]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/net/cpsw.c
Merge branch 'u-boot-imx/master' into 'u-boot-arm/master'
[karo-tx-uboot.git] / drivers / net / cpsw.c
1 /*
2  * CPSW Ethernet Switch Driver
3  *
4  * Copyright (C) 2010 Texas Instruments Incorporated - http://www.ti.com/
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  */
15
16 #include <common.h>
17 #include <command.h>
18 #include <net.h>
19 #include <miiphy.h>
20 #include <malloc.h>
21 #include <net.h>
22 #include <netdev.h>
23 #include <cpsw.h>
24 #include <asm/errno.h>
25 #include <asm/io.h>
26 #include <phy.h>
27 #include <asm/arch/cpu.h>
28
29 #define BITMASK(bits)           (BIT(bits) - 1)
30 #define PHY_REG_MASK            0x1f
31 #define PHY_ID_MASK             0x1f
32 #define NUM_DESCS               (PKTBUFSRX * 2)
33 #define PKT_MIN                 60
34 #define PKT_MAX                 (1500 + 14 + 4 + 4)
35 #define CLEAR_BIT               1
36 #define GIGABITEN               BIT(7)
37 #define FULLDUPLEXEN            BIT(0)
38 #define MIIEN                   BIT(15)
39
40 /* DMA Registers */
41 #define CPDMA_TXCONTROL         0x004
42 #define CPDMA_RXCONTROL         0x014
43 #define CPDMA_SOFTRESET         0x01c
44 #define CPDMA_RXFREE            0x0e0
45 #define CPDMA_TXHDP_VER1        0x100
46 #define CPDMA_TXHDP_VER2        0x200
47 #define CPDMA_RXHDP_VER1        0x120
48 #define CPDMA_RXHDP_VER2        0x220
49 #define CPDMA_TXCP_VER1         0x140
50 #define CPDMA_TXCP_VER2         0x240
51 #define CPDMA_RXCP_VER1         0x160
52 #define CPDMA_RXCP_VER2         0x260
53
54 /* Descriptor mode bits */
55 #define CPDMA_DESC_SOP          BIT(31)
56 #define CPDMA_DESC_EOP          BIT(30)
57 #define CPDMA_DESC_OWNER        BIT(29)
58 #define CPDMA_DESC_EOQ          BIT(28)
59
60 /*
61  * This timeout definition is a worst-case ultra defensive measure against
62  * unexpected controller lock ups.  Ideally, we should never ever hit this
63  * scenario in practice.
64  */
65 #define MDIO_TIMEOUT            100 /* msecs */
66 #define CPDMA_TIMEOUT           100 /* msecs */
67
68 struct cpsw_mdio_regs {
69         u32     version;
70         u32     control;
71 #define CONTROL_IDLE            BIT(31)
72 #define CONTROL_ENABLE          BIT(30)
73
74         u32     alive;
75         u32     link;
76         u32     linkintraw;
77         u32     linkintmasked;
78         u32     __reserved_0[2];
79         u32     userintraw;
80         u32     userintmasked;
81         u32     userintmaskset;
82         u32     userintmaskclr;
83         u32     __reserved_1[20];
84
85         struct {
86                 u32             access;
87                 u32             physel;
88 #define USERACCESS_GO           BIT(31)
89 #define USERACCESS_WRITE        BIT(30)
90 #define USERACCESS_ACK          BIT(29)
91 #define USERACCESS_READ         (0)
92 #define USERACCESS_DATA         (0xffff)
93         } user[0];
94 };
95
96 struct cpsw_regs {
97         u32     id_ver;
98         u32     control;
99         u32     soft_reset;
100         u32     stat_port_en;
101         u32     ptype;
102 };
103
104 struct cpsw_slave_regs {
105         u32     max_blks;
106         u32     blk_cnt;
107         u32     flow_thresh;
108         u32     port_vlan;
109         u32     tx_pri_map;
110 #ifdef CONFIG_AM33XX
111         u32     gap_thresh;
112 #elif defined(CONFIG_TI814X)
113         u32     ts_ctl;
114         u32     ts_seq_ltype;
115         u32     ts_vlan;
116 #endif
117         u32     sa_lo;
118         u32     sa_hi;
119 };
120
121 struct cpsw_host_regs {
122         u32     max_blks;
123         u32     blk_cnt;
124         u32     flow_thresh;
125         u32     port_vlan;
126         u32     tx_pri_map;
127         u32     cpdma_tx_pri_map;
128         u32     cpdma_rx_chan_map;
129 };
130
131 struct cpsw_sliver_regs {
132         u32     id_ver;
133         u32     mac_control;
134         u32     mac_status;
135         u32     soft_reset;
136         u32     rx_maxlen;
137         u32     __reserved_0;
138         u32     rx_pause;
139         u32     tx_pause;
140         u32     __reserved_1;
141         u32     rx_pri_map;
142 };
143
144 #define ALE_ENTRY_BITS          68
145 #define ALE_ENTRY_WORDS         DIV_ROUND_UP(ALE_ENTRY_BITS, 32)
146
147 /* ALE Registers */
148 #define ALE_CONTROL             0x08
149 #define ALE_UNKNOWNVLAN         0x18
150 #define ALE_TABLE_CONTROL       0x20
151 #define ALE_TABLE               0x34
152 #define ALE_PORTCTL             0x40
153
154 #define ALE_TABLE_WRITE         BIT(31)
155
156 #define ALE_TYPE_FREE                   0
157 #define ALE_TYPE_ADDR                   1
158 #define ALE_TYPE_VLAN                   2
159 #define ALE_TYPE_VLAN_ADDR              3
160
161 #define ALE_UCAST_PERSISTANT            0
162 #define ALE_UCAST_UNTOUCHED             1
163 #define ALE_UCAST_OUI                   2
164 #define ALE_UCAST_TOUCHED               3
165
166 #define ALE_MCAST_FWD                   0
167 #define ALE_MCAST_BLOCK_LEARN_FWD       1
168 #define ALE_MCAST_FWD_LEARN             2
169 #define ALE_MCAST_FWD_2                 3
170
171 enum cpsw_ale_port_state {
172         ALE_PORT_STATE_DISABLE  = 0x00,
173         ALE_PORT_STATE_BLOCK    = 0x01,
174         ALE_PORT_STATE_LEARN    = 0x02,
175         ALE_PORT_STATE_FORWARD  = 0x03,
176 };
177
178 /* ALE unicast entry flags - passed into cpsw_ale_add_ucast() */
179 #define ALE_SECURE      1
180 #define ALE_BLOCKED     2
181
182 struct cpsw_slave {
183         struct cpsw_slave_regs          *regs;
184         struct cpsw_sliver_regs         *sliver;
185         int                             slave_num;
186         u32                             mac_control;
187         struct cpsw_slave_data          *data;
188 };
189
190 struct cpdma_desc {
191         /* hardware fields */
192         u32                     hw_next;
193         u32                     hw_buffer;
194         u32                     hw_len;
195         u32                     hw_mode;
196         /* software fields */
197         u32                     sw_buffer;
198         u32                     sw_len;
199 };
200
201 struct cpdma_chan {
202         struct cpdma_desc       *head, *tail;
203         void                    *hdp, *cp, *rxfree;
204 };
205
206 #define desc_write(desc, fld, val)      __raw_writel((u32)(val), &(desc)->fld)
207 #define desc_read(desc, fld)            __raw_readl(&(desc)->fld)
208 #define desc_read_ptr(desc, fld)        ((void *)__raw_readl(&(desc)->fld))
209
210 #define chan_write(chan, fld, val)      __raw_writel((u32)(val), (chan)->fld)
211 #define chan_read(chan, fld)            __raw_readl((chan)->fld)
212 #define chan_read_ptr(chan, fld)        ((void *)__raw_readl((chan)->fld))
213
214 #define for_each_slave(slave, priv) \
215         for (slave = (priv)->slaves; slave != (priv)->slaves + \
216                                 (priv)->data.slaves; slave++)
217
218 struct cpsw_priv {
219         struct eth_device               *dev;
220         struct cpsw_platform_data       data;
221         int                             host_port;
222
223         struct cpsw_regs                *regs;
224         void                            *dma_regs;
225         struct cpsw_host_regs           *host_port_regs;
226         void                            *ale_regs;
227
228         struct cpdma_desc               *descs;
229         struct cpdma_desc               *desc_free;
230         struct cpdma_chan               rx_chan, tx_chan;
231
232         struct cpsw_slave               *slaves;
233         struct phy_device               *phydev;
234         struct mii_dev                  *bus;
235
236         u32                             mdio_link;
237         u32                             phy_mask;
238 };
239
240 static inline int cpsw_ale_get_field(u32 *ale_entry, u32 start, u32 bits)
241 {
242         int idx;
243
244         idx    = start / 32;
245         start -= idx * 32;
246         idx    = 2 - idx; /* flip */
247         return (ale_entry[idx] >> start) & BITMASK(bits);
248 }
249
250 static inline void cpsw_ale_set_field(u32 *ale_entry, u32 start, u32 bits,
251                                       u32 value)
252 {
253         int idx;
254
255         value &= BITMASK(bits);
256         idx    = start / 32;
257         start -= idx * 32;
258         idx    = 2 - idx; /* flip */
259         ale_entry[idx] &= ~(BITMASK(bits) << start);
260         ale_entry[idx] |=  (value << start);
261 }
262
263 #define DEFINE_ALE_FIELD(name, start, bits)                             \
264 static inline int cpsw_ale_get_##name(u32 *ale_entry)                   \
265 {                                                                       \
266         return cpsw_ale_get_field(ale_entry, start, bits);              \
267 }                                                                       \
268 static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value)       \
269 {                                                                       \
270         cpsw_ale_set_field(ale_entry, start, bits, value);              \
271 }
272
273 DEFINE_ALE_FIELD(entry_type,            60,     2)
274 DEFINE_ALE_FIELD(mcast_state,           62,     2)
275 DEFINE_ALE_FIELD(port_mask,             66,     3)
276 DEFINE_ALE_FIELD(ucast_type,            62,     2)
277 DEFINE_ALE_FIELD(port_num,              66,     2)
278 DEFINE_ALE_FIELD(blocked,               65,     1)
279 DEFINE_ALE_FIELD(secure,                64,     1)
280 DEFINE_ALE_FIELD(mcast,                 40,     1)
281
282 /* The MAC address field in the ALE entry cannot be macroized as above */
283 static inline void cpsw_ale_get_addr(u32 *ale_entry, u8 *addr)
284 {
285         int i;
286
287         for (i = 0; i < 6; i++)
288                 addr[i] = cpsw_ale_get_field(ale_entry, 40 - 8*i, 8);
289 }
290
291 static inline void cpsw_ale_set_addr(u32 *ale_entry, u8 *addr)
292 {
293         int i;
294
295         for (i = 0; i < 6; i++)
296                 cpsw_ale_set_field(ale_entry, 40 - 8*i, 8, addr[i]);
297 }
298
299 static int cpsw_ale_read(struct cpsw_priv *priv, int idx, u32 *ale_entry)
300 {
301         int i;
302
303         __raw_writel(idx, priv->ale_regs + ALE_TABLE_CONTROL);
304
305         for (i = 0; i < ALE_ENTRY_WORDS; i++)
306                 ale_entry[i] = __raw_readl(priv->ale_regs + ALE_TABLE + 4 * i);
307
308         return idx;
309 }
310
311 static int cpsw_ale_write(struct cpsw_priv *priv, int idx, u32 *ale_entry)
312 {
313         int i;
314
315         for (i = 0; i < ALE_ENTRY_WORDS; i++)
316                 __raw_writel(ale_entry[i], priv->ale_regs + ALE_TABLE + 4 * i);
317
318         __raw_writel(idx | ALE_TABLE_WRITE, priv->ale_regs + ALE_TABLE_CONTROL);
319
320         return idx;
321 }
322
323 static int cpsw_ale_match_addr(struct cpsw_priv *priv, u8* addr)
324 {
325         u32 ale_entry[ALE_ENTRY_WORDS];
326         int type, idx;
327
328         for (idx = 0; idx < priv->data.ale_entries; idx++) {
329                 u8 entry_addr[6];
330
331                 cpsw_ale_read(priv, idx, ale_entry);
332                 type = cpsw_ale_get_entry_type(ale_entry);
333                 if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
334                         continue;
335                 cpsw_ale_get_addr(ale_entry, entry_addr);
336                 if (memcmp(entry_addr, addr, 6) == 0)
337                         return idx;
338         }
339         return -ENOENT;
340 }
341
342 static int cpsw_ale_match_free(struct cpsw_priv *priv)
343 {
344         u32 ale_entry[ALE_ENTRY_WORDS];
345         int type, idx;
346
347         for (idx = 0; idx < priv->data.ale_entries; idx++) {
348                 cpsw_ale_read(priv, idx, ale_entry);
349                 type = cpsw_ale_get_entry_type(ale_entry);
350                 if (type == ALE_TYPE_FREE)
351                         return idx;
352         }
353         return -ENOENT;
354 }
355
356 static int cpsw_ale_find_ageable(struct cpsw_priv *priv)
357 {
358         u32 ale_entry[ALE_ENTRY_WORDS];
359         int type, idx;
360
361         for (idx = 0; idx < priv->data.ale_entries; idx++) {
362                 cpsw_ale_read(priv, idx, ale_entry);
363                 type = cpsw_ale_get_entry_type(ale_entry);
364                 if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
365                         continue;
366                 if (cpsw_ale_get_mcast(ale_entry))
367                         continue;
368                 type = cpsw_ale_get_ucast_type(ale_entry);
369                 if (type != ALE_UCAST_PERSISTANT &&
370                     type != ALE_UCAST_OUI)
371                         return idx;
372         }
373         return -ENOENT;
374 }
375
376 static int cpsw_ale_add_ucast(struct cpsw_priv *priv, u8 *addr,
377                               int port, int flags)
378 {
379         u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
380         int idx;
381
382         cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
383         cpsw_ale_set_addr(ale_entry, addr);
384         cpsw_ale_set_ucast_type(ale_entry, ALE_UCAST_PERSISTANT);
385         cpsw_ale_set_secure(ale_entry, (flags & ALE_SECURE) ? 1 : 0);
386         cpsw_ale_set_blocked(ale_entry, (flags & ALE_BLOCKED) ? 1 : 0);
387         cpsw_ale_set_port_num(ale_entry, port);
388
389         idx = cpsw_ale_match_addr(priv, addr);
390         if (idx < 0)
391                 idx = cpsw_ale_match_free(priv);
392         if (idx < 0)
393                 idx = cpsw_ale_find_ageable(priv);
394         if (idx < 0)
395                 return -ENOMEM;
396
397         cpsw_ale_write(priv, idx, ale_entry);
398         return 0;
399 }
400
401 static int cpsw_ale_add_mcast(struct cpsw_priv *priv, u8 *addr, int port_mask)
402 {
403         u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
404         int idx, mask;
405
406         idx = cpsw_ale_match_addr(priv, addr);
407         if (idx >= 0)
408                 cpsw_ale_read(priv, idx, ale_entry);
409
410         cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
411         cpsw_ale_set_addr(ale_entry, addr);
412         cpsw_ale_set_mcast_state(ale_entry, ALE_MCAST_FWD_2);
413
414         mask = cpsw_ale_get_port_mask(ale_entry);
415         port_mask |= mask;
416         cpsw_ale_set_port_mask(ale_entry, port_mask);
417
418         if (idx < 0)
419                 idx = cpsw_ale_match_free(priv);
420         if (idx < 0)
421                 idx = cpsw_ale_find_ageable(priv);
422         if (idx < 0)
423                 return -ENOMEM;
424
425         cpsw_ale_write(priv, idx, ale_entry);
426         return 0;
427 }
428
429 static inline void cpsw_ale_control(struct cpsw_priv *priv, int bit, int val)
430 {
431         u32 tmp, mask = BIT(bit);
432
433         tmp  = __raw_readl(priv->ale_regs + ALE_CONTROL);
434         tmp &= ~mask;
435         tmp |= val ? mask : 0;
436         __raw_writel(tmp, priv->ale_regs + ALE_CONTROL);
437 }
438
439 #define cpsw_ale_enable(priv, val)      cpsw_ale_control(priv, 31, val)
440 #define cpsw_ale_clear(priv, val)       cpsw_ale_control(priv, 30, val)
441 #define cpsw_ale_vlan_aware(priv, val)  cpsw_ale_control(priv,  2, val)
442
443 static inline void cpsw_ale_port_state(struct cpsw_priv *priv, int port,
444                                        int val)
445 {
446         int offset = ALE_PORTCTL + 4 * port;
447         u32 tmp, mask = 0x3;
448
449         tmp  = __raw_readl(priv->ale_regs + offset);
450         tmp &= ~mask;
451         tmp |= val & mask;
452         __raw_writel(tmp, priv->ale_regs + offset);
453 }
454
455 static struct cpsw_mdio_regs *mdio_regs;
456
457 /* wait until hardware is ready for another user access */
458 static inline u32 wait_for_user_access(void)
459 {
460         u32 reg = 0;
461         int timeout = MDIO_TIMEOUT;
462
463         while (timeout-- &&
464         ((reg = __raw_readl(&mdio_regs->user[0].access)) & USERACCESS_GO))
465                 udelay(10);
466
467         if (timeout == -1) {
468                 printf("wait_for_user_access Timeout\n");
469                 return -ETIMEDOUT;
470         }
471         return reg;
472 }
473
474 /* wait until hardware state machine is idle */
475 static inline void wait_for_idle(void)
476 {
477         int timeout = MDIO_TIMEOUT;
478
479         while (timeout-- &&
480                 ((__raw_readl(&mdio_regs->control) & CONTROL_IDLE) == 0))
481                 udelay(10);
482
483         if (timeout == -1)
484                 printf("wait_for_idle Timeout\n");
485 }
486
487 static int cpsw_mdio_read(struct mii_dev *bus, int phy_id,
488                                 int dev_addr, int phy_reg)
489 {
490         int data;
491         u32 reg;
492
493         if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK)
494                 return -EINVAL;
495
496         wait_for_user_access();
497         reg = (USERACCESS_GO | USERACCESS_READ | (phy_reg << 21) |
498                (phy_id << 16));
499         __raw_writel(reg, &mdio_regs->user[0].access);
500         reg = wait_for_user_access();
501
502         data = (reg & USERACCESS_ACK) ? (reg & USERACCESS_DATA) : -1;
503         return data;
504 }
505
506 static int cpsw_mdio_write(struct mii_dev *bus, int phy_id, int dev_addr,
507                                 int phy_reg, u16 data)
508 {
509         u32 reg;
510
511         if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK)
512                 return -EINVAL;
513
514         wait_for_user_access();
515         reg = (USERACCESS_GO | USERACCESS_WRITE | (phy_reg << 21) |
516                    (phy_id << 16) | (data & USERACCESS_DATA));
517         __raw_writel(reg, &mdio_regs->user[0].access);
518         wait_for_user_access();
519
520         return 0;
521 }
522
523 static void cpsw_mdio_init(char *name, u32 mdio_base, u32 div)
524 {
525         struct mii_dev *bus = mdio_alloc();
526
527         mdio_regs = (struct cpsw_mdio_regs *)mdio_base;
528
529         /* set enable and clock divider */
530         __raw_writel(div | CONTROL_ENABLE, &mdio_regs->control);
531
532         /*
533          * wait for scan logic to settle:
534          * the scan time consists of (a) a large fixed component, and (b) a
535          * small component that varies with the mii bus frequency.  These
536          * were estimated using measurements at 1.1 and 2.2 MHz on tnetv107x
537          * silicon.  Since the effect of (b) was found to be largely
538          * negligible, we keep things simple here.
539          */
540         udelay(1000);
541
542         bus->read = cpsw_mdio_read;
543         bus->write = cpsw_mdio_write;
544         sprintf(bus->name, name);
545
546         mdio_register(bus);
547 }
548
549 /* Set a self-clearing bit in a register, and wait for it to clear */
550 static inline void setbit_and_wait_for_clear32(void *addr)
551 {
552         __raw_writel(CLEAR_BIT, addr);
553         while (__raw_readl(addr) & CLEAR_BIT)
554                 ;
555 }
556
557 #define mac_hi(mac)     (((mac)[0] << 0) | ((mac)[1] << 8) |    \
558                          ((mac)[2] << 16) | ((mac)[3] << 24))
559 #define mac_lo(mac)     (((mac)[4] << 0) | ((mac)[5] << 8))
560
561 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
562                                struct cpsw_priv *priv)
563 {
564         __raw_writel(mac_hi(priv->dev->enetaddr), &slave->regs->sa_hi);
565         __raw_writel(mac_lo(priv->dev->enetaddr), &slave->regs->sa_lo);
566 }
567
568 static void cpsw_slave_update_link(struct cpsw_slave *slave,
569                                    struct cpsw_priv *priv, int *link)
570 {
571         struct phy_device *phy;
572         u32 mac_control = 0;
573
574         phy = priv->phydev;
575
576         if (!phy)
577                 return;
578
579         phy_startup(phy);
580         *link = phy->link;
581
582         if (*link) { /* link up */
583                 mac_control = priv->data.mac_control;
584                 if (phy->speed == 1000)
585                         mac_control |= GIGABITEN;
586                 if (phy->duplex == DUPLEX_FULL)
587                         mac_control |= FULLDUPLEXEN;
588                 if (phy->speed == 100)
589                         mac_control |= MIIEN;
590         }
591
592         if (mac_control == slave->mac_control)
593                 return;
594
595         if (mac_control) {
596                 printf("link up on port %d, speed %d, %s duplex\n",
597                                 slave->slave_num, phy->speed,
598                                 (phy->duplex == DUPLEX_FULL) ? "full" : "half");
599         } else {
600                 printf("link down on port %d\n", slave->slave_num);
601         }
602
603         __raw_writel(mac_control, &slave->sliver->mac_control);
604         slave->mac_control = mac_control;
605 }
606
607 static int cpsw_update_link(struct cpsw_priv *priv)
608 {
609         int link = 0;
610         struct cpsw_slave *slave;
611
612         for_each_slave(slave, priv)
613                 cpsw_slave_update_link(slave, priv, &link);
614         priv->mdio_link = readl(&mdio_regs->link);
615         return link;
616 }
617
618 static int cpsw_check_link(struct cpsw_priv *priv)
619 {
620         u32 link = 0;
621
622         link = __raw_readl(&mdio_regs->link) & priv->phy_mask;
623         if ((link) && (link == priv->mdio_link))
624                 return 1;
625
626         return cpsw_update_link(priv);
627 }
628
629 static inline u32  cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num)
630 {
631         if (priv->host_port == 0)
632                 return slave_num + 1;
633         else
634                 return slave_num;
635 }
636
637 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv)
638 {
639         u32     slave_port;
640
641         setbit_and_wait_for_clear32(&slave->sliver->soft_reset);
642
643         /* setup priority mapping */
644         __raw_writel(0x76543210, &slave->sliver->rx_pri_map);
645         __raw_writel(0x33221100, &slave->regs->tx_pri_map);
646
647         /* setup max packet size, and mac address */
648         __raw_writel(PKT_MAX, &slave->sliver->rx_maxlen);
649         cpsw_set_slave_mac(slave, priv);
650
651         slave->mac_control = 0; /* no link yet */
652
653         /* enable forwarding */
654         slave_port = cpsw_get_slave_port(priv, slave->slave_num);
655         cpsw_ale_port_state(priv, slave_port, ALE_PORT_STATE_FORWARD);
656
657         cpsw_ale_add_mcast(priv, NetBcastAddr, 1 << slave_port);
658
659         priv->phy_mask |= 1 << slave->data->phy_id;
660 }
661
662 static struct cpdma_desc *cpdma_desc_alloc(struct cpsw_priv *priv)
663 {
664         struct cpdma_desc *desc = priv->desc_free;
665
666         if (desc)
667                 priv->desc_free = desc_read_ptr(desc, hw_next);
668         return desc;
669 }
670
671 static void cpdma_desc_free(struct cpsw_priv *priv, struct cpdma_desc *desc)
672 {
673         if (desc) {
674                 desc_write(desc, hw_next, priv->desc_free);
675                 priv->desc_free = desc;
676         }
677 }
678
679 static int cpdma_submit(struct cpsw_priv *priv, struct cpdma_chan *chan,
680                         void *buffer, int len)
681 {
682         struct cpdma_desc *desc, *prev;
683         u32 mode;
684
685         desc = cpdma_desc_alloc(priv);
686         if (!desc)
687                 return -ENOMEM;
688
689         if (len < PKT_MIN)
690                 len = PKT_MIN;
691
692         mode = CPDMA_DESC_OWNER | CPDMA_DESC_SOP | CPDMA_DESC_EOP;
693
694         desc_write(desc, hw_next,   0);
695         desc_write(desc, hw_buffer, buffer);
696         desc_write(desc, hw_len,    len);
697         desc_write(desc, hw_mode,   mode | len);
698         desc_write(desc, sw_buffer, buffer);
699         desc_write(desc, sw_len,    len);
700
701         if (!chan->head) {
702                 /* simple case - first packet enqueued */
703                 chan->head = desc;
704                 chan->tail = desc;
705                 chan_write(chan, hdp, desc);
706                 goto done;
707         }
708
709         /* not the first packet - enqueue at the tail */
710         prev = chan->tail;
711         desc_write(prev, hw_next, desc);
712         chan->tail = desc;
713
714         /* next check if EOQ has been triggered already */
715         if (desc_read(prev, hw_mode) & CPDMA_DESC_EOQ)
716                 chan_write(chan, hdp, desc);
717
718 done:
719         if (chan->rxfree)
720                 chan_write(chan, rxfree, 1);
721         return 0;
722 }
723
724 static int cpdma_process(struct cpsw_priv *priv, struct cpdma_chan *chan,
725                          void **buffer, int *len)
726 {
727         struct cpdma_desc *desc = chan->head;
728         u32 status;
729
730         if (!desc)
731                 return -ENOENT;
732
733         status = desc_read(desc, hw_mode);
734
735         if (len)
736                 *len = status & 0x7ff;
737
738         if (buffer)
739                 *buffer = desc_read_ptr(desc, sw_buffer);
740
741         if (status & CPDMA_DESC_OWNER) {
742                 if (chan_read(chan, hdp) == 0) {
743                         if (desc_read(desc, hw_mode) & CPDMA_DESC_OWNER)
744                                 chan_write(chan, hdp, desc);
745                 }
746
747                 return -EBUSY;
748         }
749
750         chan->head = desc_read_ptr(desc, hw_next);
751         chan_write(chan, cp, desc);
752
753         cpdma_desc_free(priv, desc);
754         return 0;
755 }
756
757 static int cpsw_init(struct eth_device *dev, bd_t *bis)
758 {
759         struct cpsw_priv        *priv = dev->priv;
760         struct cpsw_slave       *slave;
761         int i, ret;
762
763         /* soft reset the controller and initialize priv */
764         setbit_and_wait_for_clear32(&priv->regs->soft_reset);
765
766         /* initialize and reset the address lookup engine */
767         cpsw_ale_enable(priv, 1);
768         cpsw_ale_clear(priv, 1);
769         cpsw_ale_vlan_aware(priv, 0); /* vlan unaware mode */
770
771         /* setup host port priority mapping */
772         __raw_writel(0x76543210, &priv->host_port_regs->cpdma_tx_pri_map);
773         __raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map);
774
775         /* disable priority elevation and enable statistics on all ports */
776         __raw_writel(0, &priv->regs->ptype);
777
778         /* enable statistics collection only on the host port */
779         __raw_writel(BIT(priv->host_port), &priv->regs->stat_port_en);
780         __raw_writel(0x7, &priv->regs->stat_port_en);
781
782         cpsw_ale_port_state(priv, priv->host_port, ALE_PORT_STATE_FORWARD);
783
784         cpsw_ale_add_ucast(priv, priv->dev->enetaddr, priv->host_port,
785                            ALE_SECURE);
786         cpsw_ale_add_mcast(priv, NetBcastAddr, 1 << priv->host_port);
787
788         for_each_slave(slave, priv)
789                 cpsw_slave_init(slave, priv);
790
791         cpsw_update_link(priv);
792
793         /* init descriptor pool */
794         for (i = 0; i < NUM_DESCS; i++) {
795                 desc_write(&priv->descs[i], hw_next,
796                            (i == (NUM_DESCS - 1)) ? 0 : &priv->descs[i+1]);
797         }
798         priv->desc_free = &priv->descs[0];
799
800         /* initialize channels */
801         if (priv->data.version == CPSW_CTRL_VERSION_2) {
802                 memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan));
803                 priv->rx_chan.hdp       = priv->dma_regs + CPDMA_RXHDP_VER2;
804                 priv->rx_chan.cp        = priv->dma_regs + CPDMA_RXCP_VER2;
805                 priv->rx_chan.rxfree    = priv->dma_regs + CPDMA_RXFREE;
806
807                 memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan));
808                 priv->tx_chan.hdp       = priv->dma_regs + CPDMA_TXHDP_VER2;
809                 priv->tx_chan.cp        = priv->dma_regs + CPDMA_TXCP_VER2;
810         } else {
811                 memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan));
812                 priv->rx_chan.hdp       = priv->dma_regs + CPDMA_RXHDP_VER1;
813                 priv->rx_chan.cp        = priv->dma_regs + CPDMA_RXCP_VER1;
814                 priv->rx_chan.rxfree    = priv->dma_regs + CPDMA_RXFREE;
815
816                 memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan));
817                 priv->tx_chan.hdp       = priv->dma_regs + CPDMA_TXHDP_VER1;
818                 priv->tx_chan.cp        = priv->dma_regs + CPDMA_TXCP_VER1;
819         }
820
821         /* clear dma state */
822         setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET);
823
824         if (priv->data.version == CPSW_CTRL_VERSION_2) {
825                 for (i = 0; i < priv->data.channels; i++) {
826                         __raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER2 + 4
827                                         * i);
828                         __raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4
829                                         * i);
830                         __raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER2 + 4
831                                         * i);
832                         __raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER2 + 4
833                                         * i);
834                         __raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER2 + 4
835                                         * i);
836                 }
837         } else {
838                 for (i = 0; i < priv->data.channels; i++) {
839                         __raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER1 + 4
840                                         * i);
841                         __raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4
842                                         * i);
843                         __raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER1 + 4
844                                         * i);
845                         __raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER1 + 4
846                                         * i);
847                         __raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER1 + 4
848                                         * i);
849
850                 }
851         }
852
853         __raw_writel(1, priv->dma_regs + CPDMA_TXCONTROL);
854         __raw_writel(1, priv->dma_regs + CPDMA_RXCONTROL);
855
856         /* submit rx descs */
857         for (i = 0; i < PKTBUFSRX; i++) {
858                 ret = cpdma_submit(priv, &priv->rx_chan, NetRxPackets[i],
859                                    PKTSIZE);
860                 if (ret < 0) {
861                         printf("error %d submitting rx desc\n", ret);
862                         break;
863                 }
864         }
865
866         return 0;
867 }
868
869 static void cpsw_halt(struct eth_device *dev)
870 {
871         struct cpsw_priv        *priv = dev->priv;
872
873         writel(0, priv->dma_regs + CPDMA_TXCONTROL);
874         writel(0, priv->dma_regs + CPDMA_RXCONTROL);
875
876         /* soft reset the controller and initialize priv */
877         setbit_and_wait_for_clear32(&priv->regs->soft_reset);
878
879         /* clear dma state */
880         setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET);
881
882         priv->data.control(0);
883 }
884
885 static int cpsw_send(struct eth_device *dev, void *packet, int length)
886 {
887         struct cpsw_priv        *priv = dev->priv;
888         void *buffer;
889         int len;
890         int timeout = CPDMA_TIMEOUT;
891
892         if (!cpsw_check_link(priv))
893                 return -EIO;
894
895         flush_dcache_range((unsigned long)packet,
896                            (unsigned long)packet + length);
897
898         /* first reap completed packets */
899         while (timeout-- &&
900                 (cpdma_process(priv, &priv->tx_chan, &buffer, &len) >= 0))
901                 ;
902
903         if (timeout == -1) {
904                 printf("cpdma_process timeout\n");
905                 return -ETIMEDOUT;
906         }
907
908         return cpdma_submit(priv, &priv->tx_chan, packet, length);
909 }
910
911 static int cpsw_recv(struct eth_device *dev)
912 {
913         struct cpsw_priv        *priv = dev->priv;
914         void *buffer;
915         int len;
916
917         cpsw_update_link(priv);
918
919         while (cpdma_process(priv, &priv->rx_chan, &buffer, &len) >= 0) {
920                 invalidate_dcache_range((unsigned long)buffer,
921                                         (unsigned long)buffer + PKTSIZE_ALIGN);
922                 NetReceive(buffer, len);
923                 cpdma_submit(priv, &priv->rx_chan, buffer, PKTSIZE);
924         }
925
926         return 0;
927 }
928
929 static void cpsw_slave_setup(struct cpsw_slave *slave, int slave_num,
930                             struct cpsw_priv *priv)
931 {
932         void                    *regs = priv->regs;
933         struct cpsw_slave_data  *data = priv->data.slave_data + slave_num;
934         slave->slave_num = slave_num;
935         slave->data     = data;
936         slave->regs     = regs + data->slave_reg_ofs;
937         slave->sliver   = regs + data->sliver_reg_ofs;
938 }
939
940 static int cpsw_phy_init(struct eth_device *dev, struct cpsw_slave *slave)
941 {
942         struct cpsw_priv *priv = (struct cpsw_priv *)dev->priv;
943         struct phy_device *phydev;
944         u32 supported = (SUPPORTED_10baseT_Half |
945                         SUPPORTED_10baseT_Full |
946                         SUPPORTED_100baseT_Half |
947                         SUPPORTED_100baseT_Full |
948                         SUPPORTED_1000baseT_Full);
949
950         phydev = phy_connect(priv->bus,
951                         CONFIG_PHY_ADDR,
952                         dev,
953                         slave->data->phy_if);
954
955         if (!phydev)
956                 return -1;
957
958         phydev->supported &= supported;
959         phydev->advertising = phydev->supported;
960
961         priv->phydev = phydev;
962         phy_config(phydev);
963
964         return 1;
965 }
966
967 int cpsw_register(struct cpsw_platform_data *data)
968 {
969         struct cpsw_priv        *priv;
970         struct cpsw_slave       *slave;
971         void                    *regs = (void *)data->cpsw_base;
972         struct eth_device       *dev;
973
974         dev = calloc(sizeof(*dev), 1);
975         if (!dev)
976                 return -ENOMEM;
977
978         priv = calloc(sizeof(*priv), 1);
979         if (!priv) {
980                 free(dev);
981                 return -ENOMEM;
982         }
983
984         priv->data = *data;
985         priv->dev = dev;
986
987         priv->slaves = malloc(sizeof(struct cpsw_slave) * data->slaves);
988         if (!priv->slaves) {
989                 free(dev);
990                 free(priv);
991                 return -ENOMEM;
992         }
993
994         priv->host_port         = data->host_port_num;
995         priv->regs              = regs;
996         priv->host_port_regs    = regs + data->host_port_reg_ofs;
997         priv->dma_regs          = regs + data->cpdma_reg_ofs;
998         priv->ale_regs          = regs + data->ale_reg_ofs;
999         priv->descs             = (void *)regs + data->bd_ram_ofs;
1000
1001         int idx = 0;
1002
1003         for_each_slave(slave, priv) {
1004                 cpsw_slave_setup(slave, idx, priv);
1005                 idx = idx + 1;
1006         }
1007
1008         strcpy(dev->name, "cpsw");
1009         dev->iobase     = 0;
1010         dev->init       = cpsw_init;
1011         dev->halt       = cpsw_halt;
1012         dev->send       = cpsw_send;
1013         dev->recv       = cpsw_recv;
1014         dev->priv       = priv;
1015
1016         eth_register(dev);
1017
1018         cpsw_mdio_init(dev->name, data->mdio_base, data->mdio_div);
1019         priv->bus = miiphy_get_dev_by_name(dev->name);
1020         for_each_slave(slave, priv)
1021                 cpsw_phy_init(dev, slave);
1022
1023         return 1;
1024 }