]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/net/sh_eth.h
Merge branch 'master' of git://www.denx.de/git/u-boot-net
[karo-tx-uboot.git] / drivers / net / sh_eth.h
1 /*
2  * sh_eth.h - Driver for Renesas SH7763's gigabit ethernet controler.
3  *
4  * Copyright (C) 2008 Renesas Solutions Corp.
5  * Copyright (c) 2008 Nobuhiro Iwamatsu
6  * Copyright (c) 2007 Carlos Munoz <carlos@kenati.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <asm/types.h>
24
25 #define SHETHER_NAME "sh_eth"
26
27 /* Malloc returns addresses in the P1 area (cacheable). However we need to
28    use area P2 (non-cacheable) */
29 #define ADDR_TO_P2(addr)        ((((int)(addr) & ~0xe0000000) | 0xa0000000))
30
31 /* The ethernet controller needs to use physical addresses */
32 #define ADDR_TO_PHY(addr)       ((int)(addr) & ~0xe0000000)
33
34 /* Number of supported ports */
35 #define MAX_PORT_NUM    2
36
37 /* Buffers must be big enough to hold the largest ethernet frame. Also, rx
38    buffers must be a multiple of 32 bytes */
39 #define MAX_BUF_SIZE    (48 * 32)
40
41 /* The number of tx descriptors must be large enough to point to 5 or more
42    frames. If each frame uses 2 descriptors, at least 10 descriptors are needed.
43    We use one descriptor per frame */
44 #define NUM_TX_DESC             8
45
46 /* The size of the tx descriptor is determined by how much padding is used.
47    4, 20, or 52 bytes of padding can be used */
48 #define TX_DESC_PADDING         4
49 #define TX_DESC_SIZE            (12 + TX_DESC_PADDING)
50
51 /* Tx descriptor. We always use 4 bytes of padding */
52 struct tx_desc_s {
53         volatile u32 td0;
54         u32 td1;
55         u32 td2;                /* Buffer start */
56         u32 padding;
57 };
58
59 /* There is no limitation in the number of rx descriptors */
60 #define NUM_RX_DESC     8
61
62 /* The size of the rx descriptor is determined by how much padding is used.
63    4, 20, or 52 bytes of padding can be used */
64 #define RX_DESC_PADDING         4
65 #define RX_DESC_SIZE            (12 + RX_DESC_PADDING)
66
67 /* Rx descriptor. We always use 4 bytes of padding */
68 struct rx_desc_s {
69         volatile u32 rd0;
70         volatile u32 rd1;
71         u32 rd2;                /* Buffer start */
72         u32 padding;
73 };
74
75 struct port_info_s {
76         struct tx_desc_s *tx_desc_malloc;
77         struct tx_desc_s *tx_desc_base;
78         struct tx_desc_s *tx_desc_cur;
79         struct rx_desc_s *rx_desc_malloc;
80         struct rx_desc_s *rx_desc_base;
81         struct rx_desc_s *rx_desc_cur;
82         u8 *rx_buf_malloc;
83         u8 *rx_buf_base;
84         u8 mac_addr[6];
85         u8 phy_addr;
86 };
87
88 struct dev_info_s {
89         int port;
90         struct port_info_s port_info[MAX_PORT_NUM];
91 };
92
93 /* Register Address */
94 #define BASE_IO_ADDR    0xfee00000
95
96 #define EDSR(port)              (BASE_IO_ADDR + 0x800 * (port) + 0x0000)
97
98 #define TDLAR(port)             (BASE_IO_ADDR + 0x800 * (port) + 0x0010)
99 #define TDFAR(port)             (BASE_IO_ADDR + 0x800 * (port) + 0x0014)
100 #define TDFXR(port)             (BASE_IO_ADDR + 0x800 * (port) + 0x0018)
101 #define TDFFR(port)             (BASE_IO_ADDR + 0x800 * (port) + 0x001c)
102
103 #define RDLAR(port)             (BASE_IO_ADDR + 0x800 * (port) + 0x0030)
104 #define RDFAR(port)             (BASE_IO_ADDR + 0x800 * (port) + 0x0034)
105 #define RDFXR(port)             (BASE_IO_ADDR + 0x800 * (port) + 0x0038)
106 #define RDFFR(port)             (BASE_IO_ADDR + 0x800 * (port) + 0x003c)
107
108 #define EDMR(port)              (BASE_IO_ADDR + 0x800 * (port) + 0x0400)
109 #define EDTRR(port)             (BASE_IO_ADDR + 0x800 * (port) + 0x0408)
110 #define EDRRR(port)             (BASE_IO_ADDR + 0x800 * (port) + 0x0410)
111 #define EESR(port)              (BASE_IO_ADDR + 0x800 * (port) + 0x0428)
112 #define EESIPR(port)    (BASE_IO_ADDR + 0x800 * (port) + 0x0430)
113 #define TRSCER(port)    (BASE_IO_ADDR + 0x800 * (port) + 0x0438)
114 #define TFTR(port)              (BASE_IO_ADDR + 0x800 * (port) + 0x0448)
115 #define FDR(port)               (BASE_IO_ADDR + 0x800 * (port) + 0x0450)
116 #define RMCR(port)              (BASE_IO_ADDR + 0x800 * (port) + 0x0458)
117 #define RPADIR(port)    (BASE_IO_ADDR + 0x800 * (port) + 0x0460)
118 #define FCFTR(port)             (BASE_IO_ADDR + 0x800 * (port) + 0x0468)
119 #define ECMR(port)              (BASE_IO_ADDR + 0x800 * (port) + 0x0500)
120 #define RFLR(port)              (BASE_IO_ADDR + 0x800 * (port) + 0x0508)
121 #define ECSIPR(port)    (BASE_IO_ADDR + 0x800 * (port) + 0x0518)
122 #define PIR(port)               (BASE_IO_ADDR + 0x800 * (port) + 0x0520)
123 #define PIPR(port)              (BASE_IO_ADDR + 0x800 * (port) + 0x052c)
124 #define APR(port)               (BASE_IO_ADDR + 0x800 * (port) + 0x0554)
125 #define MPR(port)               (BASE_IO_ADDR + 0x800 * (port) + 0x0558)
126 #define TPAUSER(port)   (BASE_IO_ADDR + 0x800 * (port) + 0x0564)
127 #define GECMR(port)             (BASE_IO_ADDR + 0x800 * (port) + 0x05b0)
128 #define MALR(port)              (BASE_IO_ADDR + 0x800 * (port) + 0x05c8)
129 #define MAHR(port)              (BASE_IO_ADDR + 0x800 * (port) + 0x05c0)
130
131 /*
132  * Register's bits
133  * Copy from Linux driver source code
134  */
135 #ifdef CONFIG_CPU_SH7763
136 /* EDSR */
137 enum EDSR_BIT {
138         EDSR_ENT = 0x01, EDSR_ENR = 0x02,
139 };
140 #define EDSR_ENALL (EDSR_ENT|EDSR_ENR)
141 #endif
142
143 /* EDMR */
144 enum DMAC_M_BIT {
145         EDMR_DL1 = 0x20, EDMR_DL0 = 0x10,
146 #ifdef CONFIG_CPU_SH7763
147         EDMR_SRST       = 0x03,
148         EMDR_DESC_R     = 0x30, /* Descriptor reserve size */
149         EDMR_EL         = 0x40, /* Litte endian */
150 #else /* CONFIG_CPU_SH7763 */
151         EDMR_SRST = 0x01,
152 #endif
153 };
154
155 /* RFLR */
156 #define RFLR_RFL_MIN    0x05EE  /* Recv Frame length 1518 byte */
157
158 /* EDTRR */
159 enum DMAC_T_BIT {
160 #ifdef CONFIG_CPU_SH7763
161         EDTRR_TRNS = 0x03,
162 #else
163         EDTRR_TRNS = 0x01,
164 #endif
165 };
166
167 /* GECMR */
168 enum GECMR_BIT {
169         GECMR_1000B = 0x01, GECMR_100B = 0x40, GECMR_10B = 0x00,
170 };
171
172 /* EDRRR*/
173 enum EDRRR_R_BIT {
174         EDRRR_R = 0x01,
175 };
176
177 /* TPAUSER */
178 enum TPAUSER_BIT {
179         TPAUSER_TPAUSE = 0x0000ffff,
180         TPAUSER_UNLIMITED = 0,
181 };
182
183 /* BCFR */
184 enum BCFR_BIT {
185         BCFR_RPAUSE = 0x0000ffff,
186         BCFR_UNLIMITED = 0,
187 };
188
189 /* PIR */
190 enum PIR_BIT {
191         PIR_MDI = 0x08, PIR_MDO = 0x04, PIR_MMD = 0x02, PIR_MDC = 0x01,
192 };
193
194 /* PSR */
195 enum PHY_STATUS_BIT { PHY_ST_LINK = 0x01, };
196
197 /* EESR */
198 enum EESR_BIT {
199 #ifndef CONFIG_CPU_SH7763
200         EESR_TWB  = 0x40000000,
201 #else
202         EESR_TWB  = 0xC0000000,
203         EESR_TC1  = 0x20000000,
204         EESR_TUC  = 0x10000000,
205         EESR_ROC  = 0x80000000,
206 #endif
207         EESR_TABT = 0x04000000,
208         EESR_RABT = 0x02000000, EESR_RFRMER = 0x01000000,
209 #ifndef CONFIG_CPU_SH7763
210         EESR_ADE  = 0x00800000,
211 #endif
212         EESR_ECI  = 0x00400000,
213         EESR_FTC  = 0x00200000, EESR_TDE  = 0x00100000,
214         EESR_TFE  = 0x00080000, EESR_FRC  = 0x00040000,
215         EESR_RDE  = 0x00020000, EESR_RFE  = 0x00010000,
216 #ifndef CONFIG_CPU_SH7763
217         EESR_CND  = 0x00000800,
218 #endif
219         EESR_DLC  = 0x00000400,
220         EESR_CD   = 0x00000200, EESR_RTO  = 0x00000100,
221         EESR_RMAF = 0x00000080, EESR_CEEF = 0x00000040,
222         EESR_CELF = 0x00000020, EESR_RRF  = 0x00000010,
223         rESR_RTLF = 0x00000008, EESR_RTSF = 0x00000004,
224         EESR_PRE  = 0x00000002, EESR_CERF = 0x00000001,
225 };
226
227
228 #ifdef CONFIG_CPU_SH7763
229 # define TX_CHECK (EESR_TC1 | EESR_FTC)
230 # define EESR_ERR_CHECK (EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE \
231                 | EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI)
232 # define TX_ERROR_CEHCK (EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE)
233
234 #else
235 # define TX_CHECK (EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO)
236 # define EESR_ERR_CHECK (EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE \
237                 | EESR_RFRMER | EESR_ADE | EESR_TFE | EESR_TDE | EESR_ECI)
238 # define TX_ERROR_CEHCK (EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE)
239 #endif
240
241 /* EESIPR */
242 enum DMAC_IM_BIT {
243         DMAC_M_TWB = 0x40000000, DMAC_M_TABT = 0x04000000,
244         DMAC_M_RABT = 0x02000000,
245         DMAC_M_RFRMER = 0x01000000, DMAC_M_ADF = 0x00800000,
246         DMAC_M_ECI = 0x00400000, DMAC_M_FTC = 0x00200000,
247         DMAC_M_TDE = 0x00100000, DMAC_M_TFE = 0x00080000,
248         DMAC_M_FRC = 0x00040000, DMAC_M_RDE = 0x00020000,
249         DMAC_M_RFE = 0x00010000, DMAC_M_TINT4 = 0x00000800,
250         DMAC_M_TINT3 = 0x00000400, DMAC_M_TINT2 = 0x00000200,
251         DMAC_M_TINT1 = 0x00000100, DMAC_M_RINT8 = 0x00000080,
252         DMAC_M_RINT5 = 0x00000010, DMAC_M_RINT4 = 0x00000008,
253         DMAC_M_RINT3 = 0x00000004, DMAC_M_RINT2 = 0x00000002,
254         DMAC_M_RINT1 = 0x00000001,
255 };
256
257 /* Receive descriptor bit */
258 enum RD_STS_BIT {
259         RD_RACT = 0x80000000, RD_RDLE = 0x40000000,
260         RD_RFP1 = 0x20000000, RD_RFP0 = 0x10000000,
261         RD_RFE = 0x08000000, RD_RFS10 = 0x00000200,
262         RD_RFS9 = 0x00000100, RD_RFS8 = 0x00000080,
263         RD_RFS7 = 0x00000040, RD_RFS6 = 0x00000020,
264         RD_RFS5 = 0x00000010, RD_RFS4 = 0x00000008,
265         RD_RFS3 = 0x00000004, RD_RFS2 = 0x00000002,
266         RD_RFS1 = 0x00000001,
267 };
268 #define RDF1ST  RD_RFP1
269 #define RDFEND  RD_RFP0
270 #define RD_RFP  (RD_RFP1|RD_RFP0)
271
272 /* RDFFR*/
273 enum RDFFR_BIT {
274         RDFFR_RDLF = 0x01,
275 };
276
277 /* FCFTR */
278 enum FCFTR_BIT {
279         FCFTR_RFF2 = 0x00040000, FCFTR_RFF1 = 0x00020000,
280         FCFTR_RFF0 = 0x00010000, FCFTR_RFD2 = 0x00000004,
281         FCFTR_RFD1 = 0x00000002, FCFTR_RFD0 = 0x00000001,
282 };
283 #define FIFO_F_D_RFF    (FCFTR_RFF2|FCFTR_RFF1|FCFTR_RFF0)
284 #define FIFO_F_D_RFD    (FCFTR_RFD2|FCFTR_RFD1|FCFTR_RFD0)
285
286 /* Transfer descriptor bit */
287 enum TD_STS_BIT {
288 #ifdef CONFIG_CPU_SH7763
289         TD_TACT = 0x80000000,
290 #else
291         TD_TACT = 0x7fffffff,
292 #endif
293         TD_TDLE = 0x40000000, TD_TFP1 = 0x20000000,
294         TD_TFP0 = 0x10000000,
295 };
296 #define TDF1ST  TD_TFP1
297 #define TDFEND  TD_TFP0
298 #define TD_TFP  (TD_TFP1|TD_TFP0)
299
300 /* RMCR */
301 enum RECV_RST_BIT { RMCR_RST = 0x01, };
302 /* ECMR */
303 enum FELIC_MODE_BIT {
304 #ifdef CONFIG_CPU_SH7763
305         ECMR_TRCCM=0x04000000, ECMR_RCSC= 0x00800000, ECMR_DPAD= 0x00200000,
306         ECMR_RZPF = 0x00100000,
307 #endif
308         ECMR_ZPF = 0x00080000, ECMR_PFR = 0x00040000, ECMR_RXF = 0x00020000,
309         ECMR_TXF = 0x00010000, ECMR_MCT = 0x00002000, ECMR_PRCEF = 0x00001000,
310         ECMR_PMDE = 0x00000200, ECMR_RE = 0x00000040, ECMR_TE = 0x00000020,
311         ECMR_ILB = 0x00000008, ECMR_ELB = 0x00000004, ECMR_DM = 0x00000002,
312         ECMR_PRM = 0x00000001,
313 };
314
315 #ifdef CONFIG_CPU_SH7763
316 #define ECMR_CHG_DM     (ECMR_TRCCM | ECMR_RZPF | ECMR_ZPF | ECMR_PFR | ECMR_RXF | \
317                                                 ECMR_TXF | ECMR_MCT)
318 #else
319 #define ECMR_CHG_DM     (ECMR_ZPF | ECMR_PFR ECMR_RXF | ECMR_TXF | ECMR_MCT)
320 #endif
321
322 /* ECSR */
323 enum ECSR_STATUS_BIT {
324 #ifndef CONFIG_CPU_SH7763
325         ECSR_BRCRX = 0x20, ECSR_PSRTO = 0x10,
326 #endif
327         ECSR_LCHNG = 0x04,
328         ECSR_MPD = 0x02, ECSR_ICD = 0x01,
329 };
330
331 #ifdef CONFIG_CPU_SH7763
332 # define ECSR_INIT (ECSR_ICD | ECSIPR_MPDIP)
333 #else
334 # define ECSR_INIT (ECSR_BRCRX | ECSR_PSRTO | \
335                         ECSR_LCHNG | ECSR_ICD | ECSIPR_MPDIP)
336 #endif
337
338 /* ECSIPR */
339 enum ECSIPR_STATUS_MASK_BIT {
340 #ifndef CONFIG_CPU_SH7763
341         ECSIPR_BRCRXIP = 0x20, ECSIPR_PSRTOIP = 0x10,
342 #endif
343         ECSIPR_LCHNGIP = 0x04,
344         ECSIPR_MPDIP = 0x02, ECSIPR_ICDIP = 0x01,
345 };
346
347 #ifdef CONFIG_CPU_SH7763
348 # define ECSIPR_INIT (ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP)
349 #else
350 # define ECSIPR_INIT (ECSIPR_BRCRXIP | ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | \
351                                 ECSIPR_ICDIP | ECSIPR_MPDIP)
352 #endif
353
354 /* APR */
355 enum APR_BIT {
356         APR_AP = 0x00000004,
357 };
358
359 /* MPR */
360 enum MPR_BIT {
361         MPR_MP = 0x00000006,
362 };
363
364 /* TRSCER */
365 enum DESC_I_BIT {
366         DESC_I_TINT4 = 0x0800, DESC_I_TINT3 = 0x0400, DESC_I_TINT2 = 0x0200,
367         DESC_I_TINT1 = 0x0100, DESC_I_RINT8 = 0x0080, DESC_I_RINT5 = 0x0010,
368         DESC_I_RINT4 = 0x0008, DESC_I_RINT3 = 0x0004, DESC_I_RINT2 = 0x0002,
369         DESC_I_RINT1 = 0x0001,
370 };
371
372 /* RPADIR */
373 enum RPADIR_BIT {
374         RPADIR_PADS1 = 0x20000, RPADIR_PADS0 = 0x10000,
375         RPADIR_PADR = 0x0003f,
376 };
377
378 #ifdef CONFIG_CPU_SH7763
379 # define RPADIR_INIT (0x00)
380 #else
381 # define RPADIR_INIT (RPADIR_PADS1)
382 #endif
383
384 /* FDR */
385 enum FIFO_SIZE_BIT {
386         FIFO_SIZE_T = 0x00000700, FIFO_SIZE_R = 0x00000007,
387 };
388
389 enum PHY_OFFSETS {
390         PHY_CTRL = 0, PHY_STAT = 1, PHY_IDT1 = 2, PHY_IDT2 = 3,
391         PHY_ANA = 4, PHY_ANL = 5, PHY_ANE = 6,
392         PHY_16 = 16,
393 };
394
395 /* PHY_CTRL */
396 enum PHY_CTRL_BIT {
397         PHY_C_RESET = 0x8000, PHY_C_LOOPBK = 0x4000, PHY_C_SPEEDSL = 0x2000,
398         PHY_C_ANEGEN = 0x1000, PHY_C_PWRDN = 0x0800, PHY_C_ISO = 0x0400,
399         PHY_C_RANEG = 0x0200, PHY_C_DUPLEX = 0x0100, PHY_C_COLT = 0x0080,
400 };
401 #define DM9161_PHY_C_ANEGEN 0   /* auto nego special */
402
403 /* PHY_STAT */
404 enum PHY_STAT_BIT {
405         PHY_S_100T4 = 0x8000, PHY_S_100X_F = 0x4000, PHY_S_100X_H = 0x2000,
406         PHY_S_10T_F = 0x1000, PHY_S_10T_H = 0x0800, PHY_S_ANEGC = 0x0020,
407         PHY_S_RFAULT = 0x0010, PHY_S_ANEGA = 0x0008, PHY_S_LINK = 0x0004,
408         PHY_S_JAB = 0x0002, PHY_S_EXTD = 0x0001,
409 };
410
411 /* PHY_ANA */
412 enum PHY_ANA_BIT {
413         PHY_A_NP = 0x8000, PHY_A_ACK = 0x4000, PHY_A_RF = 0x2000,
414         PHY_A_FCS = 0x0400, PHY_A_T4 = 0x0200, PHY_A_FDX = 0x0100,
415         PHY_A_HDX = 0x0080, PHY_A_10FDX = 0x0040, PHY_A_10HDX = 0x0020,
416         PHY_A_SEL = 0x001e,
417         PHY_A_EXT = 0x0001,
418 };
419
420 /* PHY_ANL */
421 enum PHY_ANL_BIT {
422         PHY_L_NP = 0x8000, PHY_L_ACK = 0x4000, PHY_L_RF = 0x2000,
423         PHY_L_FCS = 0x0400, PHY_L_T4 = 0x0200, PHY_L_FDX = 0x0100,
424         PHY_L_HDX = 0x0080, PHY_L_10FDX = 0x0040, PHY_L_10HDX = 0x0020,
425         PHY_L_SEL = 0x001f,
426 };
427
428 /* PHY_ANE */
429 enum PHY_ANE_BIT {
430         PHY_E_PDF = 0x0010, PHY_E_LPNPA = 0x0008, PHY_E_NPA = 0x0004,
431         PHY_E_PRX = 0x0002, PHY_E_LPANEGA = 0x0001,
432 };
433
434 /* DM9161 */
435 enum PHY_16_BIT {
436         PHY_16_BP4B45 = 0x8000, PHY_16_BPSCR = 0x4000, PHY_16_BPALIGN = 0x2000,
437         PHY_16_BP_ADPOK = 0x1000, PHY_16_Repeatmode = 0x0800,
438         PHY_16_TXselect = 0x0400,
439         PHY_16_Rsvd = 0x0200, PHY_16_RMIIEnable = 0x0100,
440         PHY_16_Force100LNK = 0x0080,
441         PHY_16_APDLED_CTL = 0x0040, PHY_16_COLLED_CTL = 0x0020,
442         PHY_16_RPDCTR_EN = 0x0010,
443         PHY_16_ResetStMch = 0x0008, PHY_16_PreamSupr = 0x0004,
444         PHY_16_Sleepmode = 0x0002,
445         PHY_16_RemoteLoopOut = 0x0001,
446 };