] release chip
736  * @param mtd           MTD device structure
737  *
738  * Deselect, release chip lock and wake up anyone waiting on the device
739  */
740 static void onenand_release_device(struct mtd_info *mtd)
741 {
742         /* Do nothing */
743 }
744
745 /**
746  * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
747  * @param mtd           MTD device structure
748  * @param buf           destination address
749  * @param column        oob offset to read from
750  * @param thislen       oob length to read
751  */
752 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf,
753                                         int column, int thislen)
754 {
755         struct onenand_chip *this = mtd->priv;
756         struct nand_oobfree *free;
757         int readcol = column;
758         int readend = column + thislen;
759         int lastgap = 0;
760         unsigned int i;
761         uint8_t *oob_buf = this->oob_buf;
762
763         free = this->ecclayout->oobfree;
764         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
765                 if (readcol >= lastgap)
766                         readcol += free->offset - lastgap;
767                 if (readend >= lastgap)
768                         readend += free->offset - lastgap;
769                 lastgap = free->offset + free->length;
770         }
771         this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
772         free = this->ecclayout->oobfree;
773         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
774                 int free_end = free->offset + free->length;
775                 if (free->offset < readend && free_end > readcol) {
776                         int st = max_t(int,free->offset,readcol);
777                         int ed = min_t(int,free_end,readend);
778                         int n = ed - st;
779                         memcpy(buf, oob_buf + st, n);
780                         buf += n;
781                 } else if (column == 0)
782                         break;
783         }
784         return 0;
785 }
786
787 /**
788  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
789  * @param mtd           MTD device structure
790  * @param addr          address to recover
791  * @param status        return value from onenand_wait
792  *
793  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
794  * lower page address and MSB page has higher page address in paired pages.
795  * If power off occurs during MSB page program, the paired LSB page data can
796  * become corrupt. LSB page recovery read is a way to read LSB page though page
797  * data are corrupted. When uncorrectable error occurs as a result of LSB page
798  * read after power up, issue LSB page recovery read.
799  */
800 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
801 {
802         struct onenand_chip *this = mtd->priv;
803         int i;
804
805         /* Recovery is only for Flex-OneNAND */
806         if (!FLEXONENAND(this))
807                 return status;
808
809         /* check if we failed due to uncorrectable error */
810         if (status != -EBADMSG && status != ONENAND_BBT_READ_ECC_ERROR)
811                 return status;
812
813         /* check if address lies in MLC region */
814         i = flexonenand_region(mtd, addr);
815         if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
816                 return status;
817
818         printk("onenand_recover_lsb:"
819                 "Attempting to recover from uncorrectable read\n");
820
821         /* Issue the LSB page recovery command */
822         this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
823         return this->wait(mtd, FL_READING);
824 }
825
826 /**
827  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
828  * @param mtd           MTD device structure
829  * @param from          offset to read from
830  * @param ops           oob operation description structure
831  *
832  * OneNAND read main and/or out-of-band data
833  */
834 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
835                 struct mtd_oob_ops *ops)
836 {
837         struct onenand_chip *this = mtd->priv;
838         struct mtd_ecc_stats stats;
839         size_t len = ops->len;
840         size_t ooblen = ops->ooblen;
841         u_char *buf = ops->datbuf;
842         u_char *oobbuf = ops->oobbuf;
843         int read = 0, column, thislen;
844         int oobread = 0, oobcolumn, thisooblen, oobsize;
845         int ret = 0, boundary = 0;
846         int writesize = this->writesize;
847
848         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
849
850         if (ops->mode == MTD_OOB_AUTO)
851                 oobsize = this->ecclayout->oobavail;
852         else
853                 oobsize = mtd->oobsize;
854
855         oobcolumn = from & (mtd->oobsize - 1);
856
857         /* Do not allow reads past end of device */
858         if ((from + len) > mtd->size) {
859                 printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
860                 ops->retlen = 0;
861                 ops->oobretlen = 0;
862                 return -EINVAL;
863         }
864
865         stats = mtd->ecc_stats;
866
867         /* Read-while-load method */
868         /* Note: We can't use this feature in MLC */
869
870         /* Do first load to bufferRAM */
871         if (read < len) {
872                 if (!onenand_check_bufferram(mtd, from)) {
873                         this->main_buf = buf;
874                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
875                         ret = this->wait(mtd, FL_READING);
876                         if (unlikely(ret))
877                                 ret = onenand_recover_lsb(mtd, from, ret);
878                         onenand_update_bufferram(mtd, from, !ret);
879                         if (ret == -EBADMSG)
880                                 ret = 0;
881                 }
882         }
883
884         thislen = min_t(int, writesize, len - read);
885         column = from & (writesize - 1);
886         if (column + thislen > writesize)
887                 thislen = writesize - column;
888
889         while (!ret) {
890                 /* If there is more to load then start next load */
891                 from += thislen;
892                 if (!ONENAND_IS_4KB_PAGE(this) && read + thislen < len) {
893                         this->main_buf = buf + thislen;
894                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
895                         /*
896                          * Chip boundary handling in DDP
897                          * Now we issued chip 1 read and pointed chip 1
898                          * bufferam so we have to point chip 0 bufferam.
899                          */
900                         if (ONENAND_IS_DDP(this) &&
901                                         unlikely(from == (this->chipsize >> 1))) {
902                                 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
903                                 boundary = 1;
904                         } else
905                                 boundary = 0;
906                         ONENAND_SET_PREV_BUFFERRAM(this);
907                 }
908
909                 /* While load is going, read from last bufferRAM */
910                 this->read_bufferram(mtd, from - thislen, ONENAND_DATARAM, buf, column, thislen);
911
912                 /* Read oob area if needed */
913                 if (oobbuf) {
914                         thisooblen = oobsize - oobcolumn;
915                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
916
917                         if (ops->mode == MTD_OOB_AUTO)
918                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
919                         else
920                                 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
921                         oobread += thisooblen;
922                         oobbuf += thisooblen;
923                         oobcolumn = 0;
924                 }
925
926                 if (ONENAND_IS_4KB_PAGE(this) && (read + thislen < len)) {
927                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
928                         ret = this->wait(mtd, FL_READING);
929                         if (unlikely(ret))
930                                 ret = onenand_recover_lsb(mtd, from, ret);
931                         onenand_update_bufferram(mtd, from, !ret);
932                         if (ret == -EBADMSG)
933                                 ret = 0;
934                 }
935
936                 /* See if we are done */
937                 read += thislen;
938                 if (read == len)
939                         break;
940                 /* Set up for next read from bufferRAM */
941                 if (unlikely(boundary))
942                         this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
943                 if (!ONENAND_IS_4KB_PAGE(this))
944                         ONENAND_SET_NEXT_BUFFERRAM(this);
945                 buf += thislen;
946                 thislen = min_t(int, writesize, len - read);
947                 column = 0;
948
949                 if (!ONENAND_IS_4KB_PAGE(this)) {
950                         /* Now wait for load */
951                         ret = this->wait(mtd, FL_READING);
952                         onenand_update_bufferram(mtd, from, !ret);
953                         if (ret == -EBADMSG)
954                                 ret = 0;
955                 }
956         }
957
958         /*
959          * Return success, if no ECC failures, else -EBADMSG
960          * fs driver will take care of that, because
961          * retlen == desired len and result == -EBADMSG
962          */
963         ops->retlen = read;
964         ops->oobretlen = oobread;
965
966         if (ret)
967                 return ret;
968
969         if (mtd->ecc_stats.failed - stats.failed)
970                 return -EBADMSG;
971
972         return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
973 }
974
975 /**
976  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
977  * @param mtd           MTD device structure
978  * @param from          offset to read from
979  * @param ops           oob operation description structure
980  *
981  * OneNAND read out-of-band data from the spare area
982  */
983 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
984                 struct mtd_oob_ops *ops)
985 {
986         struct onenand_chip *this = mtd->priv;
987         struct mtd_ecc_stats stats;
988         int read = 0, thislen, column, oobsize;
989         size_t len = ops->ooblen;
990         mtd_oob_mode_t mode = ops->mode;
991         u_char *buf = ops->oobbuf;
992         int ret = 0, readcmd;
993
994         from += ops->ooboffs;
995
996         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
997
998         /* Initialize return length value */
999         ops->oobretlen = 0;
1000
1001         if (mode == MTD_OOB_AUTO)
1002                 oobsize = this->ecclayout->oobavail;
1003         else
1004                 oobsize = mtd->oobsize;
1005
1006         column = from & (mtd->oobsize - 1);
1007
1008         if (unlikely(column >= oobsize)) {
1009                 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
1010                 return -EINVAL;
1011         }
1012
1013         /* Do not allow reads past end of device */
1014         if (unlikely(from >= mtd->size ||
1015                 column + len > ((mtd->size >> this->page_shift) -
1016                                 (from >> this->page_shift)) * oobsize)) {
1017                 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
1018                 return -EINVAL;
1019         }
1020
1021         stats = mtd->ecc_stats;
1022
1023         readcmd = ONENAND_IS_4KB_PAGE(this) ?
1024                 ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1025
1026         while (read < len) {
1027                 thislen = oobsize - column;
1028                 thislen = min_t(int, thislen, len);
1029
1030                 this->spare_buf = buf;
1031                 this->command(mtd, readcmd, from, mtd->oobsize);
1032
1033                 onenand_update_bufferram(mtd, from, 0);
1034
1035                 ret = this->wait(mtd, FL_READING);
1036                 if (unlikely(ret))
1037                         ret = onenand_recover_lsb(mtd, from, ret);
1038
1039                 if (ret && ret != -EBADMSG) {
1040                         printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1041                         break;
1042                 }
1043
1044                 if (mode == MTD_OOB_AUTO)
1045                         onenand_transfer_auto_oob(mtd, buf, column, thislen);
1046                 else
1047                         this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1048
1049                 read += thislen;
1050
1051                 if (read == len)
1052                         break;
1053
1054                 buf += thislen;
1055
1056                 /* Read more? */
1057                 if (read < len) {
1058                         /* Page size */
1059                         from += mtd->writesize;
1060                         column = 0;
1061                 }
1062         }
1063
1064         ops->oobretlen = read;
1065
1066         if (ret)
1067                 return ret;
1068
1069         if (mtd->ecc_stats.failed - stats.failed)
1070                 return -EBADMSG;
1071
1072         return 0;
1073 }
1074
1075 /**
1076  * onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc
1077  * @param mtd           MTD device structure
1078  * @param from          offset to read from
1079  * @param len           number of bytes to read
1080  * @param retlen        pointer to variable to store the number of read bytes
1081  * @param buf           the databuffer to put data
1082  *
1083  * This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL
1084 */
1085 int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1086                  size_t * retlen, u_char * buf)
1087 {
1088         struct mtd_oob_ops ops = {
1089                 .len    = len,
1090                 .ooblen = 0,
1091                 .datbuf = buf,
1092                 .oobbuf = NULL,
1093         };
1094         int ret;
1095
1096         onenand_get_device(mtd, FL_READING);
1097         ret = onenand_read_ops_nolock(mtd, from, &ops);
1098         onenand_release_device(mtd);
1099
1100         *retlen = ops.retlen;
1101         return ret;
1102 }
1103
1104 /**
1105  * onenand_read_oob - [MTD Interface] OneNAND read out-of-band
1106  * @param mtd           MTD device structure
1107  * @param from          offset to read from
1108  * @param ops           oob operations description structure
1109  *
1110  * OneNAND main and/or out-of-band
1111  */
1112 int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1113                         struct mtd_oob_ops *ops)
1114 {
1115         int ret;
1116
1117         switch (ops->mode) {
1118         case MTD_OOB_PLACE:
1119         case MTD_OOB_AUTO:
1120                 break;
1121         case MTD_OOB_RAW:
1122                 /* Not implemented yet */
1123         default:
1124                 return -EINVAL;
1125         }
1126
1127         onenand_get_device(mtd, FL_READING);
1128         if (ops->datbuf)
1129                 ret = onenand_read_ops_nolock(mtd, from, ops);
1130         else
1131                 ret = onenand_read_oob_nolock(mtd, from, ops);
1132         onenand_release_device(mtd);
1133
1134         return ret;
1135 }
1136
1137 /**
1138  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1139  * @param mtd           MTD device structure
1140  * @param state         state to select the max. timeout value
1141  *
1142  * Wait for command done.
1143  */
1144 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1145 {
1146         struct onenand_chip *this = mtd->priv;
1147         unsigned int flags = ONENAND_INT_MASTER;
1148         unsigned int interrupt;
1149         unsigned int ctrl;
1150
1151         while (1) {
1152                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1153                 if (interrupt & flags)
1154                         break;
1155         }
1156
1157         /* To get correct interrupt status in timeout case */
1158         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1159         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1160
1161         if (interrupt & ONENAND_INT_READ) {
1162                 int ecc = onenand_read_ecc(this);
1163                 if (ecc & ONENAND_ECC_2BIT_ALL) {
1164                         printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x"
1165                                 ", controller = 0x%04x\n", ecc, ctrl);
1166                         return ONENAND_BBT_READ_ERROR;
1167                 }
1168         } else {
1169                 printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1170                                 "ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1171                 return ONENAND_BBT_READ_FATAL_ERROR;
1172         }
1173
1174         /* Initial bad block case: 0x2400 or 0x0400 */
1175         if (ctrl & ONENAND_CTRL_ERROR) {
1176                 printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
1177                 return ONENAND_BBT_READ_ERROR;
1178         }
1179
1180         return 0;
1181 }
1182
1183 /**
1184  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1185  * @param mtd           MTD device structure
1186  * @param from          offset to read from
1187  * @param ops           oob operation description structure
1188  *
1189  * OneNAND read out-of-band data from the spare area for bbt scan
1190  */
1191 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1192                 struct mtd_oob_ops *ops)
1193 {
1194         struct onenand_chip *this = mtd->priv;
1195         int read = 0, thislen, column;
1196         int ret = 0, readcmd;
1197         size_t len = ops->ooblen;
1198         u_char *buf = ops->oobbuf;
1199
1200         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1201
1202         readcmd = ONENAND_IS_4KB_PAGE(this) ?
1203                 ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1204
1205         /* Initialize return value */
1206         ops->oobretlen = 0;
1207
1208         /* Do not allow reads past end of device */
1209         if (unlikely((from + len) > mtd->size)) {
1210                 printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1211                 return ONENAND_BBT_READ_FATAL_ERROR;
1212         }
1213
1214         /* Grab the lock and see if the device is available */
1215         onenand_get_device(mtd, FL_READING);
1216
1217         column = from & (mtd->oobsize - 1);
1218
1219         while (read < len) {
1220
1221                 thislen = mtd->oobsize - column;
1222                 thislen = min_t(int, thislen, len);
1223
1224                 this->spare_buf = buf;
1225                 this->command(mtd, readcmd, from, mtd->oobsize);
1226
1227                 onenand_update_bufferram(mtd, from, 0);
1228
1229                 ret = this->bbt_wait(mtd, FL_READING);
1230                 if (unlikely(ret))
1231                         ret = onenand_recover_lsb(mtd, from, ret);
1232
1233                 if (ret)
1234                         break;
1235
1236                 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1237                 read += thislen;
1238                 if (read == len)
1239                         break;
1240
1241                 buf += thislen;
1242
1243                 /* Read more? */
1244                 if (read < len) {
1245                         /* Update Page size */
1246                         from += this->writesize;
1247                         column = 0;
1248                 }
1249         }
1250
1251         /* Deselect and wake up anyone waiting on the device */
1252         onenand_release_device(mtd);
1253
1254         ops->oobretlen = read;
1255         return ret;
1256 }
1257
1258
1259 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1260 /**
1261  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1262  * @param mtd           MTD device structure
1263  * @param buf           the databuffer to verify
1264  * @param to            offset to read from
1265  */
1266 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1267 {
1268         struct onenand_chip *this = mtd->priv;
1269         u_char *oob_buf = this->oob_buf;
1270         int status, i, readcmd;
1271
1272         readcmd = ONENAND_IS_4KB_PAGE(this) ?
1273                 ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1274
1275         this->command(mtd, readcmd, to, mtd->oobsize);
1276         onenand_update_bufferram(mtd, to, 0);
1277         status = this->wait(mtd, FL_READING);
1278         if (status)
1279                 return status;
1280
1281         this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1282         for (i = 0; i < mtd->oobsize; i++)
1283                 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1284                         return -EBADMSG;
1285
1286         return 0;
1287 }
1288
1289 /**
1290  * onenand_verify - [GENERIC] verify the chip contents after a write
1291  * @param mtd          MTD device structure
1292  * @param buf          the databuffer to verify
1293  * @param addr         offset to read from
1294  * @param len          number of bytes to read and compare
1295  */
1296 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1297 {
1298         struct onenand_chip *this = mtd->priv;
1299         void __iomem *dataram;
1300         int ret = 0;
1301         int thislen, column;
1302
1303         while (len != 0) {
1304                 thislen = min_t(int, this->writesize, len);
1305                 column = addr & (this->writesize - 1);
1306                 if (column + thislen > this->writesize)
1307                         thislen = this->writesize - column;
1308
1309                 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1310
1311                 onenand_update_bufferram(mtd, addr, 0);
1312
1313                 ret = this->wait(mtd, FL_READING);
1314                 if (ret)
1315                         return ret;
1316
1317                 onenand_update_bufferram(mtd, addr, 1);
1318
1319                 dataram = this->base + ONENAND_DATARAM;
1320                 dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1321
1322                 if (memcmp(buf, dataram + column, thislen))
1323                         return -EBADMSG;
1324
1325                 len -= thislen;
1326                 buf += thislen;
1327                 addr += thislen;
1328         }
1329
1330         return 0;
1331 }
1332 #else
1333 #define onenand_verify(...)             (0)
1334 #define onenand_verify_oob(...)         (0)
1335 #endif
1336
1337 #define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1338
1339 /**
1340  * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1341  * @param mtd           MTD device structure
1342  * @param oob_buf       oob buffer
1343  * @param buf           source address
1344  * @param column        oob offset to write to
1345  * @param thislen       oob length to write
1346  */
1347 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1348                 const u_char *buf, int column, int thislen)
1349 {
1350         struct onenand_chip *this = mtd->priv;
1351         struct nand_oobfree *free;
1352         int writecol = column;
1353         int writeend = column + thislen;
1354         int lastgap = 0;
1355         unsigned int i;
1356
1357         free = this->ecclayout->oobfree;
1358         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1359                 if (writecol >= lastgap)
1360                         writecol += free->offset - lastgap;
1361                 if (writeend >= lastgap)
1362                         writeend += free->offset - lastgap;
1363                 lastgap = free->offset + free->length;
1364         }
1365         free = this->ecclayout->oobfree;
1366         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1367                 int free_end = free->offset + free->length;
1368                 if (free->offset < writeend && free_end > writecol) {
1369                         int st = max_t(int,free->offset,writecol);
1370                         int ed = min_t(int,free_end,writeend);
1371                         int n = ed - st;
1372                         memcpy(oob_buf + st, buf, n);
1373                         buf += n;
1374                 } else if (column == 0)
1375                         break;
1376         }
1377         return 0;
1378 }
1379
1380 /**
1381  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1382  * @param mtd           MTD device structure
1383  * @param to            offset to write to
1384  * @param ops           oob operation description structure
1385  *
1386  * Write main and/or oob with ECC
1387  */
1388 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1389                 struct mtd_oob_ops *ops)
1390 {
1391         struct onenand_chip *this = mtd->priv;
1392         int written = 0, column, thislen, subpage;
1393         int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1394         size_t len = ops->len;
1395         size_t ooblen = ops->ooblen;
1396         const u_char *buf = ops->datbuf;
1397         const u_char *oob = ops->oobbuf;
1398         u_char *oobbuf;
1399         int ret = 0;
1400
1401         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1402
1403         /* Initialize retlen, in case of early exit */
1404         ops->retlen = 0;
1405         ops->oobretlen = 0;
1406
1407         /* Do not allow writes past end of device */
1408         if (unlikely((to + len) > mtd->size)) {
1409                 printk(KERN_ERR "onenand_write_ops_nolock: Attempt write to past end of device\n");
1410                 return -EINVAL;
1411         }
1412
1413         /* Reject writes, which are not page aligned */
1414         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1415                 printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1416                 return -EINVAL;
1417         }
1418
1419         if (ops->mode == MTD_OOB_AUTO)
1420                 oobsize = this->ecclayout->oobavail;
1421         else
1422                 oobsize = mtd->oobsize;
1423
1424         oobcolumn = to & (mtd->oobsize - 1);
1425
1426         column = to & (mtd->writesize - 1);
1427
1428         /* Loop until all data write */
1429         while (written < len) {
1430                 u_char *wbuf = (u_char *) buf;
1431
1432                 thislen = min_t(int, mtd->writesize - column, len - written);
1433                 thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1434
1435                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1436
1437                 /* Partial page write */
1438                 subpage = thislen < mtd->writesize;
1439                 if (subpage) {
1440                         memset(this->page_buf, 0xff, mtd->writesize);
1441                         memcpy(this->page_buf + column, buf, thislen);
1442                         wbuf = this->page_buf;
1443                 }
1444
1445                 this->write_bufferram(mtd, to, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1446
1447                 if (oob) {
1448                         oobbuf = this->oob_buf;
1449
1450                         /* We send data to spare ram with oobsize
1451                          *                          * to prevent byte access */
1452                         memset(oobbuf, 0xff, mtd->oobsize);
1453                         if (ops->mode == MTD_OOB_AUTO)
1454                                 onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1455                         else
1456                                 memcpy(oobbuf + oobcolumn, oob, thisooblen);
1457
1458                         oobwritten += thisooblen;
1459                         oob += thisooblen;
1460                         oobcolumn = 0;
1461                 } else
1462                         oobbuf = (u_char *) ffchars;
1463
1464                 this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1465
1466                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1467
1468                 ret = this->wait(mtd, FL_WRITING);
1469
1470                 /* In partial page write we don't update bufferram */
1471                 onenand_update_bufferram(mtd, to, !ret && !subpage);
1472                 if (ONENAND_IS_2PLANE(this)) {
1473                         ONENAND_SET_BUFFERRAM1(this);
1474                         onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1475                 }
1476
1477                 if (ret) {
1478                         printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1479                         break;
1480                 }
1481
1482                 /* Only check verify write turn on */
1483                 ret = onenand_verify(mtd, buf, to, thislen);
1484                 if (ret) {
1485                         printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1486                         break;
1487                 }
1488
1489                 written += thislen;
1490
1491                 if (written == len)
1492                         break;
1493
1494                 column = 0;
1495                 to += thislen;
1496                 buf += thislen;
1497         }
1498
1499         ops->retlen = written;
1500
1501         return ret;
1502 }
1503
1504 /**
1505  * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
1506  * @param mtd           MTD device structure
1507  * @param to            offset to write to
1508  * @param len           number of bytes to write
1509  * @param retlen        pointer to variable to store the number of written bytes
1510  * @param buf           the data to write
1511  * @param mode          operation mode
1512  *
1513  * OneNAND write out-of-band
1514  */
1515 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1516                 struct mtd_oob_ops *ops)
1517 {
1518         struct onenand_chip *this = mtd->priv;
1519         int column, ret = 0, oobsize;
1520         int written = 0, oobcmd;
1521         u_char *oobbuf;
1522         size_t len = ops->ooblen;
1523         const u_char *buf = ops->oobbuf;
1524         mtd_oob_mode_t mode = ops->mode;
1525
1526         to += ops->ooboffs;
1527
1528         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1529
1530         /* Initialize retlen, in case of early exit */
1531         ops->oobretlen = 0;
1532
1533         if (mode == MTD_OOB_AUTO)
1534                 oobsize = this->ecclayout->oobavail;
1535         else
1536                 oobsize = mtd->oobsize;
1537
1538         column = to & (mtd->oobsize - 1);
1539
1540         if (unlikely(column >= oobsize)) {
1541                 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1542                 return -EINVAL;
1543         }
1544
1545         /* For compatibility with NAND: Do not allow write past end of page */
1546         if (unlikely(column + len > oobsize)) {
1547                 printk(KERN_ERR "onenand_write_oob_nolock: "
1548                                 "Attempt to write past end of page\n");
1549                 return -EINVAL;
1550         }
1551
1552         /* Do not allow reads past end of device */
1553         if (unlikely(to >= mtd->size ||
1554                                 column + len > ((mtd->size >> this->page_shift) -
1555                                         (to >> this->page_shift)) * oobsize)) {
1556                 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
1557                 return -EINVAL;
1558         }
1559
1560         oobbuf = this->oob_buf;
1561
1562         oobcmd = ONENAND_IS_4KB_PAGE(this) ?
1563                 ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
1564
1565         /* Loop until all data write */
1566         while (written < len) {
1567                 int thislen = min_t(int, oobsize, len - written);
1568
1569                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1570
1571                 /* We send data to spare ram with oobsize
1572                  * to prevent byte access */
1573                 memset(oobbuf, 0xff, mtd->oobsize);
1574                 if (mode == MTD_OOB_AUTO)
1575                         onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1576                 else
1577                         memcpy(oobbuf + column, buf, thislen);
1578                 this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1579
1580                 if (ONENAND_IS_4KB_PAGE(this)) {
1581                         /* Set main area of DataRAM to 0xff*/
1582                         memset(this->page_buf, 0xff, mtd->writesize);
1583                         this->write_bufferram(mtd, 0, ONENAND_DATARAM,
1584                                 this->page_buf, 0, mtd->writesize);
1585                 }
1586
1587                 this->command(mtd, oobcmd, to, mtd->oobsize);
1588
1589                 onenand_update_bufferram(mtd, to, 0);
1590                 if (ONENAND_IS_2PLANE(this)) {
1591                         ONENAND_SET_BUFFERRAM1(this);
1592                         onenand_update_bufferram(mtd, to + this->writesize, 0);
1593                 }
1594
1595                 ret = this->wait(mtd, FL_WRITING);
1596                 if (ret) {
1597                         printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
1598                         break;
1599                 }
1600
1601                 ret = onenand_verify_oob(mtd, oobbuf, to);
1602                 if (ret) {
1603                         printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
1604                         break;
1605                 }
1606
1607                 written += thislen;
1608                 if (written == len)
1609                         break;
1610
1611                 to += mtd->writesize;
1612                 buf += thislen;
1613                 column = 0;
1614         }
1615
1616         ops->oobretlen = written;
1617
1618         return ret;
1619 }
1620
1621 /**
1622  * onenand_write - [MTD Interface] compability function for onenand_write_ecc
1623  * @param mtd           MTD device structure
1624  * @param to            offset to write to
1625  * @param len           number of bytes to write
1626  * @param retlen        pointer to variable to store the number of written bytes
1627  * @param buf           the data to write
1628  *
1629  * Write with ECC
1630  */
1631 int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1632                   size_t * retlen, const u_char * buf)
1633 {
1634         struct mtd_oob_ops ops = {
1635                 .len    = len,
1636                 .ooblen = 0,
1637                 .datbuf = (u_char *) buf,
1638                 .oobbuf = NULL,
1639         };
1640         int ret;
1641
1642         onenand_get_device(mtd, FL_WRITING);
1643         ret = onenand_write_ops_nolock(mtd, to, &ops);
1644         onenand_release_device(mtd);
1645
1646         *retlen = ops.retlen;
1647         return ret;
1648 }
1649
1650 /**
1651  * onenand_write_oob - [MTD Interface] OneNAND write out-of-band
1652  * @param mtd           MTD device structure
1653  * @param to            offset to write to
1654  * @param ops           oob operation description structure
1655  *
1656  * OneNAND write main and/or out-of-band
1657  */
1658 int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1659                         struct mtd_oob_ops *ops)
1660 {
1661         int ret;
1662
1663         switch (ops->mode) {
1664         case MTD_OOB_PLACE:
1665         case MTD_OOB_AUTO:
1666                 break;
1667         case MTD_OOB_RAW:
1668                 /* Not implemented yet */
1669         default:
1670                 return -EINVAL;
1671         }
1672
1673         onenand_get_device(mtd, FL_WRITING);
1674         if (ops->datbuf)
1675                 ret = onenand_write_ops_nolock(mtd, to, ops);
1676         else
1677                 ret = onenand_write_oob_nolock(mtd, to, ops);
1678         onenand_release_device(mtd);
1679
1680         return ret;
1681
1682 }
1683
1684 /**
1685  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
1686  * @param mtd           MTD device structure
1687  * @param ofs           offset from device start
1688  * @param allowbbt      1, if its allowed to access the bbt area
1689  *
1690  * Check, if the block is bad, Either by reading the bad block table or
1691  * calling of the scan function.
1692  */
1693 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1694 {
1695         struct onenand_chip *this = mtd->priv;
1696         struct bbm_info *bbm = this->bbm;
1697
1698         /* Return info from the table */
1699         return bbm->isbad_bbt(mtd, ofs, allowbbt);
1700 }
1701
1702
1703 /**
1704  * onenand_erase - [MTD Interface] erase block(s)
1705  * @param mtd           MTD device structure
1706  * @param instr         erase instruction
1707  *
1708  * Erase one ore more blocks
1709  */
1710 int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1711 {
1712         struct onenand_chip *this = mtd->priv;
1713         unsigned int block_size;
1714         loff_t addr = instr->addr;
1715         unsigned int len = instr->len;
1716         int ret = 0, i;
1717         struct mtd_erase_region_info *region = NULL;
1718         unsigned int region_end = 0;
1719
1720         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n",
1721                         (unsigned int) addr, len);
1722
1723         /* Do not allow erase past end of device */
1724         if (unlikely((len + addr) > mtd->size)) {
1725                 MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1726                                         "Erase past end of device\n");
1727                 return -EINVAL;
1728         }
1729
1730         if (FLEXONENAND(this)) {
1731                 /* Find the eraseregion of this address */
1732                 i = flexonenand_region(mtd, addr);
1733                 region = &mtd->eraseregions[i];
1734
1735                 block_size = region->erasesize;
1736                 region_end = region->offset
1737                         + region->erasesize * region->numblocks;
1738
1739                 /* Start address within region must align on block boundary.
1740                  * Erase region's start offset is always block start address.
1741                  */
1742                 if (unlikely((addr - region->offset) & (block_size - 1))) {
1743                         MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1744                                 " Unaligned address\n");
1745                         return -EINVAL;
1746                 }
1747         } else {
1748                 block_size = 1 << this->erase_shift;
1749
1750                 /* Start address must align on block boundary */
1751                 if (unlikely(addr & (block_size - 1))) {
1752                         MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1753                                                 "Unaligned address\n");
1754                         return -EINVAL;
1755                 }
1756         }
1757
1758         /* Length must align on block boundary */
1759         if (unlikely(len & (block_size - 1))) {
1760                 MTDDEBUG (MTD_DEBUG_LEVEL0,
1761                          "onenand_erase: Length not block aligned\n");
1762                 return -EINVAL;
1763         }
1764
1765         instr->fail_addr = 0xffffffff;
1766
1767         /* Grab the lock and see if the device is available */
1768         onenand_get_device(mtd, FL_ERASING);
1769
1770         /* Loop throught the pages */
1771         instr->state = MTD_ERASING;
1772
1773         while (len) {
1774
1775                 /* Check if we have a bad block, we do not erase bad blocks */
1776                 if (instr->priv == 0 && onenand_block_isbad_nolock(mtd, addr, 0)) {
1777                         printk(KERN_WARNING "onenand_erase: attempt to erase"
1778                                 " a bad block at addr 0x%08x\n",
1779                                 (unsigned int) addr);
1780                         instr->state = MTD_ERASE_FAILED;
1781                         goto erase_exit;
1782                 }
1783
1784                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1785
1786                 onenand_invalidate_bufferram(mtd, addr, block_size);
1787
1788                 ret = this->wait(mtd, FL_ERASING);
1789                 /* Check, if it is write protected */
1790                 if (ret) {
1791                         if (ret == -EPERM)
1792                                 MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1793                                           "Device is write protected!!!\n");
1794                         else
1795                                 MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1796                                           "Failed erase, block %d\n",
1797                                         onenand_block(this, addr));
1798                         instr->state = MTD_ERASE_FAILED;
1799                         instr->fail_addr = addr;
1800
1801                         goto erase_exit;
1802                 }
1803
1804                 len -= block_size;
1805                 addr += block_size;
1806
1807                 if (addr == region_end) {
1808                         if (!len)
1809                                 break;
1810                         region++;
1811
1812                         block_size = region->erasesize;
1813                         region_end = region->offset
1814                                 + region->erasesize * region->numblocks;
1815
1816                         if (len & (block_size - 1)) {
1817                                 /* This has been checked at MTD
1818                                  * partitioning level. */
1819                                 printk("onenand_erase: Unaligned address\n");
1820                                 goto erase_exit;
1821                         }
1822                 }
1823         }
1824
1825         instr->state = MTD_ERASE_DONE;
1826
1827 erase_exit:
1828
1829         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1830         /* Do call back function */
1831         if (!ret)
1832                 mtd_erase_callback(instr);
1833
1834         /* Deselect and wake up anyone waiting on the device */
1835         onenand_release_device(mtd);
1836
1837         return ret;
1838 }
1839
1840 /**
1841  * onenand_sync - [MTD Interface] sync
1842  * @param mtd           MTD device structure
1843  *
1844  * Sync is actually a wait for chip ready function
1845  */
1846 void onenand_sync(struct mtd_info *mtd)
1847 {
1848         MTDDEBUG (MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1849
1850         /* Grab the lock and see if the device is available */
1851         onenand_get_device(mtd, FL_SYNCING);
1852
1853         /* Release it and go back */
1854         onenand_release_device(mtd);
1855 }
1856
1857 /**
1858  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1859  * @param mtd           MTD device structure
1860  * @param ofs           offset relative to mtd start
1861  *
1862  * Check whether the block is bad
1863  */
1864 int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1865 {
1866         int ret;
1867
1868         /* Check for invalid offset */
1869         if (ofs > mtd->size)
1870                 return -EINVAL;
1871
1872         onenand_get_device(mtd, FL_READING);
1873         ret = onenand_block_isbad_nolock(mtd,ofs, 0);
1874         onenand_release_device(mtd);
1875         return ret;
1876 }
1877
1878 /**
1879  * onenand_default_block_markbad - [DEFAULT] mark a block bad
1880  * @param mtd           MTD device structure
1881  * @param ofs           offset from device start
1882  *
1883  * This is the default implementation, which can be overridden by
1884  * a hardware specific driver.
1885  */
1886 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1887 {
1888         struct onenand_chip *this = mtd->priv;
1889         struct bbm_info *bbm = this->bbm;
1890         u_char buf[2] = {0, 0};
1891         struct mtd_oob_ops ops = {
1892                 .mode = MTD_OOB_PLACE,
1893                 .ooblen = 2,
1894                 .oobbuf = buf,
1895                 .ooboffs = 0,
1896         };
1897         int block;
1898
1899         /* Get block number */
1900         block = onenand_block(this, ofs);
1901         if (bbm->bbt)
1902                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1903
1904         /* We write two bytes, so we dont have to mess with 16 bit access */
1905         ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1906         return onenand_write_oob_nolock(mtd, ofs, &ops);
1907 }
1908
1909 /**
1910  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1911  * @param mtd           MTD device structure
1912  * @param ofs           offset relative to mtd start
1913  *
1914  * Mark the block as bad
1915  */
1916 int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1917 {
1918         struct onenand_chip *this = mtd->priv;
1919         int ret;
1920
1921         ret = onenand_block_isbad(mtd, ofs);
1922         if (ret) {
1923                 /* If it was bad already, return success and do nothing */
1924                 if (ret > 0)
1925                         return 0;
1926                 return ret;
1927         }
1928
1929         ret = this->block_markbad(mtd, ofs);
1930         return ret;
1931 }
1932
1933 /**
1934  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1935  * @param mtd           MTD device structure
1936  * @param ofs           offset relative to mtd start
1937  * @param len           number of bytes to lock or unlock
1938  * @param cmd           lock or unlock command
1939  *
1940  * Lock or unlock one or more blocks
1941  */
1942 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1943 {
1944         struct onenand_chip *this = mtd->priv;
1945         int start, end, block, value, status;
1946
1947         start = onenand_block(this, ofs);
1948         end = onenand_block(this, ofs + len);
1949
1950         /* Continuous lock scheme */
1951         if (this->options & ONENAND_HAS_CONT_LOCK) {
1952                 /* Set start block address */
1953                 this->write_word(start,
1954                                  this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1955                 /* Set end block address */
1956                 this->write_word(end - 1,
1957                                  this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1958                 /* Write unlock command */
1959                 this->command(mtd, cmd, 0, 0);
1960
1961                 /* There's no return value */
1962                 this->wait(mtd, FL_UNLOCKING);
1963
1964                 /* Sanity check */
1965                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1966                        & ONENAND_CTRL_ONGO)
1967                         continue;
1968
1969                 /* Check lock status */
1970                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1971                 if (!(status & ONENAND_WP_US))
1972                         printk(KERN_ERR "wp status = 0x%x\n", status);
1973
1974                 return 0;
1975         }
1976
1977         /* Block lock scheme */
1978         for (block = start; block < end; block++) {
1979                 /* Set block address */
1980                 value = onenand_block_address(this, block);
1981                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1982                 /* Select DataRAM for DDP */
1983                 value = onenand_bufferram_address(this, block);
1984                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1985
1986                 /* Set start block address */
1987                 this->write_word(block,
1988                                  this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1989                 /* Write unlock command */
1990                 this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0);
1991
1992                 /* There's no return value */
1993                 this->wait(mtd, FL_UNLOCKING);
1994
1995                 /* Sanity check */
1996                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1997                        & ONENAND_CTRL_ONGO)
1998                         continue;
1999
2000                 /* Check lock status */
2001                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2002                 if (!(status & ONENAND_WP_US))
2003                         printk(KERN_ERR "block = %d, wp status = 0x%x\n",
2004                                block, status);
2005         }
2006
2007         return 0;
2008 }
2009
2010 #ifdef ONENAND_LINUX
2011 /**
2012  * onenand_lock - [MTD Interface] Lock block(s)
2013  * @param mtd           MTD device structure
2014  * @param ofs           offset relative to mtd start
2015  * @param len           number of bytes to unlock
2016  *
2017  * Lock one or more blocks
2018  */
2019 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
2020 {
2021         int ret;
2022
2023         onenand_get_device(mtd, FL_LOCKING);
2024         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2025         onenand_release_device(mtd);
2026         return ret;
2027 }
2028
2029 /**
2030  * onenand_unlock - [MTD Interface] Unlock block(s)
2031  * @param mtd           MTD device structure
2032  * @param ofs           offset relative to mtd start
2033  * @param len           number of bytes to unlock
2034  *
2035  * Unlock one or more blocks
2036  */
2037 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
2038 {
2039         int ret;
2040
2041         onenand_get_device(mtd, FL_LOCKING);
2042         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2043         onenand_release_device(mtd);
2044         return ret;
2045 }
2046 #endif
2047
2048 /**
2049  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2050  * @param this          onenand chip data structure
2051  *
2052  * Check lock status
2053  */
2054 static int onenand_check_lock_status(struct onenand_chip *this)
2055 {
2056         unsigned int value, block, status;
2057         unsigned int end;
2058
2059         end = this->chipsize >> this->erase_shift;
2060         for (block = 0; block < end; block++) {
2061                 /* Set block address */
2062                 value = onenand_block_address(this, block);
2063                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2064                 /* Select DataRAM for DDP */
2065                 value = onenand_bufferram_address(this, block);
2066                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2067                 /* Set start block address */
2068                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2069
2070                 /* Check lock status */
2071                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2072                 if (!(status & ONENAND_WP_US)) {
2073                         printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2074                         return 0;
2075                 }
2076         }
2077
2078         return 1;
2079 }
2080
2081 /**
2082  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2083  * @param mtd           MTD device structure
2084  *
2085  * Unlock all blocks
2086  */
2087 static void onenand_unlock_all(struct mtd_info *mtd)
2088 {
2089         struct onenand_chip *this = mtd->priv;
2090         loff_t ofs = 0;
2091         size_t len = mtd->size;
2092
2093         if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2094                 /* Set start block address */
2095                 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2096                 /* Write unlock command */
2097                 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2098
2099                 /* There's no return value */
2100                 this->wait(mtd, FL_LOCKING);
2101
2102                 /* Sanity check */
2103                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2104                                 & ONENAND_CTRL_ONGO)
2105                         continue;
2106
2107                 /* Check lock status */
2108                 if (onenand_check_lock_status(this))
2109                         return;
2110
2111                 /* Workaround for all block unlock in DDP */
2112                 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2113                         /* All blocks on another chip */
2114                         ofs = this->chipsize >> 1;
2115                         len = this->chipsize >> 1;
2116                 }
2117         }
2118
2119         onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2120 }
2121
2122
2123 /**
2124  * onenand_check_features - Check and set OneNAND features
2125  * @param mtd           MTD data structure
2126  *
2127  * Check and set OneNAND features
2128  * - lock scheme
2129  * - two plane
2130  */
2131 static void onenand_check_features(struct mtd_info *mtd)
2132 {
2133         struct onenand_chip *this = mtd->priv;
2134         unsigned int density, process;
2135
2136         /* Lock scheme depends on density and process */
2137         density = onenand_get_density(this->device_id);
2138         process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2139
2140         /* Lock scheme */
2141         switch (density) {
2142         case ONENAND_DEVICE_DENSITY_4Gb:
2143                 if (ONENAND_IS_DDP(this))
2144                         this->options |= ONENAND_HAS_2PLANE;
2145                 else
2146                         this->options |= ONENAND_HAS_4KB_PAGE;
2147
2148         case ONENAND_DEVICE_DENSITY_2Gb:
2149                 /* 2Gb DDP don't have 2 plane */
2150                 if (!ONENAND_IS_DDP(this))
2151                         this->options |= ONENAND_HAS_2PLANE;
2152                 this->options |= ONENAND_HAS_UNLOCK_ALL;
2153
2154         case ONENAND_DEVICE_DENSITY_1Gb:
2155                 /* A-Die has all block unlock */
2156                 if (process)
2157                         this->options |= ONENAND_HAS_UNLOCK_ALL;
2158                 break;
2159
2160         default:
2161                 /* Some OneNAND has continuous lock scheme */
2162                 if (!process)
2163                         this->options |= ONENAND_HAS_CONT_LOCK;
2164                 break;
2165         }
2166
2167         if (ONENAND_IS_MLC(this))
2168                 this->options |= ONENAND_HAS_4KB_PAGE;
2169
2170         if (ONENAND_IS_4KB_PAGE(this))
2171                 this->options &= ~ONENAND_HAS_2PLANE;
2172
2173         if (FLEXONENAND(this)) {
2174                 this->options &= ~ONENAND_HAS_CONT_LOCK;
2175                 this->options |= ONENAND_HAS_UNLOCK_ALL;
2176         }
2177
2178         if (this->options & ONENAND_HAS_CONT_LOCK)
2179                 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
2180         if (this->options & ONENAND_HAS_UNLOCK_ALL)
2181                 printk(KERN_DEBUG "Chip support all block unlock\n");
2182         if (this->options & ONENAND_HAS_2PLANE)
2183                 printk(KERN_DEBUG "Chip has 2 plane\n");
2184         if (this->options & ONENAND_HAS_4KB_PAGE)
2185                 printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
2186
2187 }
2188
2189 /**
2190  * onenand_print_device_info - Print device ID
2191  * @param device        device ID
2192  *
2193  * Print device ID
2194  */
2195 char *onenand_print_device_info(int device, int version)
2196 {
2197         int vcc, demuxed, ddp, density, flexonenand;
2198         char *dev_info = malloc(80);
2199         char *p = dev_info;
2200
2201         vcc = device & ONENAND_DEVICE_VCC_MASK;
2202         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2203         ddp = device & ONENAND_DEVICE_IS_DDP;
2204         density = onenand_get_density(device);
2205         flexonenand = device & DEVICE_IS_FLEXONENAND;
2206         p += sprintf(dev_info, "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)",
2207                demuxed ? "" : "Muxed ",
2208                flexonenand ? "Flex-" : "",
2209                ddp ? "(DDP)" : "",
2210                (16 << density), vcc ? "2.65/3.3" : "1.8", device);
2211
2212         sprintf(p, "\nOneNAND version = 0x%04x", version);
2213         printk("%s\n", dev_info);
2214
2215         return dev_info;
2216 }
2217
2218 static const struct onenand_manufacturers onenand_manuf_ids[] = {
2219         {ONENAND_MFR_NUMONYX, "Numonyx"},
2220         {ONENAND_MFR_SAMSUNG, "Samsung"},
2221 };
2222
2223 /**
2224  * onenand_check_maf - Check manufacturer ID
2225  * @param manuf         manufacturer ID
2226  *
2227  * Check manufacturer ID
2228  */
2229 static int onenand_check_maf(int manuf)
2230 {
2231         int size = ARRAY_SIZE(onenand_manuf_ids);
2232         int i;
2233 #ifdef ONENAND_DEBUG
2234         char *name;
2235 #endif
2236
2237         for (i = 0; i < size; i++)
2238                 if (manuf == onenand_manuf_ids[i].id)
2239                         break;
2240
2241 #ifdef ONENAND_DEBUG
2242         if (i < size)
2243                 name = onenand_manuf_ids[i].name;
2244         else
2245                 name = "Unknown";
2246
2247         printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2248 #endif
2249
2250         return i == size;
2251 }
2252
2253 /**
2254 * flexonenand_get_boundary      - Reads the SLC boundary
2255 * @param onenand_info           - onenand info structure
2256 *
2257 * Fill up boundary[] field in onenand_chip
2258 **/
2259 static int flexonenand_get_boundary(struct mtd_info *mtd)
2260 {
2261         struct onenand_chip *this = mtd->priv;
2262         unsigned int die, bdry;
2263         int syscfg, locked;
2264
2265         /* Disable ECC */
2266         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2267         this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
2268
2269         for (die = 0; die < this->dies; die++) {
2270                 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2271                 this->wait(mtd, FL_SYNCING);
2272
2273                 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2274                 this->wait(mtd, FL_READING);
2275
2276                 bdry = this->read_word(this->base + ONENAND_DATARAM);
2277                 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
2278                         locked = 0;
2279                 else
2280                         locked = 1;
2281                 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
2282
2283                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2284                 this->wait(mtd, FL_RESETING);
2285
2286                 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
2287                        this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
2288         }
2289
2290         /* Enable ECC */
2291         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2292         return 0;
2293 }
2294
2295 /**
2296  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
2297  *                        boundary[], diesize[], mtd->size, mtd->erasesize,
2298  *                        mtd->eraseregions
2299  * @param mtd           - MTD device structure
2300  */
2301 static void flexonenand_get_size(struct mtd_info *mtd)
2302 {
2303         struct onenand_chip *this = mtd->priv;
2304         int die, i, eraseshift, density;
2305         int blksperdie, maxbdry;
2306         loff_t ofs;
2307
2308         density = onenand_get_density(this->device_id);
2309         blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
2310         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2311         maxbdry = blksperdie - 1;
2312         eraseshift = this->erase_shift - 1;
2313
2314         mtd->numeraseregions = this->dies << 1;
2315
2316         /* This fills up the device boundary */
2317         flexonenand_get_boundary(mtd);
2318         die = 0;
2319         ofs = 0;
2320         i = -1;
2321         for (; die < this->dies; die++) {
2322                 if (!die || this->boundary[die-1] != maxbdry) {
2323                         i++;
2324                         mtd->eraseregions[i].offset = ofs;
2325                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
2326                         mtd->eraseregions[i].numblocks =
2327                                                         this->boundary[die] + 1;
2328                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
2329                         eraseshift++;
2330                 } else {
2331                         mtd->numeraseregions -= 1;
2332                         mtd->eraseregions[i].numblocks +=
2333                                                         this->boundary[die] + 1;
2334                         ofs += (this->boundary[die] + 1) << (eraseshift - 1);
2335                 }
2336                 if (this->boundary[die] != maxbdry) {
2337                         i++;
2338                         mtd->eraseregions[i].offset = ofs;
2339                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
2340                         mtd->eraseregions[i].numblocks = maxbdry ^
2341                                                          this->boundary[die];
2342                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
2343                         eraseshift--;
2344                 } else
2345                         mtd->numeraseregions -= 1;
2346         }
2347
2348         /* Expose MLC erase size except when all blocks are SLC */
2349         mtd->erasesize = 1 << this->erase_shift;
2350         if (mtd->numeraseregions == 1)
2351                 mtd->erasesize >>= 1;
2352
2353         printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
2354         for (i = 0; i < mtd->numeraseregions; i++)
2355                 printk(KERN_INFO "[offset: 0x%08llx, erasesize: 0x%05x,"
2356                         " numblocks: %04u]\n", mtd->eraseregions[i].offset,
2357                         mtd->eraseregions[i].erasesize,
2358                         mtd->eraseregions[i].numblocks);
2359
2360         for (die = 0, mtd->size = 0; die < this->dies; die++) {
2361                 this->diesize[die] = (loff_t) (blksperdie << this->erase_shift);
2362                 this->diesize[die] -= (loff_t) (this->boundary[die] + 1)
2363                                                  << (this->erase_shift - 1);
2364                 mtd->size += this->diesize[die];
2365         }
2366 }
2367
2368 /**
2369  * flexonenand_check_blocks_erased - Check if blocks are erased
2370  * @param mtd_info      - mtd info structure
2371  * @param start         - first erase block to check
2372  * @param end           - last erase block to check
2373  *
2374  * Converting an unerased block from MLC to SLC
2375  * causes byte values to change. Since both data and its ECC
2376  * have changed, reads on the block give uncorrectable error.
2377  * This might lead to the block being detected as bad.
2378  *
2379  * Avoid this by ensuring that the block to be converted is
2380  * erased.
2381  */
2382 static int flexonenand_check_blocks_erased(struct mtd_info *mtd,
2383                                         int start, int end)
2384 {
2385         struct onenand_chip *this = mtd->priv;
2386         int i, ret;
2387         int block;
2388         struct mtd_oob_ops ops = {
2389                 .mode = MTD_OOB_PLACE,
2390                 .ooboffs = 0,
2391                 .ooblen = mtd->oobsize,
2392                 .datbuf = NULL,
2393                 .oobbuf = this->oob_buf,
2394         };
2395         loff_t addr;
2396
2397         printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
2398
2399         for (block = start; block <= end; block++) {
2400                 addr = flexonenand_addr(this, block);
2401                 if (onenand_block_isbad_nolock(mtd, addr, 0))
2402                         continue;
2403
2404                 /*
2405                  * Since main area write results in ECC write to spare,
2406                  * it is sufficient to check only ECC bytes for change.
2407                  */
2408                 ret = onenand_read_oob_nolock(mtd, addr, &ops);
2409                 if (ret)
2410                         return ret;
2411
2412                 for (i = 0; i < mtd->oobsize; i++)
2413                         if (this->oob_buf[i] != 0xff)
2414                                 break;
2415
2416                 if (i != mtd->oobsize) {
2417                         printk(KERN_WARNING "Block %d not erased.\n", block);
2418                         return 1;
2419                 }
2420         }
2421
2422         return 0;
2423 }
2424
2425 /**
2426  * flexonenand_set_boundary     - Writes the SLC boundary
2427  * @param mtd                   - mtd info structure
2428  */
2429 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
2430                                     int boundary, int lock)
2431 {
2432         struct onenand_chip *this = mtd->priv;
2433         int ret, density, blksperdie, old, new, thisboundary;
2434         loff_t addr;
2435
2436         if (die >= this->dies)
2437                 return -EINVAL;
2438
2439         if (boundary == this->boundary[die])
2440                 return 0;
2441
2442         density = onenand_get_density(this->device_id);
2443         blksperdie = ((16 << density) << 20) >> this->erase_shift;
2444         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2445
2446         if (boundary >= blksperdie) {
2447                 printk("flexonenand_set_boundary:"
2448                         "Invalid boundary value. "
2449                         "Boundary not changed.\n");
2450                 return -EINVAL;
2451         }
2452
2453         /* Check if converting blocks are erased */
2454         old = this->boundary[die] + (die * this->density_mask);
2455         new = boundary + (die * this->density_mask);
2456         ret = flexonenand_check_blocks_erased(mtd, min(old, new)
2457                                                 + 1, max(old, new));
2458         if (ret) {
2459                 printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n");
2460                 return ret;
2461         }
2462
2463         this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2464         this->wait(mtd, FL_SYNCING);
2465
2466         /* Check is boundary is locked */
2467         this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2468         ret = this->wait(mtd, FL_READING);
2469
2470         thisboundary = this->read_word(this->base + ONENAND_DATARAM);
2471         if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
2472                 printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n");
2473                 goto out;
2474         }
2475
2476         printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n",
2477                         die, boundary, lock ? "(Locked)" : "(Unlocked)");
2478
2479         boundary &= FLEXONENAND_PI_MASK;
2480         boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
2481
2482         addr = die ? this->diesize[0] : 0;
2483         this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
2484         ret = this->wait(mtd, FL_ERASING);
2485         if (ret) {
2486                 printk("flexonenand_set_boundary:"
2487                         "Failed PI erase for Die %d\n", die);
2488                 goto out;
2489         }
2490
2491         this->write_word(boundary, this->base + ONENAND_DATARAM);
2492         this->command(mtd, ONENAND_CMD_PROG, addr, 0);
2493         ret = this->wait(mtd, FL_WRITING);
2494         if (ret) {
2495                 printk("flexonenand_set_boundary:"
2496                         "Failed PI write for Die %d\n", die);
2497                 goto out;
2498         }
2499
2500         this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
2501         ret = this->wait(mtd, FL_WRITING);
2502 out:
2503         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
2504         this->wait(mtd, FL_RESETING);
2505         if (!ret)
2506                 /* Recalculate device size on boundary change*/
2507                 flexonenand_get_size(mtd);
2508
2509         return ret;
2510 }
2511
2512 /**
2513  * onenand_chip_probe - [OneNAND Interface] Probe the OneNAND chip
2514  * @param mtd           MTD device structure
2515  *
2516  * OneNAND detection method:
2517  *   Compare the the values from command with ones from register
2518  */
2519 static int onenand_chip_probe(struct mtd_info *mtd)
2520 {
2521         struct onenand_chip *this = mtd->priv;
2522         int bram_maf_id, bram_dev_id, maf_id, dev_id;
2523         int syscfg;
2524
2525         /* Save system configuration 1 */
2526         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2527
2528         /* Clear Sync. Burst Read mode to read BootRAM */
2529         this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ),
2530                          this->base + ONENAND_REG_SYS_CFG1);
2531
2532         /* Send the command for reading device ID from BootRAM */
2533         this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2534
2535         /* Read manufacturer and device IDs from BootRAM */
2536         bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2537         bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2538
2539         /* Reset OneNAND to read default register values */
2540         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2541
2542         /* Wait reset */
2543         this->wait(mtd, FL_RESETING);
2544
2545         /* Restore system configuration 1 */
2546         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2547
2548         /* Check manufacturer ID */
2549         if (onenand_check_maf(bram_maf_id))
2550                 return -ENXIO;
2551
2552         /* Read manufacturer and device IDs from Register */
2553         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2554         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2555
2556         /* Check OneNAND device */
2557         if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2558                 return -ENXIO;
2559
2560         return 0;
2561 }
2562
2563 /**
2564  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2565  * @param mtd           MTD device structure
2566  *
2567  * OneNAND detection method:
2568  *   Compare the the values from command with ones from register
2569  */
2570 int onenand_probe(struct mtd_info *mtd)
2571 {
2572         struct onenand_chip *this = mtd->priv;
2573         int dev_id, ver_id;
2574         int density;
2575         int ret;
2576
2577         ret = this->chip_probe(mtd);
2578         if (ret)
2579                 return ret;
2580
2581         /* Read device IDs from Register */
2582         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2583         ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2584         this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
2585
2586         /* Flash device information */
2587         mtd->name = onenand_print_device_info(dev_id, ver_id);
2588         this->device_id = dev_id;
2589         this->version_id = ver_id;
2590
2591         /* Check OneNAND features */
2592         onenand_check_features(mtd);
2593
2594         density = onenand_get_density(dev_id);
2595         if (FLEXONENAND(this)) {
2596                 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
2597                 /* Maximum possible erase regions */
2598                 mtd->numeraseregions = this->dies << 1;
2599                 mtd->eraseregions = malloc(sizeof(struct mtd_erase_region_info)
2600                                         * (this->dies << 1));
2601                 if (!mtd->eraseregions)
2602                         return -ENOMEM;
2603         }
2604
2605         /*
2606          * For Flex-OneNAND, chipsize represents maximum possible device size.
2607          * mtd->size represents the actual device size.
2608          */
2609         this->chipsize = (16 << density) << 20;
2610
2611         /* OneNAND page size & block size */
2612         /* The data buffer size is equal to page size */
2613         mtd->writesize =
2614             this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2615         /* We use the full BufferRAM */
2616         if (ONENAND_IS_4KB_PAGE(this))
2617                 mtd->writesize <<= 1;
2618
2619         mtd->oobsize = mtd->writesize >> 5;
2620         /* Pagers per block is always 64 in OneNAND */
2621         mtd->erasesize = mtd->writesize << 6;
2622         /*
2623          * Flex-OneNAND SLC area has 64 pages per block.
2624          * Flex-OneNAND MLC area has 128 pages per block.
2625          * Expose MLC erase size to find erase_shift and page_mask.
2626          */
2627         if (FLEXONENAND(this))
2628                 mtd->erasesize <<= 1;
2629
2630         this->erase_shift = ffs(mtd->erasesize) - 1;
2631         this->page_shift = ffs(mtd->writesize) - 1;
2632         this->ppb_shift = (this->erase_shift - this->page_shift);
2633         this->page_mask = (mtd->erasesize / mtd->writesize) - 1;
2634         /* Set density mask. it is used for DDP */
2635         if (ONENAND_IS_DDP(this))
2636                 this->density_mask = this->chipsize >> (this->erase_shift + 1);
2637         /* It's real page size */
2638         this->writesize = mtd->writesize;
2639
2640         /* REVIST: Multichip handling */
2641
2642         if (FLEXONENAND(this))
2643                 flexonenand_get_size(mtd);
2644         else
2645                 mtd->size = this->chipsize;
2646
2647         mtd->flags = MTD_CAP_NANDFLASH;
2648         mtd->erase = onenand_erase;
2649         mtd->read = onenand_read;
2650         mtd->write = onenand_write;
2651         mtd->read_oob = onenand_read_oob;
2652         mtd->write_oob = onenand_write_oob;
2653         mtd->sync = onenand_sync;
2654         mtd->block_isbad = onenand_block_isbad;
2655         mtd->block_markbad = onenand_block_markbad;
2656
2657         return 0;
2658 }
2659
2660 /**
2661  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2662  * @param mtd           MTD device structure
2663  * @param maxchips      Number of chips to scan for
2664  *
2665  * This fills out all the not initialized function pointers
2666  * with the defaults.
2667  * The flash ID is read and the mtd/chip structures are
2668  * filled with the appropriate values.
2669  */
2670 int onenand_scan(struct mtd_info *mtd, int maxchips)
2671 {
2672         int i;
2673         struct onenand_chip *this = mtd->priv;
2674
2675         if (!this->read_word)
2676                 this->read_word = onenand_readw;
2677         if (!this->write_word)
2678                 this->write_word = onenand_writew;
2679
2680         if (!this->command)
2681                 this->command = onenand_command;
2682         if (!this->wait)
2683                 this->wait = onenand_wait;
2684         if (!this->bbt_wait)
2685                 this->bbt_wait = onenand_bbt_wait;
2686
2687         if (!this->read_bufferram)
2688                 this->read_bufferram = onenand_read_bufferram;
2689         if (!this->write_bufferram)
2690                 this->write_bufferram = onenand_write_bufferram;
2691
2692         if (!this->chip_probe)
2693                 this->chip_probe = onenand_chip_probe;
2694
2695         if (!this->block_markbad)
2696                 this->block_markbad = onenand_default_block_markbad;
2697         if (!this->scan_bbt)
2698                 this->scan_bbt = onenand_default_bbt;
2699
2700         if (onenand_probe(mtd))
2701                 return -ENXIO;
2702
2703         /* Set Sync. Burst Read after probing */
2704         if (this->mmcontrol) {
2705                 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2706                 this->read_bufferram = onenand_sync_read_bufferram;
2707         }
2708
2709         /* Allocate buffers, if necessary */
2710         if (!this->page_buf) {
2711                 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2712                 if (!this->page_buf) {
2713                         printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2714                         return -ENOMEM;
2715                 }
2716                 this->options |= ONENAND_PAGEBUF_ALLOC;
2717         }
2718         if (!this->oob_buf) {
2719                 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
2720                 if (!this->oob_buf) {
2721                         printk(KERN_ERR "onenand_scan: Can't allocate oob_buf\n");
2722                         if (this->options & ONENAND_PAGEBUF_ALLOC) {
2723                                 this->options &= ~ONENAND_PAGEBUF_ALLOC;
2724                                 kfree(this->page_buf);
2725                         }
2726                         return -ENOMEM;
2727                 }
2728                 this->options |= ONENAND_OOBBUF_ALLOC;
2729         }
2730
2731         this->state = FL_READY;
2732
2733         /*
2734          * Allow subpage writes up to oobsize.
2735          */
2736         switch (mtd->oobsize) {
2737         case 128:
2738                 this->ecclayout = &onenand_oob_128;
2739                 mtd->subpage_sft = 0;
2740                 break;
2741
2742         case 64:
2743                 this->ecclayout = &onenand_oob_64;
2744                 mtd->subpage_sft = 2;
2745                 break;
2746
2747         case 32:
2748                 this->ecclayout = &onenand_oob_32;
2749                 mtd->subpage_sft = 1;
2750                 break;
2751
2752         default:
2753                 printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2754                         mtd->oobsize);
2755                 mtd->subpage_sft = 0;
2756                 /* To prevent kernel oops */
2757                 this->ecclayout = &onenand_oob_32;
2758                 break;
2759         }
2760
2761         this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2762
2763         /*
2764          * The number of bytes available for a client to place data into
2765          * the out of band area
2766          */
2767         this->ecclayout->oobavail = 0;
2768         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
2769             this->ecclayout->oobfree[i].length; i++)
2770                 this->ecclayout->oobavail +=
2771                         this->ecclayout->oobfree[i].length;
2772         mtd->oobavail = this->ecclayout->oobavail;
2773
2774         mtd->ecclayout = this->ecclayout;
2775
2776         /* Unlock whole block */
2777         onenand_unlock_all(mtd);
2778
2779         return this->scan_bbt(mtd);
2780 }
2781
2782 /**
2783  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2784  * @param mtd           MTD device structure
2785  */
2786 void onenand_release(struct mtd_info *mtd)
2787 {
2788 }