]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/net/e1000.c
Merge branch 'master' of git://git.denx.de/u-boot-i2c
[karo-tx-uboot.git] / drivers / net / e1000.c
1 /**************************************************************************
2 Intel Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
8
9
10   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
11
12   This program is free software; you can redistribute it and/or modify it
13   under the terms of the GNU General Public License as published by the Free
14   Software Foundation; either version 2 of the License, or (at your option)
15   any later version.
16
17   This program is distributed in the hope that it will be useful, but WITHOUT
18   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20   more details.
21
22   You should have received a copy of the GNU General Public License along with
23   this program; if not, write to the Free Software Foundation, Inc., 59
24   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
25
26   The full GNU General Public License is included in this distribution in the
27   file called LICENSE.
28
29   Contact Information:
30   Linux NICS <linux.nics@intel.com>
31   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32
33 *******************************************************************************/
34 /*
35  *  Copyright (C) Archway Digital Solutions.
36  *
37  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
38  *  2/9/2002
39  *
40  *  Copyright (C) Linux Networx.
41  *  Massive upgrade to work with the new intel gigabit NICs.
42  *  <ebiederman at lnxi dot com>
43  */
44
45 #include "e1000.h"
46
47 #define TOUT_LOOP   100000
48
49 #define virt_to_bus(devno, v)   pci_virt_to_mem(devno, (void *) (v))
50 #define bus_to_phys(devno, a)   pci_mem_to_phys(devno, a)
51 #define mdelay(n)       udelay((n)*1000)
52
53 #define E1000_DEFAULT_PCI_PBA   0x00000030
54 #define E1000_DEFAULT_PCIE_PBA  0x000a0026
55
56 /* NIC specific static variables go here */
57
58 static char tx_pool[128 + 16];
59 static char rx_pool[128 + 16];
60 static char packet[2096];
61
62 static struct e1000_tx_desc *tx_base;
63 static struct e1000_rx_desc *rx_base;
64
65 static int tx_tail;
66 static int rx_tail, rx_last;
67
68 static struct pci_device_id supported[] = {
69         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
70         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
71         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
72         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
73         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
74         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
75         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
76         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
77         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
78         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
79         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
80         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
81         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
82         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER},
83         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
84         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
85         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
86         /* E1000 PCIe card */
87         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
88         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER      },
89         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES     },
90         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
91         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
92         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
93         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
94         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
95         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
96         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
97         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
98         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
99         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
100         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
101         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
102         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
103         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
104         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
105         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
106         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
107         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
108         {}
109 };
110
111 /* Function forward declarations */
112 static int e1000_setup_link(struct eth_device *nic);
113 static int e1000_setup_fiber_link(struct eth_device *nic);
114 static int e1000_setup_copper_link(struct eth_device *nic);
115 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
116 static void e1000_config_collision_dist(struct e1000_hw *hw);
117 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
118 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
119 static int e1000_check_for_link(struct eth_device *nic);
120 static int e1000_wait_autoneg(struct e1000_hw *hw);
121 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
122                                        uint16_t * duplex);
123 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
124                               uint16_t * phy_data);
125 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
126                                uint16_t phy_data);
127 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
128 static int e1000_phy_reset(struct e1000_hw *hw);
129 static int e1000_detect_gig_phy(struct e1000_hw *hw);
130 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
131 static void e1000_set_media_type(struct e1000_hw *hw);
132
133 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
134 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
135 #define E1000_WRITE_REG(a, reg, value) (writel((value), ((a)->hw_addr + E1000_##reg)))
136 #define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_##reg))
137 #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) (\
138                         writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2))))
139 #define E1000_READ_REG_ARRAY(a, reg, offset) ( \
140         readl((a)->hw_addr + E1000_##reg + ((offset) << 2)))
141 #define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);}
142
143 #ifndef CONFIG_AP1000 /* remove for warnings */
144 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
145                 uint16_t words,
146                 uint16_t *data);
147 /******************************************************************************
148  * Raises the EEPROM's clock input.
149  *
150  * hw - Struct containing variables accessed by shared code
151  * eecd - EECD's current value
152  *****************************************************************************/
153 static void
154 e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
155 {
156         /* Raise the clock input to the EEPROM (by setting the SK bit), and then
157          * wait 50 microseconds.
158          */
159         *eecd = *eecd | E1000_EECD_SK;
160         E1000_WRITE_REG(hw, EECD, *eecd);
161         E1000_WRITE_FLUSH(hw);
162         udelay(50);
163 }
164
165 /******************************************************************************
166  * Lowers the EEPROM's clock input.
167  *
168  * hw - Struct containing variables accessed by shared code
169  * eecd - EECD's current value
170  *****************************************************************************/
171 static void
172 e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
173 {
174         /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
175          * wait 50 microseconds.
176          */
177         *eecd = *eecd & ~E1000_EECD_SK;
178         E1000_WRITE_REG(hw, EECD, *eecd);
179         E1000_WRITE_FLUSH(hw);
180         udelay(50);
181 }
182
183 /******************************************************************************
184  * Shift data bits out to the EEPROM.
185  *
186  * hw - Struct containing variables accessed by shared code
187  * data - data to send to the EEPROM
188  * count - number of bits to shift out
189  *****************************************************************************/
190 static void
191 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
192 {
193         uint32_t eecd;
194         uint32_t mask;
195
196         /* We need to shift "count" bits out to the EEPROM. So, value in the
197          * "data" parameter will be shifted out to the EEPROM one bit at a time.
198          * In order to do this, "data" must be broken down into bits.
199          */
200         mask = 0x01 << (count - 1);
201         eecd = E1000_READ_REG(hw, EECD);
202         eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
203         do {
204                 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
205                  * and then raising and then lowering the clock (the SK bit controls
206                  * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
207                  * by setting "DI" to "0" and then raising and then lowering the clock.
208                  */
209                 eecd &= ~E1000_EECD_DI;
210
211                 if (data & mask)
212                         eecd |= E1000_EECD_DI;
213
214                 E1000_WRITE_REG(hw, EECD, eecd);
215                 E1000_WRITE_FLUSH(hw);
216
217                 udelay(50);
218
219                 e1000_raise_ee_clk(hw, &eecd);
220                 e1000_lower_ee_clk(hw, &eecd);
221
222                 mask = mask >> 1;
223
224         } while (mask);
225
226         /* We leave the "DI" bit set to "0" when we leave this routine. */
227         eecd &= ~E1000_EECD_DI;
228         E1000_WRITE_REG(hw, EECD, eecd);
229 }
230
231 /******************************************************************************
232  * Shift data bits in from the EEPROM
233  *
234  * hw - Struct containing variables accessed by shared code
235  *****************************************************************************/
236 static uint16_t
237 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
238 {
239         uint32_t eecd;
240         uint32_t i;
241         uint16_t data;
242
243         /* In order to read a register from the EEPROM, we need to shift 'count'
244          * bits in from the EEPROM. Bits are "shifted in" by raising the clock
245          * input to the EEPROM (setting the SK bit), and then reading the
246          * value of the "DO" bit.  During this "shifting in" process the
247          * "DI" bit should always be clear.
248          */
249
250         eecd = E1000_READ_REG(hw, EECD);
251
252         eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
253         data = 0;
254
255         for (i = 0; i < count; i++) {
256                 data = data << 1;
257                 e1000_raise_ee_clk(hw, &eecd);
258
259                 eecd = E1000_READ_REG(hw, EECD);
260
261                 eecd &= ~(E1000_EECD_DI);
262                 if (eecd & E1000_EECD_DO)
263                         data |= 1;
264
265                 e1000_lower_ee_clk(hw, &eecd);
266         }
267
268         return data;
269 }
270
271 /******************************************************************************
272  * Returns EEPROM to a "standby" state
273  *
274  * hw - Struct containing variables accessed by shared code
275  *****************************************************************************/
276 static void
277 e1000_standby_eeprom(struct e1000_hw *hw)
278 {
279         struct e1000_eeprom_info *eeprom = &hw->eeprom;
280         uint32_t eecd;
281
282         eecd = E1000_READ_REG(hw, EECD);
283
284         if (eeprom->type == e1000_eeprom_microwire) {
285                 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
286                 E1000_WRITE_REG(hw, EECD, eecd);
287                 E1000_WRITE_FLUSH(hw);
288                 udelay(eeprom->delay_usec);
289
290                 /* Clock high */
291                 eecd |= E1000_EECD_SK;
292                 E1000_WRITE_REG(hw, EECD, eecd);
293                 E1000_WRITE_FLUSH(hw);
294                 udelay(eeprom->delay_usec);
295
296                 /* Select EEPROM */
297                 eecd |= E1000_EECD_CS;
298                 E1000_WRITE_REG(hw, EECD, eecd);
299                 E1000_WRITE_FLUSH(hw);
300                 udelay(eeprom->delay_usec);
301
302                 /* Clock low */
303                 eecd &= ~E1000_EECD_SK;
304                 E1000_WRITE_REG(hw, EECD, eecd);
305                 E1000_WRITE_FLUSH(hw);
306                 udelay(eeprom->delay_usec);
307         } else if (eeprom->type == e1000_eeprom_spi) {
308                 /* Toggle CS to flush commands */
309                 eecd |= E1000_EECD_CS;
310                 E1000_WRITE_REG(hw, EECD, eecd);
311                 E1000_WRITE_FLUSH(hw);
312                 udelay(eeprom->delay_usec);
313                 eecd &= ~E1000_EECD_CS;
314                 E1000_WRITE_REG(hw, EECD, eecd);
315                 E1000_WRITE_FLUSH(hw);
316                 udelay(eeprom->delay_usec);
317         }
318 }
319
320 /***************************************************************************
321 * Description:     Determines if the onboard NVM is FLASH or EEPROM.
322 *
323 * hw - Struct containing variables accessed by shared code
324 ****************************************************************************/
325 static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
326 {
327         uint32_t eecd = 0;
328
329         DEBUGFUNC();
330
331         if (hw->mac_type == e1000_ich8lan)
332                 return FALSE;
333
334         if (hw->mac_type == e1000_82573) {
335                 eecd = E1000_READ_REG(hw, EECD);
336
337                 /* Isolate bits 15 & 16 */
338                 eecd = ((eecd >> 15) & 0x03);
339
340                 /* If both bits are set, device is Flash type */
341                 if (eecd == 0x03)
342                         return FALSE;
343         }
344         return TRUE;
345 }
346
347 /******************************************************************************
348  * Prepares EEPROM for access
349  *
350  * hw - Struct containing variables accessed by shared code
351  *
352  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
353  * function should be called before issuing a command to the EEPROM.
354  *****************************************************************************/
355 static int32_t
356 e1000_acquire_eeprom(struct e1000_hw *hw)
357 {
358         struct e1000_eeprom_info *eeprom = &hw->eeprom;
359         uint32_t eecd, i = 0;
360
361         DEBUGFUNC();
362
363         if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
364                 return -E1000_ERR_SWFW_SYNC;
365         eecd = E1000_READ_REG(hw, EECD);
366
367         if (hw->mac_type != e1000_82573) {
368                 /* Request EEPROM Access */
369                 if (hw->mac_type > e1000_82544) {
370                         eecd |= E1000_EECD_REQ;
371                         E1000_WRITE_REG(hw, EECD, eecd);
372                         eecd = E1000_READ_REG(hw, EECD);
373                         while ((!(eecd & E1000_EECD_GNT)) &&
374                                 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
375                                 i++;
376                                 udelay(5);
377                                 eecd = E1000_READ_REG(hw, EECD);
378                         }
379                         if (!(eecd & E1000_EECD_GNT)) {
380                                 eecd &= ~E1000_EECD_REQ;
381                                 E1000_WRITE_REG(hw, EECD, eecd);
382                                 DEBUGOUT("Could not acquire EEPROM grant\n");
383                                 return -E1000_ERR_EEPROM;
384                         }
385                 }
386         }
387
388         /* Setup EEPROM for Read/Write */
389
390         if (eeprom->type == e1000_eeprom_microwire) {
391                 /* Clear SK and DI */
392                 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
393                 E1000_WRITE_REG(hw, EECD, eecd);
394
395                 /* Set CS */
396                 eecd |= E1000_EECD_CS;
397                 E1000_WRITE_REG(hw, EECD, eecd);
398         } else if (eeprom->type == e1000_eeprom_spi) {
399                 /* Clear SK and CS */
400                 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
401                 E1000_WRITE_REG(hw, EECD, eecd);
402                 udelay(1);
403         }
404
405         return E1000_SUCCESS;
406 }
407
408 /******************************************************************************
409  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
410  * is configured.  Additionally, if this is ICH8, the flash controller GbE
411  * registers must be mapped, or this will crash.
412  *
413  * hw - Struct containing variables accessed by shared code
414  *****************************************************************************/
415 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
416 {
417         struct e1000_eeprom_info *eeprom = &hw->eeprom;
418         uint32_t eecd = E1000_READ_REG(hw, EECD);
419         int32_t ret_val = E1000_SUCCESS;
420         uint16_t eeprom_size;
421
422         DEBUGFUNC();
423
424         switch (hw->mac_type) {
425         case e1000_82542_rev2_0:
426         case e1000_82542_rev2_1:
427         case e1000_82543:
428         case e1000_82544:
429                 eeprom->type = e1000_eeprom_microwire;
430                 eeprom->word_size = 64;
431                 eeprom->opcode_bits = 3;
432                 eeprom->address_bits = 6;
433                 eeprom->delay_usec = 50;
434                 eeprom->use_eerd = FALSE;
435                 eeprom->use_eewr = FALSE;
436         break;
437         case e1000_82540:
438         case e1000_82545:
439         case e1000_82545_rev_3:
440         case e1000_82546:
441         case e1000_82546_rev_3:
442                 eeprom->type = e1000_eeprom_microwire;
443                 eeprom->opcode_bits = 3;
444                 eeprom->delay_usec = 50;
445                 if (eecd & E1000_EECD_SIZE) {
446                         eeprom->word_size = 256;
447                         eeprom->address_bits = 8;
448                 } else {
449                         eeprom->word_size = 64;
450                         eeprom->address_bits = 6;
451                 }
452                 eeprom->use_eerd = FALSE;
453                 eeprom->use_eewr = FALSE;
454                 break;
455         case e1000_82541:
456         case e1000_82541_rev_2:
457         case e1000_82547:
458         case e1000_82547_rev_2:
459                 if (eecd & E1000_EECD_TYPE) {
460                         eeprom->type = e1000_eeprom_spi;
461                         eeprom->opcode_bits = 8;
462                         eeprom->delay_usec = 1;
463                         if (eecd & E1000_EECD_ADDR_BITS) {
464                                 eeprom->page_size = 32;
465                                 eeprom->address_bits = 16;
466                         } else {
467                                 eeprom->page_size = 8;
468                                 eeprom->address_bits = 8;
469                         }
470                 } else {
471                         eeprom->type = e1000_eeprom_microwire;
472                         eeprom->opcode_bits = 3;
473                         eeprom->delay_usec = 50;
474                         if (eecd & E1000_EECD_ADDR_BITS) {
475                                 eeprom->word_size = 256;
476                                 eeprom->address_bits = 8;
477                         } else {
478                                 eeprom->word_size = 64;
479                                 eeprom->address_bits = 6;
480                         }
481                 }
482                 eeprom->use_eerd = FALSE;
483                 eeprom->use_eewr = FALSE;
484                 break;
485         case e1000_82571:
486         case e1000_82572:
487                 eeprom->type = e1000_eeprom_spi;
488                 eeprom->opcode_bits = 8;
489                 eeprom->delay_usec = 1;
490                 if (eecd & E1000_EECD_ADDR_BITS) {
491                         eeprom->page_size = 32;
492                         eeprom->address_bits = 16;
493                 } else {
494                         eeprom->page_size = 8;
495                         eeprom->address_bits = 8;
496                 }
497                 eeprom->use_eerd = FALSE;
498                 eeprom->use_eewr = FALSE;
499                 break;
500         case e1000_82573:
501                 eeprom->type = e1000_eeprom_spi;
502                 eeprom->opcode_bits = 8;
503                 eeprom->delay_usec = 1;
504                 if (eecd & E1000_EECD_ADDR_BITS) {
505                         eeprom->page_size = 32;
506                         eeprom->address_bits = 16;
507                 } else {
508                         eeprom->page_size = 8;
509                         eeprom->address_bits = 8;
510                 }
511                 eeprom->use_eerd = TRUE;
512                 eeprom->use_eewr = TRUE;
513                 if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
514                         eeprom->type = e1000_eeprom_flash;
515                         eeprom->word_size = 2048;
516
517                 /* Ensure that the Autonomous FLASH update bit is cleared due to
518                  * Flash update issue on parts which use a FLASH for NVM. */
519                         eecd &= ~E1000_EECD_AUPDEN;
520                         E1000_WRITE_REG(hw, EECD, eecd);
521                 }
522                 break;
523         case e1000_80003es2lan:
524                 eeprom->type = e1000_eeprom_spi;
525                 eeprom->opcode_bits = 8;
526                 eeprom->delay_usec = 1;
527                 if (eecd & E1000_EECD_ADDR_BITS) {
528                         eeprom->page_size = 32;
529                         eeprom->address_bits = 16;
530                 } else {
531                         eeprom->page_size = 8;
532                         eeprom->address_bits = 8;
533                 }
534                 eeprom->use_eerd = TRUE;
535                 eeprom->use_eewr = FALSE;
536                 break;
537
538         /* ich8lan does not support currently. if needed, please
539          * add corresponding code and functions.
540          */
541 #if 0
542         case e1000_ich8lan:
543                 {
544                 int32_t  i = 0;
545
546                 eeprom->type = e1000_eeprom_ich8;
547                 eeprom->use_eerd = FALSE;
548                 eeprom->use_eewr = FALSE;
549                 eeprom->word_size = E1000_SHADOW_RAM_WORDS;
550                 uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
551                                 ICH_FLASH_GFPREG);
552                 /* Zero the shadow RAM structure. But don't load it from NVM
553                  * so as to save time for driver init */
554                 if (hw->eeprom_shadow_ram != NULL) {
555                         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
556                                 hw->eeprom_shadow_ram[i].modified = FALSE;
557                                 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
558                         }
559                 }
560
561                 hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
562                                 ICH_FLASH_SECTOR_SIZE;
563
564                 hw->flash_bank_size = ((flash_size >> 16)
565                                 & ICH_GFPREG_BASE_MASK) + 1;
566                 hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
567
568                 hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
569
570                 hw->flash_bank_size /= 2 * sizeof(uint16_t);
571                 break;
572                 }
573 #endif
574         default:
575                 break;
576         }
577
578         if (eeprom->type == e1000_eeprom_spi) {
579                 /* eeprom_size will be an enum [0..8] that maps
580                  * to eeprom sizes 128B to
581                  * 32KB (incremented by powers of 2).
582                  */
583                 if (hw->mac_type <= e1000_82547_rev_2) {
584                         /* Set to default value for initial eeprom read. */
585                         eeprom->word_size = 64;
586                         ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
587                                         &eeprom_size);
588                         if (ret_val)
589                                 return ret_val;
590                         eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
591                                 >> EEPROM_SIZE_SHIFT;
592                         /* 256B eeprom size was not supported in earlier
593                          * hardware, so we bump eeprom_size up one to
594                          * ensure that "1" (which maps to 256B) is never
595                          * the result used in the shifting logic below. */
596                         if (eeprom_size)
597                                 eeprom_size++;
598                 } else {
599                         eeprom_size = (uint16_t)((eecd &
600                                 E1000_EECD_SIZE_EX_MASK) >>
601                                 E1000_EECD_SIZE_EX_SHIFT);
602                 }
603
604                 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
605         }
606         return ret_val;
607 }
608
609 /******************************************************************************
610  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
611  *
612  * hw - Struct containing variables accessed by shared code
613  *****************************************************************************/
614 static int32_t
615 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
616 {
617         uint32_t attempts = 100000;
618         uint32_t i, reg = 0;
619         int32_t done = E1000_ERR_EEPROM;
620
621         for (i = 0; i < attempts; i++) {
622                 if (eerd == E1000_EEPROM_POLL_READ)
623                         reg = E1000_READ_REG(hw, EERD);
624                 else
625                         reg = E1000_READ_REG(hw, EEWR);
626
627                 if (reg & E1000_EEPROM_RW_REG_DONE) {
628                         done = E1000_SUCCESS;
629                         break;
630                 }
631                 udelay(5);
632         }
633
634         return done;
635 }
636
637 /******************************************************************************
638  * Reads a 16 bit word from the EEPROM using the EERD register.
639  *
640  * hw - Struct containing variables accessed by shared code
641  * offset - offset of  word in the EEPROM to read
642  * data - word read from the EEPROM
643  * words - number of words to read
644  *****************************************************************************/
645 static int32_t
646 e1000_read_eeprom_eerd(struct e1000_hw *hw,
647                         uint16_t offset,
648                         uint16_t words,
649                         uint16_t *data)
650 {
651         uint32_t i, eerd = 0;
652         int32_t error = 0;
653
654         for (i = 0; i < words; i++) {
655                 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
656                         E1000_EEPROM_RW_REG_START;
657
658                 E1000_WRITE_REG(hw, EERD, eerd);
659                 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
660
661                 if (error)
662                         break;
663                 data[i] = (E1000_READ_REG(hw, EERD) >>
664                                 E1000_EEPROM_RW_REG_DATA);
665
666         }
667
668         return error;
669 }
670
671 static void
672 e1000_release_eeprom(struct e1000_hw *hw)
673 {
674         uint32_t eecd;
675
676         DEBUGFUNC();
677
678         eecd = E1000_READ_REG(hw, EECD);
679
680         if (hw->eeprom.type == e1000_eeprom_spi) {
681                 eecd |= E1000_EECD_CS;  /* Pull CS high */
682                 eecd &= ~E1000_EECD_SK; /* Lower SCK */
683
684                 E1000_WRITE_REG(hw, EECD, eecd);
685
686                 udelay(hw->eeprom.delay_usec);
687         } else if (hw->eeprom.type == e1000_eeprom_microwire) {
688                 /* cleanup eeprom */
689
690                 /* CS on Microwire is active-high */
691                 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
692
693                 E1000_WRITE_REG(hw, EECD, eecd);
694
695                 /* Rising edge of clock */
696                 eecd |= E1000_EECD_SK;
697                 E1000_WRITE_REG(hw, EECD, eecd);
698                 E1000_WRITE_FLUSH(hw);
699                 udelay(hw->eeprom.delay_usec);
700
701                 /* Falling edge of clock */
702                 eecd &= ~E1000_EECD_SK;
703                 E1000_WRITE_REG(hw, EECD, eecd);
704                 E1000_WRITE_FLUSH(hw);
705                 udelay(hw->eeprom.delay_usec);
706         }
707
708         /* Stop requesting EEPROM access */
709         if (hw->mac_type > e1000_82544) {
710                 eecd &= ~E1000_EECD_REQ;
711                 E1000_WRITE_REG(hw, EECD, eecd);
712         }
713 }
714 /******************************************************************************
715  * Reads a 16 bit word from the EEPROM.
716  *
717  * hw - Struct containing variables accessed by shared code
718  *****************************************************************************/
719 static int32_t
720 e1000_spi_eeprom_ready(struct e1000_hw *hw)
721 {
722         uint16_t retry_count = 0;
723         uint8_t spi_stat_reg;
724
725         DEBUGFUNC();
726
727         /* Read "Status Register" repeatedly until the LSB is cleared.  The
728          * EEPROM will signal that the command has been completed by clearing
729          * bit 0 of the internal status register.  If it's not cleared within
730          * 5 milliseconds, then error out.
731          */
732         retry_count = 0;
733         do {
734                 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
735                         hw->eeprom.opcode_bits);
736                 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
737                 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
738                         break;
739
740                 udelay(5);
741                 retry_count += 5;
742
743                 e1000_standby_eeprom(hw);
744         } while (retry_count < EEPROM_MAX_RETRY_SPI);
745
746         /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
747          * only 0-5mSec on 5V devices)
748          */
749         if (retry_count >= EEPROM_MAX_RETRY_SPI) {
750                 DEBUGOUT("SPI EEPROM Status error\n");
751                 return -E1000_ERR_EEPROM;
752         }
753
754         return E1000_SUCCESS;
755 }
756
757 /******************************************************************************
758  * Reads a 16 bit word from the EEPROM.
759  *
760  * hw - Struct containing variables accessed by shared code
761  * offset - offset of  word in the EEPROM to read
762  * data - word read from the EEPROM
763  *****************************************************************************/
764 static int32_t
765 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
766                 uint16_t words, uint16_t *data)
767 {
768         struct e1000_eeprom_info *eeprom = &hw->eeprom;
769         uint32_t i = 0;
770
771         DEBUGFUNC();
772
773         /* If eeprom is not yet detected, do so now */
774         if (eeprom->word_size == 0)
775                 e1000_init_eeprom_params(hw);
776
777         /* A check for invalid values:  offset too large, too many words,
778          * and not enough words.
779          */
780         if ((offset >= eeprom->word_size) ||
781                 (words > eeprom->word_size - offset) ||
782                 (words == 0)) {
783                 DEBUGOUT("\"words\" parameter out of bounds."
784                         "Words = %d, size = %d\n", offset, eeprom->word_size);
785                 return -E1000_ERR_EEPROM;
786         }
787
788         /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
789          * directly. In this case, we need to acquire the EEPROM so that
790          * FW or other port software does not interrupt.
791          */
792         if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
793                 hw->eeprom.use_eerd == FALSE) {
794
795                 /* Prepare the EEPROM for bit-bang reading */
796                 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
797                         return -E1000_ERR_EEPROM;
798         }
799
800         /* Eerd register EEPROM access requires no eeprom aquire/release */
801         if (eeprom->use_eerd == TRUE)
802                 return e1000_read_eeprom_eerd(hw, offset, words, data);
803
804         /* ich8lan does not support currently. if needed, please
805          * add corresponding code and functions.
806          */
807 #if 0
808         /* ICH EEPROM access is done via the ICH flash controller */
809         if (eeprom->type == e1000_eeprom_ich8)
810                 return e1000_read_eeprom_ich8(hw, offset, words, data);
811 #endif
812         /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
813          * acquired the EEPROM at this point, so any returns should relase it */
814         if (eeprom->type == e1000_eeprom_spi) {
815                 uint16_t word_in;
816                 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
817
818                 if (e1000_spi_eeprom_ready(hw)) {
819                         e1000_release_eeprom(hw);
820                         return -E1000_ERR_EEPROM;
821                 }
822
823                 e1000_standby_eeprom(hw);
824
825                 /* Some SPI eeproms use the 8th address bit embedded in
826                  * the opcode */
827                 if ((eeprom->address_bits == 8) && (offset >= 128))
828                         read_opcode |= EEPROM_A8_OPCODE_SPI;
829
830                 /* Send the READ command (opcode + addr)  */
831                 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
832                 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
833                                 eeprom->address_bits);
834
835                 /* Read the data.  The address of the eeprom internally
836                  * increments with each byte (spi) being read, saving on the
837                  * overhead of eeprom setup and tear-down.  The address
838                  * counter will roll over if reading beyond the size of
839                  * the eeprom, thus allowing the entire memory to be read
840                  * starting from any offset. */
841                 for (i = 0; i < words; i++) {
842                         word_in = e1000_shift_in_ee_bits(hw, 16);
843                         data[i] = (word_in >> 8) | (word_in << 8);
844                 }
845         } else if (eeprom->type == e1000_eeprom_microwire) {
846                 for (i = 0; i < words; i++) {
847                         /* Send the READ command (opcode + addr)  */
848                         e1000_shift_out_ee_bits(hw,
849                                 EEPROM_READ_OPCODE_MICROWIRE,
850                                 eeprom->opcode_bits);
851                         e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
852                                 eeprom->address_bits);
853
854                         /* Read the data.  For microwire, each word requires
855                          * the overhead of eeprom setup and tear-down. */
856                         data[i] = e1000_shift_in_ee_bits(hw, 16);
857                         e1000_standby_eeprom(hw);
858                 }
859         }
860
861         /* End this read operation */
862         e1000_release_eeprom(hw);
863
864         return E1000_SUCCESS;
865 }
866
867 /******************************************************************************
868  * Verifies that the EEPROM has a valid checksum
869  *
870  * hw - Struct containing variables accessed by shared code
871  *
872  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
873  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
874  * valid.
875  *****************************************************************************/
876 static int
877 e1000_validate_eeprom_checksum(struct eth_device *nic)
878 {
879         struct e1000_hw *hw = nic->priv;
880         uint16_t checksum = 0;
881         uint16_t i, eeprom_data;
882
883         DEBUGFUNC();
884
885         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
886                 if (e1000_read_eeprom(hw, i, 1,  &eeprom_data) < 0) {
887                         DEBUGOUT("EEPROM Read Error\n");
888                         return -E1000_ERR_EEPROM;
889                 }
890                 checksum += eeprom_data;
891         }
892
893         if (checksum == (uint16_t) EEPROM_SUM) {
894                 return 0;
895         } else {
896                 DEBUGOUT("EEPROM Checksum Invalid\n");
897                 return -E1000_ERR_EEPROM;
898         }
899 }
900
901 /*****************************************************************************
902  * Set PHY to class A mode
903  * Assumes the following operations will follow to enable the new class mode.
904  *  1. Do a PHY soft reset
905  *  2. Restart auto-negotiation or force link.
906  *
907  * hw - Struct containing variables accessed by shared code
908  ****************************************************************************/
909 static int32_t
910 e1000_set_phy_mode(struct e1000_hw *hw)
911 {
912         int32_t ret_val;
913         uint16_t eeprom_data;
914
915         DEBUGFUNC();
916
917         if ((hw->mac_type == e1000_82545_rev_3) &&
918                 (hw->media_type == e1000_media_type_copper)) {
919                 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
920                                 1, &eeprom_data);
921                 if (ret_val)
922                         return ret_val;
923
924                 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
925                         (eeprom_data & EEPROM_PHY_CLASS_A)) {
926                         ret_val = e1000_write_phy_reg(hw,
927                                         M88E1000_PHY_PAGE_SELECT, 0x000B);
928                         if (ret_val)
929                                 return ret_val;
930                         ret_val = e1000_write_phy_reg(hw,
931                                         M88E1000_PHY_GEN_CONTROL, 0x8104);
932                         if (ret_val)
933                                 return ret_val;
934
935                         hw->phy_reset_disable = FALSE;
936                 }
937         }
938
939         return E1000_SUCCESS;
940 }
941 #endif /* #ifndef CONFIG_AP1000 */
942
943 /***************************************************************************
944  *
945  * Obtaining software semaphore bit (SMBI) before resetting PHY.
946  *
947  * hw: Struct containing variables accessed by shared code
948  *
949  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
950  *            E1000_SUCCESS at any other case.
951  *
952  ***************************************************************************/
953 static int32_t
954 e1000_get_software_semaphore(struct e1000_hw *hw)
955 {
956          int32_t timeout = hw->eeprom.word_size + 1;
957          uint32_t swsm;
958
959         DEBUGFUNC();
960
961         if (hw->mac_type != e1000_80003es2lan)
962                 return E1000_SUCCESS;
963
964         while (timeout) {
965                 swsm = E1000_READ_REG(hw, SWSM);
966                 /* If SMBI bit cleared, it is now set and we hold
967                  * the semaphore */
968                 if (!(swsm & E1000_SWSM_SMBI))
969                         break;
970                 mdelay(1);
971                 timeout--;
972         }
973
974         if (!timeout) {
975                 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
976                 return -E1000_ERR_RESET;
977         }
978
979         return E1000_SUCCESS;
980 }
981
982 /***************************************************************************
983  * This function clears HW semaphore bits.
984  *
985  * hw: Struct containing variables accessed by shared code
986  *
987  * returns: - None.
988  *
989  ***************************************************************************/
990 static void
991 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
992 {
993          uint32_t swsm;
994
995         DEBUGFUNC();
996
997         if (!hw->eeprom_semaphore_present)
998                 return;
999
1000         swsm = E1000_READ_REG(hw, SWSM);
1001         if (hw->mac_type == e1000_80003es2lan) {
1002                 /* Release both semaphores. */
1003                 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1004         } else
1005                 swsm &= ~(E1000_SWSM_SWESMBI);
1006         E1000_WRITE_REG(hw, SWSM, swsm);
1007 }
1008
1009 /***************************************************************************
1010  *
1011  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1012  * adapter or Eeprom access.
1013  *
1014  * hw: Struct containing variables accessed by shared code
1015  *
1016  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1017  *            E1000_SUCCESS at any other case.
1018  *
1019  ***************************************************************************/
1020 static int32_t
1021 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1022 {
1023         int32_t timeout;
1024         uint32_t swsm;
1025
1026         DEBUGFUNC();
1027
1028         if (!hw->eeprom_semaphore_present)
1029                 return E1000_SUCCESS;
1030
1031         if (hw->mac_type == e1000_80003es2lan) {
1032                 /* Get the SW semaphore. */
1033                 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1034                         return -E1000_ERR_EEPROM;
1035         }
1036
1037         /* Get the FW semaphore. */
1038         timeout = hw->eeprom.word_size + 1;
1039         while (timeout) {
1040                 swsm = E1000_READ_REG(hw, SWSM);
1041                 swsm |= E1000_SWSM_SWESMBI;
1042                 E1000_WRITE_REG(hw, SWSM, swsm);
1043                 /* if we managed to set the bit we got the semaphore. */
1044                 swsm = E1000_READ_REG(hw, SWSM);
1045                 if (swsm & E1000_SWSM_SWESMBI)
1046                         break;
1047
1048                 udelay(50);
1049                 timeout--;
1050         }
1051
1052         if (!timeout) {
1053                 /* Release semaphores */
1054                 e1000_put_hw_eeprom_semaphore(hw);
1055                 DEBUGOUT("Driver can't access the Eeprom - "
1056                                 "SWESMBI bit is set.\n");
1057                 return -E1000_ERR_EEPROM;
1058         }
1059
1060         return E1000_SUCCESS;
1061 }
1062
1063 static int32_t
1064 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1065 {
1066         uint32_t swfw_sync = 0;
1067         uint32_t swmask = mask;
1068         uint32_t fwmask = mask << 16;
1069         int32_t timeout = 200;
1070
1071         DEBUGFUNC();
1072         while (timeout) {
1073                 if (e1000_get_hw_eeprom_semaphore(hw))
1074                         return -E1000_ERR_SWFW_SYNC;
1075
1076                 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1077                 if (!(swfw_sync & (fwmask | swmask)))
1078                         break;
1079
1080                 /* firmware currently using resource (fwmask) */
1081                 /* or other software thread currently using resource (swmask) */
1082                 e1000_put_hw_eeprom_semaphore(hw);
1083                 mdelay(5);
1084                 timeout--;
1085         }
1086
1087         if (!timeout) {
1088                 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1089                 return -E1000_ERR_SWFW_SYNC;
1090         }
1091
1092         swfw_sync |= swmask;
1093         E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1094
1095         e1000_put_hw_eeprom_semaphore(hw);
1096         return E1000_SUCCESS;
1097 }
1098
1099 /******************************************************************************
1100  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1101  * second function of dual function devices
1102  *
1103  * nic - Struct containing variables accessed by shared code
1104  *****************************************************************************/
1105 static int
1106 e1000_read_mac_addr(struct eth_device *nic)
1107 {
1108 #ifndef CONFIG_AP1000
1109         struct e1000_hw *hw = nic->priv;
1110         uint16_t offset;
1111         uint16_t eeprom_data;
1112         int i;
1113
1114         DEBUGFUNC();
1115
1116         for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1117                 offset = i >> 1;
1118                 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1119                         DEBUGOUT("EEPROM Read Error\n");
1120                         return -E1000_ERR_EEPROM;
1121                 }
1122                 nic->enetaddr[i] = eeprom_data & 0xff;
1123                 nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1124         }
1125         if ((hw->mac_type == e1000_82546) &&
1126             (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
1127                 /* Invert the last bit if this is the second device */
1128                 nic->enetaddr[5] += 1;
1129         }
1130 #ifdef CONFIG_E1000_FALLBACK_MAC
1131         if ( *(u32*)(nic->enetaddr) == 0 || *(u32*)(nic->enetaddr) == ~0 ) {
1132                 unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
1133
1134                 memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
1135         }
1136 #endif
1137 #else
1138         /*
1139          * The AP1000's e1000 has no eeprom; the MAC address is stored in the
1140          * environment variables.  Currently this does not support the addition
1141          * of a PMC e1000 card, which is certainly a possibility, so this should
1142          * be updated to properly use the env variable only for the onboard e1000
1143          */
1144
1145         int ii;
1146         char *s, *e;
1147
1148         DEBUGFUNC();
1149
1150         s = getenv ("ethaddr");
1151         if (s == NULL) {
1152                 return -E1000_ERR_EEPROM;
1153         } else {
1154                 for(ii = 0; ii < 6; ii++) {
1155                         nic->enetaddr[ii] = s ? simple_strtoul (s, &e, 16) : 0;
1156                         if (s){
1157                                 s = (*e) ? e + 1 : e;
1158                         }
1159                 }
1160         }
1161 #endif
1162         return 0;
1163 }
1164
1165 /******************************************************************************
1166  * Initializes receive address filters.
1167  *
1168  * hw - Struct containing variables accessed by shared code
1169  *
1170  * Places the MAC address in receive address register 0 and clears the rest
1171  * of the receive addresss registers. Clears the multicast table. Assumes
1172  * the receiver is in reset when the routine is called.
1173  *****************************************************************************/
1174 static void
1175 e1000_init_rx_addrs(struct eth_device *nic)
1176 {
1177         struct e1000_hw *hw = nic->priv;
1178         uint32_t i;
1179         uint32_t addr_low;
1180         uint32_t addr_high;
1181
1182         DEBUGFUNC();
1183
1184         /* Setup the receive address. */
1185         DEBUGOUT("Programming MAC Address into RAR[0]\n");
1186         addr_low = (nic->enetaddr[0] |
1187                     (nic->enetaddr[1] << 8) |
1188                     (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
1189
1190         addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
1191
1192         E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1193         E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1194
1195         /* Zero out the other 15 receive addresses. */
1196         DEBUGOUT("Clearing RAR[1-15]\n");
1197         for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1198                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1199                 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1200         }
1201 }
1202
1203 /******************************************************************************
1204  * Clears the VLAN filer table
1205  *
1206  * hw - Struct containing variables accessed by shared code
1207  *****************************************************************************/
1208 static void
1209 e1000_clear_vfta(struct e1000_hw *hw)
1210 {
1211         uint32_t offset;
1212
1213         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1214                 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1215 }
1216
1217 /******************************************************************************
1218  * Set the mac type member in the hw struct.
1219  *
1220  * hw - Struct containing variables accessed by shared code
1221  *****************************************************************************/
1222 int32_t
1223 e1000_set_mac_type(struct e1000_hw *hw)
1224 {
1225         DEBUGFUNC();
1226
1227         switch (hw->device_id) {
1228         case E1000_DEV_ID_82542:
1229                 switch (hw->revision_id) {
1230                 case E1000_82542_2_0_REV_ID:
1231                         hw->mac_type = e1000_82542_rev2_0;
1232                         break;
1233                 case E1000_82542_2_1_REV_ID:
1234                         hw->mac_type = e1000_82542_rev2_1;
1235                         break;
1236                 default:
1237                         /* Invalid 82542 revision ID */
1238                         return -E1000_ERR_MAC_TYPE;
1239                 }
1240                 break;
1241         case E1000_DEV_ID_82543GC_FIBER:
1242         case E1000_DEV_ID_82543GC_COPPER:
1243                 hw->mac_type = e1000_82543;
1244                 break;
1245         case E1000_DEV_ID_82544EI_COPPER:
1246         case E1000_DEV_ID_82544EI_FIBER:
1247         case E1000_DEV_ID_82544GC_COPPER:
1248         case E1000_DEV_ID_82544GC_LOM:
1249                 hw->mac_type = e1000_82544;
1250                 break;
1251         case E1000_DEV_ID_82540EM:
1252         case E1000_DEV_ID_82540EM_LOM:
1253         case E1000_DEV_ID_82540EP:
1254         case E1000_DEV_ID_82540EP_LOM:
1255         case E1000_DEV_ID_82540EP_LP:
1256                 hw->mac_type = e1000_82540;
1257                 break;
1258         case E1000_DEV_ID_82545EM_COPPER:
1259         case E1000_DEV_ID_82545EM_FIBER:
1260                 hw->mac_type = e1000_82545;
1261                 break;
1262         case E1000_DEV_ID_82545GM_COPPER:
1263         case E1000_DEV_ID_82545GM_FIBER:
1264         case E1000_DEV_ID_82545GM_SERDES:
1265                 hw->mac_type = e1000_82545_rev_3;
1266                 break;
1267         case E1000_DEV_ID_82546EB_COPPER:
1268         case E1000_DEV_ID_82546EB_FIBER:
1269         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1270                 hw->mac_type = e1000_82546;
1271                 break;
1272         case E1000_DEV_ID_82546GB_COPPER:
1273         case E1000_DEV_ID_82546GB_FIBER:
1274         case E1000_DEV_ID_82546GB_SERDES:
1275         case E1000_DEV_ID_82546GB_PCIE:
1276         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1277         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1278                 hw->mac_type = e1000_82546_rev_3;
1279                 break;
1280         case E1000_DEV_ID_82541EI:
1281         case E1000_DEV_ID_82541EI_MOBILE:
1282         case E1000_DEV_ID_82541ER_LOM:
1283                 hw->mac_type = e1000_82541;
1284                 break;
1285         case E1000_DEV_ID_82541ER:
1286         case E1000_DEV_ID_82541GI:
1287         case E1000_DEV_ID_82541GI_LF:
1288         case E1000_DEV_ID_82541GI_MOBILE:
1289                 hw->mac_type = e1000_82541_rev_2;
1290                 break;
1291         case E1000_DEV_ID_82547EI:
1292         case E1000_DEV_ID_82547EI_MOBILE:
1293                 hw->mac_type = e1000_82547;
1294                 break;
1295         case E1000_DEV_ID_82547GI:
1296                 hw->mac_type = e1000_82547_rev_2;
1297                 break;
1298         case E1000_DEV_ID_82571EB_COPPER:
1299         case E1000_DEV_ID_82571EB_FIBER:
1300         case E1000_DEV_ID_82571EB_SERDES:
1301         case E1000_DEV_ID_82571EB_SERDES_DUAL:
1302         case E1000_DEV_ID_82571EB_SERDES_QUAD:
1303         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1304         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1305         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1306         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1307                 hw->mac_type = e1000_82571;
1308                 break;
1309         case E1000_DEV_ID_82572EI_COPPER:
1310         case E1000_DEV_ID_82572EI_FIBER:
1311         case E1000_DEV_ID_82572EI_SERDES:
1312         case E1000_DEV_ID_82572EI:
1313                 hw->mac_type = e1000_82572;
1314                 break;
1315         case E1000_DEV_ID_82573E:
1316         case E1000_DEV_ID_82573E_IAMT:
1317         case E1000_DEV_ID_82573L:
1318                 hw->mac_type = e1000_82573;
1319                 break;
1320         case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1321         case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1322         case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1323         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1324                 hw->mac_type = e1000_80003es2lan;
1325                 break;
1326         case E1000_DEV_ID_ICH8_IGP_M_AMT:
1327         case E1000_DEV_ID_ICH8_IGP_AMT:
1328         case E1000_DEV_ID_ICH8_IGP_C:
1329         case E1000_DEV_ID_ICH8_IFE:
1330         case E1000_DEV_ID_ICH8_IFE_GT:
1331         case E1000_DEV_ID_ICH8_IFE_G:
1332         case E1000_DEV_ID_ICH8_IGP_M:
1333                 hw->mac_type = e1000_ich8lan;
1334                 break;
1335         default:
1336                 /* Should never have loaded on this device */
1337                 return -E1000_ERR_MAC_TYPE;
1338         }
1339         return E1000_SUCCESS;
1340 }
1341
1342 /******************************************************************************
1343  * Reset the transmit and receive units; mask and clear all interrupts.
1344  *
1345  * hw - Struct containing variables accessed by shared code
1346  *****************************************************************************/
1347 void
1348 e1000_reset_hw(struct e1000_hw *hw)
1349 {
1350         uint32_t ctrl;
1351         uint32_t ctrl_ext;
1352         uint32_t icr;
1353         uint32_t manc;
1354         uint32_t pba = 0;
1355
1356         DEBUGFUNC();
1357
1358         /* get the correct pba value for both PCI and PCIe*/
1359         if (hw->mac_type <  e1000_82571)
1360                 pba = E1000_DEFAULT_PCI_PBA;
1361         else
1362                 pba = E1000_DEFAULT_PCIE_PBA;
1363
1364         /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1365         if (hw->mac_type == e1000_82542_rev2_0) {
1366                 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1367                 pci_write_config_word(hw->pdev, PCI_COMMAND,
1368                                 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1369         }
1370
1371         /* Clear interrupt mask to stop board from generating interrupts */
1372         DEBUGOUT("Masking off all interrupts\n");
1373         E1000_WRITE_REG(hw, IMC, 0xffffffff);
1374
1375         /* Disable the Transmit and Receive units.  Then delay to allow
1376          * any pending transactions to complete before we hit the MAC with
1377          * the global reset.
1378          */
1379         E1000_WRITE_REG(hw, RCTL, 0);
1380         E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1381         E1000_WRITE_FLUSH(hw);
1382
1383         /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1384         hw->tbi_compatibility_on = FALSE;
1385
1386         /* Delay to allow any outstanding PCI transactions to complete before
1387          * resetting the device
1388          */
1389         mdelay(10);
1390
1391         /* Issue a global reset to the MAC.  This will reset the chip's
1392          * transmit, receive, DMA, and link units.  It will not effect
1393          * the current PCI configuration.  The global reset bit is self-
1394          * clearing, and should clear within a microsecond.
1395          */
1396         DEBUGOUT("Issuing a global reset to MAC\n");
1397         ctrl = E1000_READ_REG(hw, CTRL);
1398
1399         E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1400
1401         /* Force a reload from the EEPROM if necessary */
1402         if (hw->mac_type < e1000_82540) {
1403                 /* Wait for reset to complete */
1404                 udelay(10);
1405                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1406                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1407                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1408                 E1000_WRITE_FLUSH(hw);
1409                 /* Wait for EEPROM reload */
1410                 mdelay(2);
1411         } else {
1412                 /* Wait for EEPROM reload (it happens automatically) */
1413                 mdelay(4);
1414                 /* Dissable HW ARPs on ASF enabled adapters */
1415                 manc = E1000_READ_REG(hw, MANC);
1416                 manc &= ~(E1000_MANC_ARP_EN);
1417                 E1000_WRITE_REG(hw, MANC, manc);
1418         }
1419
1420         /* Clear interrupt mask to stop board from generating interrupts */
1421         DEBUGOUT("Masking off all interrupts\n");
1422         E1000_WRITE_REG(hw, IMC, 0xffffffff);
1423
1424         /* Clear any pending interrupt events. */
1425         icr = E1000_READ_REG(hw, ICR);
1426
1427         /* If MWI was previously enabled, reenable it. */
1428         if (hw->mac_type == e1000_82542_rev2_0) {
1429                 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1430         }
1431         E1000_WRITE_REG(hw, PBA, pba);
1432 }
1433
1434 /******************************************************************************
1435  *
1436  * Initialize a number of hardware-dependent bits
1437  *
1438  * hw: Struct containing variables accessed by shared code
1439  *
1440  * This function contains hardware limitation workarounds for PCI-E adapters
1441  *
1442  *****************************************************************************/
1443 static void
1444 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1445 {
1446         if ((hw->mac_type >= e1000_82571) &&
1447                         (!hw->initialize_hw_bits_disable)) {
1448                 /* Settings common to all PCI-express silicon */
1449                 uint32_t reg_ctrl, reg_ctrl_ext;
1450                 uint32_t reg_tarc0, reg_tarc1;
1451                 uint32_t reg_tctl;
1452                 uint32_t reg_txdctl, reg_txdctl1;
1453
1454                 /* link autonegotiation/sync workarounds */
1455                 reg_tarc0 = E1000_READ_REG(hw, TARC0);
1456                 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1457
1458                 /* Enable not-done TX descriptor counting */
1459                 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1460                 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1461                 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1462
1463                 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1464                 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1465                 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1466
1467                 switch (hw->mac_type) {
1468                 case e1000_82571:
1469                 case e1000_82572:
1470                         /* Clear PHY TX compatible mode bits */
1471                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1472                         reg_tarc1 &= ~((1 << 30)|(1 << 29));
1473
1474                         /* link autonegotiation/sync workarounds */
1475                         reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1476
1477                         /* TX ring control fixes */
1478                         reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1479
1480                         /* Multiple read bit is reversed polarity */
1481                         reg_tctl = E1000_READ_REG(hw, TCTL);
1482                         if (reg_tctl & E1000_TCTL_MULR)
1483                                 reg_tarc1 &= ~(1 << 28);
1484                         else
1485                                 reg_tarc1 |= (1 << 28);
1486
1487                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1488                         break;
1489                 case e1000_82573:
1490                         reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1491                         reg_ctrl_ext &= ~(1 << 23);
1492                         reg_ctrl_ext |= (1 << 22);
1493
1494                         /* TX byte count fix */
1495                         reg_ctrl = E1000_READ_REG(hw, CTRL);
1496                         reg_ctrl &= ~(1 << 29);
1497
1498                         E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1499                         E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1500                         break;
1501                 case e1000_80003es2lan:
1502         /* improve small packet performace for fiber/serdes */
1503                         if ((hw->media_type == e1000_media_type_fiber)
1504                         || (hw->media_type ==
1505                                 e1000_media_type_internal_serdes)) {
1506                                 reg_tarc0 &= ~(1 << 20);
1507                         }
1508
1509                 /* Multiple read bit is reversed polarity */
1510                         reg_tctl = E1000_READ_REG(hw, TCTL);
1511                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1512                         if (reg_tctl & E1000_TCTL_MULR)
1513                                 reg_tarc1 &= ~(1 << 28);
1514                         else
1515                                 reg_tarc1 |= (1 << 28);
1516
1517                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1518                         break;
1519                 case e1000_ich8lan:
1520                         /* Reduce concurrent DMA requests to 3 from 4 */
1521                         if ((hw->revision_id < 3) ||
1522                         ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1523                                 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1524                                 reg_tarc0 |= ((1 << 29)|(1 << 28));
1525
1526                         reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1527                         reg_ctrl_ext |= (1 << 22);
1528                         E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1529
1530                         /* workaround TX hang with TSO=on */
1531                         reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1532
1533                         /* Multiple read bit is reversed polarity */
1534                         reg_tctl = E1000_READ_REG(hw, TCTL);
1535                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1536                         if (reg_tctl & E1000_TCTL_MULR)
1537                                 reg_tarc1 &= ~(1 << 28);
1538                         else
1539                                 reg_tarc1 |= (1 << 28);
1540
1541                         /* workaround TX hang with TSO=on */
1542                         reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1543
1544                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1545                         break;
1546                 default:
1547                         break;
1548                 }
1549
1550                 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1551         }
1552 }
1553
1554 /******************************************************************************
1555  * Performs basic configuration of the adapter.
1556  *
1557  * hw - Struct containing variables accessed by shared code
1558  *
1559  * Assumes that the controller has previously been reset and is in a
1560  * post-reset uninitialized state. Initializes the receive address registers,
1561  * multicast table, and VLAN filter table. Calls routines to setup link
1562  * configuration and flow control settings. Clears all on-chip counters. Leaves
1563  * the transmit and receive units disabled and uninitialized.
1564  *****************************************************************************/
1565 static int
1566 e1000_init_hw(struct eth_device *nic)
1567 {
1568         struct e1000_hw *hw = nic->priv;
1569         uint32_t ctrl;
1570         uint32_t i;
1571         int32_t ret_val;
1572         uint16_t pcix_cmd_word;
1573         uint16_t pcix_stat_hi_word;
1574         uint16_t cmd_mmrbc;
1575         uint16_t stat_mmrbc;
1576         uint32_t mta_size;
1577         uint32_t reg_data;
1578         uint32_t ctrl_ext;
1579         DEBUGFUNC();
1580         /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1581         if ((hw->mac_type == e1000_ich8lan) &&
1582                 ((hw->revision_id < 3) ||
1583                 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1584                 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1585                         reg_data = E1000_READ_REG(hw, STATUS);
1586                         reg_data &= ~0x80000000;
1587                         E1000_WRITE_REG(hw, STATUS, reg_data);
1588         }
1589         /* Do not need initialize Identification LED */
1590
1591         /* Set the media type and TBI compatibility */
1592         e1000_set_media_type(hw);
1593
1594         /* Must be called after e1000_set_media_type
1595          * because media_type is used */
1596         e1000_initialize_hardware_bits(hw);
1597
1598         /* Disabling VLAN filtering. */
1599         DEBUGOUT("Initializing the IEEE VLAN\n");
1600         /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1601         if (hw->mac_type != e1000_ich8lan) {
1602                 if (hw->mac_type < e1000_82545_rev_3)
1603                         E1000_WRITE_REG(hw, VET, 0);
1604                 e1000_clear_vfta(hw);
1605         }
1606
1607         /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1608         if (hw->mac_type == e1000_82542_rev2_0) {
1609                 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1610                 pci_write_config_word(hw->pdev, PCI_COMMAND,
1611                                       hw->
1612                                       pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1613                 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1614                 E1000_WRITE_FLUSH(hw);
1615                 mdelay(5);
1616         }
1617
1618         /* Setup the receive address. This involves initializing all of the Receive
1619          * Address Registers (RARs 0 - 15).
1620          */
1621         e1000_init_rx_addrs(nic);
1622
1623         /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1624         if (hw->mac_type == e1000_82542_rev2_0) {
1625                 E1000_WRITE_REG(hw, RCTL, 0);
1626                 E1000_WRITE_FLUSH(hw);
1627                 mdelay(1);
1628                 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1629         }
1630
1631         /* Zero out the Multicast HASH table */
1632         DEBUGOUT("Zeroing the MTA\n");
1633         mta_size = E1000_MC_TBL_SIZE;
1634         if (hw->mac_type == e1000_ich8lan)
1635                 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1636         for (i = 0; i < mta_size; i++) {
1637                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1638                 /* use write flush to prevent Memory Write Block (MWB) from
1639                  * occuring when accessing our register space */
1640                 E1000_WRITE_FLUSH(hw);
1641         }
1642 #if 0
1643         /* Set the PCI priority bit correctly in the CTRL register.  This
1644          * determines if the adapter gives priority to receives, or if it
1645          * gives equal priority to transmits and receives.  Valid only on
1646          * 82542 and 82543 silicon.
1647          */
1648         if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
1649                 ctrl = E1000_READ_REG(hw, CTRL);
1650                 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1651         }
1652 #endif
1653         switch (hw->mac_type) {
1654         case e1000_82545_rev_3:
1655         case e1000_82546_rev_3:
1656                 break;
1657         default:
1658         /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1659         if (hw->bus_type == e1000_bus_type_pcix) {
1660                 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1661                                      &pcix_cmd_word);
1662                 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1663                                      &pcix_stat_hi_word);
1664                 cmd_mmrbc =
1665                     (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1666                     PCIX_COMMAND_MMRBC_SHIFT;
1667                 stat_mmrbc =
1668                     (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1669                     PCIX_STATUS_HI_MMRBC_SHIFT;
1670                 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1671                         stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1672                 if (cmd_mmrbc > stat_mmrbc) {
1673                         pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1674                         pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1675                         pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1676                                               pcix_cmd_word);
1677                 }
1678         }
1679                 break;
1680         }
1681
1682         /* More time needed for PHY to initialize */
1683         if (hw->mac_type == e1000_ich8lan)
1684                 mdelay(15);
1685
1686         /* Call a subroutine to configure the link and setup flow control. */
1687         ret_val = e1000_setup_link(nic);
1688
1689         /* Set the transmit descriptor write-back policy */
1690         if (hw->mac_type > e1000_82544) {
1691                 ctrl = E1000_READ_REG(hw, TXDCTL);
1692                 ctrl =
1693                     (ctrl & ~E1000_TXDCTL_WTHRESH) |
1694                     E1000_TXDCTL_FULL_TX_DESC_WB;
1695                 E1000_WRITE_REG(hw, TXDCTL, ctrl);
1696         }
1697
1698         switch (hw->mac_type) {
1699         default:
1700                 break;
1701         case e1000_80003es2lan:
1702                 /* Enable retransmit on late collisions */
1703                 reg_data = E1000_READ_REG(hw, TCTL);
1704                 reg_data |= E1000_TCTL_RTLC;
1705                 E1000_WRITE_REG(hw, TCTL, reg_data);
1706
1707                 /* Configure Gigabit Carry Extend Padding */
1708                 reg_data = E1000_READ_REG(hw, TCTL_EXT);
1709                 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1710                 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1711                 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1712
1713                 /* Configure Transmit Inter-Packet Gap */
1714                 reg_data = E1000_READ_REG(hw, TIPG);
1715                 reg_data &= ~E1000_TIPG_IPGT_MASK;
1716                 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1717                 E1000_WRITE_REG(hw, TIPG, reg_data);
1718
1719                 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1720                 reg_data &= ~0x00100000;
1721                 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1722                 /* Fall through */
1723         case e1000_82571:
1724         case e1000_82572:
1725         case e1000_ich8lan:
1726                 ctrl = E1000_READ_REG(hw, TXDCTL1);
1727                 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1728                         | E1000_TXDCTL_FULL_TX_DESC_WB;
1729                 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1730                 break;
1731         }
1732
1733         if (hw->mac_type == e1000_82573) {
1734                 uint32_t gcr = E1000_READ_REG(hw, GCR);
1735                 gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1736                 E1000_WRITE_REG(hw, GCR, gcr);
1737         }
1738
1739 #if 0
1740         /* Clear all of the statistics registers (clear on read).  It is
1741          * important that we do this after we have tried to establish link
1742          * because the symbol error count will increment wildly if there
1743          * is no link.
1744          */
1745         e1000_clear_hw_cntrs(hw);
1746
1747         /* ICH8 No-snoop bits are opposite polarity.
1748          * Set to snoop by default after reset. */
1749         if (hw->mac_type == e1000_ich8lan)
1750                 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1751 #endif
1752
1753         if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1754                 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1755                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1756                 /* Relaxed ordering must be disabled to avoid a parity
1757                  * error crash in a PCI slot. */
1758                 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1759                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1760         }
1761
1762         return ret_val;
1763 }
1764
1765 /******************************************************************************
1766  * Configures flow control and link settings.
1767  *
1768  * hw - Struct containing variables accessed by shared code
1769  *
1770  * Determines which flow control settings to use. Calls the apropriate media-
1771  * specific link configuration function. Configures the flow control settings.
1772  * Assuming the adapter has a valid link partner, a valid link should be
1773  * established. Assumes the hardware has previously been reset and the
1774  * transmitter and receiver are not enabled.
1775  *****************************************************************************/
1776 static int
1777 e1000_setup_link(struct eth_device *nic)
1778 {
1779         struct e1000_hw *hw = nic->priv;
1780         uint32_t ctrl_ext;
1781         int32_t ret_val;
1782         uint16_t eeprom_data;
1783
1784         DEBUGFUNC();
1785
1786         /* In the case of the phy reset being blocked, we already have a link.
1787          * We do not have to set it up again. */
1788         if (e1000_check_phy_reset_block(hw))
1789                 return E1000_SUCCESS;
1790
1791 #ifndef CONFIG_AP1000
1792         /* Read and store word 0x0F of the EEPROM. This word contains bits
1793          * that determine the hardware's default PAUSE (flow control) mode,
1794          * a bit that determines whether the HW defaults to enabling or
1795          * disabling auto-negotiation, and the direction of the
1796          * SW defined pins. If there is no SW over-ride of the flow
1797          * control setting, then the variable hw->fc will
1798          * be initialized based on a value in the EEPROM.
1799          */
1800         if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1801                                 &eeprom_data) < 0) {
1802                 DEBUGOUT("EEPROM Read Error\n");
1803                 return -E1000_ERR_EEPROM;
1804         }
1805 #else
1806         /* we have to hardcode the proper value for our hardware. */
1807         /* this value is for the 82540EM pci card used for prototyping, and it works. */
1808         eeprom_data = 0xb220;
1809 #endif
1810
1811         if (hw->fc == e1000_fc_default) {
1812                 switch (hw->mac_type) {
1813                 case e1000_ich8lan:
1814                 case e1000_82573:
1815                         hw->fc = e1000_fc_full;
1816                         break;
1817                 default:
1818 #ifndef CONFIG_AP1000
1819                         ret_val = e1000_read_eeprom(hw,
1820                                 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1821                         if (ret_val) {
1822                                 DEBUGOUT("EEPROM Read Error\n");
1823                                 return -E1000_ERR_EEPROM;
1824                         }
1825 #else
1826                         eeprom_data = 0xb220;
1827 #endif
1828                         if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1829                                 hw->fc = e1000_fc_none;
1830                         else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1831                                     EEPROM_WORD0F_ASM_DIR)
1832                                 hw->fc = e1000_fc_tx_pause;
1833                         else
1834                                 hw->fc = e1000_fc_full;
1835                         break;
1836                 }
1837         }
1838
1839         /* We want to save off the original Flow Control configuration just
1840          * in case we get disconnected and then reconnected into a different
1841          * hub or switch with different Flow Control capabilities.
1842          */
1843         if (hw->mac_type == e1000_82542_rev2_0)
1844                 hw->fc &= (~e1000_fc_tx_pause);
1845
1846         if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1847                 hw->fc &= (~e1000_fc_rx_pause);
1848
1849         hw->original_fc = hw->fc;
1850
1851         DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1852
1853         /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1854          * polarity value for the SW controlled pins, and setup the
1855          * Extended Device Control reg with that info.
1856          * This is needed because one of the SW controlled pins is used for
1857          * signal detection.  So this should be done before e1000_setup_pcs_link()
1858          * or e1000_phy_setup() is called.
1859          */
1860         if (hw->mac_type == e1000_82543) {
1861                 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1862                             SWDPIO__EXT_SHIFT);
1863                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1864         }
1865
1866         /* Call the necessary subroutine to configure the link. */
1867         ret_val = (hw->media_type == e1000_media_type_fiber) ?
1868             e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
1869         if (ret_val < 0) {
1870                 return ret_val;
1871         }
1872
1873         /* Initialize the flow control address, type, and PAUSE timer
1874          * registers to their default values.  This is done even if flow
1875          * control is disabled, because it does not hurt anything to
1876          * initialize these registers.
1877          */
1878         DEBUGOUT("Initializing the Flow Control address, type"
1879                         "and timer regs\n");
1880
1881         /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1882         if (hw->mac_type != e1000_ich8lan) {
1883                 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1884                 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1885                 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1886         }
1887
1888         E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1889
1890         /* Set the flow control receive threshold registers.  Normally,
1891          * these registers will be set to a default threshold that may be
1892          * adjusted later by the driver's runtime code.  However, if the
1893          * ability to transmit pause frames in not enabled, then these
1894          * registers will be set to 0.
1895          */
1896         if (!(hw->fc & e1000_fc_tx_pause)) {
1897                 E1000_WRITE_REG(hw, FCRTL, 0);
1898                 E1000_WRITE_REG(hw, FCRTH, 0);
1899         } else {
1900                 /* We need to set up the Receive Threshold high and low water marks
1901                  * as well as (optionally) enabling the transmission of XON frames.
1902                  */
1903                 if (hw->fc_send_xon) {
1904                         E1000_WRITE_REG(hw, FCRTL,
1905                                         (hw->fc_low_water | E1000_FCRTL_XONE));
1906                         E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1907                 } else {
1908                         E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1909                         E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1910                 }
1911         }
1912         return ret_val;
1913 }
1914
1915 /******************************************************************************
1916  * Sets up link for a fiber based adapter
1917  *
1918  * hw - Struct containing variables accessed by shared code
1919  *
1920  * Manipulates Physical Coding Sublayer functions in order to configure
1921  * link. Assumes the hardware has been previously reset and the transmitter
1922  * and receiver are not enabled.
1923  *****************************************************************************/
1924 static int
1925 e1000_setup_fiber_link(struct eth_device *nic)
1926 {
1927         struct e1000_hw *hw = nic->priv;
1928         uint32_t ctrl;
1929         uint32_t status;
1930         uint32_t txcw = 0;
1931         uint32_t i;
1932         uint32_t signal;
1933         int32_t ret_val;
1934
1935         DEBUGFUNC();
1936         /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1937          * set when the optics detect a signal. On older adapters, it will be
1938          * cleared when there is a signal
1939          */
1940         ctrl = E1000_READ_REG(hw, CTRL);
1941         if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1942                 signal = E1000_CTRL_SWDPIN1;
1943         else
1944                 signal = 0;
1945
1946         printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
1947                ctrl);
1948         /* Take the link out of reset */
1949         ctrl &= ~(E1000_CTRL_LRST);
1950
1951         e1000_config_collision_dist(hw);
1952
1953         /* Check for a software override of the flow control settings, and setup
1954          * the device accordingly.  If auto-negotiation is enabled, then software
1955          * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1956          * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
1957          * auto-negotiation is disabled, then software will have to manually
1958          * configure the two flow control enable bits in the CTRL register.
1959          *
1960          * The possible values of the "fc" parameter are:
1961          *      0:  Flow control is completely disabled
1962          *      1:  Rx flow control is enabled (we can receive pause frames, but
1963          *          not send pause frames).
1964          *      2:  Tx flow control is enabled (we can send pause frames but we do
1965          *          not support receiving pause frames).
1966          *      3:  Both Rx and TX flow control (symmetric) are enabled.
1967          */
1968         switch (hw->fc) {
1969         case e1000_fc_none:
1970                 /* Flow control is completely disabled by a software over-ride. */
1971                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1972                 break;
1973         case e1000_fc_rx_pause:
1974                 /* RX Flow control is enabled and TX Flow control is disabled by a
1975                  * software over-ride. Since there really isn't a way to advertise
1976                  * that we are capable of RX Pause ONLY, we will advertise that we
1977                  * support both symmetric and asymmetric RX PAUSE. Later, we will
1978                  *  disable the adapter's ability to send PAUSE frames.
1979                  */
1980                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1981                 break;
1982         case e1000_fc_tx_pause:
1983                 /* TX Flow control is enabled, and RX Flow control is disabled, by a
1984                  * software over-ride.
1985                  */
1986                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1987                 break;
1988         case e1000_fc_full:
1989                 /* Flow control (both RX and TX) is enabled by a software over-ride. */
1990                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1991                 break;
1992         default:
1993                 DEBUGOUT("Flow control param set incorrectly\n");
1994                 return -E1000_ERR_CONFIG;
1995                 break;
1996         }
1997
1998         /* Since auto-negotiation is enabled, take the link out of reset (the link
1999          * will be in reset, because we previously reset the chip). This will
2000          * restart auto-negotiation.  If auto-neogtiation is successful then the
2001          * link-up status bit will be set and the flow control enable bits (RFCE
2002          * and TFCE) will be set according to their negotiated value.
2003          */
2004         DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2005
2006         E1000_WRITE_REG(hw, TXCW, txcw);
2007         E1000_WRITE_REG(hw, CTRL, ctrl);
2008         E1000_WRITE_FLUSH(hw);
2009
2010         hw->txcw = txcw;
2011         mdelay(1);
2012
2013         /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
2014          * indication in the Device Status Register.  Time-out if a link isn't
2015          * seen in 500 milliseconds seconds (Auto-negotiation should complete in
2016          * less than 500 milliseconds even if the other end is doing it in SW).
2017          */
2018         if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2019                 DEBUGOUT("Looking for Link\n");
2020                 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2021                         mdelay(10);
2022                         status = E1000_READ_REG(hw, STATUS);
2023                         if (status & E1000_STATUS_LU)
2024                                 break;
2025                 }
2026                 if (i == (LINK_UP_TIMEOUT / 10)) {
2027                         /* AutoNeg failed to achieve a link, so we'll call
2028                          * e1000_check_for_link. This routine will force the link up if we
2029                          * detect a signal. This will allow us to communicate with
2030                          * non-autonegotiating link partners.
2031                          */
2032                         DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2033                         hw->autoneg_failed = 1;
2034                         ret_val = e1000_check_for_link(nic);
2035                         if (ret_val < 0) {
2036                                 DEBUGOUT("Error while checking for link\n");
2037                                 return ret_val;
2038                         }
2039                         hw->autoneg_failed = 0;
2040                 } else {
2041                         hw->autoneg_failed = 0;
2042                         DEBUGOUT("Valid Link Found\n");
2043                 }
2044         } else {
2045                 DEBUGOUT("No Signal Detected\n");
2046                 return -E1000_ERR_NOLINK;
2047         }
2048         return 0;
2049 }
2050
2051 /******************************************************************************
2052 * Make sure we have a valid PHY and change PHY mode before link setup.
2053 *
2054 * hw - Struct containing variables accessed by shared code
2055 ******************************************************************************/
2056 static int32_t
2057 e1000_copper_link_preconfig(struct e1000_hw *hw)
2058 {
2059         uint32_t ctrl;
2060         int32_t ret_val;
2061         uint16_t phy_data;
2062
2063         DEBUGFUNC();
2064
2065         ctrl = E1000_READ_REG(hw, CTRL);
2066         /* With 82543, we need to force speed and duplex on the MAC equal to what
2067          * the PHY speed and duplex configuration is. In addition, we need to
2068          * perform a hardware reset on the PHY to take it out of reset.
2069          */
2070         if (hw->mac_type > e1000_82543) {
2071                 ctrl |= E1000_CTRL_SLU;
2072                 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2073                 E1000_WRITE_REG(hw, CTRL, ctrl);
2074         } else {
2075                 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2076                                 | E1000_CTRL_SLU);
2077                 E1000_WRITE_REG(hw, CTRL, ctrl);
2078                 ret_val = e1000_phy_hw_reset(hw);
2079                 if (ret_val)
2080                         return ret_val;
2081         }
2082
2083         /* Make sure we have a valid PHY */
2084         ret_val = e1000_detect_gig_phy(hw);
2085         if (ret_val) {
2086                 DEBUGOUT("Error, did not detect valid phy.\n");
2087                 return ret_val;
2088         }
2089         DEBUGOUT("Phy ID = %x \n", hw->phy_id);
2090
2091 #ifndef CONFIG_AP1000
2092         /* Set PHY to class A mode (if necessary) */
2093         ret_val = e1000_set_phy_mode(hw);
2094         if (ret_val)
2095                 return ret_val;
2096 #endif
2097         if ((hw->mac_type == e1000_82545_rev_3) ||
2098                 (hw->mac_type == e1000_82546_rev_3)) {
2099                 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2100                                 &phy_data);
2101                 phy_data |= 0x00000008;
2102                 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2103                                 phy_data);
2104         }
2105
2106         if (hw->mac_type <= e1000_82543 ||
2107                 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2108                 hw->mac_type == e1000_82541_rev_2
2109                 || hw->mac_type == e1000_82547_rev_2)
2110                         hw->phy_reset_disable = FALSE;
2111
2112         return E1000_SUCCESS;
2113 }
2114
2115 /*****************************************************************************
2116  *
2117  * This function sets the lplu state according to the active flag.  When
2118  * activating lplu this function also disables smart speed and vise versa.
2119  * lplu will not be activated unless the device autonegotiation advertisment
2120  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2121  * hw: Struct containing variables accessed by shared code
2122  * active - true to enable lplu false to disable lplu.
2123  *
2124  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2125  *            E1000_SUCCESS at any other case.
2126  *
2127  ****************************************************************************/
2128
2129 static int32_t
2130 e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active)
2131 {
2132         uint32_t phy_ctrl = 0;
2133         int32_t ret_val;
2134         uint16_t phy_data;
2135         DEBUGFUNC();
2136
2137         if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2138             && hw->phy_type != e1000_phy_igp_3)
2139                 return E1000_SUCCESS;
2140
2141         /* During driver activity LPLU should not be used or it will attain link
2142          * from the lowest speeds starting from 10Mbps. The capability is used
2143          * for Dx transitions and states */
2144         if (hw->mac_type == e1000_82541_rev_2
2145                         || hw->mac_type == e1000_82547_rev_2) {
2146                 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2147                                 &phy_data);
2148                 if (ret_val)
2149                         return ret_val;
2150         } else if (hw->mac_type == e1000_ich8lan) {
2151                 /* MAC writes into PHY register based on the state transition
2152                  * and start auto-negotiation. SW driver can overwrite the
2153                  * settings in CSR PHY power control E1000_PHY_CTRL register. */
2154                 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2155         } else {
2156                 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2157                                 &phy_data);
2158                 if (ret_val)
2159                         return ret_val;
2160         }
2161
2162         if (!active) {
2163                 if (hw->mac_type == e1000_82541_rev_2 ||
2164                         hw->mac_type == e1000_82547_rev_2) {
2165                         phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2166                         ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2167                                         phy_data);
2168                         if (ret_val)
2169                                 return ret_val;
2170                 } else {
2171                         if (hw->mac_type == e1000_ich8lan) {
2172                                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2173                                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2174                         } else {
2175                                 phy_data &= ~IGP02E1000_PM_D3_LPLU;
2176                                 ret_val = e1000_write_phy_reg(hw,
2177                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2178                                 if (ret_val)
2179                                         return ret_val;
2180                         }
2181                 }
2182
2183         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2184          * Dx states where the power conservation is most important.  During
2185          * driver activity we should enable SmartSpeed, so performance is
2186          * maintained. */
2187                 if (hw->smart_speed == e1000_smart_speed_on) {
2188                         ret_val = e1000_read_phy_reg(hw,
2189                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2190                         if (ret_val)
2191                                 return ret_val;
2192
2193                         phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2194                         ret_val = e1000_write_phy_reg(hw,
2195                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2196                         if (ret_val)
2197                                 return ret_val;
2198                 } else if (hw->smart_speed == e1000_smart_speed_off) {
2199                         ret_val = e1000_read_phy_reg(hw,
2200                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2201                         if (ret_val)
2202                                 return ret_val;
2203
2204                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2205                         ret_val = e1000_write_phy_reg(hw,
2206                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2207                         if (ret_val)
2208                                 return ret_val;
2209                 }
2210
2211         } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2212                 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2213                 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2214
2215                 if (hw->mac_type == e1000_82541_rev_2 ||
2216                     hw->mac_type == e1000_82547_rev_2) {
2217                         phy_data |= IGP01E1000_GMII_FLEX_SPD;
2218                         ret_val = e1000_write_phy_reg(hw,
2219                                         IGP01E1000_GMII_FIFO, phy_data);
2220                         if (ret_val)
2221                                 return ret_val;
2222                 } else {
2223                         if (hw->mac_type == e1000_ich8lan) {
2224                                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2225                                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2226                         } else {
2227                                 phy_data |= IGP02E1000_PM_D3_LPLU;
2228                                 ret_val = e1000_write_phy_reg(hw,
2229                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2230                                 if (ret_val)
2231                                         return ret_val;
2232                         }
2233                 }
2234
2235                 /* When LPLU is enabled we should disable SmartSpeed */
2236                 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2237                                 &phy_data);
2238                 if (ret_val)
2239                         return ret_val;
2240
2241                 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2242                 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2243                                 phy_data);
2244                 if (ret_val)
2245                         return ret_val;
2246         }
2247         return E1000_SUCCESS;
2248 }
2249
2250 /*****************************************************************************
2251  *
2252  * This function sets the lplu d0 state according to the active flag.  When
2253  * activating lplu this function also disables smart speed and vise versa.
2254  * lplu will not be activated unless the device autonegotiation advertisment
2255  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2256  * hw: Struct containing variables accessed by shared code
2257  * active - true to enable lplu false to disable lplu.
2258  *
2259  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2260  *            E1000_SUCCESS at any other case.
2261  *
2262  ****************************************************************************/
2263
2264 static int32_t
2265 e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active)
2266 {
2267         uint32_t phy_ctrl = 0;
2268         int32_t ret_val;
2269         uint16_t phy_data;
2270         DEBUGFUNC();
2271
2272         if (hw->mac_type <= e1000_82547_rev_2)
2273                 return E1000_SUCCESS;
2274
2275         if (hw->mac_type == e1000_ich8lan) {
2276                 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2277         } else {
2278                 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2279                                 &phy_data);
2280                 if (ret_val)
2281                         return ret_val;
2282         }
2283
2284         if (!active) {
2285                 if (hw->mac_type == e1000_ich8lan) {
2286                         phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2287                         E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2288                 } else {
2289                         phy_data &= ~IGP02E1000_PM_D0_LPLU;
2290                         ret_val = e1000_write_phy_reg(hw,
2291                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2292                         if (ret_val)
2293                                 return ret_val;
2294                 }
2295
2296         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2297          * Dx states where the power conservation is most important.  During
2298          * driver activity we should enable SmartSpeed, so performance is
2299          * maintained. */
2300                 if (hw->smart_speed == e1000_smart_speed_on) {
2301                         ret_val = e1000_read_phy_reg(hw,
2302                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2303                         if (ret_val)
2304                                 return ret_val;
2305
2306                         phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2307                         ret_val = e1000_write_phy_reg(hw,
2308                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2309                         if (ret_val)
2310                                 return ret_val;
2311                 } else if (hw->smart_speed == e1000_smart_speed_off) {
2312                         ret_val = e1000_read_phy_reg(hw,
2313                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2314                         if (ret_val)
2315                                 return ret_val;
2316
2317                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2318                         ret_val = e1000_write_phy_reg(hw,
2319                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2320                         if (ret_val)
2321                                 return ret_val;
2322                 }
2323
2324
2325         } else {
2326
2327                 if (hw->mac_type == e1000_ich8lan) {
2328                         phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2329                         E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2330                 } else {
2331                         phy_data |= IGP02E1000_PM_D0_LPLU;
2332                         ret_val = e1000_write_phy_reg(hw,
2333                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2334                         if (ret_val)
2335                                 return ret_val;
2336                 }
2337
2338                 /* When LPLU is enabled we should disable SmartSpeed */
2339                 ret_val = e1000_read_phy_reg(hw,
2340                                 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2341                 if (ret_val)
2342                         return ret_val;
2343
2344                 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2345                 ret_val = e1000_write_phy_reg(hw,
2346                                 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2347                 if (ret_val)
2348                         return ret_val;
2349
2350         }
2351         return E1000_SUCCESS;
2352 }
2353
2354 /********************************************************************
2355 * Copper link setup for e1000_phy_igp series.
2356 *
2357 * hw - Struct containing variables accessed by shared code
2358 *********************************************************************/
2359 static int32_t
2360 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2361 {
2362         uint32_t led_ctrl;
2363         int32_t ret_val;
2364         uint16_t phy_data;
2365
2366         DEBUGFUNC();
2367
2368         if (hw->phy_reset_disable)
2369                 return E1000_SUCCESS;
2370
2371         ret_val = e1000_phy_reset(hw);
2372         if (ret_val) {
2373                 DEBUGOUT("Error Resetting the PHY\n");
2374                 return ret_val;
2375         }
2376
2377         /* Wait 15ms for MAC to configure PHY from eeprom settings */
2378         mdelay(15);
2379         if (hw->mac_type != e1000_ich8lan) {
2380                 /* Configure activity LED after PHY reset */
2381                 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2382                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2383                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2384                 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2385         }
2386
2387         /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2388         if (hw->phy_type == e1000_phy_igp) {
2389                 /* disable lplu d3 during driver init */
2390                 ret_val = e1000_set_d3_lplu_state(hw, FALSE);
2391                 if (ret_val) {
2392                         DEBUGOUT("Error Disabling LPLU D3\n");
2393                         return ret_val;
2394                 }
2395         }
2396
2397         /* disable lplu d0 during driver init */
2398         ret_val = e1000_set_d0_lplu_state(hw, FALSE);
2399         if (ret_val) {
2400                 DEBUGOUT("Error Disabling LPLU D0\n");
2401                 return ret_val;
2402         }
2403         /* Configure mdi-mdix settings */
2404         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2405         if (ret_val)
2406                 return ret_val;
2407
2408         if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2409                 hw->dsp_config_state = e1000_dsp_config_disabled;
2410                 /* Force MDI for earlier revs of the IGP PHY */
2411                 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2412                                 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2413                 hw->mdix = 1;
2414
2415         } else {
2416                 hw->dsp_config_state = e1000_dsp_config_enabled;
2417                 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2418
2419                 switch (hw->mdix) {
2420                 case 1:
2421                         phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2422                         break;
2423                 case 2:
2424                         phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2425                         break;
2426                 case 0:
2427                 default:
2428                         phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2429                         break;
2430                 }
2431         }
2432         ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2433         if (ret_val)
2434                 return ret_val;
2435
2436         /* set auto-master slave resolution settings */
2437         if (hw->autoneg) {
2438                 e1000_ms_type phy_ms_setting = hw->master_slave;
2439
2440                 if (hw->ffe_config_state == e1000_ffe_config_active)
2441                         hw->ffe_config_state = e1000_ffe_config_enabled;
2442
2443                 if (hw->dsp_config_state == e1000_dsp_config_activated)
2444                         hw->dsp_config_state = e1000_dsp_config_enabled;
2445
2446                 /* when autonegotiation advertisment is only 1000Mbps then we
2447                   * should disable SmartSpeed and enable Auto MasterSlave
2448                   * resolution as hardware default. */
2449                 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2450                         /* Disable SmartSpeed */
2451                         ret_val = e1000_read_phy_reg(hw,
2452                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2453                         if (ret_val)
2454                                 return ret_val;
2455                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2456                         ret_val = e1000_write_phy_reg(hw,
2457                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2458                         if (ret_val)
2459                                 return ret_val;
2460                         /* Set auto Master/Slave resolution process */
2461                         ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2462                                         &phy_data);
2463                         if (ret_val)
2464                                 return ret_val;
2465                         phy_data &= ~CR_1000T_MS_ENABLE;
2466                         ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2467                                         phy_data);
2468                         if (ret_val)
2469                                 return ret_val;
2470                 }
2471
2472                 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2473                 if (ret_val)
2474                         return ret_val;
2475
2476                 /* load defaults for future use */
2477                 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2478                                 ((phy_data & CR_1000T_MS_VALUE) ?
2479                                 e1000_ms_force_master :
2480                                 e1000_ms_force_slave) :
2481                                 e1000_ms_auto;
2482
2483                 switch (phy_ms_setting) {
2484                 case e1000_ms_force_master:
2485                         phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2486                         break;
2487                 case e1000_ms_force_slave:
2488                         phy_data |= CR_1000T_MS_ENABLE;
2489                         phy_data &= ~(CR_1000T_MS_VALUE);
2490                         break;
2491                 case e1000_ms_auto:
2492                         phy_data &= ~CR_1000T_MS_ENABLE;
2493                 default:
2494                         break;
2495                 }
2496                 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2497                 if (ret_val)
2498                         return ret_val;
2499         }
2500
2501         return E1000_SUCCESS;
2502 }
2503
2504 /*****************************************************************************
2505  * This function checks the mode of the firmware.
2506  *
2507  * returns  - TRUE when the mode is IAMT or FALSE.
2508  ****************************************************************************/
2509 boolean_t
2510 e1000_check_mng_mode(struct e1000_hw *hw)
2511 {
2512         uint32_t fwsm;
2513         DEBUGFUNC();
2514
2515         fwsm = E1000_READ_REG(hw, FWSM);
2516
2517         if (hw->mac_type == e1000_ich8lan) {
2518                 if ((fwsm & E1000_FWSM_MODE_MASK) ==
2519                     (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2520                         return TRUE;
2521         } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2522                        (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2523                         return TRUE;
2524
2525         return FALSE;
2526 }
2527
2528 static int32_t
2529 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2530 {
2531         uint32_t reg_val;
2532         uint16_t swfw;
2533         DEBUGFUNC();
2534
2535         if ((hw->mac_type == e1000_80003es2lan) &&
2536                 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
2537                 swfw = E1000_SWFW_PHY1_SM;
2538         } else {
2539                 swfw = E1000_SWFW_PHY0_SM;
2540         }
2541         if (e1000_swfw_sync_acquire(hw, swfw))
2542                 return -E1000_ERR_SWFW_SYNC;
2543
2544         reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2545                         & E1000_KUMCTRLSTA_OFFSET) | data;
2546         E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2547         udelay(2);
2548
2549         return E1000_SUCCESS;
2550 }
2551
2552 static int32_t
2553 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2554 {
2555         uint32_t reg_val;
2556         uint16_t swfw;
2557         DEBUGFUNC();
2558
2559         if ((hw->mac_type == e1000_80003es2lan) &&
2560             (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
2561                 swfw = E1000_SWFW_PHY1_SM;
2562         } else {
2563                 swfw = E1000_SWFW_PHY0_SM;
2564         }
2565         if (e1000_swfw_sync_acquire(hw, swfw))
2566                 return -E1000_ERR_SWFW_SYNC;
2567
2568         /* Write register address */
2569         reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2570                         E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2571         E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2572         udelay(2);
2573
2574         /* Read the data returned */
2575         reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2576         *data = (uint16_t)reg_val;
2577
2578         return E1000_SUCCESS;
2579 }
2580
2581 /********************************************************************
2582 * Copper link setup for e1000_phy_gg82563 series.
2583 *
2584 * hw - Struct containing variables accessed by shared code
2585 *********************************************************************/
2586 static int32_t
2587 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2588 {
2589         int32_t ret_val;
2590         uint16_t phy_data;
2591         uint32_t reg_data;
2592
2593         DEBUGFUNC();
2594
2595         if (!hw->phy_reset_disable) {
2596                 /* Enable CRS on TX for half-duplex operation. */
2597                 ret_val = e1000_read_phy_reg(hw,
2598                                 GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2599                 if (ret_val)
2600                         return ret_val;
2601
2602                 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2603                 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2604                 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2605
2606                 ret_val = e1000_write_phy_reg(hw,
2607                                 GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2608                 if (ret_val)
2609                         return ret_val;
2610
2611                 /* Options:
2612                  *   MDI/MDI-X = 0 (default)
2613                  *   0 - Auto for all speeds
2614                  *   1 - MDI mode
2615                  *   2 - MDI-X mode
2616                  *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2617                  */
2618                 ret_val = e1000_read_phy_reg(hw,
2619                                 GG82563_PHY_SPEC_CTRL, &phy_data);
2620                 if (ret_val)
2621                         return ret_val;
2622
2623                 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2624
2625                 switch (hw->mdix) {
2626                 case 1:
2627                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2628                         break;
2629                 case 2:
2630                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2631                         break;
2632                 case 0:
2633                 default:
2634                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2635                         break;
2636                 }
2637
2638                 /* Options:
2639                  *   disable_polarity_correction = 0 (default)
2640                  *       Automatic Correction for Reversed Cable Polarity
2641                  *   0 - Disabled
2642                  *   1 - Enabled
2643                  */
2644                 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2645                 ret_val = e1000_write_phy_reg(hw,
2646                                 GG82563_PHY_SPEC_CTRL, phy_data);
2647
2648                 if (ret_val)
2649                         return ret_val;
2650
2651                 /* SW Reset the PHY so all changes take effect */
2652                 ret_val = e1000_phy_reset(hw);
2653                 if (ret_val) {
2654                         DEBUGOUT("Error Resetting the PHY\n");
2655                         return ret_val;
2656                 }
2657         } /* phy_reset_disable */
2658
2659         if (hw->mac_type == e1000_80003es2lan) {
2660                 /* Bypass RX and TX FIFO's */
2661                 ret_val = e1000_write_kmrn_reg(hw,
2662                                 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2663                                 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2664                                 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2665                 if (ret_val)
2666                         return ret_val;
2667
2668                 ret_val = e1000_read_phy_reg(hw,
2669                                 GG82563_PHY_SPEC_CTRL_2, &phy_data);
2670                 if (ret_val)
2671                         return ret_val;
2672
2673                 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2674                 ret_val = e1000_write_phy_reg(hw,
2675                                 GG82563_PHY_SPEC_CTRL_2, phy_data);
2676
2677                 if (ret_val)
2678                         return ret_val;
2679
2680                 reg_data = E1000_READ_REG(hw, CTRL_EXT);
2681                 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2682                 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2683
2684                 ret_val = e1000_read_phy_reg(hw,
2685                                 GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2686                 if (ret_val)
2687                         return ret_val;
2688
2689         /* Do not init these registers when the HW is in IAMT mode, since the
2690          * firmware will have already initialized them.  We only initialize
2691          * them if the HW is not in IAMT mode.
2692          */
2693                 if (e1000_check_mng_mode(hw) == FALSE) {
2694                         /* Enable Electrical Idle on the PHY */
2695                         phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2696                         ret_val = e1000_write_phy_reg(hw,
2697                                         GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2698                         if (ret_val)
2699                                 return ret_val;
2700
2701                         ret_val = e1000_read_phy_reg(hw,
2702                                         GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2703                         if (ret_val)
2704                                 return ret_val;
2705
2706                         phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2707                         ret_val = e1000_write_phy_reg(hw,
2708                                         GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2709
2710                         if (ret_val)
2711                                 return ret_val;
2712                 }
2713
2714                 /* Workaround: Disable padding in Kumeran interface in the MAC
2715                  * and in the PHY to avoid CRC errors.
2716                  */
2717                 ret_val = e1000_read_phy_reg(hw,
2718                                 GG82563_PHY_INBAND_CTRL, &phy_data);
2719                 if (ret_val)
2720                         return ret_val;
2721                 phy_data |= GG82563_ICR_DIS_PADDING;
2722                 ret_val = e1000_write_phy_reg(hw,
2723                                 GG82563_PHY_INBAND_CTRL, phy_data);
2724                 if (ret_val)
2725                         return ret_val;
2726         }
2727         return E1000_SUCCESS;
2728 }
2729
2730 /********************************************************************
2731 * Copper link setup for e1000_phy_m88 series.
2732 *
2733 * hw - Struct containing variables accessed by shared code
2734 *********************************************************************/
2735 static int32_t
2736 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2737 {
2738         int32_t ret_val;
2739         uint16_t phy_data;
2740
2741         DEBUGFUNC();
2742
2743         if (hw->phy_reset_disable)
2744                 return E1000_SUCCESS;
2745
2746         /* Enable CRS on TX. This must be set for half-duplex operation. */
2747         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2748         if (ret_val)
2749                 return ret_val;
2750
2751         phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2752
2753         /* Options:
2754          *   MDI/MDI-X = 0 (default)
2755          *   0 - Auto for all speeds
2756          *   1 - MDI mode
2757          *   2 - MDI-X mode
2758          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2759          */
2760         phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2761
2762         switch (hw->mdix) {
2763         case 1:
2764                 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2765                 break;
2766         case 2:
2767                 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2768                 break;
2769         case 3:
2770                 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2771                 break;
2772         case 0:
2773         default:
2774                 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2775                 break;
2776         }
2777
2778         /* Options:
2779          *   disable_polarity_correction = 0 (default)
2780          *       Automatic Correction for Reversed Cable Polarity
2781          *   0 - Disabled
2782          *   1 - Enabled
2783          */
2784         phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
2785         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2786         if (ret_val)
2787                 return ret_val;
2788
2789         if (hw->phy_revision < M88E1011_I_REV_4) {
2790                 /* Force TX_CLK in the Extended PHY Specific Control Register
2791                  * to 25MHz clock.
2792                  */
2793                 ret_val = e1000_read_phy_reg(hw,
2794                                 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2795                 if (ret_val)
2796                         return ret_val;
2797
2798                 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2799
2800                 if ((hw->phy_revision == E1000_REVISION_2) &&
2801                         (hw->phy_id == M88E1111_I_PHY_ID)) {
2802                         /* Vidalia Phy, set the downshift counter to 5x */
2803                         phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2804                         phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2805                         ret_val = e1000_write_phy_reg(hw,
2806                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2807                         if (ret_val)
2808                                 return ret_val;
2809                 } else {
2810                         /* Configure Master and Slave downshift values */
2811                         phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2812                                         | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2813                         phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2814                                         | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2815                         ret_val = e1000_write_phy_reg(hw,
2816                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2817                         if (ret_val)
2818                                 return ret_val;
2819                 }
2820         }
2821
2822         /* SW Reset the PHY so all changes take effect */
2823         ret_val = e1000_phy_reset(hw);
2824         if (ret_val) {
2825                 DEBUGOUT("Error Resetting the PHY\n");
2826                 return ret_val;
2827         }
2828
2829         return E1000_SUCCESS;
2830 }
2831
2832 /********************************************************************
2833 * Setup auto-negotiation and flow control advertisements,
2834 * and then perform auto-negotiation.
2835 *
2836 * hw - Struct containing variables accessed by shared code
2837 *********************************************************************/
2838 static int32_t
2839 e1000_copper_link_autoneg(struct e1000_hw *hw)
2840 {
2841         int32_t ret_val;
2842         uint16_t phy_data;
2843
2844         DEBUGFUNC();
2845
2846         /* Perform some bounds checking on the hw->autoneg_advertised
2847          * parameter.  If this variable is zero, then set it to the default.
2848          */
2849         hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2850
2851         /* If autoneg_advertised is zero, we assume it was not defaulted
2852          * by the calling code so we set to advertise full capability.
2853          */
2854         if (hw->autoneg_advertised == 0)
2855                 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2856
2857         /* IFE phy only supports 10/100 */
2858         if (hw->phy_type == e1000_phy_ife)
2859                 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2860
2861         DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2862         ret_val = e1000_phy_setup_autoneg(hw);
2863         if (ret_val) {
2864                 DEBUGOUT("Error Setting up Auto-Negotiation\n");
2865                 return ret_val;
2866         }
2867         DEBUGOUT("Restarting Auto-Neg\n");
2868
2869         /* Restart auto-negotiation by setting the Auto Neg Enable bit and
2870          * the Auto Neg Restart bit in the PHY control register.
2871          */
2872         ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2873         if (ret_val)
2874                 return ret_val;
2875
2876         phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
2877         ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2878         if (ret_val)
2879                 return ret_val;
2880
2881         /* Does the user want to wait for Auto-Neg to complete here, or
2882          * check at a later time (for example, callback routine).
2883          */
2884         /* If we do not wait for autonegtation to complete I
2885          * do not see a valid link status.
2886          * wait_autoneg_complete = 1 .
2887          */
2888         if (hw->wait_autoneg_complete) {
2889                 ret_val = e1000_wait_autoneg(hw);
2890                 if (ret_val) {
2891                         DEBUGOUT("Error while waiting for autoneg"
2892                                         "to complete\n");
2893                         return ret_val;
2894                 }
2895         }
2896
2897         hw->get_link_status = TRUE;
2898
2899         return E1000_SUCCESS;
2900 }
2901
2902 /******************************************************************************
2903 * Config the MAC and the PHY after link is up.
2904 *   1) Set up the MAC to the current PHY speed/duplex
2905 *      if we are on 82543.  If we
2906 *      are on newer silicon, we only need to configure
2907 *      collision distance in the Transmit Control Register.
2908 *   2) Set up flow control on the MAC to that established with
2909 *      the link partner.
2910 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
2911 *
2912 * hw - Struct containing variables accessed by shared code
2913 ******************************************************************************/
2914 static int32_t
2915 e1000_copper_link_postconfig(struct e1000_hw *hw)
2916 {
2917         int32_t ret_val;
2918         DEBUGFUNC();
2919
2920         if (hw->mac_type >= e1000_82544) {
2921                 e1000_config_collision_dist(hw);
2922         } else {
2923                 ret_val = e1000_config_mac_to_phy(hw);
2924                 if (ret_val) {
2925                         DEBUGOUT("Error configuring MAC to PHY settings\n");
2926                         return ret_val;
2927                 }
2928         }
2929         ret_val = e1000_config_fc_after_link_up(hw);
2930         if (ret_val) {
2931                 DEBUGOUT("Error Configuring Flow Control\n");
2932                 return ret_val;
2933         }
2934         return E1000_SUCCESS;
2935 }
2936
2937 /******************************************************************************
2938 * Detects which PHY is present and setup the speed and duplex
2939 *
2940 * hw - Struct containing variables accessed by shared code
2941 ******************************************************************************/
2942 static int
2943 e1000_setup_copper_link(struct eth_device *nic)
2944 {
2945         struct e1000_hw *hw = nic->priv;
2946         int32_t ret_val;
2947         uint16_t i;
2948         uint16_t phy_data;
2949         uint16_t reg_data;
2950
2951         DEBUGFUNC();
2952
2953         switch (hw->mac_type) {
2954         case e1000_80003es2lan:
2955         case e1000_ich8lan:
2956                 /* Set the mac to wait the maximum time between each
2957                  * iteration and increase the max iterations when
2958                  * polling the phy; this fixes erroneous timeouts at 10Mbps. */
2959                 ret_val = e1000_write_kmrn_reg(hw,
2960                                 GG82563_REG(0x34, 4), 0xFFFF);
2961                 if (ret_val)
2962                         return ret_val;
2963                 ret_val = e1000_read_kmrn_reg(hw,
2964                                 GG82563_REG(0x34, 9), &reg_data);
2965                 if (ret_val)
2966                         return ret_val;
2967                 reg_data |= 0x3F;
2968                 ret_val = e1000_write_kmrn_reg(hw,
2969                                 GG82563_REG(0x34, 9), reg_data);
2970                 if (ret_val)
2971                         return ret_val;
2972         default:
2973                 break;
2974         }
2975
2976         /* Check if it is a valid PHY and set PHY mode if necessary. */
2977         ret_val = e1000_copper_link_preconfig(hw);
2978         if (ret_val)
2979                 return ret_val;
2980         switch (hw->mac_type) {
2981         case e1000_80003es2lan:
2982                 /* Kumeran registers are written-only */
2983                 reg_data =
2984                 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
2985                 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
2986                 ret_val = e1000_write_kmrn_reg(hw,
2987                                 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
2988                 if (ret_val)
2989                         return ret_val;
2990                 break;
2991         default:
2992                 break;
2993         }
2994
2995         if (hw->phy_type == e1000_phy_igp ||
2996                 hw->phy_type == e1000_phy_igp_3 ||
2997                 hw->phy_type == e1000_phy_igp_2) {
2998                 ret_val = e1000_copper_link_igp_setup(hw);
2999                 if (ret_val)
3000                         return ret_val;
3001         } else if (hw->phy_type == e1000_phy_m88) {
3002                 ret_val = e1000_copper_link_mgp_setup(hw);
3003                 if (ret_val)
3004                         return ret_val;
3005         } else if (hw->phy_type == e1000_phy_gg82563) {
3006                 ret_val = e1000_copper_link_ggp_setup(hw);
3007                 if (ret_val)
3008                         return ret_val;
3009         }
3010
3011         /* always auto */
3012         /* Setup autoneg and flow control advertisement
3013           * and perform autonegotiation */
3014         ret_val = e1000_copper_link_autoneg(hw);
3015         if (ret_val)
3016                 return ret_val;
3017
3018         /* Check link status. Wait up to 100 microseconds for link to become
3019          * valid.
3020          */
3021         for (i = 0; i < 10; i++) {
3022                 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3023                 if (ret_val)
3024                         return ret_val;
3025                 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3026                 if (ret_val)
3027                         return ret_val;
3028
3029                 if (phy_data & MII_SR_LINK_STATUS) {
3030                         /* Config the MAC and PHY after link is up */
3031                         ret_val = e1000_copper_link_postconfig(hw);
3032                         if (ret_val)
3033                                 return ret_val;
3034
3035                         DEBUGOUT("Valid link established!!!\n");
3036                         return E1000_SUCCESS;
3037                 }
3038                 udelay(10);
3039         }
3040
3041         DEBUGOUT("Unable to establish link!!!\n");
3042         return E1000_SUCCESS;
3043 }
3044
3045 /******************************************************************************
3046 * Configures PHY autoneg and flow control advertisement settings
3047 *
3048 * hw - Struct containing variables accessed by shared code
3049 ******************************************************************************/
3050 int32_t
3051 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3052 {
3053         int32_t ret_val;
3054         uint16_t mii_autoneg_adv_reg;
3055         uint16_t mii_1000t_ctrl_reg;
3056
3057         DEBUGFUNC();
3058
3059         /* Read the MII Auto-Neg Advertisement Register (Address 4). */
3060         ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3061         if (ret_val)
3062                 return ret_val;
3063
3064         if (hw->phy_type != e1000_phy_ife) {
3065                 /* Read the MII 1000Base-T Control Register (Address 9). */
3066                 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3067                                 &mii_1000t_ctrl_reg);
3068                 if (ret_val)
3069                         return ret_val;
3070         } else
3071                 mii_1000t_ctrl_reg = 0;
3072
3073         /* Need to parse both autoneg_advertised and fc and set up
3074          * the appropriate PHY registers.  First we will parse for
3075          * autoneg_advertised software override.  Since we can advertise
3076          * a plethora of combinations, we need to check each bit
3077          * individually.
3078          */
3079
3080         /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3081          * Advertisement Register (Address 4) and the 1000 mb speed bits in
3082          * the  1000Base-T Control Register (Address 9).
3083          */
3084         mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3085         mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3086
3087         DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3088
3089         /* Do we want to advertise 10 Mb Half Duplex? */
3090         if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3091                 DEBUGOUT("Advertise 10mb Half duplex\n");
3092                 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3093         }
3094
3095         /* Do we want to advertise 10 Mb Full Duplex? */
3096         if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3097                 DEBUGOUT("Advertise 10mb Full duplex\n");
3098                 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3099         }
3100
3101         /* Do we want to advertise 100 Mb Half Duplex? */
3102         if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3103                 DEBUGOUT("Advertise 100mb Half duplex\n");
3104                 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3105         }
3106
3107         /* Do we want to advertise 100 Mb Full Duplex? */
3108         if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3109                 DEBUGOUT("Advertise 100mb Full duplex\n");
3110                 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3111         }
3112
3113         /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3114         if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3115                 DEBUGOUT
3116                     ("Advertise 1000mb Half duplex requested, request denied!\n");
3117         }
3118
3119         /* Do we want to advertise 1000 Mb Full Duplex? */
3120         if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3121                 DEBUGOUT("Advertise 1000mb Full duplex\n");
3122                 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3123         }
3124
3125         /* Check for a software override of the flow control settings, and
3126          * setup the PHY advertisement registers accordingly.  If
3127          * auto-negotiation is enabled, then software will have to set the
3128          * "PAUSE" bits to the correct value in the Auto-Negotiation
3129          * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3130          *
3131          * The possible values of the "fc" parameter are:
3132          *      0:  Flow control is completely disabled
3133          *      1:  Rx flow control is enabled (we can receive pause frames
3134          *          but not send pause frames).
3135          *      2:  Tx flow control is enabled (we can send pause frames
3136          *          but we do not support receiving pause frames).
3137          *      3:  Both Rx and TX flow control (symmetric) are enabled.
3138          *  other:  No software override.  The flow control configuration
3139          *          in the EEPROM is used.
3140          */
3141         switch (hw->fc) {
3142         case e1000_fc_none:     /* 0 */
3143                 /* Flow control (RX & TX) is completely disabled by a
3144                  * software over-ride.
3145                  */
3146                 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3147                 break;
3148         case e1000_fc_rx_pause: /* 1 */
3149                 /* RX Flow control is enabled, and TX Flow control is
3150                  * disabled, by a software over-ride.
3151                  */
3152                 /* Since there really isn't a way to advertise that we are
3153                  * capable of RX Pause ONLY, we will advertise that we
3154                  * support both symmetric and asymmetric RX PAUSE.  Later
3155                  * (in e1000_config_fc_after_link_up) we will disable the
3156                  *hw's ability to send PAUSE frames.
3157                  */
3158                 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3159                 break;
3160         case e1000_fc_tx_pause: /* 2 */
3161                 /* TX Flow control is enabled, and RX Flow control is
3162                  * disabled, by a software over-ride.
3163                  */
3164                 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3165                 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3166                 break;
3167         case e1000_fc_full:     /* 3 */
3168                 /* Flow control (both RX and TX) is enabled by a software
3169                  * over-ride.
3170                  */
3171                 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3172                 break;
3173         default:
3174                 DEBUGOUT("Flow control param set incorrectly\n");
3175                 return -E1000_ERR_CONFIG;
3176         }
3177
3178         ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3179         if (ret_val)
3180                 return ret_val;
3181
3182         DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3183
3184         if (hw->phy_type != e1000_phy_ife) {
3185                 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3186                                 mii_1000t_ctrl_reg);
3187                 if (ret_val)
3188                         return ret_val;
3189         }
3190
3191         return E1000_SUCCESS;
3192 }
3193
3194 /******************************************************************************
3195 * Sets the collision distance in the Transmit Control register
3196 *
3197 * hw - Struct containing variables accessed by shared code
3198 *
3199 * Link should have been established previously. Reads the speed and duplex
3200 * information from the Device Status register.
3201 ******************************************************************************/
3202 static void
3203 e1000_config_collision_dist(struct e1000_hw *hw)
3204 {
3205         uint32_t tctl, coll_dist;
3206
3207         DEBUGFUNC();
3208
3209         if (hw->mac_type < e1000_82543)
3210                 coll_dist = E1000_COLLISION_DISTANCE_82542;
3211         else
3212                 coll_dist = E1000_COLLISION_DISTANCE;
3213
3214         tctl = E1000_READ_REG(hw, TCTL);
3215
3216         tctl &= ~E1000_TCTL_COLD;
3217         tctl |= coll_dist << E1000_COLD_SHIFT;
3218
3219         E1000_WRITE_REG(hw, TCTL, tctl);
3220         E1000_WRITE_FLUSH(hw);
3221 }
3222
3223 /******************************************************************************
3224 * Sets MAC speed and duplex settings to reflect the those in the PHY
3225 *
3226 * hw - Struct containing variables accessed by shared code
3227 * mii_reg - data to write to the MII control register
3228 *
3229 * The contents of the PHY register containing the needed information need to
3230 * be passed in.
3231 ******************************************************************************/
3232 static int
3233 e1000_config_mac_to_phy(struct e1000_hw *hw)
3234 {
3235         uint32_t ctrl;
3236         uint16_t phy_data;
3237
3238         DEBUGFUNC();
3239
3240         /* Read the Device Control Register and set the bits to Force Speed
3241          * and Duplex.
3242          */
3243         ctrl = E1000_READ_REG(hw, CTRL);
3244         ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3245         ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
3246
3247         /* Set up duplex in the Device Control and Transmit Control
3248          * registers depending on negotiated values.
3249          */
3250         if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3251                 DEBUGOUT("PHY Read Error\n");
3252                 return -E1000_ERR_PHY;
3253         }
3254         if (phy_data & M88E1000_PSSR_DPLX)
3255                 ctrl |= E1000_CTRL_FD;
3256         else
3257                 ctrl &= ~E1000_CTRL_FD;
3258
3259         e1000_config_collision_dist(hw);
3260
3261         /* Set up speed in the Device Control register depending on
3262          * negotiated values.
3263          */
3264         if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3265                 ctrl |= E1000_CTRL_SPD_1000;
3266         else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3267                 ctrl |= E1000_CTRL_SPD_100;
3268         /* Write the configured values back to the Device Control Reg. */
3269         E1000_WRITE_REG(hw, CTRL, ctrl);
3270         return 0;
3271 }
3272
3273 /******************************************************************************
3274  * Forces the MAC's flow control settings.
3275  *
3276  * hw - Struct containing variables accessed by shared code
3277  *
3278  * Sets the TFCE and RFCE bits in the device control register to reflect
3279  * the adapter settings. TFCE and RFCE need to be explicitly set by
3280  * software when a Copper PHY is used because autonegotiation is managed
3281  * by the PHY rather than the MAC. Software must also configure these
3282  * bits when link is forced on a fiber connection.
3283  *****************************************************************************/
3284 static int
3285 e1000_force_mac_fc(struct e1000_hw *hw)
3286 {
3287         uint32_t ctrl;
3288
3289         DEBUGFUNC();
3290
3291         /* Get the current configuration of the Device Control Register */
3292         ctrl = E1000_READ_REG(hw, CTRL);
3293
3294         /* Because we didn't get link via the internal auto-negotiation
3295          * mechanism (we either forced link or we got link via PHY
3296          * auto-neg), we have to manually enable/disable transmit an
3297          * receive flow control.
3298          *
3299          * The "Case" statement below enables/disable flow control
3300          * according to the "hw->fc" parameter.
3301          *
3302          * The possible values of the "fc" parameter are:
3303          *      0:  Flow control is completely disabled
3304          *      1:  Rx flow control is enabled (we can receive pause
3305          *          frames but not send pause frames).
3306          *      2:  Tx flow control is enabled (we can send pause frames
3307          *          frames but we do not receive pause frames).
3308          *      3:  Both Rx and TX flow control (symmetric) is enabled.
3309          *  other:  No other values should be possible at this point.
3310          */
3311
3312         switch (hw->fc) {
3313         case e1000_fc_none:
3314                 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3315                 break;
3316         case e1000_fc_rx_pause:
3317                 ctrl &= (~E1000_CTRL_TFCE);
3318                 ctrl |= E1000_CTRL_RFCE;
3319                 break;
3320         case e1000_fc_tx_pause:
3321                 ctrl &= (~E1000_CTRL_RFCE);
3322                 ctrl |= E1000_CTRL_TFCE;
3323                 break;
3324         case e1000_fc_full:
3325                 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3326                 break;
3327         default:
3328                 DEBUGOUT("Flow control param set incorrectly\n");
3329                 return -E1000_ERR_CONFIG;
3330         }
3331
3332         /* Disable TX Flow Control for 82542 (rev 2.0) */
3333         if (hw->mac_type == e1000_82542_rev2_0)
3334                 ctrl &= (~E1000_CTRL_TFCE);
3335
3336         E1000_WRITE_REG(hw, CTRL, ctrl);
3337         return 0;
3338 }
3339
3340 /******************************************************************************
3341  * Configures flow control settings after link is established
3342  *
3343  * hw - Struct containing variables accessed by shared code
3344  *
3345  * Should be called immediately after a valid link has been established.
3346  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3347  * and autonegotiation is enabled, the MAC flow control settings will be set
3348  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3349  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3350  *****************************************************************************/
3351 static int32_t
3352 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3353 {
3354         int32_t ret_val;
3355         uint16_t mii_status_reg;
3356         uint16_t mii_nway_adv_reg;
3357         uint16_t mii_nway_lp_ability_reg;
3358         uint16_t speed;
3359         uint16_t duplex;
3360
3361         DEBUGFUNC();
3362
3363         /* Check for the case where we have fiber media and auto-neg failed
3364          * so we had to force link.  In this case, we need to force the
3365          * configuration of the MAC to match the "fc" parameter.
3366          */
3367         if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3368                 || ((hw->media_type == e1000_media_type_internal_serdes)
3369                 && (hw->autoneg_failed))
3370                 || ((hw->media_type == e1000_media_type_copper)
3371                 && (!hw->autoneg))) {
3372                 ret_val = e1000_force_mac_fc(hw);
3373                 if (ret_val < 0) {
3374                         DEBUGOUT("Error forcing flow control settings\n");
3375                         return ret_val;
3376                 }
3377         }
3378
3379         /* Check for the case where we have copper media and auto-neg is
3380          * enabled.  In this case, we need to check and see if Auto-Neg
3381          * has completed, and if so, how the PHY and link partner has
3382          * flow control configured.
3383          */
3384         if (hw->media_type == e1000_media_type_copper) {
3385                 /* Read the MII Status Register and check to see if AutoNeg
3386                  * has completed.  We read this twice because this reg has
3387                  * some "sticky" (latched) bits.
3388                  */
3389                 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3390                         DEBUGOUT("PHY Read Error \n");
3391                         return -E1000_ERR_PHY;
3392                 }
3393                 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3394                         DEBUGOUT("PHY Read Error \n");
3395                         return -E1000_ERR_PHY;
3396                 }
3397
3398                 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3399                         /* The AutoNeg process has completed, so we now need to
3400                          * read both the Auto Negotiation Advertisement Register
3401                          * (Address 4) and the Auto_Negotiation Base Page Ability
3402                          * Register (Address 5) to determine how flow control was
3403                          * negotiated.
3404                          */
3405                         if (e1000_read_phy_reg
3406                             (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3407                                 DEBUGOUT("PHY Read Error\n");
3408                                 return -E1000_ERR_PHY;
3409                         }
3410                         if (e1000_read_phy_reg
3411                             (hw, PHY_LP_ABILITY,
3412                              &mii_nway_lp_ability_reg) < 0) {
3413                                 DEBUGOUT("PHY Read Error\n");
3414                                 return -E1000_ERR_PHY;
3415                         }
3416
3417                         /* Two bits in the Auto Negotiation Advertisement Register
3418                          * (Address 4) and two bits in the Auto Negotiation Base
3419                          * Page Ability Register (Address 5) determine flow control
3420                          * for both the PHY and the link partner.  The following
3421                          * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3422                          * 1999, describes these PAUSE resolution bits and how flow
3423                          * control is determined based upon these settings.
3424                          * NOTE:  DC = Don't Care
3425                          *
3426                          *   LOCAL DEVICE  |   LINK PARTNER
3427                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3428                          *-------|---------|-------|---------|--------------------
3429                          *   0   |    0    |  DC   |   DC    | e1000_fc_none
3430                          *   0   |    1    |   0   |   DC    | e1000_fc_none
3431                          *   0   |    1    |   1   |    0    | e1000_fc_none
3432                          *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
3433                          *   1   |    0    |   0   |   DC    | e1000_fc_none
3434                          *   1   |   DC    |   1   |   DC    | e1000_fc_full
3435                          *   1   |    1    |   0   |    0    | e1000_fc_none
3436                          *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
3437                          *
3438                          */
3439                         /* Are both PAUSE bits set to 1?  If so, this implies
3440                          * Symmetric Flow Control is enabled at both ends.  The
3441                          * ASM_DIR bits are irrelevant per the spec.
3442                          *
3443                          * For Symmetric Flow Control:
3444                          *
3445                          *   LOCAL DEVICE  |   LINK PARTNER
3446                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3447                          *-------|---------|-------|---------|--------------------
3448                          *   1   |   DC    |   1   |   DC    | e1000_fc_full
3449                          *
3450                          */
3451                         if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3452                             (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3453                                 /* Now we need to check if the user selected RX ONLY
3454                                  * of pause frames.  In this case, we had to advertise
3455                                  * FULL flow control because we could not advertise RX
3456                                  * ONLY. Hence, we must now check to see if we need to
3457                                  * turn OFF  the TRANSMISSION of PAUSE frames.
3458                                  */
3459                                 if (hw->original_fc == e1000_fc_full) {
3460                                         hw->fc = e1000_fc_full;
3461                                         DEBUGOUT("Flow Control = FULL.\r\n");
3462                                 } else {
3463                                         hw->fc = e1000_fc_rx_pause;
3464                                         DEBUGOUT
3465                                             ("Flow Control = RX PAUSE frames only.\r\n");
3466                                 }
3467                         }
3468                         /* For receiving PAUSE frames ONLY.
3469                          *
3470                          *   LOCAL DEVICE  |   LINK PARTNER
3471                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3472                          *-------|---------|-------|---------|--------------------
3473                          *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
3474                          *
3475                          */
3476                         else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3477                                  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3478                                  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3479                                  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3480                         {
3481                                 hw->fc = e1000_fc_tx_pause;
3482                                 DEBUGOUT
3483                                     ("Flow Control = TX PAUSE frames only.\r\n");
3484                         }
3485                         /* For transmitting PAUSE frames ONLY.
3486                          *
3487                          *   LOCAL DEVICE  |   LINK PARTNER
3488                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3489                          *-------|---------|-------|---------|--------------------
3490                          *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
3491                          *
3492                          */
3493                         else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3494                                  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3495                                  !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3496                                  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3497                         {
3498                                 hw->fc = e1000_fc_rx_pause;
3499                                 DEBUGOUT
3500                                     ("Flow Control = RX PAUSE frames only.\r\n");
3501                         }
3502                         /* Per the IEEE spec, at this point flow control should be
3503                          * disabled.  However, we want to consider that we could
3504                          * be connected to a legacy switch that doesn't advertise
3505                          * desired flow control, but can be forced on the link
3506                          * partner.  So if we advertised no flow control, that is
3507                          * what we will resolve to.  If we advertised some kind of
3508                          * receive capability (Rx Pause Only or Full Flow Control)
3509                          * and the link partner advertised none, we will configure
3510                          * ourselves to enable Rx Flow Control only.  We can do
3511                          * this safely for two reasons:  If the link partner really
3512                          * didn't want flow control enabled, and we enable Rx, no
3513                          * harm done since we won't be receiving any PAUSE frames
3514                          * anyway.  If the intent on the link partner was to have
3515                          * flow control enabled, then by us enabling RX only, we
3516                          * can at least receive pause frames and process them.
3517                          * This is a good idea because in most cases, since we are
3518                          * predominantly a server NIC, more times than not we will
3519                          * be asked to delay transmission of packets than asking
3520                          * our link partner to pause transmission of frames.
3521                          */
3522                         else if (hw->original_fc == e1000_fc_none ||
3523                                  hw->original_fc == e1000_fc_tx_pause) {
3524                                 hw->fc = e1000_fc_none;
3525                                 DEBUGOUT("Flow Control = NONE.\r\n");
3526                         } else {
3527                                 hw->fc = e1000_fc_rx_pause;
3528                                 DEBUGOUT
3529                                     ("Flow Control = RX PAUSE frames only.\r\n");
3530                         }
3531
3532                         /* Now we need to do one last check...  If we auto-
3533                          * negotiated to HALF DUPLEX, flow control should not be
3534                          * enabled per IEEE 802.3 spec.
3535                          */
3536                         e1000_get_speed_and_duplex(hw, &speed, &duplex);
3537
3538                         if (duplex == HALF_DUPLEX)
3539                                 hw->fc = e1000_fc_none;
3540
3541                         /* Now we call a subroutine to actually force the MAC
3542                          * controller to use the correct flow control settings.
3543                          */
3544                         ret_val = e1000_force_mac_fc(hw);
3545                         if (ret_val < 0) {
3546                                 DEBUGOUT
3547                                     ("Error forcing flow control settings\n");
3548                                 return ret_val;
3549                         }
3550                 } else {
3551                         DEBUGOUT
3552                             ("Copper PHY and Auto Neg has not completed.\r\n");
3553                 }
3554         }
3555         return E1000_SUCCESS;
3556 }
3557
3558 /******************************************************************************
3559  * Checks to see if the link status of the hardware has changed.
3560  *
3561  * hw - Struct containing variables accessed by shared code
3562  *
3563  * Called by any function that needs to check the link status of the adapter.
3564  *****************************************************************************/
3565 static int
3566 e1000_check_for_link(struct eth_device *nic)
3567 {
3568         struct e1000_hw *hw = nic->priv;
3569         uint32_t rxcw;
3570         uint32_t ctrl;
3571         uint32_t status;
3572         uint32_t rctl;
3573         uint32_t signal;
3574         int32_t ret_val;
3575         uint16_t phy_data;
3576         uint16_t lp_capability;
3577
3578         DEBUGFUNC();
3579
3580         /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3581          * set when the optics detect a signal. On older adapters, it will be
3582          * cleared when there is a signal
3583          */
3584         ctrl = E1000_READ_REG(hw, CTRL);
3585         if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3586                 signal = E1000_CTRL_SWDPIN1;
3587         else
3588                 signal = 0;
3589
3590         status = E1000_READ_REG(hw, STATUS);
3591         rxcw = E1000_READ_REG(hw, RXCW);
3592         DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3593
3594         /* If we have a copper PHY then we only want to go out to the PHY
3595          * registers to see if Auto-Neg has completed and/or if our link
3596          * status has changed.  The get_link_status flag will be set if we
3597          * receive a Link Status Change interrupt or we have Rx Sequence
3598          * Errors.
3599          */
3600         if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3601                 /* First we want to see if the MII Status Register reports
3602                  * link.  If so, then we want to get the current speed/duplex
3603                  * of the PHY.
3604                  * Read the register twice since the link bit is sticky.
3605                  */
3606                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3607                         DEBUGOUT("PHY Read Error\n");
3608                         return -E1000_ERR_PHY;
3609                 }
3610                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3611                         DEBUGOUT("PHY Read Error\n");
3612                         return -E1000_ERR_PHY;
3613                 }
3614
3615                 if (phy_data & MII_SR_LINK_STATUS) {
3616                         hw->get_link_status = FALSE;
3617                 } else {
3618                         /* No link detected */
3619                         return -E1000_ERR_NOLINK;
3620                 }
3621
3622                 /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
3623                  * have Si on board that is 82544 or newer, Auto
3624                  * Speed Detection takes care of MAC speed/duplex
3625                  * configuration.  So we only need to configure Collision
3626                  * Distance in the MAC.  Otherwise, we need to force
3627                  * speed/duplex on the MAC to the current PHY speed/duplex
3628                  * settings.
3629                  */
3630                 if (hw->mac_type >= e1000_82544)
3631                         e1000_config_collision_dist(hw);
3632                 else {
3633                         ret_val = e1000_config_mac_to_phy(hw);
3634                         if (ret_val < 0) {
3635                                 DEBUGOUT
3636                                     ("Error configuring MAC to PHY settings\n");
3637                                 return ret_val;
3638                         }
3639                 }
3640
3641                 /* Configure Flow Control now that Auto-Neg has completed. First, we
3642                  * need to restore the desired flow control settings because we may
3643                  * have had to re-autoneg with a different link partner.
3644                  */
3645                 ret_val = e1000_config_fc_after_link_up(hw);
3646                 if (ret_val < 0) {
3647                         DEBUGOUT("Error configuring flow control\n");
3648                         return ret_val;
3649                 }
3650
3651                 /* At this point we know that we are on copper and we have
3652                  * auto-negotiated link.  These are conditions for checking the link
3653                  * parter capability register.  We use the link partner capability to
3654                  * determine if TBI Compatibility needs to be turned on or off.  If
3655                  * the link partner advertises any speed in addition to Gigabit, then
3656                  * we assume that they are GMII-based, and TBI compatibility is not
3657                  * needed. If no other speeds are advertised, we assume the link
3658                  * partner is TBI-based, and we turn on TBI Compatibility.
3659                  */
3660                 if (hw->tbi_compatibility_en) {
3661                         if (e1000_read_phy_reg
3662                             (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3663                                 DEBUGOUT("PHY Read Error\n");
3664                                 return -E1000_ERR_PHY;
3665                         }
3666                         if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3667                                              NWAY_LPAR_10T_FD_CAPS |
3668                                              NWAY_LPAR_100TX_HD_CAPS |
3669                                              NWAY_LPAR_100TX_FD_CAPS |
3670                                              NWAY_LPAR_100T4_CAPS)) {
3671                                 /* If our link partner advertises anything in addition to
3672                                  * gigabit, we do not need to enable TBI compatibility.
3673                                  */
3674                                 if (hw->tbi_compatibility_on) {
3675                                         /* If we previously were in the mode, turn it off. */
3676                                         rctl = E1000_READ_REG(hw, RCTL);
3677                                         rctl &= ~E1000_RCTL_SBP;
3678                                         E1000_WRITE_REG(hw, RCTL, rctl);
3679                                         hw->tbi_compatibility_on = FALSE;
3680                                 }
3681                         } else {
3682                                 /* If TBI compatibility is was previously off, turn it on. For
3683                                  * compatibility with a TBI link partner, we will store bad
3684                                  * packets. Some frames have an additional byte on the end and
3685                                  * will look like CRC errors to to the hardware.
3686                                  */
3687                                 if (!hw->tbi_compatibility_on) {
3688                                         hw->tbi_compatibility_on = TRUE;
3689                                         rctl = E1000_READ_REG(hw, RCTL);
3690                                         rctl |= E1000_RCTL_SBP;
3691                                         E1000_WRITE_REG(hw, RCTL, rctl);
3692                                 }
3693                         }
3694                 }
3695         }
3696         /* If we don't have link (auto-negotiation failed or link partner cannot
3697          * auto-negotiate), the cable is plugged in (we have signal), and our
3698          * link partner is not trying to auto-negotiate with us (we are receiving
3699          * idles or data), we need to force link up. We also need to give
3700          * auto-negotiation time to complete, in case the cable was just plugged
3701          * in. The autoneg_failed flag does this.
3702          */
3703         else if ((hw->media_type == e1000_media_type_fiber) &&
3704                  (!(status & E1000_STATUS_LU)) &&
3705                  ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3706                  (!(rxcw & E1000_RXCW_C))) {
3707                 if (hw->autoneg_failed == 0) {
3708                         hw->autoneg_failed = 1;
3709                         return 0;
3710                 }
3711                 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3712
3713                 /* Disable auto-negotiation in the TXCW register */
3714                 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3715
3716                 /* Force link-up and also force full-duplex. */
3717                 ctrl = E1000_READ_REG(hw, CTRL);
3718                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3719                 E1000_WRITE_REG(hw, CTRL, ctrl);
3720
3721                 /* Configure Flow Control after forcing link up. */
3722                 ret_val = e1000_config_fc_after_link_up(hw);
3723                 if (ret_val < 0) {
3724                         DEBUGOUT("Error configuring flow control\n");
3725                         return ret_val;
3726                 }
3727         }
3728         /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3729          * auto-negotiation in the TXCW register and disable forced link in the
3730          * Device Control register in an attempt to auto-negotiate with our link
3731          * partner.
3732          */
3733         else if ((hw->media_type == e1000_media_type_fiber) &&
3734                  (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3735                 DEBUGOUT
3736                     ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3737                 E1000_WRITE_REG(hw, TXCW, hw->txcw);
3738                 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3739         }
3740         return 0;
3741 }
3742
3743 /******************************************************************************
3744 * Configure the MAC-to-PHY interface for 10/100Mbps
3745 *
3746 * hw - Struct containing variables accessed by shared code
3747 ******************************************************************************/
3748 static int32_t
3749 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3750 {
3751         int32_t ret_val = E1000_SUCCESS;
3752         uint32_t tipg;
3753         uint16_t reg_data;
3754
3755         DEBUGFUNC();
3756
3757         reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3758         ret_val = e1000_write_kmrn_reg(hw,
3759                         E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3760         if (ret_val)
3761                 return ret_val;
3762
3763         /* Configure Transmit Inter-Packet Gap */
3764         tipg = E1000_READ_REG(hw, TIPG);
3765         tipg &= ~E1000_TIPG_IPGT_MASK;
3766         tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3767         E1000_WRITE_REG(hw, TIPG, tipg);
3768
3769         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3770
3771         if (ret_val)
3772                 return ret_val;
3773
3774         if (duplex == HALF_DUPLEX)
3775                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3776         else
3777                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3778
3779         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3780
3781         return ret_val;
3782 }
3783
3784 static int32_t
3785 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3786 {
3787         int32_t ret_val = E1000_SUCCESS;
3788         uint16_t reg_data;
3789         uint32_t tipg;
3790
3791         DEBUGFUNC();
3792
3793         reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3794         ret_val = e1000_write_kmrn_reg(hw,
3795                         E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3796         if (ret_val)
3797                 return ret_val;
3798
3799         /* Configure Transmit Inter-Packet Gap */
3800         tipg = E1000_READ_REG(hw, TIPG);
3801         tipg &= ~E1000_TIPG_IPGT_MASK;
3802         tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3803         E1000_WRITE_REG(hw, TIPG, tipg);
3804
3805         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3806
3807         if (ret_val)
3808                 return ret_val;
3809
3810         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3811         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3812
3813         return ret_val;
3814 }
3815
3816 /******************************************************************************
3817  * Detects the current speed and duplex settings of the hardware.
3818  *
3819  * hw - Struct containing variables accessed by shared code
3820  * speed - Speed of the connection
3821  * duplex - Duplex setting of the connection
3822  *****************************************************************************/
3823 static int
3824 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3825                 uint16_t *duplex)
3826 {
3827         uint32_t status;
3828         int32_t ret_val;
3829         uint16_t phy_data;
3830
3831         DEBUGFUNC();
3832
3833         if (hw->mac_type >= e1000_82543) {
3834                 status = E1000_READ_REG(hw, STATUS);
3835                 if (status & E1000_STATUS_SPEED_1000) {
3836                         *speed = SPEED_1000;
3837                         DEBUGOUT("1000 Mbs, ");
3838                 } else if (status & E1000_STATUS_SPEED_100) {
3839                         *speed = SPEED_100;
3840                         DEBUGOUT("100 Mbs, ");
3841                 } else {
3842                         *speed = SPEED_10;
3843                         DEBUGOUT("10 Mbs, ");
3844                 }
3845
3846                 if (status & E1000_STATUS_FD) {
3847                         *duplex = FULL_DUPLEX;
3848                         DEBUGOUT("Full Duplex\r\n");
3849                 } else {
3850                         *duplex = HALF_DUPLEX;
3851                         DEBUGOUT(" Half Duplex\r\n");
3852                 }
3853         } else {
3854                 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3855                 *speed = SPEED_1000;
3856                 *duplex = FULL_DUPLEX;
3857         }
3858
3859         /* IGP01 PHY may advertise full duplex operation after speed downgrade
3860          * even if it is operating at half duplex.  Here we set the duplex
3861          * settings to match the duplex in the link partner's capabilities.
3862          */
3863         if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3864                 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3865                 if (ret_val)
3866                         return ret_val;
3867
3868                 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3869                         *duplex = HALF_DUPLEX;
3870                 else {
3871                         ret_val = e1000_read_phy_reg(hw,
3872                                         PHY_LP_ABILITY, &phy_data);
3873                         if (ret_val)
3874                                 return ret_val;
3875                         if ((*speed == SPEED_100 &&
3876                                 !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3877                                 || (*speed == SPEED_10
3878                                 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3879                                 *duplex = HALF_DUPLEX;
3880                 }
3881         }
3882
3883         if ((hw->mac_type == e1000_80003es2lan) &&
3884                 (hw->media_type == e1000_media_type_copper)) {
3885                 if (*speed == SPEED_1000)
3886                         ret_val = e1000_configure_kmrn_for_1000(hw);
3887                 else
3888                         ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3889                 if (ret_val)
3890                         return ret_val;
3891         }
3892         return E1000_SUCCESS;
3893 }
3894
3895 /******************************************************************************
3896 * Blocks until autoneg completes or times out (~4.5 seconds)
3897 *
3898 * hw - Struct containing variables accessed by shared code
3899 ******************************************************************************/
3900 static int
3901 e1000_wait_autoneg(struct e1000_hw *hw)
3902 {
3903         uint16_t i;
3904         uint16_t phy_data;
3905
3906         DEBUGFUNC();
3907         DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3908
3909         /* We will wait for autoneg to complete or 4.5 seconds to expire. */
3910         for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3911                 /* Read the MII Status Register and wait for Auto-Neg
3912                  * Complete bit to be set.
3913                  */
3914                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3915                         DEBUGOUT("PHY Read Error\n");
3916                         return -E1000_ERR_PHY;
3917                 }
3918                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3919                         DEBUGOUT("PHY Read Error\n");
3920                         return -E1000_ERR_PHY;
3921                 }
3922                 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3923                         DEBUGOUT("Auto-Neg complete.\n");
3924                         return 0;
3925                 }
3926                 mdelay(100);
3927         }
3928         DEBUGOUT("Auto-Neg timedout.\n");
3929         return -E1000_ERR_TIMEOUT;
3930 }
3931
3932 /******************************************************************************
3933 * Raises the Management Data Clock
3934 *
3935 * hw - Struct containing variables accessed by shared code
3936 * ctrl - Device control register's current value
3937 ******************************************************************************/
3938 static void
3939 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3940 {
3941         /* Raise the clock input to the Management Data Clock (by setting the MDC
3942          * bit), and then delay 2 microseconds.
3943          */
3944         E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3945         E1000_WRITE_FLUSH(hw);
3946         udelay(2);
3947 }
3948
3949 /******************************************************************************
3950 * Lowers the Management Data Clock
3951 *
3952 * hw - Struct containing variables accessed by shared code
3953 * ctrl - Device control register's current value
3954 ******************************************************************************/
3955 static void
3956 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3957 {
3958         /* Lower the clock input to the Management Data Clock (by clearing the MDC
3959          * bit), and then delay 2 microseconds.
3960          */
3961         E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3962         E1000_WRITE_FLUSH(hw);
3963         udelay(2);
3964 }
3965
3966 /******************************************************************************
3967 * Shifts data bits out to the PHY
3968 *
3969 * hw - Struct containing variables accessed by shared code
3970 * data - Data to send out to the PHY
3971 * count - Number of bits to shift out
3972 *
3973 * Bits are shifted out in MSB to LSB order.
3974 ******************************************************************************/
3975 static void
3976 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
3977 {
3978         uint32_t ctrl;
3979         uint32_t mask;
3980
3981         /* We need to shift "count" number of bits out to the PHY. So, the value
3982          * in the "data" parameter will be shifted out to the PHY one bit at a
3983          * time. In order to do this, "data" must be broken down into bits.
3984          */
3985         mask = 0x01;
3986         mask <<= (count - 1);
3987
3988         ctrl = E1000_READ_REG(hw, CTRL);
3989
3990         /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
3991         ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
3992
3993         while (mask) {
3994                 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
3995                  * then raising and lowering the Management Data Clock. A "0" is
3996                  * shifted out to the PHY by setting the MDIO bit to "0" and then
3997                  * raising and lowering the clock.
3998                  */
3999                 if (data & mask)
4000                         ctrl |= E1000_CTRL_MDIO;
4001                 else
4002                         ctrl &= ~E1000_CTRL_MDIO;
4003
4004                 E1000_WRITE_REG(hw, CTRL, ctrl);
4005                 E1000_WRITE_FLUSH(hw);
4006
4007                 udelay(2);
4008
4009                 e1000_raise_mdi_clk(hw, &ctrl);
4010                 e1000_lower_mdi_clk(hw, &ctrl);
4011
4012                 mask = mask >> 1;
4013         }
4014 }
4015
4016 /******************************************************************************
4017 * Shifts data bits in from the PHY
4018 *
4019 * hw - Struct containing variables accessed by shared code
4020 *
4021 * Bits are shifted in in MSB to LSB order.
4022 ******************************************************************************/
4023 static uint16_t
4024 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4025 {
4026         uint32_t ctrl;
4027         uint16_t data = 0;
4028         uint8_t i;
4029
4030         /* In order to read a register from the PHY, we need to shift in a total
4031          * of 18 bits from the PHY. The first two bit (turnaround) times are used
4032          * to avoid contention on the MDIO pin when a read operation is performed.
4033          * These two bits are ignored by us and thrown away. Bits are "shifted in"
4034          * by raising the input to the Management Data Clock (setting the MDC bit),
4035          * and then reading the value of the MDIO bit.
4036          */
4037         ctrl = E1000_READ_REG(hw, CTRL);
4038
4039         /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4040         ctrl &= ~E1000_CTRL_MDIO_DIR;
4041         ctrl &= ~E1000_CTRL_MDIO;
4042
4043         E1000_WRITE_REG(hw, CTRL, ctrl);
4044         E1000_WRITE_FLUSH(hw);
4045
4046         /* Raise and Lower the clock before reading in the data. This accounts for
4047          * the turnaround bits. The first clock occurred when we clocked out the
4048          * last bit of the Register Address.
4049          */
4050         e1000_raise_mdi_clk(hw, &ctrl);
4051         e1000_lower_mdi_clk(hw, &ctrl);
4052
4053         for (data = 0, i = 0; i < 16; i++) {
4054                 data = data << 1;
4055                 e1000_raise_mdi_clk(hw, &ctrl);
4056                 ctrl = E1000_READ_REG(hw, CTRL);
4057                 /* Check to see if we shifted in a "1". */
4058                 if (ctrl & E1000_CTRL_MDIO)
4059                         data |= 1;
4060                 e1000_lower_mdi_clk(hw, &ctrl);
4061         }
4062
4063         e1000_raise_mdi_clk(hw, &ctrl);
4064         e1000_lower_mdi_clk(hw, &ctrl);
4065
4066         return data;
4067 }
4068
4069 /*****************************************************************************
4070 * Reads the value from a PHY register
4071 *
4072 * hw - Struct containing variables accessed by shared code
4073 * reg_addr - address of the PHY register to read
4074 ******************************************************************************/
4075 static int
4076 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4077 {
4078         uint32_t i;
4079         uint32_t mdic = 0;
4080         const uint32_t phy_addr = 1;
4081
4082         if (reg_addr > MAX_PHY_REG_ADDRESS) {
4083                 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4084                 return -E1000_ERR_PARAM;
4085         }
4086
4087         if (hw->mac_type > e1000_82543) {
4088                 /* Set up Op-code, Phy Address, and register address in the MDI
4089                  * Control register.  The MAC will take care of interfacing with the
4090                  * PHY to retrieve the desired data.
4091                  */
4092                 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4093                         (phy_addr << E1000_MDIC_PHY_SHIFT) |
4094                         (E1000_MDIC_OP_READ));
4095
4096                 E1000_WRITE_REG(hw, MDIC, mdic);
4097
4098                 /* Poll the ready bit to see if the MDI read completed */
4099                 for (i = 0; i < 64; i++) {
4100                         udelay(10);
4101                         mdic = E1000_READ_REG(hw, MDIC);
4102                         if (mdic & E1000_MDIC_READY)
4103                                 break;
4104                 }
4105                 if (!(mdic & E1000_MDIC_READY)) {
4106                         DEBUGOUT("MDI Read did not complete\n");
4107                         return -E1000_ERR_PHY;
4108                 }
4109                 if (mdic & E1000_MDIC_ERROR) {
4110                         DEBUGOUT("MDI Error\n");
4111                         return -E1000_ERR_PHY;
4112                 }
4113                 *phy_data = (uint16_t) mdic;
4114         } else {
4115                 /* We must first send a preamble through the MDIO pin to signal the
4116                  * beginning of an MII instruction.  This is done by sending 32
4117                  * consecutive "1" bits.
4118                  */
4119                 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4120
4121                 /* Now combine the next few fields that are required for a read
4122                  * operation.  We use this method instead of calling the
4123                  * e1000_shift_out_mdi_bits routine five different times. The format of
4124                  * a MII read instruction consists of a shift out of 14 bits and is
4125                  * defined as follows:
4126                  *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4127                  * followed by a shift in of 18 bits.  This first two bits shifted in
4128                  * are TurnAround bits used to avoid contention on the MDIO pin when a
4129                  * READ operation is performed.  These two bits are thrown away
4130                  * followed by a shift in of 16 bits which contains the desired data.
4131                  */
4132                 mdic = ((reg_addr) | (phy_addr << 5) |
4133                         (PHY_OP_READ << 10) | (PHY_SOF << 12));
4134
4135                 e1000_shift_out_mdi_bits(hw, mdic, 14);
4136
4137                 /* Now that we've shifted out the read command to the MII, we need to
4138                  * "shift in" the 16-bit value (18 total bits) of the requested PHY
4139                  * register address.
4140                  */
4141                 *phy_data = e1000_shift_in_mdi_bits(hw);
4142         }
4143         return 0;
4144 }
4145
4146 /******************************************************************************
4147 * Writes a value to a PHY register
4148 *
4149 * hw - Struct containing variables accessed by shared code
4150 * reg_addr - address of the PHY register to write
4151 * data - data to write to the PHY
4152 ******************************************************************************/
4153 static int
4154 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4155 {
4156         uint32_t i;
4157         uint32_t mdic = 0;
4158         const uint32_t phy_addr = 1;
4159
4160         if (reg_addr > MAX_PHY_REG_ADDRESS) {
4161                 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4162                 return -E1000_ERR_PARAM;
4163         }
4164
4165         if (hw->mac_type > e1000_82543) {
4166                 /* Set up Op-code, Phy Address, register address, and data intended
4167                  * for the PHY register in the MDI Control register.  The MAC will take
4168                  * care of interfacing with the PHY to send the desired data.
4169                  */
4170                 mdic = (((uint32_t) phy_data) |
4171                         (reg_addr << E1000_MDIC_REG_SHIFT) |
4172                         (phy_addr << E1000_MDIC_PHY_SHIFT) |
4173                         (E1000_MDIC_OP_WRITE));
4174
4175                 E1000_WRITE_REG(hw, MDIC, mdic);
4176
4177                 /* Poll the ready bit to see if the MDI read completed */
4178                 for (i = 0; i < 64; i++) {
4179                         udelay(10);
4180                         mdic = E1000_READ_REG(hw, MDIC);
4181                         if (mdic & E1000_MDIC_READY)
4182                                 break;
4183                 }
4184                 if (!(mdic & E1000_MDIC_READY)) {
4185                         DEBUGOUT("MDI Write did not complete\n");
4186                         return -E1000_ERR_PHY;
4187                 }
4188         } else {
4189                 /* We'll need to use the SW defined pins to shift the write command
4190                  * out to the PHY. We first send a preamble to the PHY to signal the
4191                  * beginning of the MII instruction.  This is done by sending 32
4192                  * consecutive "1" bits.
4193                  */
4194                 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4195
4196                 /* Now combine the remaining required fields that will indicate a
4197                  * write operation. We use this method instead of calling the
4198                  * e1000_shift_out_mdi_bits routine for each field in the command. The
4199                  * format of a MII write instruction is as follows:
4200                  * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4201                  */
4202                 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4203                         (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4204                 mdic <<= 16;
4205                 mdic |= (uint32_t) phy_data;
4206
4207                 e1000_shift_out_mdi_bits(hw, mdic, 32);
4208         }
4209         return 0;
4210 }
4211
4212 /******************************************************************************
4213  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4214  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
4215  * the caller to figure out how to deal with it.
4216  *
4217  * hw - Struct containing variables accessed by shared code
4218  *
4219  * returns: - E1000_BLK_PHY_RESET
4220  *            E1000_SUCCESS
4221  *
4222  *****************************************************************************/
4223 int32_t
4224 e1000_check_phy_reset_block(struct e1000_hw *hw)
4225 {
4226         uint32_t manc = 0;
4227         uint32_t fwsm = 0;
4228
4229         if (hw->mac_type == e1000_ich8lan) {
4230                 fwsm = E1000_READ_REG(hw, FWSM);
4231                 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4232                                                 : E1000_BLK_PHY_RESET;
4233         }
4234
4235         if (hw->mac_type > e1000_82547_rev_2)
4236                 manc = E1000_READ_REG(hw, MANC);
4237         return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4238                 E1000_BLK_PHY_RESET : E1000_SUCCESS;
4239 }
4240
4241 /***************************************************************************
4242  * Checks if the PHY configuration is done
4243  *
4244  * hw: Struct containing variables accessed by shared code
4245  *
4246  * returns: - E1000_ERR_RESET if fail to reset MAC
4247  *            E1000_SUCCESS at any other case.
4248  *
4249  ***************************************************************************/
4250 static int32_t
4251 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4252 {
4253         int32_t timeout = PHY_CFG_TIMEOUT;
4254         uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4255
4256         DEBUGFUNC();
4257
4258         switch (hw->mac_type) {
4259         default:
4260                 mdelay(10);
4261                 break;
4262         case e1000_80003es2lan:
4263                 /* Separate *_CFG_DONE_* bit for each port */
4264                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
4265                         cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4266         /* Fall Through */
4267         case e1000_82571:
4268         case e1000_82572:
4269                 while (timeout) {
4270                         if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4271                                 break;
4272                         else
4273                                 mdelay(1);
4274                         timeout--;
4275                 }
4276                 if (!timeout) {
4277                         DEBUGOUT("MNG configuration cycle has not "
4278                                         "completed.\n");
4279                         return -E1000_ERR_RESET;
4280                 }
4281                 break;
4282         }
4283
4284         return E1000_SUCCESS;
4285 }
4286
4287 /******************************************************************************
4288 * Returns the PHY to the power-on reset state
4289 *
4290 * hw - Struct containing variables accessed by shared code
4291 ******************************************************************************/
4292 int32_t
4293 e1000_phy_hw_reset(struct e1000_hw *hw)
4294 {
4295         uint32_t ctrl, ctrl_ext;
4296         uint32_t led_ctrl;
4297         int32_t ret_val;
4298         uint16_t swfw;
4299
4300         DEBUGFUNC();
4301
4302         /* In the case of the phy reset being blocked, it's not an error, we
4303          * simply return success without performing the reset. */
4304         ret_val = e1000_check_phy_reset_block(hw);
4305         if (ret_val)
4306                 return E1000_SUCCESS;
4307
4308         DEBUGOUT("Resetting Phy...\n");
4309
4310         if (hw->mac_type > e1000_82543) {
4311                 if ((hw->mac_type == e1000_80003es2lan) &&
4312                         (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
4313                         swfw = E1000_SWFW_PHY1_SM;
4314                 } else {
4315                         swfw = E1000_SWFW_PHY0_SM;
4316                 }
4317                 if (e1000_swfw_sync_acquire(hw, swfw)) {
4318                         DEBUGOUT("Unable to acquire swfw sync\n");
4319                         return -E1000_ERR_SWFW_SYNC;
4320                 }
4321                 /* Read the device control register and assert the E1000_CTRL_PHY_RST
4322                  * bit. Then, take it out of reset.
4323                  */
4324                 ctrl = E1000_READ_REG(hw, CTRL);
4325                 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4326                 E1000_WRITE_FLUSH(hw);
4327
4328                 if (hw->mac_type < e1000_82571)
4329                         udelay(10);
4330                 else
4331                         udelay(100);
4332
4333                 E1000_WRITE_REG(hw, CTRL, ctrl);
4334                 E1000_WRITE_FLUSH(hw);
4335
4336                 if (hw->mac_type >= e1000_82571)
4337                         mdelay(10);
4338
4339         } else {
4340                 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4341                  * bit to put the PHY into reset. Then, take it out of reset.
4342                  */
4343                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4344                 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4345                 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4346                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4347                 E1000_WRITE_FLUSH(hw);
4348                 mdelay(10);
4349                 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4350                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4351                 E1000_WRITE_FLUSH(hw);
4352         }
4353         udelay(150);
4354
4355         if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4356                 /* Configure activity LED after PHY reset */
4357                 led_ctrl = E1000_READ_REG(hw, LEDCTL);
4358                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
4359                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4360                 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4361         }
4362
4363         /* Wait for FW to finish PHY configuration. */
4364         ret_val = e1000_get_phy_cfg_done(hw);
4365         if (ret_val != E1000_SUCCESS)
4366                 return ret_val;
4367
4368         return ret_val;
4369 }
4370
4371 /******************************************************************************
4372  * IGP phy init script - initializes the GbE PHY
4373  *
4374  * hw - Struct containing variables accessed by shared code
4375  *****************************************************************************/
4376 static void
4377 e1000_phy_init_script(struct e1000_hw *hw)
4378 {
4379         uint32_t ret_val;
4380         uint16_t phy_saved_data;
4381         DEBUGFUNC();
4382
4383         if (hw->phy_init_script) {
4384                 mdelay(20);
4385
4386                 /* Save off the current value of register 0x2F5B to be
4387                  * restored at the end of this routine. */
4388                 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4389
4390                 /* Disabled the PHY transmitter */
4391                 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4392
4393                 mdelay(20);
4394
4395                 e1000_write_phy_reg(hw, 0x0000, 0x0140);
4396
4397                 mdelay(5);
4398
4399                 switch (hw->mac_type) {
4400                 case e1000_82541:
4401                 case e1000_82547:
4402                         e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4403
4404                         e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4405
4406                         e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4407
4408                         e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4409
4410                         e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4411
4412                         e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4413
4414                         e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4415
4416                         e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4417
4418                         e1000_write_phy_reg(hw, 0x2010, 0x0008);
4419                         break;
4420
4421                 case e1000_82541_rev_2:
4422                 case e1000_82547_rev_2:
4423                         e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4424                         break;
4425                 default:
4426                         break;
4427                 }
4428
4429                 e1000_write_phy_reg(hw, 0x0000, 0x3300);
4430
4431                 mdelay(20);
4432
4433                 /* Now enable the transmitter */
4434                 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4435
4436                 if (hw->mac_type == e1000_82547) {
4437                         uint16_t fused, fine, coarse;
4438
4439                         /* Move to analog registers page */
4440                         e1000_read_phy_reg(hw,
4441                                 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4442
4443                         if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4444                                 e1000_read_phy_reg(hw,
4445                                         IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4446
4447                                 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4448                                 coarse = fused
4449                                         & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4450
4451                                 if (coarse >
4452                                         IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4453                                         coarse -=
4454                                         IGP01E1000_ANALOG_FUSE_COARSE_10;
4455                                         fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4456                                 } else if (coarse
4457                                         == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4458                                         fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4459
4460                                 fused = (fused
4461                                         & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4462                                         (fine
4463                                         & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4464                                         (coarse
4465                                         & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4466
4467                                 e1000_write_phy_reg(hw,
4468                                         IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4469                                 e1000_write_phy_reg(hw,
4470                                         IGP01E1000_ANALOG_FUSE_BYPASS,
4471                                 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4472                         }
4473                 }
4474         }
4475 }
4476
4477 /******************************************************************************
4478 * Resets the PHY
4479 *
4480 * hw - Struct containing variables accessed by shared code
4481 *
4482 * Sets bit 15 of the MII Control register
4483 ******************************************************************************/
4484 int32_t
4485 e1000_phy_reset(struct e1000_hw *hw)
4486 {
4487         int32_t ret_val;
4488         uint16_t phy_data;
4489
4490         DEBUGFUNC();
4491
4492         /* In the case of the phy reset being blocked, it's not an error, we
4493          * simply return success without performing the reset. */
4494         ret_val = e1000_check_phy_reset_block(hw);
4495         if (ret_val)
4496                 return E1000_SUCCESS;
4497
4498         switch (hw->phy_type) {
4499         case e1000_phy_igp:
4500         case e1000_phy_igp_2:
4501         case e1000_phy_igp_3:
4502         case e1000_phy_ife:
4503                 ret_val = e1000_phy_hw_reset(hw);
4504                 if (ret_val)
4505                         return ret_val;
4506                 break;
4507         default:
4508                 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4509                 if (ret_val)
4510                         return ret_val;
4511
4512                 phy_data |= MII_CR_RESET;
4513                 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4514                 if (ret_val)
4515                         return ret_val;
4516
4517                 udelay(1);
4518                 break;
4519         }
4520
4521         if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4522                 e1000_phy_init_script(hw);
4523
4524         return E1000_SUCCESS;
4525 }
4526
4527 static int e1000_set_phy_type (struct e1000_hw *hw)
4528 {
4529         DEBUGFUNC ();
4530
4531         if (hw->mac_type == e1000_undefined)
4532                 return -E1000_ERR_PHY_TYPE;
4533
4534         switch (hw->phy_id) {
4535         case M88E1000_E_PHY_ID:
4536         case M88E1000_I_PHY_ID:
4537         case M88E1011_I_PHY_ID:
4538         case M88E1111_I_PHY_ID:
4539                 hw->phy_type = e1000_phy_m88;
4540                 break;
4541         case IGP01E1000_I_PHY_ID:
4542                 if (hw->mac_type == e1000_82541 ||
4543                         hw->mac_type == e1000_82541_rev_2 ||
4544                         hw->mac_type == e1000_82547 ||
4545                         hw->mac_type == e1000_82547_rev_2) {
4546                         hw->phy_type = e1000_phy_igp;
4547                         hw->phy_type = e1000_phy_igp;
4548                         break;
4549                 }
4550         case IGP03E1000_E_PHY_ID:
4551                 hw->phy_type = e1000_phy_igp_3;
4552                 break;
4553         case IFE_E_PHY_ID:
4554         case IFE_PLUS_E_PHY_ID:
4555         case IFE_C_E_PHY_ID:
4556                 hw->phy_type = e1000_phy_ife;
4557                 break;
4558         case GG82563_E_PHY_ID:
4559                 if (hw->mac_type == e1000_80003es2lan) {
4560                         hw->phy_type = e1000_phy_gg82563;
4561                         break;
4562                 }
4563                 /* Fall Through */
4564         default:
4565                 /* Should never have loaded on this device */
4566                 hw->phy_type = e1000_phy_undefined;
4567                 return -E1000_ERR_PHY_TYPE;
4568         }
4569
4570         return E1000_SUCCESS;
4571 }
4572
4573 /******************************************************************************
4574 * Probes the expected PHY address for known PHY IDs
4575 *
4576 * hw - Struct containing variables accessed by shared code
4577 ******************************************************************************/
4578 static int32_t
4579 e1000_detect_gig_phy(struct e1000_hw *hw)
4580 {
4581         int32_t phy_init_status, ret_val;
4582         uint16_t phy_id_high, phy_id_low;
4583         boolean_t match = FALSE;
4584
4585         DEBUGFUNC();
4586
4587         /* The 82571 firmware may still be configuring the PHY.  In this
4588          * case, we cannot access the PHY until the configuration is done.  So
4589          * we explicitly set the PHY values. */
4590         if (hw->mac_type == e1000_82571 ||
4591                 hw->mac_type == e1000_82572) {
4592                 hw->phy_id = IGP01E1000_I_PHY_ID;
4593                 hw->phy_type = e1000_phy_igp_2;
4594                 return E1000_SUCCESS;
4595         }
4596
4597         /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4598          * work- around that forces PHY page 0 to be set or the reads fail.
4599          * The rest of the code in this routine uses e1000_read_phy_reg to
4600          * read the PHY ID.  So for ESB-2 we need to have this set so our
4601          * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
4602          * the routines below will figure this out as well. */
4603         if (hw->mac_type == e1000_80003es2lan)
4604                 hw->phy_type = e1000_phy_gg82563;
4605
4606         /* Read the PHY ID Registers to identify which PHY is onboard. */
4607         ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4608         if (ret_val)
4609                 return ret_val;
4610
4611         hw->phy_id = (uint32_t) (phy_id_high << 16);
4612         udelay(20);
4613         ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4614         if (ret_val)
4615                 return ret_val;
4616
4617         hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4618         hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4619
4620         switch (hw->mac_type) {
4621         case e1000_82543:
4622                 if (hw->phy_id == M88E1000_E_PHY_ID)
4623                         match = TRUE;
4624                 break;
4625         case e1000_82544:
4626                 if (hw->phy_id == M88E1000_I_PHY_ID)
4627                         match = TRUE;
4628                 break;
4629         case e1000_82540:
4630         case e1000_82545:
4631         case e1000_82545_rev_3:
4632         case e1000_82546:
4633         case e1000_82546_rev_3:
4634                 if (hw->phy_id == M88E1011_I_PHY_ID)
4635                         match = TRUE;
4636                 break;
4637         case e1000_82541:
4638         case e1000_82541_rev_2:
4639         case e1000_82547:
4640         case e1000_82547_rev_2:
4641                 if(hw->phy_id == IGP01E1000_I_PHY_ID)
4642                         match = TRUE;
4643
4644                 break;
4645         case e1000_82573:
4646                 if (hw->phy_id == M88E1111_I_PHY_ID)
4647                         match = TRUE;
4648                 break;
4649         case e1000_80003es2lan:
4650                 if (hw->phy_id == GG82563_E_PHY_ID)
4651                         match = TRUE;
4652                 break;
4653         case e1000_ich8lan:
4654                 if (hw->phy_id == IGP03E1000_E_PHY_ID)
4655                         match = TRUE;
4656                 if (hw->phy_id == IFE_E_PHY_ID)
4657                         match = TRUE;
4658                 if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4659                         match = TRUE;
4660                 if (hw->phy_id == IFE_C_E_PHY_ID)
4661                         match = TRUE;
4662                 break;
4663         default:
4664                 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4665                 return -E1000_ERR_CONFIG;
4666         }
4667
4668         phy_init_status = e1000_set_phy_type(hw);
4669
4670         if ((match) && (phy_init_status == E1000_SUCCESS)) {
4671                 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4672                 return 0;
4673         }
4674         DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4675         return -E1000_ERR_PHY;
4676 }
4677
4678 /*****************************************************************************
4679  * Set media type and TBI compatibility.
4680  *
4681  * hw - Struct containing variables accessed by shared code
4682  * **************************************************************************/
4683 void
4684 e1000_set_media_type(struct e1000_hw *hw)
4685 {
4686         uint32_t status;
4687
4688         DEBUGFUNC();
4689
4690         if (hw->mac_type != e1000_82543) {
4691                 /* tbi_compatibility is only valid on 82543 */
4692                 hw->tbi_compatibility_en = FALSE;
4693         }
4694
4695         switch (hw->device_id) {
4696         case E1000_DEV_ID_82545GM_SERDES:
4697         case E1000_DEV_ID_82546GB_SERDES:
4698         case E1000_DEV_ID_82571EB_SERDES:
4699         case E1000_DEV_ID_82571EB_SERDES_DUAL:
4700         case E1000_DEV_ID_82571EB_SERDES_QUAD:
4701         case E1000_DEV_ID_82572EI_SERDES:
4702         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4703                 hw->media_type = e1000_media_type_internal_serdes;
4704                 break;
4705         default:
4706                 switch (hw->mac_type) {
4707                 case e1000_82542_rev2_0:
4708                 case e1000_82542_rev2_1:
4709                         hw->media_type = e1000_media_type_fiber;
4710                         break;
4711                 case e1000_ich8lan:
4712                 case e1000_82573:
4713                         /* The STATUS_TBIMODE bit is reserved or reused
4714                          * for the this device.
4715                          */
4716                         hw->media_type = e1000_media_type_copper;
4717                         break;
4718                 default:
4719                         status = E1000_READ_REG(hw, STATUS);
4720                         if (status & E1000_STATUS_TBIMODE) {
4721                                 hw->media_type = e1000_media_type_fiber;
4722                                 /* tbi_compatibility not valid on fiber */
4723                                 hw->tbi_compatibility_en = FALSE;
4724                         } else {
4725                                 hw->media_type = e1000_media_type_copper;
4726                         }
4727                         break;
4728                 }
4729         }
4730 }
4731
4732 /**
4733  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4734  *
4735  * e1000_sw_init initializes the Adapter private data structure.
4736  * Fields are initialized based on PCI device information and
4737  * OS network device settings (MTU size).
4738  **/
4739
4740 static int
4741 e1000_sw_init(struct eth_device *nic, int cardnum)
4742 {
4743         struct e1000_hw *hw = (typeof(hw)) nic->priv;
4744         int result;
4745
4746         /* PCI config space info */
4747         pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4748         pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4749         pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4750                              &hw->subsystem_vendor_id);
4751         pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4752
4753         pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4754         pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4755
4756         /* identify the MAC */
4757         result = e1000_set_mac_type(hw);
4758         if (result) {
4759                 E1000_ERR("Unknown MAC Type\n");
4760                 return result;
4761         }
4762
4763         switch (hw->mac_type) {
4764         default:
4765                 break;
4766         case e1000_82541:
4767         case e1000_82547:
4768         case e1000_82541_rev_2:
4769         case e1000_82547_rev_2:
4770                 hw->phy_init_script = 1;
4771                 break;
4772         }
4773
4774         /* lan a vs. lan b settings */
4775         if (hw->mac_type == e1000_82546)
4776                 /*this also works w/ multiple 82546 cards */
4777                 /*but not if they're intermingled /w other e1000s */
4778                 hw->lan_loc = (cardnum % 2) ? e1000_lan_b : e1000_lan_a;
4779         else
4780                 hw->lan_loc = e1000_lan_a;
4781
4782         /* flow control settings */
4783         hw->fc_high_water = E1000_FC_HIGH_THRESH;
4784         hw->fc_low_water = E1000_FC_LOW_THRESH;
4785         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4786         hw->fc_send_xon = 1;
4787
4788         /* Media type - copper or fiber */
4789         e1000_set_media_type(hw);
4790
4791         if (hw->mac_type >= e1000_82543) {
4792                 uint32_t status = E1000_READ_REG(hw, STATUS);
4793
4794                 if (status & E1000_STATUS_TBIMODE) {
4795                         DEBUGOUT("fiber interface\n");
4796                         hw->media_type = e1000_media_type_fiber;
4797                 } else {
4798                         DEBUGOUT("copper interface\n");
4799                         hw->media_type = e1000_media_type_copper;
4800                 }
4801         } else {
4802                 hw->media_type = e1000_media_type_fiber;
4803         }
4804
4805         hw->tbi_compatibility_en = TRUE;
4806         hw->wait_autoneg_complete = TRUE;
4807         if (hw->mac_type < e1000_82543)
4808                 hw->report_tx_early = 0;
4809         else
4810                 hw->report_tx_early = 1;
4811
4812         return E1000_SUCCESS;
4813 }
4814
4815 void
4816 fill_rx(struct e1000_hw *hw)
4817 {
4818         struct e1000_rx_desc *rd;
4819
4820         rx_last = rx_tail;
4821         rd = rx_base + rx_tail;
4822         rx_tail = (rx_tail + 1) % 8;
4823         memset(rd, 0, 16);
4824         rd->buffer_addr = cpu_to_le64((u32) & packet);
4825         E1000_WRITE_REG(hw, RDT, rx_tail);
4826 }
4827
4828 /**
4829  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4830  * @adapter: board private structure
4831  *
4832  * Configure the Tx unit of the MAC after a reset.
4833  **/
4834
4835 static void
4836 e1000_configure_tx(struct e1000_hw *hw)
4837 {
4838         unsigned long ptr;
4839         unsigned long tctl;
4840         unsigned long tipg, tarc;
4841         uint32_t ipgr1, ipgr2;
4842
4843         ptr = (u32) tx_pool;
4844         if (ptr & 0xf)
4845                 ptr = (ptr + 0x10) & (~0xf);
4846
4847         tx_base = (typeof(tx_base)) ptr;
4848
4849         E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
4850         E1000_WRITE_REG(hw, TDBAH, 0);
4851
4852         E1000_WRITE_REG(hw, TDLEN, 128);
4853
4854         /* Setup the HW Tx Head and Tail descriptor pointers */
4855         E1000_WRITE_REG(hw, TDH, 0);
4856         E1000_WRITE_REG(hw, TDT, 0);
4857         tx_tail = 0;
4858
4859         /* Set the default values for the Tx Inter Packet Gap timer */
4860         if (hw->mac_type <= e1000_82547_rev_2 &&
4861             (hw->media_type == e1000_media_type_fiber ||
4862              hw->media_type == e1000_media_type_internal_serdes))
4863                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4864         else
4865                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4866
4867         /* Set the default values for the Tx Inter Packet Gap timer */
4868         switch (hw->mac_type) {
4869         case e1000_82542_rev2_0:
4870         case e1000_82542_rev2_1:
4871                 tipg = DEFAULT_82542_TIPG_IPGT;
4872                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4873                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4874                 break;
4875         case e1000_80003es2lan:
4876                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4877                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
4878                 break;
4879         default:
4880                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4881                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
4882                 break;
4883         }
4884         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
4885         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
4886         E1000_WRITE_REG(hw, TIPG, tipg);
4887         /* Program the Transmit Control Register */
4888         tctl = E1000_READ_REG(hw, TCTL);
4889         tctl &= ~E1000_TCTL_CT;
4890         tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
4891             (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4892
4893         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
4894                 tarc = E1000_READ_REG(hw, TARC0);
4895                 /* set the speed mode bit, we'll clear it if we're not at
4896                  * gigabit link later */
4897                 /* git bit can be set to 1*/
4898         } else if (hw->mac_type == e1000_80003es2lan) {
4899                 tarc = E1000_READ_REG(hw, TARC0);
4900                 tarc |= 1;
4901                 E1000_WRITE_REG(hw, TARC0, tarc);
4902                 tarc = E1000_READ_REG(hw, TARC1);
4903                 tarc |= 1;
4904                 E1000_WRITE_REG(hw, TARC1, tarc);
4905         }
4906
4907
4908         e1000_config_collision_dist(hw);
4909         /* Setup Transmit Descriptor Settings for eop descriptor */
4910         hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
4911
4912         /* Need to set up RS bit */
4913         if (hw->mac_type < e1000_82543)
4914                 hw->txd_cmd |= E1000_TXD_CMD_RPS;
4915         else
4916                 hw->txd_cmd |= E1000_TXD_CMD_RS;
4917         E1000_WRITE_REG(hw, TCTL, tctl);
4918 }
4919
4920 /**
4921  * e1000_setup_rctl - configure the receive control register
4922  * @adapter: Board private structure
4923  **/
4924 static void
4925 e1000_setup_rctl(struct e1000_hw *hw)
4926 {
4927         uint32_t rctl;
4928
4929         rctl = E1000_READ_REG(hw, RCTL);
4930
4931         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4932
4933         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
4934                 | E1000_RCTL_RDMTS_HALF;        /* |
4935                         (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
4936
4937         if (hw->tbi_compatibility_on == 1)
4938                 rctl |= E1000_RCTL_SBP;
4939         else
4940                 rctl &= ~E1000_RCTL_SBP;
4941
4942         rctl &= ~(E1000_RCTL_SZ_4096);
4943                 rctl |= E1000_RCTL_SZ_2048;
4944                 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
4945         E1000_WRITE_REG(hw, RCTL, rctl);
4946 }
4947
4948 /**
4949  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
4950  * @adapter: board private structure
4951  *
4952  * Configure the Rx unit of the MAC after a reset.
4953  **/
4954 static void
4955 e1000_configure_rx(struct e1000_hw *hw)
4956 {
4957         unsigned long ptr;
4958         unsigned long rctl, ctrl_ext;
4959         rx_tail = 0;
4960         /* make sure receives are disabled while setting up the descriptors */
4961         rctl = E1000_READ_REG(hw, RCTL);
4962         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
4963         if (hw->mac_type >= e1000_82540) {
4964                 /* Set the interrupt throttling rate.  Value is calculated
4965                  * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
4966 #define MAX_INTS_PER_SEC        8000
4967 #define DEFAULT_ITR             1000000000/(MAX_INTS_PER_SEC * 256)
4968                 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
4969         }
4970
4971         if (hw->mac_type >= e1000_82571) {
4972                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4973                 /* Reset delay timers after every interrupt */
4974                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
4975                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4976                 E1000_WRITE_FLUSH(hw);
4977         }
4978         /* Setup the Base and Length of the Rx Descriptor Ring */
4979         ptr = (u32) rx_pool;
4980         if (ptr & 0xf)
4981                 ptr = (ptr + 0x10) & (~0xf);
4982         rx_base = (typeof(rx_base)) ptr;
4983         E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
4984         E1000_WRITE_REG(hw, RDBAH, 0);
4985
4986         E1000_WRITE_REG(hw, RDLEN, 128);
4987
4988         /* Setup the HW Rx Head and Tail Descriptor Pointers */
4989         E1000_WRITE_REG(hw, RDH, 0);
4990         E1000_WRITE_REG(hw, RDT, 0);
4991         /* Enable Receives */
4992
4993         E1000_WRITE_REG(hw, RCTL, rctl);
4994         fill_rx(hw);
4995 }
4996
4997 /**************************************************************************
4998 POLL - Wait for a frame
4999 ***************************************************************************/
5000 static int
5001 e1000_poll(struct eth_device *nic)
5002 {
5003         struct e1000_hw *hw = nic->priv;
5004         struct e1000_rx_desc *rd;
5005         /* return true if there's an ethernet packet ready to read */
5006         rd = rx_base + rx_last;
5007         if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
5008                 return 0;
5009         /*DEBUGOUT("recv: packet len=%d \n", rd->length); */
5010         NetReceive((uchar *)packet, le32_to_cpu(rd->length));
5011         fill_rx(hw);
5012         return 1;
5013 }
5014
5015 /**************************************************************************
5016 TRANSMIT - Transmit a frame
5017 ***************************************************************************/
5018 static int
5019 e1000_transmit(struct eth_device *nic, volatile void *packet, int length)
5020 {
5021         struct e1000_hw *hw = nic->priv;
5022         struct e1000_tx_desc *txp;
5023         int i = 0;
5024
5025         txp = tx_base + tx_tail;
5026         tx_tail = (tx_tail + 1) % 8;
5027
5028         txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, packet));
5029         txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5030         txp->upper.data = 0;
5031         E1000_WRITE_REG(hw, TDT, tx_tail);
5032
5033         E1000_WRITE_FLUSH(hw);
5034         while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
5035                 if (i++ > TOUT_LOOP) {
5036                         DEBUGOUT("e1000: tx timeout\n");
5037                         return 0;
5038                 }
5039                 udelay(10);     /* give the nic a chance to write to the register */
5040         }
5041         return 1;
5042 }
5043
5044 /*reset function*/
5045 static inline int
5046 e1000_reset(struct eth_device *nic)
5047 {
5048         struct e1000_hw *hw = nic->priv;
5049
5050         e1000_reset_hw(hw);
5051         if (hw->mac_type >= e1000_82544) {
5052                 E1000_WRITE_REG(hw, WUC, 0);
5053         }
5054         return e1000_init_hw(nic);
5055 }
5056
5057 /**************************************************************************
5058 DISABLE - Turn off ethernet interface
5059 ***************************************************************************/
5060 static void
5061 e1000_disable(struct eth_device *nic)
5062 {
5063         struct e1000_hw *hw = nic->priv;
5064
5065         /* Turn off the ethernet interface */
5066         E1000_WRITE_REG(hw, RCTL, 0);
5067         E1000_WRITE_REG(hw, TCTL, 0);
5068
5069         /* Clear the transmit ring */
5070         E1000_WRITE_REG(hw, TDH, 0);
5071         E1000_WRITE_REG(hw, TDT, 0);
5072
5073         /* Clear the receive ring */
5074         E1000_WRITE_REG(hw, RDH, 0);
5075         E1000_WRITE_REG(hw, RDT, 0);
5076
5077         /* put the card in its initial state */
5078 #if 0
5079         E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5080 #endif
5081         mdelay(10);
5082
5083 }
5084
5085 /**************************************************************************
5086 INIT - set up ethernet interface(s)
5087 ***************************************************************************/
5088 static int
5089 e1000_init(struct eth_device *nic, bd_t * bis)
5090 {
5091         struct e1000_hw *hw = nic->priv;
5092         int ret_val = 0;
5093
5094         ret_val = e1000_reset(nic);
5095         if (ret_val < 0) {
5096                 if ((ret_val == -E1000_ERR_NOLINK) ||
5097                     (ret_val == -E1000_ERR_TIMEOUT)) {
5098                         E1000_ERR("Valid Link not detected\n");
5099                 } else {
5100                         E1000_ERR("Hardware Initialization Failed\n");
5101                 }
5102                 return 0;
5103         }
5104         e1000_configure_tx(hw);
5105         e1000_setup_rctl(hw);
5106         e1000_configure_rx(hw);
5107         return 1;
5108 }
5109
5110 /******************************************************************************
5111  * Gets the current PCI bus type of hardware
5112  *
5113  * hw - Struct containing variables accessed by shared code
5114  *****************************************************************************/
5115 void e1000_get_bus_type(struct e1000_hw *hw)
5116 {
5117         uint32_t status;
5118
5119         switch (hw->mac_type) {
5120         case e1000_82542_rev2_0:
5121         case e1000_82542_rev2_1:
5122                 hw->bus_type = e1000_bus_type_pci;
5123                 break;
5124         case e1000_82571:
5125         case e1000_82572:
5126         case e1000_82573:
5127         case e1000_80003es2lan:
5128                 hw->bus_type = e1000_bus_type_pci_express;
5129                 break;
5130         case e1000_ich8lan:
5131                 hw->bus_type = e1000_bus_type_pci_express;
5132                 break;
5133         default:
5134                 status = E1000_READ_REG(hw, STATUS);
5135                 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5136                                 e1000_bus_type_pcix : e1000_bus_type_pci;
5137                 break;
5138         }
5139 }
5140
5141 /**************************************************************************
5142 PROBE - Look for an adapter, this routine's visible to the outside
5143 You should omit the last argument struct pci_device * for a non-PCI NIC
5144 ***************************************************************************/
5145 int
5146 e1000_initialize(bd_t * bis)
5147 {
5148         pci_dev_t devno;
5149         int card_number = 0;
5150         struct eth_device *nic = NULL;
5151         struct e1000_hw *hw = NULL;
5152         u32 iobase;
5153         int idx = 0;
5154         u32 PciCommandWord;
5155
5156         DEBUGFUNC();
5157
5158         while (1) {             /* Find PCI device(s) */
5159                 if ((devno = pci_find_devices(supported, idx++)) < 0) {
5160                         break;
5161                 }
5162
5163                 pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &iobase);
5164                 iobase &= ~0xf; /* Mask the bits that say "this is an io addr" */
5165                 DEBUGOUT("e1000#%d: iobase 0x%08x\n", card_number, iobase);
5166
5167                 pci_write_config_dword(devno, PCI_COMMAND,
5168                                        PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
5169                 /* Check if I/O accesses and Bus Mastering are enabled. */
5170                 pci_read_config_dword(devno, PCI_COMMAND, &PciCommandWord);
5171                 if (!(PciCommandWord & PCI_COMMAND_MEMORY)) {
5172                         printf("Error: Can not enable MEM access.\n");
5173                         continue;
5174                 } else if (!(PciCommandWord & PCI_COMMAND_MASTER)) {
5175                         printf("Error: Can not enable Bus Mastering.\n");
5176                         continue;
5177                 }
5178
5179                 nic = (struct eth_device *) malloc(sizeof (*nic));
5180                 if (!nic) {
5181                         printf("Error: e1000 - Can not alloc memory\n");
5182                         return 0;
5183                 }
5184
5185                 hw = (struct e1000_hw *) malloc(sizeof (*hw));
5186                 if (!hw) {
5187                         free(nic);
5188                         printf("Error: e1000 - Can not alloc memory\n");
5189                         return 0;
5190                 }
5191
5192                 memset(nic, 0, sizeof(*nic));
5193                 memset(hw, 0, sizeof(*hw));
5194
5195                 hw->pdev = devno;
5196                 nic->priv = hw;
5197
5198                 sprintf(nic->name, "e1000#%d", card_number);
5199
5200                 /* Are these variables needed? */
5201                 hw->fc = e1000_fc_default;
5202                 hw->original_fc = e1000_fc_default;
5203                 hw->autoneg_failed = 0;
5204                 hw->autoneg = 1;
5205                 hw->get_link_status = TRUE;
5206                 hw->hw_addr =
5207                         pci_map_bar(devno, PCI_BASE_ADDRESS_0, PCI_REGION_MEM);
5208                 hw->mac_type = e1000_undefined;
5209
5210                 /* MAC and Phy settings */
5211                 if (e1000_sw_init(nic, card_number) < 0) {
5212                         free(hw);
5213                         free(nic);
5214                         return 0;
5215                 }
5216                 if (e1000_check_phy_reset_block(hw))
5217                         printf("phy reset block error \n");
5218                 e1000_reset_hw(hw);
5219 #if !(defined(CONFIG_AP1000) || defined(CONFIG_MVBC_1G))
5220                 if (e1000_init_eeprom_params(hw)) {
5221                         printf("The EEPROM Checksum Is Not Valid\n");
5222                         free(hw);
5223                         free(nic);
5224                         return 0;
5225                 }
5226                 if (e1000_validate_eeprom_checksum(nic) < 0) {
5227                         printf("The EEPROM Checksum Is Not Valid\n");
5228                         free(hw);
5229                         free(nic);
5230                         return 0;
5231                 }
5232 #endif
5233                 e1000_read_mac_addr(nic);
5234
5235                 /* get the bus type information */
5236                 e1000_get_bus_type(hw);
5237
5238                 printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n",
5239                        nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
5240                        nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
5241
5242                 nic->init = e1000_init;
5243                 nic->recv = e1000_poll;
5244                 nic->send = e1000_transmit;
5245                 nic->halt = e1000_disable;
5246
5247                 eth_register(nic);
5248
5249                 card_number++;
5250         }
5251         return card_number;
5252 }