]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/mtd/ubi/wl.c
Merge branch 'u-boot-ti/master' into 'u-boot-arm/master'
[karo-tx-uboot.git] / drivers / mtd / ubi / wl.c
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * SPDX-License-Identifier:     GPL-2.0+
5  *
6  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
7  */
8
9 /*
10  * UBI wear-leveling sub-system.
11  *
12  * This sub-system is responsible for wear-leveling. It works in terms of
13  * physical eraseblocks and erase counters and knows nothing about logical
14  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
15  * eraseblocks are of two types - used and free. Used physical eraseblocks are
16  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
17  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
18  *
19  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
20  * header. The rest of the physical eraseblock contains only %0xFF bytes.
21  *
22  * When physical eraseblocks are returned to the WL sub-system by means of the
23  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
24  * done asynchronously in context of the per-UBI device background thread,
25  * which is also managed by the WL sub-system.
26  *
27  * The wear-leveling is ensured by means of moving the contents of used
28  * physical eraseblocks with low erase counter to free physical eraseblocks
29  * with high erase counter.
30  *
31  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
32  * bad.
33  *
34  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
35  * in a physical eraseblock, it has to be moved. Technically this is the same
36  * as moving it for wear-leveling reasons.
37  *
38  * As it was said, for the UBI sub-system all physical eraseblocks are either
39  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
40  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
41  * RB-trees, as well as (temporarily) in the @wl->pq queue.
42  *
43  * When the WL sub-system returns a physical eraseblock, the physical
44  * eraseblock is protected from being moved for some "time". For this reason,
45  * the physical eraseblock is not directly moved from the @wl->free tree to the
46  * @wl->used tree. There is a protection queue in between where this
47  * physical eraseblock is temporarily stored (@wl->pq).
48  *
49  * All this protection stuff is needed because:
50  *  o we don't want to move physical eraseblocks just after we have given them
51  *    to the user; instead, we first want to let users fill them up with data;
52  *
53  *  o there is a chance that the user will put the physical eraseblock very
54  *    soon, so it makes sense not to move it for some time, but wait.
55  *
56  * Physical eraseblocks stay protected only for limited time. But the "time" is
57  * measured in erase cycles in this case. This is implemented with help of the
58  * protection queue. Eraseblocks are put to the tail of this queue when they
59  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
60  * head of the queue on each erase operation (for any eraseblock). So the
61  * length of the queue defines how may (global) erase cycles PEBs are protected.
62  *
63  * To put it differently, each physical eraseblock has 2 main states: free and
64  * used. The former state corresponds to the @wl->free tree. The latter state
65  * is split up on several sub-states:
66  * o the WL movement is allowed (@wl->used tree);
67  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
68  *   erroneous - e.g., there was a read error;
69  * o the WL movement is temporarily prohibited (@wl->pq queue);
70  * o scrubbing is needed (@wl->scrub tree).
71  *
72  * Depending on the sub-state, wear-leveling entries of the used physical
73  * eraseblocks may be kept in one of those structures.
74  *
75  * Note, in this implementation, we keep a small in-RAM object for each physical
76  * eraseblock. This is surely not a scalable solution. But it appears to be good
77  * enough for moderately large flashes and it is simple. In future, one may
78  * re-work this sub-system and make it more scalable.
79  *
80  * At the moment this sub-system does not utilize the sequence number, which
81  * was introduced relatively recently. But it would be wise to do this because
82  * the sequence number of a logical eraseblock characterizes how old is it. For
83  * example, when we move a PEB with low erase counter, and we need to pick the
84  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
85  * pick target PEB with an average EC if our PEB is not very "old". This is a
86  * room for future re-works of the WL sub-system.
87  */
88
89 #ifndef __UBOOT__
90 #include <linux/slab.h>
91 #include <linux/crc32.h>
92 #include <linux/freezer.h>
93 #include <linux/kthread.h>
94 #else
95 #include <ubi_uboot.h>
96 #endif
97
98 #include "ubi.h"
99
100 /* Number of physical eraseblocks reserved for wear-leveling purposes */
101 #define WL_RESERVED_PEBS 1
102
103 /*
104  * Maximum difference between two erase counters. If this threshold is
105  * exceeded, the WL sub-system starts moving data from used physical
106  * eraseblocks with low erase counter to free physical eraseblocks with high
107  * erase counter.
108  */
109 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
110
111 /*
112  * When a physical eraseblock is moved, the WL sub-system has to pick the target
113  * physical eraseblock to move to. The simplest way would be just to pick the
114  * one with the highest erase counter. But in certain workloads this could lead
115  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
116  * situation when the picked physical eraseblock is constantly erased after the
117  * data is written to it. So, we have a constant which limits the highest erase
118  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
119  * does not pick eraseblocks with erase counter greater than the lowest erase
120  * counter plus %WL_FREE_MAX_DIFF.
121  */
122 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
123
124 /*
125  * Maximum number of consecutive background thread failures which is enough to
126  * switch to read-only mode.
127  */
128 #define WL_MAX_FAILURES 32
129
130 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
131 static int self_check_in_wl_tree(const struct ubi_device *ubi,
132                                  struct ubi_wl_entry *e, struct rb_root *root);
133 static int self_check_in_pq(const struct ubi_device *ubi,
134                             struct ubi_wl_entry *e);
135
136 #ifdef CONFIG_MTD_UBI_FASTMAP
137 #ifndef __UBOOT__
138 /**
139  * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue
140  * @wrk: the work description object
141  */
142 static void update_fastmap_work_fn(struct work_struct *wrk)
143 {
144         struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work);
145         ubi_update_fastmap(ubi);
146 }
147 #endif
148
149 /**
150  *  ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap.
151  *  @ubi: UBI device description object
152  *  @pnum: the to be checked PEB
153  */
154 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
155 {
156         int i;
157
158         if (!ubi->fm)
159                 return 0;
160
161         for (i = 0; i < ubi->fm->used_blocks; i++)
162                 if (ubi->fm->e[i]->pnum == pnum)
163                         return 1;
164
165         return 0;
166 }
167 #else
168 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
169 {
170         return 0;
171 }
172 #endif
173
174 /**
175  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
176  * @e: the wear-leveling entry to add
177  * @root: the root of the tree
178  *
179  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
180  * the @ubi->used and @ubi->free RB-trees.
181  */
182 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
183 {
184         struct rb_node **p, *parent = NULL;
185
186         p = &root->rb_node;
187         while (*p) {
188                 struct ubi_wl_entry *e1;
189
190                 parent = *p;
191                 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
192
193                 if (e->ec < e1->ec)
194                         p = &(*p)->rb_left;
195                 else if (e->ec > e1->ec)
196                         p = &(*p)->rb_right;
197                 else {
198                         ubi_assert(e->pnum != e1->pnum);
199                         if (e->pnum < e1->pnum)
200                                 p = &(*p)->rb_left;
201                         else
202                                 p = &(*p)->rb_right;
203                 }
204         }
205
206         rb_link_node(&e->u.rb, parent, p);
207         rb_insert_color(&e->u.rb, root);
208 }
209
210 /**
211  * do_work - do one pending work.
212  * @ubi: UBI device description object
213  *
214  * This function returns zero in case of success and a negative error code in
215  * case of failure.
216  */
217 static int do_work(struct ubi_device *ubi)
218 {
219         int err;
220         struct ubi_work *wrk;
221
222         cond_resched();
223
224         /*
225          * @ubi->work_sem is used to synchronize with the workers. Workers take
226          * it in read mode, so many of them may be doing works at a time. But
227          * the queue flush code has to be sure the whole queue of works is
228          * done, and it takes the mutex in write mode.
229          */
230         down_read(&ubi->work_sem);
231         spin_lock(&ubi->wl_lock);
232         if (list_empty(&ubi->works)) {
233                 spin_unlock(&ubi->wl_lock);
234                 up_read(&ubi->work_sem);
235                 return 0;
236         }
237
238         wrk = list_entry(ubi->works.next, struct ubi_work, list);
239         list_del(&wrk->list);
240         ubi->works_count -= 1;
241         ubi_assert(ubi->works_count >= 0);
242         spin_unlock(&ubi->wl_lock);
243
244         /*
245          * Call the worker function. Do not touch the work structure
246          * after this call as it will have been freed or reused by that
247          * time by the worker function.
248          */
249         err = wrk->func(ubi, wrk, 0);
250         if (err)
251                 ubi_err("work failed with error code %d", err);
252         up_read(&ubi->work_sem);
253
254         return err;
255 }
256
257 /**
258  * produce_free_peb - produce a free physical eraseblock.
259  * @ubi: UBI device description object
260  *
261  * This function tries to make a free PEB by means of synchronous execution of
262  * pending works. This may be needed if, for example the background thread is
263  * disabled. Returns zero in case of success and a negative error code in case
264  * of failure.
265  */
266 static int produce_free_peb(struct ubi_device *ubi)
267 {
268         int err;
269
270         while (!ubi->free.rb_node) {
271                 spin_unlock(&ubi->wl_lock);
272
273                 dbg_wl("do one work synchronously");
274                 err = do_work(ubi);
275
276                 spin_lock(&ubi->wl_lock);
277                 if (err)
278                         return err;
279         }
280
281         return 0;
282 }
283
284 /**
285  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
286  * @e: the wear-leveling entry to check
287  * @root: the root of the tree
288  *
289  * This function returns non-zero if @e is in the @root RB-tree and zero if it
290  * is not.
291  */
292 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
293 {
294         struct rb_node *p;
295
296         p = root->rb_node;
297         while (p) {
298                 struct ubi_wl_entry *e1;
299
300                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
301
302                 if (e->pnum == e1->pnum) {
303                         ubi_assert(e == e1);
304                         return 1;
305                 }
306
307                 if (e->ec < e1->ec)
308                         p = p->rb_left;
309                 else if (e->ec > e1->ec)
310                         p = p->rb_right;
311                 else {
312                         ubi_assert(e->pnum != e1->pnum);
313                         if (e->pnum < e1->pnum)
314                                 p = p->rb_left;
315                         else
316                                 p = p->rb_right;
317                 }
318         }
319
320         return 0;
321 }
322
323 /**
324  * prot_queue_add - add physical eraseblock to the protection queue.
325  * @ubi: UBI device description object
326  * @e: the physical eraseblock to add
327  *
328  * This function adds @e to the tail of the protection queue @ubi->pq, where
329  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
330  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
331  * be locked.
332  */
333 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
334 {
335         int pq_tail = ubi->pq_head - 1;
336
337         if (pq_tail < 0)
338                 pq_tail = UBI_PROT_QUEUE_LEN - 1;
339         ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
340         list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
341         dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
342 }
343
344 /**
345  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
346  * @ubi: UBI device description object
347  * @root: the RB-tree where to look for
348  * @diff: maximum possible difference from the smallest erase counter
349  *
350  * This function looks for a wear leveling entry with erase counter closest to
351  * min + @diff, where min is the smallest erase counter.
352  */
353 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
354                                           struct rb_root *root, int diff)
355 {
356         struct rb_node *p;
357         struct ubi_wl_entry *e, *prev_e = NULL;
358         int max;
359
360         e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
361         max = e->ec + diff;
362
363         p = root->rb_node;
364         while (p) {
365                 struct ubi_wl_entry *e1;
366
367                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
368                 if (e1->ec >= max)
369                         p = p->rb_left;
370                 else {
371                         p = p->rb_right;
372                         prev_e = e;
373                         e = e1;
374                 }
375         }
376
377         /* If no fastmap has been written and this WL entry can be used
378          * as anchor PEB, hold it back and return the second best WL entry
379          * such that fastmap can use the anchor PEB later. */
380         if (prev_e && !ubi->fm_disabled &&
381             !ubi->fm && e->pnum < UBI_FM_MAX_START)
382                 return prev_e;
383
384         return e;
385 }
386
387 /**
388  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
389  * @ubi: UBI device description object
390  * @root: the RB-tree where to look for
391  *
392  * This function looks for a wear leveling entry with medium erase counter,
393  * but not greater or equivalent than the lowest erase counter plus
394  * %WL_FREE_MAX_DIFF/2.
395  */
396 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
397                                                struct rb_root *root)
398 {
399         struct ubi_wl_entry *e, *first, *last;
400
401         first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
402         last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
403
404         if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
405                 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
406
407 #ifdef CONFIG_MTD_UBI_FASTMAP
408                 /* If no fastmap has been written and this WL entry can be used
409                  * as anchor PEB, hold it back and return the second best
410                  * WL entry such that fastmap can use the anchor PEB later. */
411                 if (e && !ubi->fm_disabled && !ubi->fm &&
412                     e->pnum < UBI_FM_MAX_START)
413                         e = rb_entry(rb_next(root->rb_node),
414                                      struct ubi_wl_entry, u.rb);
415 #endif
416         } else
417                 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
418
419         return e;
420 }
421
422 #ifdef CONFIG_MTD_UBI_FASTMAP
423 /**
424  * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB.
425  * @root: the RB-tree where to look for
426  */
427 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root)
428 {
429         struct rb_node *p;
430         struct ubi_wl_entry *e, *victim = NULL;
431         int max_ec = UBI_MAX_ERASECOUNTER;
432
433         ubi_rb_for_each_entry(p, e, root, u.rb) {
434                 if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) {
435                         victim = e;
436                         max_ec = e->ec;
437                 }
438         }
439
440         return victim;
441 }
442
443 static int anchor_pebs_avalible(struct rb_root *root)
444 {
445         struct rb_node *p;
446         struct ubi_wl_entry *e;
447
448         ubi_rb_for_each_entry(p, e, root, u.rb)
449                 if (e->pnum < UBI_FM_MAX_START)
450                         return 1;
451
452         return 0;
453 }
454
455 /**
456  * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number.
457  * @ubi: UBI device description object
458  * @anchor: This PEB will be used as anchor PEB by fastmap
459  *
460  * The function returns a physical erase block with a given maximal number
461  * and removes it from the wl subsystem.
462  * Must be called with wl_lock held!
463  */
464 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor)
465 {
466         struct ubi_wl_entry *e = NULL;
467
468         if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1))
469                 goto out;
470
471         if (anchor)
472                 e = find_anchor_wl_entry(&ubi->free);
473         else
474                 e = find_mean_wl_entry(ubi, &ubi->free);
475
476         if (!e)
477                 goto out;
478
479         self_check_in_wl_tree(ubi, e, &ubi->free);
480
481         /* remove it from the free list,
482          * the wl subsystem does no longer know this erase block */
483         rb_erase(&e->u.rb, &ubi->free);
484         ubi->free_count--;
485 out:
486         return e;
487 }
488 #endif
489
490 /**
491  * __wl_get_peb - get a physical eraseblock.
492  * @ubi: UBI device description object
493  *
494  * This function returns a physical eraseblock in case of success and a
495  * negative error code in case of failure.
496  */
497 static int __wl_get_peb(struct ubi_device *ubi)
498 {
499         int err;
500         struct ubi_wl_entry *e;
501
502 retry:
503         if (!ubi->free.rb_node) {
504                 if (ubi->works_count == 0) {
505                         ubi_err("no free eraseblocks");
506                         ubi_assert(list_empty(&ubi->works));
507                         return -ENOSPC;
508                 }
509
510                 err = produce_free_peb(ubi);
511                 if (err < 0)
512                         return err;
513                 goto retry;
514         }
515
516         e = find_mean_wl_entry(ubi, &ubi->free);
517         if (!e) {
518                 ubi_err("no free eraseblocks");
519                 return -ENOSPC;
520         }
521
522         self_check_in_wl_tree(ubi, e, &ubi->free);
523
524         /*
525          * Move the physical eraseblock to the protection queue where it will
526          * be protected from being moved for some time.
527          */
528         rb_erase(&e->u.rb, &ubi->free);
529         ubi->free_count--;
530         dbg_wl("PEB %d EC %d", e->pnum, e->ec);
531 #ifndef CONFIG_MTD_UBI_FASTMAP
532         /* We have to enqueue e only if fastmap is disabled,
533          * is fastmap enabled prot_queue_add() will be called by
534          * ubi_wl_get_peb() after removing e from the pool. */
535         prot_queue_add(ubi, e);
536 #endif
537         return e->pnum;
538 }
539
540 #ifdef CONFIG_MTD_UBI_FASTMAP
541 /**
542  * return_unused_pool_pebs - returns unused PEB to the free tree.
543  * @ubi: UBI device description object
544  * @pool: fastmap pool description object
545  */
546 static void return_unused_pool_pebs(struct ubi_device *ubi,
547                                     struct ubi_fm_pool *pool)
548 {
549         int i;
550         struct ubi_wl_entry *e;
551
552         for (i = pool->used; i < pool->size; i++) {
553                 e = ubi->lookuptbl[pool->pebs[i]];
554                 wl_tree_add(e, &ubi->free);
555                 ubi->free_count++;
556         }
557 }
558
559 /**
560  * refill_wl_pool - refills all the fastmap pool used by the
561  * WL sub-system.
562  * @ubi: UBI device description object
563  */
564 static void refill_wl_pool(struct ubi_device *ubi)
565 {
566         struct ubi_wl_entry *e;
567         struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
568
569         return_unused_pool_pebs(ubi, pool);
570
571         for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
572                 if (!ubi->free.rb_node ||
573                    (ubi->free_count - ubi->beb_rsvd_pebs < 5))
574                         break;
575
576                 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
577                 self_check_in_wl_tree(ubi, e, &ubi->free);
578                 rb_erase(&e->u.rb, &ubi->free);
579                 ubi->free_count--;
580
581                 pool->pebs[pool->size] = e->pnum;
582         }
583         pool->used = 0;
584 }
585
586 /**
587  * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb.
588  * @ubi: UBI device description object
589  */
590 static void refill_wl_user_pool(struct ubi_device *ubi)
591 {
592         struct ubi_fm_pool *pool = &ubi->fm_pool;
593
594         return_unused_pool_pebs(ubi, pool);
595
596         for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
597                 pool->pebs[pool->size] = __wl_get_peb(ubi);
598                 if (pool->pebs[pool->size] < 0)
599                         break;
600         }
601         pool->used = 0;
602 }
603
604 /**
605  * ubi_refill_pools - refills all fastmap PEB pools.
606  * @ubi: UBI device description object
607  */
608 void ubi_refill_pools(struct ubi_device *ubi)
609 {
610         spin_lock(&ubi->wl_lock);
611         refill_wl_pool(ubi);
612         refill_wl_user_pool(ubi);
613         spin_unlock(&ubi->wl_lock);
614 }
615
616 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of
617  * the fastmap pool.
618  */
619 int ubi_wl_get_peb(struct ubi_device *ubi)
620 {
621         int ret;
622         struct ubi_fm_pool *pool = &ubi->fm_pool;
623         struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
624
625         if (!pool->size || !wl_pool->size || pool->used == pool->size ||
626             wl_pool->used == wl_pool->size)
627                 ubi_update_fastmap(ubi);
628
629         /* we got not a single free PEB */
630         if (!pool->size)
631                 ret = -ENOSPC;
632         else {
633                 spin_lock(&ubi->wl_lock);
634                 ret = pool->pebs[pool->used++];
635                 prot_queue_add(ubi, ubi->lookuptbl[ret]);
636                 spin_unlock(&ubi->wl_lock);
637         }
638
639         return ret;
640 }
641
642 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system.
643  *
644  * @ubi: UBI device description object
645  */
646 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
647 {
648         struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
649         int pnum;
650
651         if (pool->used == pool->size || !pool->size) {
652                 /* We cannot update the fastmap here because this
653                  * function is called in atomic context.
654                  * Let's fail here and refill/update it as soon as possible. */
655 #ifndef __UBOOT__
656                 schedule_work(&ubi->fm_work);
657 #else
658                 /* In U-Boot we must call this directly */
659                 ubi_update_fastmap(ubi);
660 #endif
661                 return NULL;
662         } else {
663                 pnum = pool->pebs[pool->used++];
664                 return ubi->lookuptbl[pnum];
665         }
666 }
667 #else
668 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
669 {
670         struct ubi_wl_entry *e;
671
672         e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
673         self_check_in_wl_tree(ubi, e, &ubi->free);
674         ubi->free_count--;
675         ubi_assert(ubi->free_count >= 0);
676         rb_erase(&e->u.rb, &ubi->free);
677
678         return e;
679 }
680
681 int ubi_wl_get_peb(struct ubi_device *ubi)
682 {
683         int peb, err;
684
685         spin_lock(&ubi->wl_lock);
686         peb = __wl_get_peb(ubi);
687         spin_unlock(&ubi->wl_lock);
688
689         if (peb < 0)
690                 return peb;
691
692         err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset,
693                                     ubi->peb_size - ubi->vid_hdr_aloffset);
694         if (err) {
695                 ubi_err("new PEB %d does not contain all 0xFF bytes", peb);
696                 return err;
697         }
698
699         return peb;
700 }
701 #endif
702
703 /**
704  * prot_queue_del - remove a physical eraseblock from the protection queue.
705  * @ubi: UBI device description object
706  * @pnum: the physical eraseblock to remove
707  *
708  * This function deletes PEB @pnum from the protection queue and returns zero
709  * in case of success and %-ENODEV if the PEB was not found.
710  */
711 static int prot_queue_del(struct ubi_device *ubi, int pnum)
712 {
713         struct ubi_wl_entry *e;
714
715         e = ubi->lookuptbl[pnum];
716         if (!e)
717                 return -ENODEV;
718
719         if (self_check_in_pq(ubi, e))
720                 return -ENODEV;
721
722         list_del(&e->u.list);
723         dbg_wl("deleted PEB %d from the protection queue", e->pnum);
724         return 0;
725 }
726
727 /**
728  * sync_erase - synchronously erase a physical eraseblock.
729  * @ubi: UBI device description object
730  * @e: the the physical eraseblock to erase
731  * @torture: if the physical eraseblock has to be tortured
732  *
733  * This function returns zero in case of success and a negative error code in
734  * case of failure.
735  */
736 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
737                       int torture)
738 {
739         int err;
740         struct ubi_ec_hdr *ec_hdr;
741         unsigned long long ec = e->ec;
742
743         dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
744
745         err = self_check_ec(ubi, e->pnum, e->ec);
746         if (err)
747                 return -EINVAL;
748
749         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
750         if (!ec_hdr)
751                 return -ENOMEM;
752
753         err = ubi_io_sync_erase(ubi, e->pnum, torture);
754         if (err < 0)
755                 goto out_free;
756
757         ec += err;
758         if (ec > UBI_MAX_ERASECOUNTER) {
759                 /*
760                  * Erase counter overflow. Upgrade UBI and use 64-bit
761                  * erase counters internally.
762                  */
763                 ubi_err("erase counter overflow at PEB %d, EC %llu",
764                         e->pnum, ec);
765                 err = -EINVAL;
766                 goto out_free;
767         }
768
769         dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
770
771         ec_hdr->ec = cpu_to_be64(ec);
772
773         err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
774         if (err)
775                 goto out_free;
776
777         e->ec = ec;
778         spin_lock(&ubi->wl_lock);
779         if (e->ec > ubi->max_ec)
780                 ubi->max_ec = e->ec;
781         spin_unlock(&ubi->wl_lock);
782
783 out_free:
784         kfree(ec_hdr);
785         return err;
786 }
787
788 /**
789  * serve_prot_queue - check if it is time to stop protecting PEBs.
790  * @ubi: UBI device description object
791  *
792  * This function is called after each erase operation and removes PEBs from the
793  * tail of the protection queue. These PEBs have been protected for long enough
794  * and should be moved to the used tree.
795  */
796 static void serve_prot_queue(struct ubi_device *ubi)
797 {
798         struct ubi_wl_entry *e, *tmp;
799         int count;
800
801         /*
802          * There may be several protected physical eraseblock to remove,
803          * process them all.
804          */
805 repeat:
806         count = 0;
807         spin_lock(&ubi->wl_lock);
808         list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
809                 dbg_wl("PEB %d EC %d protection over, move to used tree",
810                         e->pnum, e->ec);
811
812                 list_del(&e->u.list);
813                 wl_tree_add(e, &ubi->used);
814                 if (count++ > 32) {
815                         /*
816                          * Let's be nice and avoid holding the spinlock for
817                          * too long.
818                          */
819                         spin_unlock(&ubi->wl_lock);
820                         cond_resched();
821                         goto repeat;
822                 }
823         }
824
825         ubi->pq_head += 1;
826         if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
827                 ubi->pq_head = 0;
828         ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
829         spin_unlock(&ubi->wl_lock);
830 }
831
832 /**
833  * __schedule_ubi_work - schedule a work.
834  * @ubi: UBI device description object
835  * @wrk: the work to schedule
836  *
837  * This function adds a work defined by @wrk to the tail of the pending works
838  * list. Can only be used of ubi->work_sem is already held in read mode!
839  */
840 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
841 {
842         spin_lock(&ubi->wl_lock);
843         list_add_tail(&wrk->list, &ubi->works);
844         ubi_assert(ubi->works_count >= 0);
845         ubi->works_count += 1;
846 #ifndef __UBOOT__
847         if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
848                 wake_up_process(ubi->bgt_thread);
849 #else
850         /*
851          * U-Boot special: We have no bgt_thread in U-Boot!
852          * So just call do_work() here directly.
853          */
854         do_work(ubi);
855 #endif
856         spin_unlock(&ubi->wl_lock);
857 }
858
859 /**
860  * schedule_ubi_work - schedule a work.
861  * @ubi: UBI device description object
862  * @wrk: the work to schedule
863  *
864  * This function adds a work defined by @wrk to the tail of the pending works
865  * list.
866  */
867 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
868 {
869         down_read(&ubi->work_sem);
870         __schedule_ubi_work(ubi, wrk);
871         up_read(&ubi->work_sem);
872 }
873
874 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
875                         int cancel);
876
877 #ifdef CONFIG_MTD_UBI_FASTMAP
878 /**
879  * ubi_is_erase_work - checks whether a work is erase work.
880  * @wrk: The work object to be checked
881  */
882 int ubi_is_erase_work(struct ubi_work *wrk)
883 {
884         return wrk->func == erase_worker;
885 }
886 #endif
887
888 /**
889  * schedule_erase - schedule an erase work.
890  * @ubi: UBI device description object
891  * @e: the WL entry of the physical eraseblock to erase
892  * @vol_id: the volume ID that last used this PEB
893  * @lnum: the last used logical eraseblock number for the PEB
894  * @torture: if the physical eraseblock has to be tortured
895  *
896  * This function returns zero in case of success and a %-ENOMEM in case of
897  * failure.
898  */
899 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
900                           int vol_id, int lnum, int torture)
901 {
902         struct ubi_work *wl_wrk;
903
904         ubi_assert(e);
905         ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
906
907         dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
908                e->pnum, e->ec, torture);
909
910         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
911         if (!wl_wrk)
912                 return -ENOMEM;
913
914         wl_wrk->func = &erase_worker;
915         wl_wrk->e = e;
916         wl_wrk->vol_id = vol_id;
917         wl_wrk->lnum = lnum;
918         wl_wrk->torture = torture;
919
920         schedule_ubi_work(ubi, wl_wrk);
921         return 0;
922 }
923
924 /**
925  * do_sync_erase - run the erase worker synchronously.
926  * @ubi: UBI device description object
927  * @e: the WL entry of the physical eraseblock to erase
928  * @vol_id: the volume ID that last used this PEB
929  * @lnum: the last used logical eraseblock number for the PEB
930  * @torture: if the physical eraseblock has to be tortured
931  *
932  */
933 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
934                          int vol_id, int lnum, int torture)
935 {
936         struct ubi_work *wl_wrk;
937
938         dbg_wl("sync erase of PEB %i", e->pnum);
939
940         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
941         if (!wl_wrk)
942                 return -ENOMEM;
943
944         wl_wrk->e = e;
945         wl_wrk->vol_id = vol_id;
946         wl_wrk->lnum = lnum;
947         wl_wrk->torture = torture;
948
949         return erase_worker(ubi, wl_wrk, 0);
950 }
951
952 #ifdef CONFIG_MTD_UBI_FASTMAP
953 /**
954  * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling
955  * sub-system.
956  * see: ubi_wl_put_peb()
957  *
958  * @ubi: UBI device description object
959  * @fm_e: physical eraseblock to return
960  * @lnum: the last used logical eraseblock number for the PEB
961  * @torture: if this physical eraseblock has to be tortured
962  */
963 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e,
964                       int lnum, int torture)
965 {
966         struct ubi_wl_entry *e;
967         int vol_id, pnum = fm_e->pnum;
968
969         dbg_wl("PEB %d", pnum);
970
971         ubi_assert(pnum >= 0);
972         ubi_assert(pnum < ubi->peb_count);
973
974         spin_lock(&ubi->wl_lock);
975         e = ubi->lookuptbl[pnum];
976
977         /* This can happen if we recovered from a fastmap the very
978          * first time and writing now a new one. In this case the wl system
979          * has never seen any PEB used by the original fastmap.
980          */
981         if (!e) {
982                 e = fm_e;
983                 ubi_assert(e->ec >= 0);
984                 ubi->lookuptbl[pnum] = e;
985         } else {
986                 e->ec = fm_e->ec;
987                 kfree(fm_e);
988         }
989
990         spin_unlock(&ubi->wl_lock);
991
992         vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID;
993         return schedule_erase(ubi, e, vol_id, lnum, torture);
994 }
995 #endif
996
997 /**
998  * wear_leveling_worker - wear-leveling worker function.
999  * @ubi: UBI device description object
1000  * @wrk: the work object
1001  * @cancel: non-zero if the worker has to free memory and exit
1002  *
1003  * This function copies a more worn out physical eraseblock to a less worn out
1004  * one. Returns zero in case of success and a negative error code in case of
1005  * failure.
1006  */
1007 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
1008                                 int cancel)
1009 {
1010         int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
1011         int vol_id = -1, uninitialized_var(lnum);
1012 #ifdef CONFIG_MTD_UBI_FASTMAP
1013         int anchor = wrk->anchor;
1014 #endif
1015         struct ubi_wl_entry *e1, *e2;
1016         struct ubi_vid_hdr *vid_hdr;
1017
1018         kfree(wrk);
1019         if (cancel)
1020                 return 0;
1021
1022         vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1023         if (!vid_hdr)
1024                 return -ENOMEM;
1025
1026         mutex_lock(&ubi->move_mutex);
1027         spin_lock(&ubi->wl_lock);
1028         ubi_assert(!ubi->move_from && !ubi->move_to);
1029         ubi_assert(!ubi->move_to_put);
1030
1031         if (!ubi->free.rb_node ||
1032             (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
1033                 /*
1034                  * No free physical eraseblocks? Well, they must be waiting in
1035                  * the queue to be erased. Cancel movement - it will be
1036                  * triggered again when a free physical eraseblock appears.
1037                  *
1038                  * No used physical eraseblocks? They must be temporarily
1039                  * protected from being moved. They will be moved to the
1040                  * @ubi->used tree later and the wear-leveling will be
1041                  * triggered again.
1042                  */
1043                 dbg_wl("cancel WL, a list is empty: free %d, used %d",
1044                        !ubi->free.rb_node, !ubi->used.rb_node);
1045                 goto out_cancel;
1046         }
1047
1048 #ifdef CONFIG_MTD_UBI_FASTMAP
1049         /* Check whether we need to produce an anchor PEB */
1050         if (!anchor)
1051                 anchor = !anchor_pebs_avalible(&ubi->free);
1052
1053         if (anchor) {
1054                 e1 = find_anchor_wl_entry(&ubi->used);
1055                 if (!e1)
1056                         goto out_cancel;
1057                 e2 = get_peb_for_wl(ubi);
1058                 if (!e2)
1059                         goto out_cancel;
1060
1061                 self_check_in_wl_tree(ubi, e1, &ubi->used);
1062                 rb_erase(&e1->u.rb, &ubi->used);
1063                 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
1064         } else if (!ubi->scrub.rb_node) {
1065 #else
1066         if (!ubi->scrub.rb_node) {
1067 #endif
1068                 /*
1069                  * Now pick the least worn-out used physical eraseblock and a
1070                  * highly worn-out free physical eraseblock. If the erase
1071                  * counters differ much enough, start wear-leveling.
1072                  */
1073                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1074                 e2 = get_peb_for_wl(ubi);
1075                 if (!e2)
1076                         goto out_cancel;
1077
1078                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
1079                         dbg_wl("no WL needed: min used EC %d, max free EC %d",
1080                                e1->ec, e2->ec);
1081
1082                         /* Give the unused PEB back */
1083                         wl_tree_add(e2, &ubi->free);
1084                         ubi->free_count++;
1085                         goto out_cancel;
1086                 }
1087                 self_check_in_wl_tree(ubi, e1, &ubi->used);
1088                 rb_erase(&e1->u.rb, &ubi->used);
1089                 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
1090                        e1->pnum, e1->ec, e2->pnum, e2->ec);
1091         } else {
1092                 /* Perform scrubbing */
1093                 scrubbing = 1;
1094                 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
1095                 e2 = get_peb_for_wl(ubi);
1096                 if (!e2)
1097                         goto out_cancel;
1098
1099                 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
1100                 rb_erase(&e1->u.rb, &ubi->scrub);
1101                 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
1102         }
1103
1104         ubi->move_from = e1;
1105         ubi->move_to = e2;
1106         spin_unlock(&ubi->wl_lock);
1107
1108         /*
1109          * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
1110          * We so far do not know which logical eraseblock our physical
1111          * eraseblock (@e1) belongs to. We have to read the volume identifier
1112          * header first.
1113          *
1114          * Note, we are protected from this PEB being unmapped and erased. The
1115          * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
1116          * which is being moved was unmapped.
1117          */
1118
1119         err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
1120         if (err && err != UBI_IO_BITFLIPS) {
1121                 if (err == UBI_IO_FF) {
1122                         /*
1123                          * We are trying to move PEB without a VID header. UBI
1124                          * always write VID headers shortly after the PEB was
1125                          * given, so we have a situation when it has not yet
1126                          * had a chance to write it, because it was preempted.
1127                          * So add this PEB to the protection queue so far,
1128                          * because presumably more data will be written there
1129                          * (including the missing VID header), and then we'll
1130                          * move it.
1131                          */
1132                         dbg_wl("PEB %d has no VID header", e1->pnum);
1133                         protect = 1;
1134                         goto out_not_moved;
1135                 } else if (err == UBI_IO_FF_BITFLIPS) {
1136                         /*
1137                          * The same situation as %UBI_IO_FF, but bit-flips were
1138                          * detected. It is better to schedule this PEB for
1139                          * scrubbing.
1140                          */
1141                         dbg_wl("PEB %d has no VID header but has bit-flips",
1142                                e1->pnum);
1143                         scrubbing = 1;
1144                         goto out_not_moved;
1145                 }
1146
1147                 ubi_err("error %d while reading VID header from PEB %d",
1148                         err, e1->pnum);
1149                 goto out_error;
1150         }
1151
1152         vol_id = be32_to_cpu(vid_hdr->vol_id);
1153         lnum = be32_to_cpu(vid_hdr->lnum);
1154
1155         err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
1156         if (err) {
1157                 if (err == MOVE_CANCEL_RACE) {
1158                         /*
1159                          * The LEB has not been moved because the volume is
1160                          * being deleted or the PEB has been put meanwhile. We
1161                          * should prevent this PEB from being selected for
1162                          * wear-leveling movement again, so put it to the
1163                          * protection queue.
1164                          */
1165                         protect = 1;
1166                         goto out_not_moved;
1167                 }
1168                 if (err == MOVE_RETRY) {
1169                         scrubbing = 1;
1170                         goto out_not_moved;
1171                 }
1172                 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
1173                     err == MOVE_TARGET_RD_ERR) {
1174                         /*
1175                          * Target PEB had bit-flips or write error - torture it.
1176                          */
1177                         torture = 1;
1178                         goto out_not_moved;
1179                 }
1180
1181                 if (err == MOVE_SOURCE_RD_ERR) {
1182                         /*
1183                          * An error happened while reading the source PEB. Do
1184                          * not switch to R/O mode in this case, and give the
1185                          * upper layers a possibility to recover from this,
1186                          * e.g. by unmapping corresponding LEB. Instead, just
1187                          * put this PEB to the @ubi->erroneous list to prevent
1188                          * UBI from trying to move it over and over again.
1189                          */
1190                         if (ubi->erroneous_peb_count > ubi->max_erroneous) {
1191                                 ubi_err("too many erroneous eraseblocks (%d)",
1192                                         ubi->erroneous_peb_count);
1193                                 goto out_error;
1194                         }
1195                         erroneous = 1;
1196                         goto out_not_moved;
1197                 }
1198
1199                 if (err < 0)
1200                         goto out_error;
1201
1202                 ubi_assert(0);
1203         }
1204
1205         /* The PEB has been successfully moved */
1206         if (scrubbing)
1207                 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
1208                         e1->pnum, vol_id, lnum, e2->pnum);
1209         ubi_free_vid_hdr(ubi, vid_hdr);
1210
1211         spin_lock(&ubi->wl_lock);
1212         if (!ubi->move_to_put) {
1213                 wl_tree_add(e2, &ubi->used);
1214                 e2 = NULL;
1215         }
1216         ubi->move_from = ubi->move_to = NULL;
1217         ubi->move_to_put = ubi->wl_scheduled = 0;
1218         spin_unlock(&ubi->wl_lock);
1219
1220         err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
1221         if (err) {
1222                 kmem_cache_free(ubi_wl_entry_slab, e1);
1223                 if (e2)
1224                         kmem_cache_free(ubi_wl_entry_slab, e2);
1225                 goto out_ro;
1226         }
1227
1228         if (e2) {
1229                 /*
1230                  * Well, the target PEB was put meanwhile, schedule it for
1231                  * erasure.
1232                  */
1233                 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
1234                        e2->pnum, vol_id, lnum);
1235                 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
1236                 if (err) {
1237                         kmem_cache_free(ubi_wl_entry_slab, e2);
1238                         goto out_ro;
1239                 }
1240         }
1241
1242         dbg_wl("done");
1243         mutex_unlock(&ubi->move_mutex);
1244         return 0;
1245
1246         /*
1247          * For some reasons the LEB was not moved, might be an error, might be
1248          * something else. @e1 was not changed, so return it back. @e2 might
1249          * have been changed, schedule it for erasure.
1250          */
1251 out_not_moved:
1252         if (vol_id != -1)
1253                 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
1254                        e1->pnum, vol_id, lnum, e2->pnum, err);
1255         else
1256                 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
1257                        e1->pnum, e2->pnum, err);
1258         spin_lock(&ubi->wl_lock);
1259         if (protect)
1260                 prot_queue_add(ubi, e1);
1261         else if (erroneous) {
1262                 wl_tree_add(e1, &ubi->erroneous);
1263                 ubi->erroneous_peb_count += 1;
1264         } else if (scrubbing)
1265                 wl_tree_add(e1, &ubi->scrub);
1266         else
1267                 wl_tree_add(e1, &ubi->used);
1268         ubi_assert(!ubi->move_to_put);
1269         ubi->move_from = ubi->move_to = NULL;
1270         ubi->wl_scheduled = 0;
1271         spin_unlock(&ubi->wl_lock);
1272
1273         ubi_free_vid_hdr(ubi, vid_hdr);
1274         err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
1275         if (err) {
1276                 kmem_cache_free(ubi_wl_entry_slab, e2);
1277                 goto out_ro;
1278         }
1279         mutex_unlock(&ubi->move_mutex);
1280         return 0;
1281
1282 out_error:
1283         if (vol_id != -1)
1284                 ubi_err("error %d while moving PEB %d to PEB %d",
1285                         err, e1->pnum, e2->pnum);
1286         else
1287                 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
1288                         err, e1->pnum, vol_id, lnum, e2->pnum);
1289         spin_lock(&ubi->wl_lock);
1290         ubi->move_from = ubi->move_to = NULL;
1291         ubi->move_to_put = ubi->wl_scheduled = 0;
1292         spin_unlock(&ubi->wl_lock);
1293
1294         ubi_free_vid_hdr(ubi, vid_hdr);
1295         kmem_cache_free(ubi_wl_entry_slab, e1);
1296         kmem_cache_free(ubi_wl_entry_slab, e2);
1297
1298 out_ro:
1299         ubi_ro_mode(ubi);
1300         mutex_unlock(&ubi->move_mutex);
1301         ubi_assert(err != 0);
1302         return err < 0 ? err : -EIO;
1303
1304 out_cancel:
1305         ubi->wl_scheduled = 0;
1306         spin_unlock(&ubi->wl_lock);
1307         mutex_unlock(&ubi->move_mutex);
1308         ubi_free_vid_hdr(ubi, vid_hdr);
1309         return 0;
1310 }
1311
1312 /**
1313  * ensure_wear_leveling - schedule wear-leveling if it is needed.
1314  * @ubi: UBI device description object
1315  * @nested: set to non-zero if this function is called from UBI worker
1316  *
1317  * This function checks if it is time to start wear-leveling and schedules it
1318  * if yes. This function returns zero in case of success and a negative error
1319  * code in case of failure.
1320  */
1321 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1322 {
1323         int err = 0;
1324         struct ubi_wl_entry *e1;
1325         struct ubi_wl_entry *e2;
1326         struct ubi_work *wrk;
1327
1328         spin_lock(&ubi->wl_lock);
1329         if (ubi->wl_scheduled)
1330                 /* Wear-leveling is already in the work queue */
1331                 goto out_unlock;
1332
1333         /*
1334          * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1335          * the WL worker has to be scheduled anyway.
1336          */
1337         if (!ubi->scrub.rb_node) {
1338                 if (!ubi->used.rb_node || !ubi->free.rb_node)
1339                         /* No physical eraseblocks - no deal */
1340                         goto out_unlock;
1341
1342                 /*
1343                  * We schedule wear-leveling only if the difference between the
1344                  * lowest erase counter of used physical eraseblocks and a high
1345                  * erase counter of free physical eraseblocks is greater than
1346                  * %UBI_WL_THRESHOLD.
1347                  */
1348                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1349                 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1350
1351                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1352                         goto out_unlock;
1353                 dbg_wl("schedule wear-leveling");
1354         } else
1355                 dbg_wl("schedule scrubbing");
1356
1357         ubi->wl_scheduled = 1;
1358         spin_unlock(&ubi->wl_lock);
1359
1360         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1361         if (!wrk) {
1362                 err = -ENOMEM;
1363                 goto out_cancel;
1364         }
1365
1366         wrk->anchor = 0;
1367         wrk->func = &wear_leveling_worker;
1368         if (nested)
1369                 __schedule_ubi_work(ubi, wrk);
1370         else
1371                 schedule_ubi_work(ubi, wrk);
1372         return err;
1373
1374 out_cancel:
1375         spin_lock(&ubi->wl_lock);
1376         ubi->wl_scheduled = 0;
1377 out_unlock:
1378         spin_unlock(&ubi->wl_lock);
1379         return err;
1380 }
1381
1382 #ifdef CONFIG_MTD_UBI_FASTMAP
1383 /**
1384  * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB.
1385  * @ubi: UBI device description object
1386  */
1387 int ubi_ensure_anchor_pebs(struct ubi_device *ubi)
1388 {
1389         struct ubi_work *wrk;
1390
1391         spin_lock(&ubi->wl_lock);
1392         if (ubi->wl_scheduled) {
1393                 spin_unlock(&ubi->wl_lock);
1394                 return 0;
1395         }
1396         ubi->wl_scheduled = 1;
1397         spin_unlock(&ubi->wl_lock);
1398
1399         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1400         if (!wrk) {
1401                 spin_lock(&ubi->wl_lock);
1402                 ubi->wl_scheduled = 0;
1403                 spin_unlock(&ubi->wl_lock);
1404                 return -ENOMEM;
1405         }
1406
1407         wrk->anchor = 1;
1408         wrk->func = &wear_leveling_worker;
1409         schedule_ubi_work(ubi, wrk);
1410         return 0;
1411 }
1412 #endif
1413
1414 /**
1415  * erase_worker - physical eraseblock erase worker function.
1416  * @ubi: UBI device description object
1417  * @wl_wrk: the work object
1418  * @cancel: non-zero if the worker has to free memory and exit
1419  *
1420  * This function erases a physical eraseblock and perform torture testing if
1421  * needed. It also takes care about marking the physical eraseblock bad if
1422  * needed. Returns zero in case of success and a negative error code in case of
1423  * failure.
1424  */
1425 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1426                         int cancel)
1427 {
1428         struct ubi_wl_entry *e = wl_wrk->e;
1429         int pnum = e->pnum;
1430         int vol_id = wl_wrk->vol_id;
1431         int lnum = wl_wrk->lnum;
1432         int err, available_consumed = 0;
1433
1434         if (cancel) {
1435                 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1436                 kfree(wl_wrk);
1437                 kmem_cache_free(ubi_wl_entry_slab, e);
1438                 return 0;
1439         }
1440
1441         dbg_wl("erase PEB %d EC %d LEB %d:%d",
1442                pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1443
1444         ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1445
1446         err = sync_erase(ubi, e, wl_wrk->torture);
1447         if (!err) {
1448                 /* Fine, we've erased it successfully */
1449                 kfree(wl_wrk);
1450
1451                 spin_lock(&ubi->wl_lock);
1452                 wl_tree_add(e, &ubi->free);
1453                 ubi->free_count++;
1454                 spin_unlock(&ubi->wl_lock);
1455
1456                 /*
1457                  * One more erase operation has happened, take care about
1458                  * protected physical eraseblocks.
1459                  */
1460                 serve_prot_queue(ubi);
1461
1462                 /* And take care about wear-leveling */
1463                 err = ensure_wear_leveling(ubi, 1);
1464                 return err;
1465         }
1466
1467         ubi_err("failed to erase PEB %d, error %d", pnum, err);
1468         kfree(wl_wrk);
1469
1470         if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1471             err == -EBUSY) {
1472                 int err1;
1473
1474                 /* Re-schedule the LEB for erasure */
1475                 err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1476                 if (err1) {
1477                         err = err1;
1478                         goto out_ro;
1479                 }
1480                 return err;
1481         }
1482
1483         kmem_cache_free(ubi_wl_entry_slab, e);
1484         if (err != -EIO)
1485                 /*
1486                  * If this is not %-EIO, we have no idea what to do. Scheduling
1487                  * this physical eraseblock for erasure again would cause
1488                  * errors again and again. Well, lets switch to R/O mode.
1489                  */
1490                 goto out_ro;
1491
1492         /* It is %-EIO, the PEB went bad */
1493
1494         if (!ubi->bad_allowed) {
1495                 ubi_err("bad physical eraseblock %d detected", pnum);
1496                 goto out_ro;
1497         }
1498
1499         spin_lock(&ubi->volumes_lock);
1500         if (ubi->beb_rsvd_pebs == 0) {
1501                 if (ubi->avail_pebs == 0) {
1502                         spin_unlock(&ubi->volumes_lock);
1503                         ubi_err("no reserved/available physical eraseblocks");
1504                         goto out_ro;
1505                 }
1506                 ubi->avail_pebs -= 1;
1507                 available_consumed = 1;
1508         }
1509         spin_unlock(&ubi->volumes_lock);
1510
1511         ubi_msg("mark PEB %d as bad", pnum);
1512         err = ubi_io_mark_bad(ubi, pnum);
1513         if (err)
1514                 goto out_ro;
1515
1516         spin_lock(&ubi->volumes_lock);
1517         if (ubi->beb_rsvd_pebs > 0) {
1518                 if (available_consumed) {
1519                         /*
1520                          * The amount of reserved PEBs increased since we last
1521                          * checked.
1522                          */
1523                         ubi->avail_pebs += 1;
1524                         available_consumed = 0;
1525                 }
1526                 ubi->beb_rsvd_pebs -= 1;
1527         }
1528         ubi->bad_peb_count += 1;
1529         ubi->good_peb_count -= 1;
1530         ubi_calculate_reserved(ubi);
1531         if (available_consumed)
1532                 ubi_warn("no PEBs in the reserved pool, used an available PEB");
1533         else if (ubi->beb_rsvd_pebs)
1534                 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1535         else
1536                 ubi_warn("last PEB from the reserve was used");
1537         spin_unlock(&ubi->volumes_lock);
1538
1539         return err;
1540
1541 out_ro:
1542         if (available_consumed) {
1543                 spin_lock(&ubi->volumes_lock);
1544                 ubi->avail_pebs += 1;
1545                 spin_unlock(&ubi->volumes_lock);
1546         }
1547         ubi_ro_mode(ubi);
1548         return err;
1549 }
1550
1551 /**
1552  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1553  * @ubi: UBI device description object
1554  * @vol_id: the volume ID that last used this PEB
1555  * @lnum: the last used logical eraseblock number for the PEB
1556  * @pnum: physical eraseblock to return
1557  * @torture: if this physical eraseblock has to be tortured
1558  *
1559  * This function is called to return physical eraseblock @pnum to the pool of
1560  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1561  * occurred to this @pnum and it has to be tested. This function returns zero
1562  * in case of success, and a negative error code in case of failure.
1563  */
1564 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1565                    int pnum, int torture)
1566 {
1567         int err;
1568         struct ubi_wl_entry *e;
1569
1570         dbg_wl("PEB %d", pnum);
1571         ubi_assert(pnum >= 0);
1572         ubi_assert(pnum < ubi->peb_count);
1573
1574 retry:
1575         spin_lock(&ubi->wl_lock);
1576         e = ubi->lookuptbl[pnum];
1577         if (e == ubi->move_from) {
1578                 /*
1579                  * User is putting the physical eraseblock which was selected to
1580                  * be moved. It will be scheduled for erasure in the
1581                  * wear-leveling worker.
1582                  */
1583                 dbg_wl("PEB %d is being moved, wait", pnum);
1584                 spin_unlock(&ubi->wl_lock);
1585
1586                 /* Wait for the WL worker by taking the @ubi->move_mutex */
1587                 mutex_lock(&ubi->move_mutex);
1588                 mutex_unlock(&ubi->move_mutex);
1589                 goto retry;
1590         } else if (e == ubi->move_to) {
1591                 /*
1592                  * User is putting the physical eraseblock which was selected
1593                  * as the target the data is moved to. It may happen if the EBA
1594                  * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1595                  * but the WL sub-system has not put the PEB to the "used" tree
1596                  * yet, but it is about to do this. So we just set a flag which
1597                  * will tell the WL worker that the PEB is not needed anymore
1598                  * and should be scheduled for erasure.
1599                  */
1600                 dbg_wl("PEB %d is the target of data moving", pnum);
1601                 ubi_assert(!ubi->move_to_put);
1602                 ubi->move_to_put = 1;
1603                 spin_unlock(&ubi->wl_lock);
1604                 return 0;
1605         } else {
1606                 if (in_wl_tree(e, &ubi->used)) {
1607                         self_check_in_wl_tree(ubi, e, &ubi->used);
1608                         rb_erase(&e->u.rb, &ubi->used);
1609                 } else if (in_wl_tree(e, &ubi->scrub)) {
1610                         self_check_in_wl_tree(ubi, e, &ubi->scrub);
1611                         rb_erase(&e->u.rb, &ubi->scrub);
1612                 } else if (in_wl_tree(e, &ubi->erroneous)) {
1613                         self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1614                         rb_erase(&e->u.rb, &ubi->erroneous);
1615                         ubi->erroneous_peb_count -= 1;
1616                         ubi_assert(ubi->erroneous_peb_count >= 0);
1617                         /* Erroneous PEBs should be tortured */
1618                         torture = 1;
1619                 } else {
1620                         err = prot_queue_del(ubi, e->pnum);
1621                         if (err) {
1622                                 ubi_err("PEB %d not found", pnum);
1623                                 ubi_ro_mode(ubi);
1624                                 spin_unlock(&ubi->wl_lock);
1625                                 return err;
1626                         }
1627                 }
1628         }
1629         spin_unlock(&ubi->wl_lock);
1630
1631         err = schedule_erase(ubi, e, vol_id, lnum, torture);
1632         if (err) {
1633                 spin_lock(&ubi->wl_lock);
1634                 wl_tree_add(e, &ubi->used);
1635                 spin_unlock(&ubi->wl_lock);
1636         }
1637
1638         return err;
1639 }
1640
1641 /**
1642  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1643  * @ubi: UBI device description object
1644  * @pnum: the physical eraseblock to schedule
1645  *
1646  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1647  * needs scrubbing. This function schedules a physical eraseblock for
1648  * scrubbing which is done in background. This function returns zero in case of
1649  * success and a negative error code in case of failure.
1650  */
1651 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1652 {
1653         struct ubi_wl_entry *e;
1654
1655         ubi_msg("schedule PEB %d for scrubbing", pnum);
1656
1657 retry:
1658         spin_lock(&ubi->wl_lock);
1659         e = ubi->lookuptbl[pnum];
1660         if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1661                                    in_wl_tree(e, &ubi->erroneous)) {
1662                 spin_unlock(&ubi->wl_lock);
1663                 return 0;
1664         }
1665
1666         if (e == ubi->move_to) {
1667                 /*
1668                  * This physical eraseblock was used to move data to. The data
1669                  * was moved but the PEB was not yet inserted to the proper
1670                  * tree. We should just wait a little and let the WL worker
1671                  * proceed.
1672                  */
1673                 spin_unlock(&ubi->wl_lock);
1674                 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1675                 yield();
1676                 goto retry;
1677         }
1678
1679         if (in_wl_tree(e, &ubi->used)) {
1680                 self_check_in_wl_tree(ubi, e, &ubi->used);
1681                 rb_erase(&e->u.rb, &ubi->used);
1682         } else {
1683                 int err;
1684
1685                 err = prot_queue_del(ubi, e->pnum);
1686                 if (err) {
1687                         ubi_err("PEB %d not found", pnum);
1688                         ubi_ro_mode(ubi);
1689                         spin_unlock(&ubi->wl_lock);
1690                         return err;
1691                 }
1692         }
1693
1694         wl_tree_add(e, &ubi->scrub);
1695         spin_unlock(&ubi->wl_lock);
1696
1697         /*
1698          * Technically scrubbing is the same as wear-leveling, so it is done
1699          * by the WL worker.
1700          */
1701         return ensure_wear_leveling(ubi, 0);
1702 }
1703
1704 /**
1705  * ubi_wl_flush - flush all pending works.
1706  * @ubi: UBI device description object
1707  * @vol_id: the volume id to flush for
1708  * @lnum: the logical eraseblock number to flush for
1709  *
1710  * This function executes all pending works for a particular volume id /
1711  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1712  * acts as a wildcard for all of the corresponding volume numbers or logical
1713  * eraseblock numbers. It returns zero in case of success and a negative error
1714  * code in case of failure.
1715  */
1716 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1717 {
1718         int err = 0;
1719         int found = 1;
1720
1721         /*
1722          * Erase while the pending works queue is not empty, but not more than
1723          * the number of currently pending works.
1724          */
1725         dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1726                vol_id, lnum, ubi->works_count);
1727
1728         while (found) {
1729                 struct ubi_work *wrk;
1730                 found = 0;
1731
1732                 down_read(&ubi->work_sem);
1733                 spin_lock(&ubi->wl_lock);
1734                 list_for_each_entry(wrk, &ubi->works, list) {
1735                         if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1736                             (lnum == UBI_ALL || wrk->lnum == lnum)) {
1737                                 list_del(&wrk->list);
1738                                 ubi->works_count -= 1;
1739                                 ubi_assert(ubi->works_count >= 0);
1740                                 spin_unlock(&ubi->wl_lock);
1741
1742                                 err = wrk->func(ubi, wrk, 0);
1743                                 if (err) {
1744                                         up_read(&ubi->work_sem);
1745                                         return err;
1746                                 }
1747
1748                                 spin_lock(&ubi->wl_lock);
1749                                 found = 1;
1750                                 break;
1751                         }
1752                 }
1753                 spin_unlock(&ubi->wl_lock);
1754                 up_read(&ubi->work_sem);
1755         }
1756
1757         /*
1758          * Make sure all the works which have been done in parallel are
1759          * finished.
1760          */
1761         down_write(&ubi->work_sem);
1762         up_write(&ubi->work_sem);
1763
1764         return err;
1765 }
1766
1767 /**
1768  * tree_destroy - destroy an RB-tree.
1769  * @root: the root of the tree to destroy
1770  */
1771 static void tree_destroy(struct rb_root *root)
1772 {
1773         struct rb_node *rb;
1774         struct ubi_wl_entry *e;
1775
1776         rb = root->rb_node;
1777         while (rb) {
1778                 if (rb->rb_left)
1779                         rb = rb->rb_left;
1780                 else if (rb->rb_right)
1781                         rb = rb->rb_right;
1782                 else {
1783                         e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1784
1785                         rb = rb_parent(rb);
1786                         if (rb) {
1787                                 if (rb->rb_left == &e->u.rb)
1788                                         rb->rb_left = NULL;
1789                                 else
1790                                         rb->rb_right = NULL;
1791                         }
1792
1793                         kmem_cache_free(ubi_wl_entry_slab, e);
1794                 }
1795         }
1796 }
1797
1798 /**
1799  * ubi_thread - UBI background thread.
1800  * @u: the UBI device description object pointer
1801  */
1802 int ubi_thread(void *u)
1803 {
1804         int failures = 0;
1805         struct ubi_device *ubi = u;
1806
1807         ubi_msg("background thread \"%s\" started, PID %d",
1808                 ubi->bgt_name, task_pid_nr(current));
1809
1810         set_freezable();
1811         for (;;) {
1812                 int err;
1813
1814                 if (kthread_should_stop())
1815                         break;
1816
1817                 if (try_to_freeze())
1818                         continue;
1819
1820                 spin_lock(&ubi->wl_lock);
1821                 if (list_empty(&ubi->works) || ubi->ro_mode ||
1822                     !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1823                         set_current_state(TASK_INTERRUPTIBLE);
1824                         spin_unlock(&ubi->wl_lock);
1825                         schedule();
1826                         continue;
1827                 }
1828                 spin_unlock(&ubi->wl_lock);
1829
1830                 err = do_work(ubi);
1831                 if (err) {
1832                         ubi_err("%s: work failed with error code %d",
1833                                 ubi->bgt_name, err);
1834                         if (failures++ > WL_MAX_FAILURES) {
1835                                 /*
1836                                  * Too many failures, disable the thread and
1837                                  * switch to read-only mode.
1838                                  */
1839                                 ubi_msg("%s: %d consecutive failures",
1840                                         ubi->bgt_name, WL_MAX_FAILURES);
1841                                 ubi_ro_mode(ubi);
1842                                 ubi->thread_enabled = 0;
1843                                 continue;
1844                         }
1845                 } else
1846                         failures = 0;
1847
1848                 cond_resched();
1849         }
1850
1851         dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1852         return 0;
1853 }
1854
1855 /**
1856  * cancel_pending - cancel all pending works.
1857  * @ubi: UBI device description object
1858  */
1859 static void cancel_pending(struct ubi_device *ubi)
1860 {
1861         while (!list_empty(&ubi->works)) {
1862                 struct ubi_work *wrk;
1863
1864                 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1865                 list_del(&wrk->list);
1866                 wrk->func(ubi, wrk, 1);
1867                 ubi->works_count -= 1;
1868                 ubi_assert(ubi->works_count >= 0);
1869         }
1870 }
1871
1872 /**
1873  * ubi_wl_init - initialize the WL sub-system using attaching information.
1874  * @ubi: UBI device description object
1875  * @ai: attaching information
1876  *
1877  * This function returns zero in case of success, and a negative error code in
1878  * case of failure.
1879  */
1880 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1881 {
1882         int err, i, reserved_pebs, found_pebs = 0;
1883         struct rb_node *rb1, *rb2;
1884         struct ubi_ainf_volume *av;
1885         struct ubi_ainf_peb *aeb, *tmp;
1886         struct ubi_wl_entry *e;
1887
1888         ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1889         spin_lock_init(&ubi->wl_lock);
1890         mutex_init(&ubi->move_mutex);
1891         init_rwsem(&ubi->work_sem);
1892         ubi->max_ec = ai->max_ec;
1893         INIT_LIST_HEAD(&ubi->works);
1894 #ifndef __UBOOT__
1895 #ifdef CONFIG_MTD_UBI_FASTMAP
1896         INIT_WORK(&ubi->fm_work, update_fastmap_work_fn);
1897 #endif
1898 #endif
1899
1900         sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1901
1902         err = -ENOMEM;
1903         ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1904         if (!ubi->lookuptbl)
1905                 return err;
1906
1907         for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1908                 INIT_LIST_HEAD(&ubi->pq[i]);
1909         ubi->pq_head = 0;
1910
1911         list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1912                 cond_resched();
1913
1914                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1915                 if (!e)
1916                         goto out_free;
1917
1918                 e->pnum = aeb->pnum;
1919                 e->ec = aeb->ec;
1920                 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1921                 ubi->lookuptbl[e->pnum] = e;
1922                 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1923                         kmem_cache_free(ubi_wl_entry_slab, e);
1924                         goto out_free;
1925                 }
1926
1927                 found_pebs++;
1928         }
1929
1930         ubi->free_count = 0;
1931         list_for_each_entry(aeb, &ai->free, u.list) {
1932                 cond_resched();
1933
1934                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1935                 if (!e)
1936                         goto out_free;
1937
1938                 e->pnum = aeb->pnum;
1939                 e->ec = aeb->ec;
1940                 ubi_assert(e->ec >= 0);
1941                 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1942
1943                 wl_tree_add(e, &ubi->free);
1944                 ubi->free_count++;
1945
1946                 ubi->lookuptbl[e->pnum] = e;
1947
1948                 found_pebs++;
1949         }
1950
1951         ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1952                 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1953                         cond_resched();
1954
1955                         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1956                         if (!e)
1957                                 goto out_free;
1958
1959                         e->pnum = aeb->pnum;
1960                         e->ec = aeb->ec;
1961                         ubi->lookuptbl[e->pnum] = e;
1962
1963                         if (!aeb->scrub) {
1964                                 dbg_wl("add PEB %d EC %d to the used tree",
1965                                        e->pnum, e->ec);
1966                                 wl_tree_add(e, &ubi->used);
1967                         } else {
1968                                 dbg_wl("add PEB %d EC %d to the scrub tree",
1969                                        e->pnum, e->ec);
1970                                 wl_tree_add(e, &ubi->scrub);
1971                         }
1972
1973                         found_pebs++;
1974                 }
1975         }
1976
1977         dbg_wl("found %i PEBs", found_pebs);
1978
1979         if (ubi->fm)
1980                 ubi_assert(ubi->good_peb_count == \
1981                            found_pebs + ubi->fm->used_blocks);
1982         else
1983                 ubi_assert(ubi->good_peb_count == found_pebs);
1984
1985         reserved_pebs = WL_RESERVED_PEBS;
1986 #ifdef CONFIG_MTD_UBI_FASTMAP
1987         /* Reserve enough LEBs to store two fastmaps. */
1988         reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2;
1989 #endif
1990
1991         if (ubi->avail_pebs < reserved_pebs) {
1992                 ubi_err("no enough physical eraseblocks (%d, need %d)",
1993                         ubi->avail_pebs, reserved_pebs);
1994                 if (ubi->corr_peb_count)
1995                         ubi_err("%d PEBs are corrupted and not used",
1996                                 ubi->corr_peb_count);
1997                 goto out_free;
1998         }
1999         ubi->avail_pebs -= reserved_pebs;
2000         ubi->rsvd_pebs += reserved_pebs;
2001
2002         /* Schedule wear-leveling if needed */
2003         err = ensure_wear_leveling(ubi, 0);
2004         if (err)
2005                 goto out_free;
2006
2007         return 0;
2008
2009 out_free:
2010         cancel_pending(ubi);
2011         tree_destroy(&ubi->used);
2012         tree_destroy(&ubi->free);
2013         tree_destroy(&ubi->scrub);
2014         kfree(ubi->lookuptbl);
2015         return err;
2016 }
2017
2018 /**
2019  * protection_queue_destroy - destroy the protection queue.
2020  * @ubi: UBI device description object
2021  */
2022 static void protection_queue_destroy(struct ubi_device *ubi)
2023 {
2024         int i;
2025         struct ubi_wl_entry *e, *tmp;
2026
2027         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
2028                 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
2029                         list_del(&e->u.list);
2030                         kmem_cache_free(ubi_wl_entry_slab, e);
2031                 }
2032         }
2033 }
2034
2035 /**
2036  * ubi_wl_close - close the wear-leveling sub-system.
2037  * @ubi: UBI device description object
2038  */
2039 void ubi_wl_close(struct ubi_device *ubi)
2040 {
2041         dbg_wl("close the WL sub-system");
2042         cancel_pending(ubi);
2043         protection_queue_destroy(ubi);
2044         tree_destroy(&ubi->used);
2045         tree_destroy(&ubi->erroneous);
2046         tree_destroy(&ubi->free);
2047         tree_destroy(&ubi->scrub);
2048         kfree(ubi->lookuptbl);
2049 }
2050
2051 /**
2052  * self_check_ec - make sure that the erase counter of a PEB is correct.
2053  * @ubi: UBI device description object
2054  * @pnum: the physical eraseblock number to check
2055  * @ec: the erase counter to check
2056  *
2057  * This function returns zero if the erase counter of physical eraseblock @pnum
2058  * is equivalent to @ec, and a negative error code if not or if an error
2059  * occurred.
2060  */
2061 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2062 {
2063         int err;
2064         long long read_ec;
2065         struct ubi_ec_hdr *ec_hdr;
2066
2067         if (!ubi_dbg_chk_gen(ubi))
2068                 return 0;
2069
2070         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2071         if (!ec_hdr)
2072                 return -ENOMEM;
2073
2074         err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2075         if (err && err != UBI_IO_BITFLIPS) {
2076                 /* The header does not have to exist */
2077                 err = 0;
2078                 goto out_free;
2079         }
2080
2081         read_ec = be64_to_cpu(ec_hdr->ec);
2082         if (ec != read_ec && read_ec - ec > 1) {
2083                 ubi_err("self-check failed for PEB %d", pnum);
2084                 ubi_err("read EC is %lld, should be %d", read_ec, ec);
2085                 dump_stack();
2086                 err = 1;
2087         } else
2088                 err = 0;
2089
2090 out_free:
2091         kfree(ec_hdr);
2092         return err;
2093 }
2094
2095 /**
2096  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2097  * @ubi: UBI device description object
2098  * @e: the wear-leveling entry to check
2099  * @root: the root of the tree
2100  *
2101  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2102  * is not.
2103  */
2104 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2105                                  struct ubi_wl_entry *e, struct rb_root *root)
2106 {
2107         if (!ubi_dbg_chk_gen(ubi))
2108                 return 0;
2109
2110         if (in_wl_tree(e, root))
2111                 return 0;
2112
2113         ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ",
2114                 e->pnum, e->ec, root);
2115         dump_stack();
2116         return -EINVAL;
2117 }
2118
2119 /**
2120  * self_check_in_pq - check if wear-leveling entry is in the protection
2121  *                        queue.
2122  * @ubi: UBI device description object
2123  * @e: the wear-leveling entry to check
2124  *
2125  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2126  */
2127 static int self_check_in_pq(const struct ubi_device *ubi,
2128                             struct ubi_wl_entry *e)
2129 {
2130         struct ubi_wl_entry *p;
2131         int i;
2132
2133         if (!ubi_dbg_chk_gen(ubi))
2134                 return 0;
2135
2136         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
2137                 list_for_each_entry(p, &ubi->pq[i], u.list)
2138                         if (p == e)
2139                                 return 0;
2140
2141         ubi_err("self-check failed for PEB %d, EC %d, Protect queue",
2142                 e->pnum, e->ec);
2143         dump_stack();
2144         return -EINVAL;
2145 }