]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - fs/ubifs/debug.c
Merge branch 'master' of git://git.denx.de/u-boot-tegra
[karo-tx-uboot.git] / fs / ubifs / debug.c
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * SPDX-License-Identifier:     GPL-2.0+
7  *
8  * Authors: Artem Bityutskiy (Битюцкий Артём)
9  *          Adrian Hunter
10  */
11
12 /*
13  * This file implements most of the debugging stuff which is compiled in only
14  * when it is enabled. But some debugging check functions are implemented in
15  * corresponding subsystem, just because they are closely related and utilize
16  * various local functions of those subsystems.
17  */
18
19 #define __UBOOT__
20 #ifndef __UBOOT__
21 #include <linux/module.h>
22 #include <linux/debugfs.h>
23 #include <linux/math64.h>
24 #include <linux/uaccess.h>
25 #include <linux/random.h>
26 #else
27 #include <linux/compat.h>
28 #include <linux/err.h>
29 #endif
30 #include "ubifs.h"
31
32 #ifndef __UBOOT__
33 static DEFINE_SPINLOCK(dbg_lock);
34 #endif
35
36 static const char *get_key_fmt(int fmt)
37 {
38         switch (fmt) {
39         case UBIFS_SIMPLE_KEY_FMT:
40                 return "simple";
41         default:
42                 return "unknown/invalid format";
43         }
44 }
45
46 static const char *get_key_hash(int hash)
47 {
48         switch (hash) {
49         case UBIFS_KEY_HASH_R5:
50                 return "R5";
51         case UBIFS_KEY_HASH_TEST:
52                 return "test";
53         default:
54                 return "unknown/invalid name hash";
55         }
56 }
57
58 static const char *get_key_type(int type)
59 {
60         switch (type) {
61         case UBIFS_INO_KEY:
62                 return "inode";
63         case UBIFS_DENT_KEY:
64                 return "direntry";
65         case UBIFS_XENT_KEY:
66                 return "xentry";
67         case UBIFS_DATA_KEY:
68                 return "data";
69         case UBIFS_TRUN_KEY:
70                 return "truncate";
71         default:
72                 return "unknown/invalid key";
73         }
74 }
75
76 #ifndef __UBOOT__
77 static const char *get_dent_type(int type)
78 {
79         switch (type) {
80         case UBIFS_ITYPE_REG:
81                 return "file";
82         case UBIFS_ITYPE_DIR:
83                 return "dir";
84         case UBIFS_ITYPE_LNK:
85                 return "symlink";
86         case UBIFS_ITYPE_BLK:
87                 return "blkdev";
88         case UBIFS_ITYPE_CHR:
89                 return "char dev";
90         case UBIFS_ITYPE_FIFO:
91                 return "fifo";
92         case UBIFS_ITYPE_SOCK:
93                 return "socket";
94         default:
95                 return "unknown/invalid type";
96         }
97 }
98 #endif
99
100 const char *dbg_snprintf_key(const struct ubifs_info *c,
101                              const union ubifs_key *key, char *buffer, int len)
102 {
103         char *p = buffer;
104         int type = key_type(c, key);
105
106         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
107                 switch (type) {
108                 case UBIFS_INO_KEY:
109                         len -= snprintf(p, len, "(%lu, %s)",
110                                         (unsigned long)key_inum(c, key),
111                                         get_key_type(type));
112                         break;
113                 case UBIFS_DENT_KEY:
114                 case UBIFS_XENT_KEY:
115                         len -= snprintf(p, len, "(%lu, %s, %#08x)",
116                                         (unsigned long)key_inum(c, key),
117                                         get_key_type(type), key_hash(c, key));
118                         break;
119                 case UBIFS_DATA_KEY:
120                         len -= snprintf(p, len, "(%lu, %s, %u)",
121                                         (unsigned long)key_inum(c, key),
122                                         get_key_type(type), key_block(c, key));
123                         break;
124                 case UBIFS_TRUN_KEY:
125                         len -= snprintf(p, len, "(%lu, %s)",
126                                         (unsigned long)key_inum(c, key),
127                                         get_key_type(type));
128                         break;
129                 default:
130                         len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
131                                         key->u32[0], key->u32[1]);
132                 }
133         } else
134                 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
135         ubifs_assert(len > 0);
136         return p;
137 }
138
139 const char *dbg_ntype(int type)
140 {
141         switch (type) {
142         case UBIFS_PAD_NODE:
143                 return "padding node";
144         case UBIFS_SB_NODE:
145                 return "superblock node";
146         case UBIFS_MST_NODE:
147                 return "master node";
148         case UBIFS_REF_NODE:
149                 return "reference node";
150         case UBIFS_INO_NODE:
151                 return "inode node";
152         case UBIFS_DENT_NODE:
153                 return "direntry node";
154         case UBIFS_XENT_NODE:
155                 return "xentry node";
156         case UBIFS_DATA_NODE:
157                 return "data node";
158         case UBIFS_TRUN_NODE:
159                 return "truncate node";
160         case UBIFS_IDX_NODE:
161                 return "indexing node";
162         case UBIFS_CS_NODE:
163                 return "commit start node";
164         case UBIFS_ORPH_NODE:
165                 return "orphan node";
166         default:
167                 return "unknown node";
168         }
169 }
170
171 static const char *dbg_gtype(int type)
172 {
173         switch (type) {
174         case UBIFS_NO_NODE_GROUP:
175                 return "no node group";
176         case UBIFS_IN_NODE_GROUP:
177                 return "in node group";
178         case UBIFS_LAST_OF_NODE_GROUP:
179                 return "last of node group";
180         default:
181                 return "unknown";
182         }
183 }
184
185 const char *dbg_cstate(int cmt_state)
186 {
187         switch (cmt_state) {
188         case COMMIT_RESTING:
189                 return "commit resting";
190         case COMMIT_BACKGROUND:
191                 return "background commit requested";
192         case COMMIT_REQUIRED:
193                 return "commit required";
194         case COMMIT_RUNNING_BACKGROUND:
195                 return "BACKGROUND commit running";
196         case COMMIT_RUNNING_REQUIRED:
197                 return "commit running and required";
198         case COMMIT_BROKEN:
199                 return "broken commit";
200         default:
201                 return "unknown commit state";
202         }
203 }
204
205 const char *dbg_jhead(int jhead)
206 {
207         switch (jhead) {
208         case GCHD:
209                 return "0 (GC)";
210         case BASEHD:
211                 return "1 (base)";
212         case DATAHD:
213                 return "2 (data)";
214         default:
215                 return "unknown journal head";
216         }
217 }
218
219 static void dump_ch(const struct ubifs_ch *ch)
220 {
221         pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
222         pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
223         pr_err("\tnode_type      %d (%s)\n", ch->node_type,
224                dbg_ntype(ch->node_type));
225         pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
226                dbg_gtype(ch->group_type));
227         pr_err("\tsqnum          %llu\n",
228                (unsigned long long)le64_to_cpu(ch->sqnum));
229         pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
230 }
231
232 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
233 {
234 #ifndef __UBOOT__
235         const struct ubifs_inode *ui = ubifs_inode(inode);
236         struct qstr nm = { .name = NULL };
237         union ubifs_key key;
238         struct ubifs_dent_node *dent, *pdent = NULL;
239         int count = 2;
240
241         pr_err("Dump in-memory inode:");
242         pr_err("\tinode          %lu\n", inode->i_ino);
243         pr_err("\tsize           %llu\n",
244                (unsigned long long)i_size_read(inode));
245         pr_err("\tnlink          %u\n", inode->i_nlink);
246         pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
247         pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
248         pr_err("\tatime          %u.%u\n",
249                (unsigned int)inode->i_atime.tv_sec,
250                (unsigned int)inode->i_atime.tv_nsec);
251         pr_err("\tmtime          %u.%u\n",
252                (unsigned int)inode->i_mtime.tv_sec,
253                (unsigned int)inode->i_mtime.tv_nsec);
254         pr_err("\tctime          %u.%u\n",
255                (unsigned int)inode->i_ctime.tv_sec,
256                (unsigned int)inode->i_ctime.tv_nsec);
257         pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
258         pr_err("\txattr_size     %u\n", ui->xattr_size);
259         pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
260         pr_err("\txattr_names    %u\n", ui->xattr_names);
261         pr_err("\tdirty          %u\n", ui->dirty);
262         pr_err("\txattr          %u\n", ui->xattr);
263         pr_err("\tbulk_read      %u\n", ui->xattr);
264         pr_err("\tsynced_i_size  %llu\n",
265                (unsigned long long)ui->synced_i_size);
266         pr_err("\tui_size        %llu\n",
267                (unsigned long long)ui->ui_size);
268         pr_err("\tflags          %d\n", ui->flags);
269         pr_err("\tcompr_type     %d\n", ui->compr_type);
270         pr_err("\tlast_page_read %lu\n", ui->last_page_read);
271         pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
272         pr_err("\tdata_len       %d\n", ui->data_len);
273
274         if (!S_ISDIR(inode->i_mode))
275                 return;
276
277         pr_err("List of directory entries:\n");
278         ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
279
280         lowest_dent_key(c, &key, inode->i_ino);
281         while (1) {
282                 dent = ubifs_tnc_next_ent(c, &key, &nm);
283                 if (IS_ERR(dent)) {
284                         if (PTR_ERR(dent) != -ENOENT)
285                                 pr_err("error %ld\n", PTR_ERR(dent));
286                         break;
287                 }
288
289                 pr_err("\t%d: %s (%s)\n",
290                        count++, dent->name, get_dent_type(dent->type));
291
292                 nm.name = dent->name;
293                 nm.len = le16_to_cpu(dent->nlen);
294                 kfree(pdent);
295                 pdent = dent;
296                 key_read(c, &dent->key, &key);
297         }
298         kfree(pdent);
299 #endif
300 }
301
302 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
303 {
304         int i, n;
305         union ubifs_key key;
306         const struct ubifs_ch *ch = node;
307         char key_buf[DBG_KEY_BUF_LEN];
308
309         /* If the magic is incorrect, just hexdump the first bytes */
310         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
311                 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
312                 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
313                                (void *)node, UBIFS_CH_SZ, 1);
314                 return;
315         }
316
317         spin_lock(&dbg_lock);
318         dump_ch(node);
319
320         switch (ch->node_type) {
321         case UBIFS_PAD_NODE:
322         {
323                 const struct ubifs_pad_node *pad = node;
324
325                 pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
326                 break;
327         }
328         case UBIFS_SB_NODE:
329         {
330                 const struct ubifs_sb_node *sup = node;
331                 unsigned int sup_flags = le32_to_cpu(sup->flags);
332
333                 pr_err("\tkey_hash       %d (%s)\n",
334                        (int)sup->key_hash, get_key_hash(sup->key_hash));
335                 pr_err("\tkey_fmt        %d (%s)\n",
336                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
337                 pr_err("\tflags          %#x\n", sup_flags);
338                 pr_err("\t  big_lpt      %u\n",
339                        !!(sup_flags & UBIFS_FLG_BIGLPT));
340                 pr_err("\t  space_fixup  %u\n",
341                        !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
342                 pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
343                 pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
344                 pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
345                 pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
346                 pr_err("\tmax_bud_bytes  %llu\n",
347                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
348                 pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
349                 pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
350                 pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
351                 pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
352                 pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
353                 pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
354                 pr_err("\tdefault_compr  %u\n",
355                        (int)le16_to_cpu(sup->default_compr));
356                 pr_err("\trp_size        %llu\n",
357                        (unsigned long long)le64_to_cpu(sup->rp_size));
358                 pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
359                 pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
360                 pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
361                 pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
362                 pr_err("\tUUID           %pUB\n", sup->uuid);
363                 break;
364         }
365         case UBIFS_MST_NODE:
366         {
367                 const struct ubifs_mst_node *mst = node;
368
369                 pr_err("\thighest_inum   %llu\n",
370                        (unsigned long long)le64_to_cpu(mst->highest_inum));
371                 pr_err("\tcommit number  %llu\n",
372                        (unsigned long long)le64_to_cpu(mst->cmt_no));
373                 pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
374                 pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
375                 pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
376                 pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
377                 pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
378                 pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
379                 pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
380                 pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
381                 pr_err("\tindex_size     %llu\n",
382                        (unsigned long long)le64_to_cpu(mst->index_size));
383                 pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
384                 pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
385                 pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
386                 pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
387                 pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
388                 pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
389                 pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
390                 pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
391                 pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
392                 pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
393                 pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
394                 pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
395                 pr_err("\ttotal_free     %llu\n",
396                        (unsigned long long)le64_to_cpu(mst->total_free));
397                 pr_err("\ttotal_dirty    %llu\n",
398                        (unsigned long long)le64_to_cpu(mst->total_dirty));
399                 pr_err("\ttotal_used     %llu\n",
400                        (unsigned long long)le64_to_cpu(mst->total_used));
401                 pr_err("\ttotal_dead     %llu\n",
402                        (unsigned long long)le64_to_cpu(mst->total_dead));
403                 pr_err("\ttotal_dark     %llu\n",
404                        (unsigned long long)le64_to_cpu(mst->total_dark));
405                 break;
406         }
407         case UBIFS_REF_NODE:
408         {
409                 const struct ubifs_ref_node *ref = node;
410
411                 pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
412                 pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
413                 pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
414                 break;
415         }
416         case UBIFS_INO_NODE:
417         {
418                 const struct ubifs_ino_node *ino = node;
419
420                 key_read(c, &ino->key, &key);
421                 pr_err("\tkey            %s\n",
422                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
423                 pr_err("\tcreat_sqnum    %llu\n",
424                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
425                 pr_err("\tsize           %llu\n",
426                        (unsigned long long)le64_to_cpu(ino->size));
427                 pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
428                 pr_err("\tatime          %lld.%u\n",
429                        (long long)le64_to_cpu(ino->atime_sec),
430                        le32_to_cpu(ino->atime_nsec));
431                 pr_err("\tmtime          %lld.%u\n",
432                        (long long)le64_to_cpu(ino->mtime_sec),
433                        le32_to_cpu(ino->mtime_nsec));
434                 pr_err("\tctime          %lld.%u\n",
435                        (long long)le64_to_cpu(ino->ctime_sec),
436                        le32_to_cpu(ino->ctime_nsec));
437                 pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
438                 pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
439                 pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
440                 pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
441                 pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
442                 pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
443                 pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
444                 pr_err("\tcompr_type     %#x\n",
445                        (int)le16_to_cpu(ino->compr_type));
446                 pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
447                 break;
448         }
449         case UBIFS_DENT_NODE:
450         case UBIFS_XENT_NODE:
451         {
452                 const struct ubifs_dent_node *dent = node;
453                 int nlen = le16_to_cpu(dent->nlen);
454
455                 key_read(c, &dent->key, &key);
456                 pr_err("\tkey            %s\n",
457                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
458                 pr_err("\tinum           %llu\n",
459                        (unsigned long long)le64_to_cpu(dent->inum));
460                 pr_err("\ttype           %d\n", (int)dent->type);
461                 pr_err("\tnlen           %d\n", nlen);
462                 pr_err("\tname           ");
463
464                 if (nlen > UBIFS_MAX_NLEN)
465                         pr_err("(bad name length, not printing, bad or corrupted node)");
466                 else {
467                         for (i = 0; i < nlen && dent->name[i]; i++)
468                                 pr_cont("%c", dent->name[i]);
469                 }
470                 pr_cont("\n");
471
472                 break;
473         }
474         case UBIFS_DATA_NODE:
475         {
476                 const struct ubifs_data_node *dn = node;
477                 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
478
479                 key_read(c, &dn->key, &key);
480                 pr_err("\tkey            %s\n",
481                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
482                 pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
483                 pr_err("\tcompr_typ      %d\n",
484                        (int)le16_to_cpu(dn->compr_type));
485                 pr_err("\tdata size      %d\n", dlen);
486                 pr_err("\tdata:\n");
487                 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
488                                (void *)&dn->data, dlen, 0);
489                 break;
490         }
491         case UBIFS_TRUN_NODE:
492         {
493                 const struct ubifs_trun_node *trun = node;
494
495                 pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
496                 pr_err("\told_size       %llu\n",
497                        (unsigned long long)le64_to_cpu(trun->old_size));
498                 pr_err("\tnew_size       %llu\n",
499                        (unsigned long long)le64_to_cpu(trun->new_size));
500                 break;
501         }
502         case UBIFS_IDX_NODE:
503         {
504                 const struct ubifs_idx_node *idx = node;
505
506                 n = le16_to_cpu(idx->child_cnt);
507                 pr_err("\tchild_cnt      %d\n", n);
508                 pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
509                 pr_err("\tBranches:\n");
510
511                 for (i = 0; i < n && i < c->fanout - 1; i++) {
512                         const struct ubifs_branch *br;
513
514                         br = ubifs_idx_branch(c, idx, i);
515                         key_read(c, &br->key, &key);
516                         pr_err("\t%d: LEB %d:%d len %d key %s\n",
517                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
518                                le32_to_cpu(br->len),
519                                dbg_snprintf_key(c, &key, key_buf,
520                                                 DBG_KEY_BUF_LEN));
521                 }
522                 break;
523         }
524         case UBIFS_CS_NODE:
525                 break;
526         case UBIFS_ORPH_NODE:
527         {
528                 const struct ubifs_orph_node *orph = node;
529
530                 pr_err("\tcommit number  %llu\n",
531                        (unsigned long long)
532                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
533                 pr_err("\tlast node flag %llu\n",
534                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
535                 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
536                 pr_err("\t%d orphan inode numbers:\n", n);
537                 for (i = 0; i < n; i++)
538                         pr_err("\t  ino %llu\n",
539                                (unsigned long long)le64_to_cpu(orph->inos[i]));
540                 break;
541         }
542         default:
543                 pr_err("node type %d was not recognized\n",
544                        (int)ch->node_type);
545         }
546         spin_unlock(&dbg_lock);
547 }
548
549 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
550 {
551         spin_lock(&dbg_lock);
552         pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
553                req->new_ino, req->dirtied_ino);
554         pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
555                req->new_ino_d, req->dirtied_ino_d);
556         pr_err("\tnew_page    %d, dirtied_page %d\n",
557                req->new_page, req->dirtied_page);
558         pr_err("\tnew_dent    %d, mod_dent     %d\n",
559                req->new_dent, req->mod_dent);
560         pr_err("\tidx_growth  %d\n", req->idx_growth);
561         pr_err("\tdata_growth %d dd_growth     %d\n",
562                req->data_growth, req->dd_growth);
563         spin_unlock(&dbg_lock);
564 }
565
566 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
567 {
568         spin_lock(&dbg_lock);
569         pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
570                current->pid, lst->empty_lebs, lst->idx_lebs);
571         pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
572                lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
573         pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
574                lst->total_used, lst->total_dark, lst->total_dead);
575         spin_unlock(&dbg_lock);
576 }
577
578 #ifndef __UBOOT__
579 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
580 {
581         int i;
582         struct rb_node *rb;
583         struct ubifs_bud *bud;
584         struct ubifs_gced_idx_leb *idx_gc;
585         long long available, outstanding, free;
586
587         spin_lock(&c->space_lock);
588         spin_lock(&dbg_lock);
589         pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
590                current->pid, bi->data_growth + bi->dd_growth,
591                bi->data_growth + bi->dd_growth + bi->idx_growth);
592         pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
593                bi->data_growth, bi->dd_growth, bi->idx_growth);
594         pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
595                bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
596         pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
597                bi->page_budget, bi->inode_budget, bi->dent_budget);
598         pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
599         pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
600                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
601
602         if (bi != &c->bi)
603                 /*
604                  * If we are dumping saved budgeting data, do not print
605                  * additional information which is about the current state, not
606                  * the old one which corresponded to the saved budgeting data.
607                  */
608                 goto out_unlock;
609
610         pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
611                c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
612         pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
613                atomic_long_read(&c->dirty_pg_cnt),
614                atomic_long_read(&c->dirty_zn_cnt),
615                atomic_long_read(&c->clean_zn_cnt));
616         pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
617
618         /* If we are in R/O mode, journal heads do not exist */
619         if (c->jheads)
620                 for (i = 0; i < c->jhead_cnt; i++)
621                         pr_err("\tjhead %s\t LEB %d\n",
622                                dbg_jhead(c->jheads[i].wbuf.jhead),
623                                c->jheads[i].wbuf.lnum);
624         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
625                 bud = rb_entry(rb, struct ubifs_bud, rb);
626                 pr_err("\tbud LEB %d\n", bud->lnum);
627         }
628         list_for_each_entry(bud, &c->old_buds, list)
629                 pr_err("\told bud LEB %d\n", bud->lnum);
630         list_for_each_entry(idx_gc, &c->idx_gc, list)
631                 pr_err("\tGC'ed idx LEB %d unmap %d\n",
632                        idx_gc->lnum, idx_gc->unmap);
633         pr_err("\tcommit state %d\n", c->cmt_state);
634
635         /* Print budgeting predictions */
636         available = ubifs_calc_available(c, c->bi.min_idx_lebs);
637         outstanding = c->bi.data_growth + c->bi.dd_growth;
638         free = ubifs_get_free_space_nolock(c);
639         pr_err("Budgeting predictions:\n");
640         pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
641                available, outstanding, free);
642 out_unlock:
643         spin_unlock(&dbg_lock);
644         spin_unlock(&c->space_lock);
645 }
646 #else
647 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
648 {
649 }
650 #endif
651
652 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
653 {
654         int i, spc, dark = 0, dead = 0;
655         struct rb_node *rb;
656         struct ubifs_bud *bud;
657
658         spc = lp->free + lp->dirty;
659         if (spc < c->dead_wm)
660                 dead = spc;
661         else
662                 dark = ubifs_calc_dark(c, spc);
663
664         if (lp->flags & LPROPS_INDEX)
665                 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
666                        lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
667                        lp->flags);
668         else
669                 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
670                        lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
671                        dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
672
673         if (lp->flags & LPROPS_TAKEN) {
674                 if (lp->flags & LPROPS_INDEX)
675                         pr_cont("index, taken");
676                 else
677                         pr_cont("taken");
678         } else {
679                 const char *s;
680
681                 if (lp->flags & LPROPS_INDEX) {
682                         switch (lp->flags & LPROPS_CAT_MASK) {
683                         case LPROPS_DIRTY_IDX:
684                                 s = "dirty index";
685                                 break;
686                         case LPROPS_FRDI_IDX:
687                                 s = "freeable index";
688                                 break;
689                         default:
690                                 s = "index";
691                         }
692                 } else {
693                         switch (lp->flags & LPROPS_CAT_MASK) {
694                         case LPROPS_UNCAT:
695                                 s = "not categorized";
696                                 break;
697                         case LPROPS_DIRTY:
698                                 s = "dirty";
699                                 break;
700                         case LPROPS_FREE:
701                                 s = "free";
702                                 break;
703                         case LPROPS_EMPTY:
704                                 s = "empty";
705                                 break;
706                         case LPROPS_FREEABLE:
707                                 s = "freeable";
708                                 break;
709                         default:
710                                 s = NULL;
711                                 break;
712                         }
713                 }
714                 pr_cont("%s", s);
715         }
716
717         for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
718                 bud = rb_entry(rb, struct ubifs_bud, rb);
719                 if (bud->lnum == lp->lnum) {
720                         int head = 0;
721                         for (i = 0; i < c->jhead_cnt; i++) {
722                                 /*
723                                  * Note, if we are in R/O mode or in the middle
724                                  * of mounting/re-mounting, the write-buffers do
725                                  * not exist.
726                                  */
727                                 if (c->jheads &&
728                                     lp->lnum == c->jheads[i].wbuf.lnum) {
729                                         pr_cont(", jhead %s", dbg_jhead(i));
730                                         head = 1;
731                                 }
732                         }
733                         if (!head)
734                                 pr_cont(", bud of jhead %s",
735                                        dbg_jhead(bud->jhead));
736                 }
737         }
738         if (lp->lnum == c->gc_lnum)
739                 pr_cont(", GC LEB");
740         pr_cont(")\n");
741 }
742
743 void ubifs_dump_lprops(struct ubifs_info *c)
744 {
745         int lnum, err;
746         struct ubifs_lprops lp;
747         struct ubifs_lp_stats lst;
748
749         pr_err("(pid %d) start dumping LEB properties\n", current->pid);
750         ubifs_get_lp_stats(c, &lst);
751         ubifs_dump_lstats(&lst);
752
753         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
754                 err = ubifs_read_one_lp(c, lnum, &lp);
755                 if (err)
756                         ubifs_err("cannot read lprops for LEB %d", lnum);
757
758                 ubifs_dump_lprop(c, &lp);
759         }
760         pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
761 }
762
763 void ubifs_dump_lpt_info(struct ubifs_info *c)
764 {
765         int i;
766
767         spin_lock(&dbg_lock);
768         pr_err("(pid %d) dumping LPT information\n", current->pid);
769         pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
770         pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
771         pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
772         pr_err("\tltab_sz:       %d\n", c->ltab_sz);
773         pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
774         pr_err("\tbig_lpt:       %d\n", c->big_lpt);
775         pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
776         pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
777         pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
778         pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
779         pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
780         pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
781         pr_err("\tspace_bits:    %d\n", c->space_bits);
782         pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
783         pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
784         pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
785         pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
786         pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
787         pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
788         pr_err("\tLPT head is at %d:%d\n",
789                c->nhead_lnum, c->nhead_offs);
790         pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
791         if (c->big_lpt)
792                 pr_err("\tLPT lsave is at %d:%d\n",
793                        c->lsave_lnum, c->lsave_offs);
794         for (i = 0; i < c->lpt_lebs; i++)
795                 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
796                        i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
797                        c->ltab[i].tgc, c->ltab[i].cmt);
798         spin_unlock(&dbg_lock);
799 }
800
801 void ubifs_dump_sleb(const struct ubifs_info *c,
802                      const struct ubifs_scan_leb *sleb, int offs)
803 {
804         struct ubifs_scan_node *snod;
805
806         pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
807                current->pid, sleb->lnum, offs);
808
809         list_for_each_entry(snod, &sleb->nodes, list) {
810                 cond_resched();
811                 pr_err("Dumping node at LEB %d:%d len %d\n",
812                        sleb->lnum, snod->offs, snod->len);
813                 ubifs_dump_node(c, snod->node);
814         }
815 }
816
817 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
818 {
819         struct ubifs_scan_leb *sleb;
820         struct ubifs_scan_node *snod;
821         void *buf;
822
823         pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
824
825         buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
826         if (!buf) {
827                 ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
828                 return;
829         }
830
831         sleb = ubifs_scan(c, lnum, 0, buf, 0);
832         if (IS_ERR(sleb)) {
833                 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
834                 goto out;
835         }
836
837         pr_err("LEB %d has %d nodes ending at %d\n", lnum,
838                sleb->nodes_cnt, sleb->endpt);
839
840         list_for_each_entry(snod, &sleb->nodes, list) {
841                 cond_resched();
842                 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
843                        snod->offs, snod->len);
844                 ubifs_dump_node(c, snod->node);
845         }
846
847         pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
848         ubifs_scan_destroy(sleb);
849
850 out:
851         vfree(buf);
852         return;
853 }
854
855 void ubifs_dump_znode(const struct ubifs_info *c,
856                       const struct ubifs_znode *znode)
857 {
858         int n;
859         const struct ubifs_zbranch *zbr;
860         char key_buf[DBG_KEY_BUF_LEN];
861
862         spin_lock(&dbg_lock);
863         if (znode->parent)
864                 zbr = &znode->parent->zbranch[znode->iip];
865         else
866                 zbr = &c->zroot;
867
868         pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
869                znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
870                znode->level, znode->child_cnt, znode->flags);
871
872         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
873                 spin_unlock(&dbg_lock);
874                 return;
875         }
876
877         pr_err("zbranches:\n");
878         for (n = 0; n < znode->child_cnt; n++) {
879                 zbr = &znode->zbranch[n];
880                 if (znode->level > 0)
881                         pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
882                                n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
883                                dbg_snprintf_key(c, &zbr->key, key_buf,
884                                                 DBG_KEY_BUF_LEN));
885                 else
886                         pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
887                                n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
888                                dbg_snprintf_key(c, &zbr->key, key_buf,
889                                                 DBG_KEY_BUF_LEN));
890         }
891         spin_unlock(&dbg_lock);
892 }
893
894 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
895 {
896         int i;
897
898         pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
899                current->pid, cat, heap->cnt);
900         for (i = 0; i < heap->cnt; i++) {
901                 struct ubifs_lprops *lprops = heap->arr[i];
902
903                 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
904                        i, lprops->lnum, lprops->hpos, lprops->free,
905                        lprops->dirty, lprops->flags);
906         }
907         pr_err("(pid %d) finish dumping heap\n", current->pid);
908 }
909
910 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
911                       struct ubifs_nnode *parent, int iip)
912 {
913         int i;
914
915         pr_err("(pid %d) dumping pnode:\n", current->pid);
916         pr_err("\taddress %zx parent %zx cnext %zx\n",
917                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
918         pr_err("\tflags %lu iip %d level %d num %d\n",
919                pnode->flags, iip, pnode->level, pnode->num);
920         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
921                 struct ubifs_lprops *lp = &pnode->lprops[i];
922
923                 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
924                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
925         }
926 }
927
928 void ubifs_dump_tnc(struct ubifs_info *c)
929 {
930         struct ubifs_znode *znode;
931         int level;
932
933         pr_err("\n");
934         pr_err("(pid %d) start dumping TNC tree\n", current->pid);
935         znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
936         level = znode->level;
937         pr_err("== Level %d ==\n", level);
938         while (znode) {
939                 if (level != znode->level) {
940                         level = znode->level;
941                         pr_err("== Level %d ==\n", level);
942                 }
943                 ubifs_dump_znode(c, znode);
944                 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
945         }
946         pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
947 }
948
949 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
950                       void *priv)
951 {
952         ubifs_dump_znode(c, znode);
953         return 0;
954 }
955
956 /**
957  * ubifs_dump_index - dump the on-flash index.
958  * @c: UBIFS file-system description object
959  *
960  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
961  * which dumps only in-memory znodes and does not read znodes which from flash.
962  */
963 void ubifs_dump_index(struct ubifs_info *c)
964 {
965         dbg_walk_index(c, NULL, dump_znode, NULL);
966 }
967
968 #ifndef __UBOOT__
969 /**
970  * dbg_save_space_info - save information about flash space.
971  * @c: UBIFS file-system description object
972  *
973  * This function saves information about UBIFS free space, dirty space, etc, in
974  * order to check it later.
975  */
976 void dbg_save_space_info(struct ubifs_info *c)
977 {
978         struct ubifs_debug_info *d = c->dbg;
979         int freeable_cnt;
980
981         spin_lock(&c->space_lock);
982         memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
983         memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
984         d->saved_idx_gc_cnt = c->idx_gc_cnt;
985
986         /*
987          * We use a dirty hack here and zero out @c->freeable_cnt, because it
988          * affects the free space calculations, and UBIFS might not know about
989          * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
990          * only when we read their lprops, and we do this only lazily, upon the
991          * need. So at any given point of time @c->freeable_cnt might be not
992          * exactly accurate.
993          *
994          * Just one example about the issue we hit when we did not zero
995          * @c->freeable_cnt.
996          * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
997          *    amount of free space in @d->saved_free
998          * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
999          *    information from flash, where we cache LEBs from various
1000          *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1001          *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1002          *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1003          *    -> 'ubifs_add_to_cat()').
1004          * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1005          *    becomes %1.
1006          * 4. We calculate the amount of free space when the re-mount is
1007          *    finished in 'dbg_check_space_info()' and it does not match
1008          *    @d->saved_free.
1009          */
1010         freeable_cnt = c->freeable_cnt;
1011         c->freeable_cnt = 0;
1012         d->saved_free = ubifs_get_free_space_nolock(c);
1013         c->freeable_cnt = freeable_cnt;
1014         spin_unlock(&c->space_lock);
1015 }
1016
1017 /**
1018  * dbg_check_space_info - check flash space information.
1019  * @c: UBIFS file-system description object
1020  *
1021  * This function compares current flash space information with the information
1022  * which was saved when the 'dbg_save_space_info()' function was called.
1023  * Returns zero if the information has not changed, and %-EINVAL it it has
1024  * changed.
1025  */
1026 int dbg_check_space_info(struct ubifs_info *c)
1027 {
1028         struct ubifs_debug_info *d = c->dbg;
1029         struct ubifs_lp_stats lst;
1030         long long free;
1031         int freeable_cnt;
1032
1033         spin_lock(&c->space_lock);
1034         freeable_cnt = c->freeable_cnt;
1035         c->freeable_cnt = 0;
1036         free = ubifs_get_free_space_nolock(c);
1037         c->freeable_cnt = freeable_cnt;
1038         spin_unlock(&c->space_lock);
1039
1040         if (free != d->saved_free) {
1041                 ubifs_err("free space changed from %lld to %lld",
1042                           d->saved_free, free);
1043                 goto out;
1044         }
1045
1046         return 0;
1047
1048 out:
1049         ubifs_msg("saved lprops statistics dump");
1050         ubifs_dump_lstats(&d->saved_lst);
1051         ubifs_msg("saved budgeting info dump");
1052         ubifs_dump_budg(c, &d->saved_bi);
1053         ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1054         ubifs_msg("current lprops statistics dump");
1055         ubifs_get_lp_stats(c, &lst);
1056         ubifs_dump_lstats(&lst);
1057         ubifs_msg("current budgeting info dump");
1058         ubifs_dump_budg(c, &c->bi);
1059         dump_stack();
1060         return -EINVAL;
1061 }
1062
1063 /**
1064  * dbg_check_synced_i_size - check synchronized inode size.
1065  * @c: UBIFS file-system description object
1066  * @inode: inode to check
1067  *
1068  * If inode is clean, synchronized inode size has to be equivalent to current
1069  * inode size. This function has to be called only for locked inodes (@i_mutex
1070  * has to be locked). Returns %0 if synchronized inode size if correct, and
1071  * %-EINVAL if not.
1072  */
1073 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1074 {
1075         int err = 0;
1076         struct ubifs_inode *ui = ubifs_inode(inode);
1077
1078         if (!dbg_is_chk_gen(c))
1079                 return 0;
1080         if (!S_ISREG(inode->i_mode))
1081                 return 0;
1082
1083         mutex_lock(&ui->ui_mutex);
1084         spin_lock(&ui->ui_lock);
1085         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1086                 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode is clean",
1087                           ui->ui_size, ui->synced_i_size);
1088                 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1089                           inode->i_mode, i_size_read(inode));
1090                 dump_stack();
1091                 err = -EINVAL;
1092         }
1093         spin_unlock(&ui->ui_lock);
1094         mutex_unlock(&ui->ui_mutex);
1095         return err;
1096 }
1097
1098 /*
1099  * dbg_check_dir - check directory inode size and link count.
1100  * @c: UBIFS file-system description object
1101  * @dir: the directory to calculate size for
1102  * @size: the result is returned here
1103  *
1104  * This function makes sure that directory size and link count are correct.
1105  * Returns zero in case of success and a negative error code in case of
1106  * failure.
1107  *
1108  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1109  * calling this function.
1110  */
1111 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1112 {
1113         unsigned int nlink = 2;
1114         union ubifs_key key;
1115         struct ubifs_dent_node *dent, *pdent = NULL;
1116         struct qstr nm = { .name = NULL };
1117         loff_t size = UBIFS_INO_NODE_SZ;
1118
1119         if (!dbg_is_chk_gen(c))
1120                 return 0;
1121
1122         if (!S_ISDIR(dir->i_mode))
1123                 return 0;
1124
1125         lowest_dent_key(c, &key, dir->i_ino);
1126         while (1) {
1127                 int err;
1128
1129                 dent = ubifs_tnc_next_ent(c, &key, &nm);
1130                 if (IS_ERR(dent)) {
1131                         err = PTR_ERR(dent);
1132                         if (err == -ENOENT)
1133                                 break;
1134                         return err;
1135                 }
1136
1137                 nm.name = dent->name;
1138                 nm.len = le16_to_cpu(dent->nlen);
1139                 size += CALC_DENT_SIZE(nm.len);
1140                 if (dent->type == UBIFS_ITYPE_DIR)
1141                         nlink += 1;
1142                 kfree(pdent);
1143                 pdent = dent;
1144                 key_read(c, &dent->key, &key);
1145         }
1146         kfree(pdent);
1147
1148         if (i_size_read(dir) != size) {
1149                 ubifs_err("directory inode %lu has size %llu, but calculated size is %llu",
1150                           dir->i_ino, (unsigned long long)i_size_read(dir),
1151                           (unsigned long long)size);
1152                 ubifs_dump_inode(c, dir);
1153                 dump_stack();
1154                 return -EINVAL;
1155         }
1156         if (dir->i_nlink != nlink) {
1157                 ubifs_err("directory inode %lu has nlink %u, but calculated nlink is %u",
1158                           dir->i_ino, dir->i_nlink, nlink);
1159                 ubifs_dump_inode(c, dir);
1160                 dump_stack();
1161                 return -EINVAL;
1162         }
1163
1164         return 0;
1165 }
1166
1167 /**
1168  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1169  * @c: UBIFS file-system description object
1170  * @zbr1: first zbranch
1171  * @zbr2: following zbranch
1172  *
1173  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1174  * names of the direntries/xentries which are referred by the keys. This
1175  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1176  * sure the name of direntry/xentry referred by @zbr1 is less than
1177  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1178  * and a negative error code in case of failure.
1179  */
1180 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1181                                struct ubifs_zbranch *zbr2)
1182 {
1183         int err, nlen1, nlen2, cmp;
1184         struct ubifs_dent_node *dent1, *dent2;
1185         union ubifs_key key;
1186         char key_buf[DBG_KEY_BUF_LEN];
1187
1188         ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1189         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1190         if (!dent1)
1191                 return -ENOMEM;
1192         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1193         if (!dent2) {
1194                 err = -ENOMEM;
1195                 goto out_free;
1196         }
1197
1198         err = ubifs_tnc_read_node(c, zbr1, dent1);
1199         if (err)
1200                 goto out_free;
1201         err = ubifs_validate_entry(c, dent1);
1202         if (err)
1203                 goto out_free;
1204
1205         err = ubifs_tnc_read_node(c, zbr2, dent2);
1206         if (err)
1207                 goto out_free;
1208         err = ubifs_validate_entry(c, dent2);
1209         if (err)
1210                 goto out_free;
1211
1212         /* Make sure node keys are the same as in zbranch */
1213         err = 1;
1214         key_read(c, &dent1->key, &key);
1215         if (keys_cmp(c, &zbr1->key, &key)) {
1216                 ubifs_err("1st entry at %d:%d has key %s", zbr1->lnum,
1217                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1218                                                        DBG_KEY_BUF_LEN));
1219                 ubifs_err("but it should have key %s according to tnc",
1220                           dbg_snprintf_key(c, &zbr1->key, key_buf,
1221                                            DBG_KEY_BUF_LEN));
1222                 ubifs_dump_node(c, dent1);
1223                 goto out_free;
1224         }
1225
1226         key_read(c, &dent2->key, &key);
1227         if (keys_cmp(c, &zbr2->key, &key)) {
1228                 ubifs_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1229                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1230                                                        DBG_KEY_BUF_LEN));
1231                 ubifs_err("but it should have key %s according to tnc",
1232                           dbg_snprintf_key(c, &zbr2->key, key_buf,
1233                                            DBG_KEY_BUF_LEN));
1234                 ubifs_dump_node(c, dent2);
1235                 goto out_free;
1236         }
1237
1238         nlen1 = le16_to_cpu(dent1->nlen);
1239         nlen2 = le16_to_cpu(dent2->nlen);
1240
1241         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1242         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1243                 err = 0;
1244                 goto out_free;
1245         }
1246         if (cmp == 0 && nlen1 == nlen2)
1247                 ubifs_err("2 xent/dent nodes with the same name");
1248         else
1249                 ubifs_err("bad order of colliding key %s",
1250                           dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1251
1252         ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1253         ubifs_dump_node(c, dent1);
1254         ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1255         ubifs_dump_node(c, dent2);
1256
1257 out_free:
1258         kfree(dent2);
1259         kfree(dent1);
1260         return err;
1261 }
1262
1263 /**
1264  * dbg_check_znode - check if znode is all right.
1265  * @c: UBIFS file-system description object
1266  * @zbr: zbranch which points to this znode
1267  *
1268  * This function makes sure that znode referred to by @zbr is all right.
1269  * Returns zero if it is, and %-EINVAL if it is not.
1270  */
1271 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1272 {
1273         struct ubifs_znode *znode = zbr->znode;
1274         struct ubifs_znode *zp = znode->parent;
1275         int n, err, cmp;
1276
1277         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1278                 err = 1;
1279                 goto out;
1280         }
1281         if (znode->level < 0) {
1282                 err = 2;
1283                 goto out;
1284         }
1285         if (znode->iip < 0 || znode->iip >= c->fanout) {
1286                 err = 3;
1287                 goto out;
1288         }
1289
1290         if (zbr->len == 0)
1291                 /* Only dirty zbranch may have no on-flash nodes */
1292                 if (!ubifs_zn_dirty(znode)) {
1293                         err = 4;
1294                         goto out;
1295                 }
1296
1297         if (ubifs_zn_dirty(znode)) {
1298                 /*
1299                  * If znode is dirty, its parent has to be dirty as well. The
1300                  * order of the operation is important, so we have to have
1301                  * memory barriers.
1302                  */
1303                 smp_mb();
1304                 if (zp && !ubifs_zn_dirty(zp)) {
1305                         /*
1306                          * The dirty flag is atomic and is cleared outside the
1307                          * TNC mutex, so znode's dirty flag may now have
1308                          * been cleared. The child is always cleared before the
1309                          * parent, so we just need to check again.
1310                          */
1311                         smp_mb();
1312                         if (ubifs_zn_dirty(znode)) {
1313                                 err = 5;
1314                                 goto out;
1315                         }
1316                 }
1317         }
1318
1319         if (zp) {
1320                 const union ubifs_key *min, *max;
1321
1322                 if (znode->level != zp->level - 1) {
1323                         err = 6;
1324                         goto out;
1325                 }
1326
1327                 /* Make sure the 'parent' pointer in our znode is correct */
1328                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1329                 if (!err) {
1330                         /* This zbranch does not exist in the parent */
1331                         err = 7;
1332                         goto out;
1333                 }
1334
1335                 if (znode->iip >= zp->child_cnt) {
1336                         err = 8;
1337                         goto out;
1338                 }
1339
1340                 if (znode->iip != n) {
1341                         /* This may happen only in case of collisions */
1342                         if (keys_cmp(c, &zp->zbranch[n].key,
1343                                      &zp->zbranch[znode->iip].key)) {
1344                                 err = 9;
1345                                 goto out;
1346                         }
1347                         n = znode->iip;
1348                 }
1349
1350                 /*
1351                  * Make sure that the first key in our znode is greater than or
1352                  * equal to the key in the pointing zbranch.
1353                  */
1354                 min = &zbr->key;
1355                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1356                 if (cmp == 1) {
1357                         err = 10;
1358                         goto out;
1359                 }
1360
1361                 if (n + 1 < zp->child_cnt) {
1362                         max = &zp->zbranch[n + 1].key;
1363
1364                         /*
1365                          * Make sure the last key in our znode is less or
1366                          * equivalent than the key in the zbranch which goes
1367                          * after our pointing zbranch.
1368                          */
1369                         cmp = keys_cmp(c, max,
1370                                 &znode->zbranch[znode->child_cnt - 1].key);
1371                         if (cmp == -1) {
1372                                 err = 11;
1373                                 goto out;
1374                         }
1375                 }
1376         } else {
1377                 /* This may only be root znode */
1378                 if (zbr != &c->zroot) {
1379                         err = 12;
1380                         goto out;
1381                 }
1382         }
1383
1384         /*
1385          * Make sure that next key is greater or equivalent then the previous
1386          * one.
1387          */
1388         for (n = 1; n < znode->child_cnt; n++) {
1389                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1390                                &znode->zbranch[n].key);
1391                 if (cmp > 0) {
1392                         err = 13;
1393                         goto out;
1394                 }
1395                 if (cmp == 0) {
1396                         /* This can only be keys with colliding hash */
1397                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1398                                 err = 14;
1399                                 goto out;
1400                         }
1401
1402                         if (znode->level != 0 || c->replaying)
1403                                 continue;
1404
1405                         /*
1406                          * Colliding keys should follow binary order of
1407                          * corresponding xentry/dentry names.
1408                          */
1409                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1410                                                   &znode->zbranch[n]);
1411                         if (err < 0)
1412                                 return err;
1413                         if (err) {
1414                                 err = 15;
1415                                 goto out;
1416                         }
1417                 }
1418         }
1419
1420         for (n = 0; n < znode->child_cnt; n++) {
1421                 if (!znode->zbranch[n].znode &&
1422                     (znode->zbranch[n].lnum == 0 ||
1423                      znode->zbranch[n].len == 0)) {
1424                         err = 16;
1425                         goto out;
1426                 }
1427
1428                 if (znode->zbranch[n].lnum != 0 &&
1429                     znode->zbranch[n].len == 0) {
1430                         err = 17;
1431                         goto out;
1432                 }
1433
1434                 if (znode->zbranch[n].lnum == 0 &&
1435                     znode->zbranch[n].len != 0) {
1436                         err = 18;
1437                         goto out;
1438                 }
1439
1440                 if (znode->zbranch[n].lnum == 0 &&
1441                     znode->zbranch[n].offs != 0) {
1442                         err = 19;
1443                         goto out;
1444                 }
1445
1446                 if (znode->level != 0 && znode->zbranch[n].znode)
1447                         if (znode->zbranch[n].znode->parent != znode) {
1448                                 err = 20;
1449                                 goto out;
1450                         }
1451         }
1452
1453         return 0;
1454
1455 out:
1456         ubifs_err("failed, error %d", err);
1457         ubifs_msg("dump of the znode");
1458         ubifs_dump_znode(c, znode);
1459         if (zp) {
1460                 ubifs_msg("dump of the parent znode");
1461                 ubifs_dump_znode(c, zp);
1462         }
1463         dump_stack();
1464         return -EINVAL;
1465 }
1466 #else
1467
1468 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1469 {
1470         return 0;
1471 }
1472
1473 void dbg_debugfs_exit_fs(struct ubifs_info *c)
1474 {
1475         return;
1476 }
1477
1478 int ubifs_debugging_init(struct ubifs_info *c)
1479 {
1480         return 0;
1481 }
1482 void ubifs_debugging_exit(struct ubifs_info *c)
1483 {
1484 }
1485 int dbg_check_filesystem(struct ubifs_info *c)
1486 {
1487         return 0;
1488 }
1489 int dbg_debugfs_init_fs(struct ubifs_info *c)
1490 {
1491         return 0;
1492 }
1493 #endif
1494
1495 #ifndef __UBOOT__
1496 /**
1497  * dbg_check_tnc - check TNC tree.
1498  * @c: UBIFS file-system description object
1499  * @extra: do extra checks that are possible at start commit
1500  *
1501  * This function traverses whole TNC tree and checks every znode. Returns zero
1502  * if everything is all right and %-EINVAL if something is wrong with TNC.
1503  */
1504 int dbg_check_tnc(struct ubifs_info *c, int extra)
1505 {
1506         struct ubifs_znode *znode;
1507         long clean_cnt = 0, dirty_cnt = 0;
1508         int err, last;
1509
1510         if (!dbg_is_chk_index(c))
1511                 return 0;
1512
1513         ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1514         if (!c->zroot.znode)
1515                 return 0;
1516
1517         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1518         while (1) {
1519                 struct ubifs_znode *prev;
1520                 struct ubifs_zbranch *zbr;
1521
1522                 if (!znode->parent)
1523                         zbr = &c->zroot;
1524                 else
1525                         zbr = &znode->parent->zbranch[znode->iip];
1526
1527                 err = dbg_check_znode(c, zbr);
1528                 if (err)
1529                         return err;
1530
1531                 if (extra) {
1532                         if (ubifs_zn_dirty(znode))
1533                                 dirty_cnt += 1;
1534                         else
1535                                 clean_cnt += 1;
1536                 }
1537
1538                 prev = znode;
1539                 znode = ubifs_tnc_postorder_next(znode);
1540                 if (!znode)
1541                         break;
1542
1543                 /*
1544                  * If the last key of this znode is equivalent to the first key
1545                  * of the next znode (collision), then check order of the keys.
1546                  */
1547                 last = prev->child_cnt - 1;
1548                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1549                     !keys_cmp(c, &prev->zbranch[last].key,
1550                               &znode->zbranch[0].key)) {
1551                         err = dbg_check_key_order(c, &prev->zbranch[last],
1552                                                   &znode->zbranch[0]);
1553                         if (err < 0)
1554                                 return err;
1555                         if (err) {
1556                                 ubifs_msg("first znode");
1557                                 ubifs_dump_znode(c, prev);
1558                                 ubifs_msg("second znode");
1559                                 ubifs_dump_znode(c, znode);
1560                                 return -EINVAL;
1561                         }
1562                 }
1563         }
1564
1565         if (extra) {
1566                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1567                         ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1568                                   atomic_long_read(&c->clean_zn_cnt),
1569                                   clean_cnt);
1570                         return -EINVAL;
1571                 }
1572                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1573                         ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1574                                   atomic_long_read(&c->dirty_zn_cnt),
1575                                   dirty_cnt);
1576                         return -EINVAL;
1577                 }
1578         }
1579
1580         return 0;
1581 }
1582 #else
1583 int dbg_check_tnc(struct ubifs_info *c, int extra)
1584 {
1585         return 0;
1586 }
1587 #endif
1588
1589 /**
1590  * dbg_walk_index - walk the on-flash index.
1591  * @c: UBIFS file-system description object
1592  * @leaf_cb: called for each leaf node
1593  * @znode_cb: called for each indexing node
1594  * @priv: private data which is passed to callbacks
1595  *
1596  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1597  * node and @znode_cb for each indexing node. Returns zero in case of success
1598  * and a negative error code in case of failure.
1599  *
1600  * It would be better if this function removed every znode it pulled to into
1601  * the TNC, so that the behavior more closely matched the non-debugging
1602  * behavior.
1603  */
1604 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1605                    dbg_znode_callback znode_cb, void *priv)
1606 {
1607         int err;
1608         struct ubifs_zbranch *zbr;
1609         struct ubifs_znode *znode, *child;
1610
1611         mutex_lock(&c->tnc_mutex);
1612         /* If the root indexing node is not in TNC - pull it */
1613         if (!c->zroot.znode) {
1614                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1615                 if (IS_ERR(c->zroot.znode)) {
1616                         err = PTR_ERR(c->zroot.znode);
1617                         c->zroot.znode = NULL;
1618                         goto out_unlock;
1619                 }
1620         }
1621
1622         /*
1623          * We are going to traverse the indexing tree in the postorder manner.
1624          * Go down and find the leftmost indexing node where we are going to
1625          * start from.
1626          */
1627         znode = c->zroot.znode;
1628         while (znode->level > 0) {
1629                 zbr = &znode->zbranch[0];
1630                 child = zbr->znode;
1631                 if (!child) {
1632                         child = ubifs_load_znode(c, zbr, znode, 0);
1633                         if (IS_ERR(child)) {
1634                                 err = PTR_ERR(child);
1635                                 goto out_unlock;
1636                         }
1637                         zbr->znode = child;
1638                 }
1639
1640                 znode = child;
1641         }
1642
1643         /* Iterate over all indexing nodes */
1644         while (1) {
1645                 int idx;
1646
1647                 cond_resched();
1648
1649                 if (znode_cb) {
1650                         err = znode_cb(c, znode, priv);
1651                         if (err) {
1652                                 ubifs_err("znode checking function returned error %d",
1653                                           err);
1654                                 ubifs_dump_znode(c, znode);
1655                                 goto out_dump;
1656                         }
1657                 }
1658                 if (leaf_cb && znode->level == 0) {
1659                         for (idx = 0; idx < znode->child_cnt; idx++) {
1660                                 zbr = &znode->zbranch[idx];
1661                                 err = leaf_cb(c, zbr, priv);
1662                                 if (err) {
1663                                         ubifs_err("leaf checking function returned error %d, for leaf at LEB %d:%d",
1664                                                   err, zbr->lnum, zbr->offs);
1665                                         goto out_dump;
1666                                 }
1667                         }
1668                 }
1669
1670                 if (!znode->parent)
1671                         break;
1672
1673                 idx = znode->iip + 1;
1674                 znode = znode->parent;
1675                 if (idx < znode->child_cnt) {
1676                         /* Switch to the next index in the parent */
1677                         zbr = &znode->zbranch[idx];
1678                         child = zbr->znode;
1679                         if (!child) {
1680                                 child = ubifs_load_znode(c, zbr, znode, idx);
1681                                 if (IS_ERR(child)) {
1682                                         err = PTR_ERR(child);
1683                                         goto out_unlock;
1684                                 }
1685                                 zbr->znode = child;
1686                         }
1687                         znode = child;
1688                 } else
1689                         /*
1690                          * This is the last child, switch to the parent and
1691                          * continue.
1692                          */
1693                         continue;
1694
1695                 /* Go to the lowest leftmost znode in the new sub-tree */
1696                 while (znode->level > 0) {
1697                         zbr = &znode->zbranch[0];
1698                         child = zbr->znode;
1699                         if (!child) {
1700                                 child = ubifs_load_znode(c, zbr, znode, 0);
1701                                 if (IS_ERR(child)) {
1702                                         err = PTR_ERR(child);
1703                                         goto out_unlock;
1704                                 }
1705                                 zbr->znode = child;
1706                         }
1707                         znode = child;
1708                 }
1709         }
1710
1711         mutex_unlock(&c->tnc_mutex);
1712         return 0;
1713
1714 out_dump:
1715         if (znode->parent)
1716                 zbr = &znode->parent->zbranch[znode->iip];
1717         else
1718                 zbr = &c->zroot;
1719         ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1720         ubifs_dump_znode(c, znode);
1721 out_unlock:
1722         mutex_unlock(&c->tnc_mutex);
1723         return err;
1724 }
1725
1726 /**
1727  * add_size - add znode size to partially calculated index size.
1728  * @c: UBIFS file-system description object
1729  * @znode: znode to add size for
1730  * @priv: partially calculated index size
1731  *
1732  * This is a helper function for 'dbg_check_idx_size()' which is called for
1733  * every indexing node and adds its size to the 'long long' variable pointed to
1734  * by @priv.
1735  */
1736 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1737 {
1738         long long *idx_size = priv;
1739         int add;
1740
1741         add = ubifs_idx_node_sz(c, znode->child_cnt);
1742         add = ALIGN(add, 8);
1743         *idx_size += add;
1744         return 0;
1745 }
1746
1747 /**
1748  * dbg_check_idx_size - check index size.
1749  * @c: UBIFS file-system description object
1750  * @idx_size: size to check
1751  *
1752  * This function walks the UBIFS index, calculates its size and checks that the
1753  * size is equivalent to @idx_size. Returns zero in case of success and a
1754  * negative error code in case of failure.
1755  */
1756 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1757 {
1758         int err;
1759         long long calc = 0;
1760
1761         if (!dbg_is_chk_index(c))
1762                 return 0;
1763
1764         err = dbg_walk_index(c, NULL, add_size, &calc);
1765         if (err) {
1766                 ubifs_err("error %d while walking the index", err);
1767                 return err;
1768         }
1769
1770         if (calc != idx_size) {
1771                 ubifs_err("index size check failed: calculated size is %lld, should be %lld",
1772                           calc, idx_size);
1773                 dump_stack();
1774                 return -EINVAL;
1775         }
1776
1777         return 0;
1778 }
1779
1780 #ifndef __UBOOT__
1781 /**
1782  * struct fsck_inode - information about an inode used when checking the file-system.
1783  * @rb: link in the RB-tree of inodes
1784  * @inum: inode number
1785  * @mode: inode type, permissions, etc
1786  * @nlink: inode link count
1787  * @xattr_cnt: count of extended attributes
1788  * @references: how many directory/xattr entries refer this inode (calculated
1789  *              while walking the index)
1790  * @calc_cnt: for directory inode count of child directories
1791  * @size: inode size (read from on-flash inode)
1792  * @xattr_sz: summary size of all extended attributes (read from on-flash
1793  *            inode)
1794  * @calc_sz: for directories calculated directory size
1795  * @calc_xcnt: count of extended attributes
1796  * @calc_xsz: calculated summary size of all extended attributes
1797  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1798  *             inode (read from on-flash inode)
1799  * @calc_xnms: calculated sum of lengths of all extended attribute names
1800  */
1801 struct fsck_inode {
1802         struct rb_node rb;
1803         ino_t inum;
1804         umode_t mode;
1805         unsigned int nlink;
1806         unsigned int xattr_cnt;
1807         int references;
1808         int calc_cnt;
1809         long long size;
1810         unsigned int xattr_sz;
1811         long long calc_sz;
1812         long long calc_xcnt;
1813         long long calc_xsz;
1814         unsigned int xattr_nms;
1815         long long calc_xnms;
1816 };
1817
1818 /**
1819  * struct fsck_data - private FS checking information.
1820  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1821  */
1822 struct fsck_data {
1823         struct rb_root inodes;
1824 };
1825
1826 /**
1827  * add_inode - add inode information to RB-tree of inodes.
1828  * @c: UBIFS file-system description object
1829  * @fsckd: FS checking information
1830  * @ino: raw UBIFS inode to add
1831  *
1832  * This is a helper function for 'check_leaf()' which adds information about
1833  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1834  * case of success and a negative error code in case of failure.
1835  */
1836 static struct fsck_inode *add_inode(struct ubifs_info *c,
1837                                     struct fsck_data *fsckd,
1838                                     struct ubifs_ino_node *ino)
1839 {
1840         struct rb_node **p, *parent = NULL;
1841         struct fsck_inode *fscki;
1842         ino_t inum = key_inum_flash(c, &ino->key);
1843         struct inode *inode;
1844         struct ubifs_inode *ui;
1845
1846         p = &fsckd->inodes.rb_node;
1847         while (*p) {
1848                 parent = *p;
1849                 fscki = rb_entry(parent, struct fsck_inode, rb);
1850                 if (inum < fscki->inum)
1851                         p = &(*p)->rb_left;
1852                 else if (inum > fscki->inum)
1853                         p = &(*p)->rb_right;
1854                 else
1855                         return fscki;
1856         }
1857
1858         if (inum > c->highest_inum) {
1859                 ubifs_err("too high inode number, max. is %lu",
1860                           (unsigned long)c->highest_inum);
1861                 return ERR_PTR(-EINVAL);
1862         }
1863
1864         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1865         if (!fscki)
1866                 return ERR_PTR(-ENOMEM);
1867
1868         inode = ilookup(c->vfs_sb, inum);
1869
1870         fscki->inum = inum;
1871         /*
1872          * If the inode is present in the VFS inode cache, use it instead of
1873          * the on-flash inode which might be out-of-date. E.g., the size might
1874          * be out-of-date. If we do not do this, the following may happen, for
1875          * example:
1876          *   1. A power cut happens
1877          *   2. We mount the file-system R/O, the replay process fixes up the
1878          *      inode size in the VFS cache, but on on-flash.
1879          *   3. 'check_leaf()' fails because it hits a data node beyond inode
1880          *      size.
1881          */
1882         if (!inode) {
1883                 fscki->nlink = le32_to_cpu(ino->nlink);
1884                 fscki->size = le64_to_cpu(ino->size);
1885                 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1886                 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1887                 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1888                 fscki->mode = le32_to_cpu(ino->mode);
1889         } else {
1890                 ui = ubifs_inode(inode);
1891                 fscki->nlink = inode->i_nlink;
1892                 fscki->size = inode->i_size;
1893                 fscki->xattr_cnt = ui->xattr_cnt;
1894                 fscki->xattr_sz = ui->xattr_size;
1895                 fscki->xattr_nms = ui->xattr_names;
1896                 fscki->mode = inode->i_mode;
1897                 iput(inode);
1898         }
1899
1900         if (S_ISDIR(fscki->mode)) {
1901                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1902                 fscki->calc_cnt = 2;
1903         }
1904
1905         rb_link_node(&fscki->rb, parent, p);
1906         rb_insert_color(&fscki->rb, &fsckd->inodes);
1907
1908         return fscki;
1909 }
1910
1911 /**
1912  * search_inode - search inode in the RB-tree of inodes.
1913  * @fsckd: FS checking information
1914  * @inum: inode number to search
1915  *
1916  * This is a helper function for 'check_leaf()' which searches inode @inum in
1917  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1918  * the inode was not found.
1919  */
1920 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1921 {
1922         struct rb_node *p;
1923         struct fsck_inode *fscki;
1924
1925         p = fsckd->inodes.rb_node;
1926         while (p) {
1927                 fscki = rb_entry(p, struct fsck_inode, rb);
1928                 if (inum < fscki->inum)
1929                         p = p->rb_left;
1930                 else if (inum > fscki->inum)
1931                         p = p->rb_right;
1932                 else
1933                         return fscki;
1934         }
1935         return NULL;
1936 }
1937
1938 /**
1939  * read_add_inode - read inode node and add it to RB-tree of inodes.
1940  * @c: UBIFS file-system description object
1941  * @fsckd: FS checking information
1942  * @inum: inode number to read
1943  *
1944  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1945  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1946  * information pointer in case of success and a negative error code in case of
1947  * failure.
1948  */
1949 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1950                                          struct fsck_data *fsckd, ino_t inum)
1951 {
1952         int n, err;
1953         union ubifs_key key;
1954         struct ubifs_znode *znode;
1955         struct ubifs_zbranch *zbr;
1956         struct ubifs_ino_node *ino;
1957         struct fsck_inode *fscki;
1958
1959         fscki = search_inode(fsckd, inum);
1960         if (fscki)
1961                 return fscki;
1962
1963         ino_key_init(c, &key, inum);
1964         err = ubifs_lookup_level0(c, &key, &znode, &n);
1965         if (!err) {
1966                 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1967                 return ERR_PTR(-ENOENT);
1968         } else if (err < 0) {
1969                 ubifs_err("error %d while looking up inode %lu",
1970                           err, (unsigned long)inum);
1971                 return ERR_PTR(err);
1972         }
1973
1974         zbr = &znode->zbranch[n];
1975         if (zbr->len < UBIFS_INO_NODE_SZ) {
1976                 ubifs_err("bad node %lu node length %d",
1977                           (unsigned long)inum, zbr->len);
1978                 return ERR_PTR(-EINVAL);
1979         }
1980
1981         ino = kmalloc(zbr->len, GFP_NOFS);
1982         if (!ino)
1983                 return ERR_PTR(-ENOMEM);
1984
1985         err = ubifs_tnc_read_node(c, zbr, ino);
1986         if (err) {
1987                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1988                           zbr->lnum, zbr->offs, err);
1989                 kfree(ino);
1990                 return ERR_PTR(err);
1991         }
1992
1993         fscki = add_inode(c, fsckd, ino);
1994         kfree(ino);
1995         if (IS_ERR(fscki)) {
1996                 ubifs_err("error %ld while adding inode %lu node",
1997                           PTR_ERR(fscki), (unsigned long)inum);
1998                 return fscki;
1999         }
2000
2001         return fscki;
2002 }
2003
2004 /**
2005  * check_leaf - check leaf node.
2006  * @c: UBIFS file-system description object
2007  * @zbr: zbranch of the leaf node to check
2008  * @priv: FS checking information
2009  *
2010  * This is a helper function for 'dbg_check_filesystem()' which is called for
2011  * every single leaf node while walking the indexing tree. It checks that the
2012  * leaf node referred from the indexing tree exists, has correct CRC, and does
2013  * some other basic validation. This function is also responsible for building
2014  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2015  * calculates reference count, size, etc for each inode in order to later
2016  * compare them to the information stored inside the inodes and detect possible
2017  * inconsistencies. Returns zero in case of success and a negative error code
2018  * in case of failure.
2019  */
2020 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2021                       void *priv)
2022 {
2023         ino_t inum;
2024         void *node;
2025         struct ubifs_ch *ch;
2026         int err, type = key_type(c, &zbr->key);
2027         struct fsck_inode *fscki;
2028
2029         if (zbr->len < UBIFS_CH_SZ) {
2030                 ubifs_err("bad leaf length %d (LEB %d:%d)",
2031                           zbr->len, zbr->lnum, zbr->offs);
2032                 return -EINVAL;
2033         }
2034
2035         node = kmalloc(zbr->len, GFP_NOFS);
2036         if (!node)
2037                 return -ENOMEM;
2038
2039         err = ubifs_tnc_read_node(c, zbr, node);
2040         if (err) {
2041                 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2042                           zbr->lnum, zbr->offs, err);
2043                 goto out_free;
2044         }
2045
2046         /* If this is an inode node, add it to RB-tree of inodes */
2047         if (type == UBIFS_INO_KEY) {
2048                 fscki = add_inode(c, priv, node);
2049                 if (IS_ERR(fscki)) {
2050                         err = PTR_ERR(fscki);
2051                         ubifs_err("error %d while adding inode node", err);
2052                         goto out_dump;
2053                 }
2054                 goto out;
2055         }
2056
2057         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2058             type != UBIFS_DATA_KEY) {
2059                 ubifs_err("unexpected node type %d at LEB %d:%d",
2060                           type, zbr->lnum, zbr->offs);
2061                 err = -EINVAL;
2062                 goto out_free;
2063         }
2064
2065         ch = node;
2066         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2067                 ubifs_err("too high sequence number, max. is %llu",
2068                           c->max_sqnum);
2069                 err = -EINVAL;
2070                 goto out_dump;
2071         }
2072
2073         if (type == UBIFS_DATA_KEY) {
2074                 long long blk_offs;
2075                 struct ubifs_data_node *dn = node;
2076
2077                 /*
2078                  * Search the inode node this data node belongs to and insert
2079                  * it to the RB-tree of inodes.
2080                  */
2081                 inum = key_inum_flash(c, &dn->key);
2082                 fscki = read_add_inode(c, priv, inum);
2083                 if (IS_ERR(fscki)) {
2084                         err = PTR_ERR(fscki);
2085                         ubifs_err("error %d while processing data node and trying to find inode node %lu",
2086                                   err, (unsigned long)inum);
2087                         goto out_dump;
2088                 }
2089
2090                 /* Make sure the data node is within inode size */
2091                 blk_offs = key_block_flash(c, &dn->key);
2092                 blk_offs <<= UBIFS_BLOCK_SHIFT;
2093                 blk_offs += le32_to_cpu(dn->size);
2094                 if (blk_offs > fscki->size) {
2095                         ubifs_err("data node at LEB %d:%d is not within inode size %lld",
2096                                   zbr->lnum, zbr->offs, fscki->size);
2097                         err = -EINVAL;
2098                         goto out_dump;
2099                 }
2100         } else {
2101                 int nlen;
2102                 struct ubifs_dent_node *dent = node;
2103                 struct fsck_inode *fscki1;
2104
2105                 err = ubifs_validate_entry(c, dent);
2106                 if (err)
2107                         goto out_dump;
2108
2109                 /*
2110                  * Search the inode node this entry refers to and the parent
2111                  * inode node and insert them to the RB-tree of inodes.
2112                  */
2113                 inum = le64_to_cpu(dent->inum);
2114                 fscki = read_add_inode(c, priv, inum);
2115                 if (IS_ERR(fscki)) {
2116                         err = PTR_ERR(fscki);
2117                         ubifs_err("error %d while processing entry node and trying to find inode node %lu",
2118                                   err, (unsigned long)inum);
2119                         goto out_dump;
2120                 }
2121
2122                 /* Count how many direntries or xentries refers this inode */
2123                 fscki->references += 1;
2124
2125                 inum = key_inum_flash(c, &dent->key);
2126                 fscki1 = read_add_inode(c, priv, inum);
2127                 if (IS_ERR(fscki1)) {
2128                         err = PTR_ERR(fscki1);
2129                         ubifs_err("error %d while processing entry node and trying to find parent inode node %lu",
2130                                   err, (unsigned long)inum);
2131                         goto out_dump;
2132                 }
2133
2134                 nlen = le16_to_cpu(dent->nlen);
2135                 if (type == UBIFS_XENT_KEY) {
2136                         fscki1->calc_xcnt += 1;
2137                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2138                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2139                         fscki1->calc_xnms += nlen;
2140                 } else {
2141                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2142                         if (dent->type == UBIFS_ITYPE_DIR)
2143                                 fscki1->calc_cnt += 1;
2144                 }
2145         }
2146
2147 out:
2148         kfree(node);
2149         return 0;
2150
2151 out_dump:
2152         ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2153         ubifs_dump_node(c, node);
2154 out_free:
2155         kfree(node);
2156         return err;
2157 }
2158
2159 /**
2160  * free_inodes - free RB-tree of inodes.
2161  * @fsckd: FS checking information
2162  */
2163 static void free_inodes(struct fsck_data *fsckd)
2164 {
2165         struct fsck_inode *fscki, *n;
2166
2167         rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2168                 kfree(fscki);
2169 }
2170
2171 /**
2172  * check_inodes - checks all inodes.
2173  * @c: UBIFS file-system description object
2174  * @fsckd: FS checking information
2175  *
2176  * This is a helper function for 'dbg_check_filesystem()' which walks the
2177  * RB-tree of inodes after the index scan has been finished, and checks that
2178  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2179  * %-EINVAL if not, and a negative error code in case of failure.
2180  */
2181 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2182 {
2183         int n, err;
2184         union ubifs_key key;
2185         struct ubifs_znode *znode;
2186         struct ubifs_zbranch *zbr;
2187         struct ubifs_ino_node *ino;
2188         struct fsck_inode *fscki;
2189         struct rb_node *this = rb_first(&fsckd->inodes);
2190
2191         while (this) {
2192                 fscki = rb_entry(this, struct fsck_inode, rb);
2193                 this = rb_next(this);
2194
2195                 if (S_ISDIR(fscki->mode)) {
2196                         /*
2197                          * Directories have to have exactly one reference (they
2198                          * cannot have hardlinks), although root inode is an
2199                          * exception.
2200                          */
2201                         if (fscki->inum != UBIFS_ROOT_INO &&
2202                             fscki->references != 1) {
2203                                 ubifs_err("directory inode %lu has %d direntries which refer it, but should be 1",
2204                                           (unsigned long)fscki->inum,
2205                                           fscki->references);
2206                                 goto out_dump;
2207                         }
2208                         if (fscki->inum == UBIFS_ROOT_INO &&
2209                             fscki->references != 0) {
2210                                 ubifs_err("root inode %lu has non-zero (%d) direntries which refer it",
2211                                           (unsigned long)fscki->inum,
2212                                           fscki->references);
2213                                 goto out_dump;
2214                         }
2215                         if (fscki->calc_sz != fscki->size) {
2216                                 ubifs_err("directory inode %lu size is %lld, but calculated size is %lld",
2217                                           (unsigned long)fscki->inum,
2218                                           fscki->size, fscki->calc_sz);
2219                                 goto out_dump;
2220                         }
2221                         if (fscki->calc_cnt != fscki->nlink) {
2222                                 ubifs_err("directory inode %lu nlink is %d, but calculated nlink is %d",
2223                                           (unsigned long)fscki->inum,
2224                                           fscki->nlink, fscki->calc_cnt);
2225                                 goto out_dump;
2226                         }
2227                 } else {
2228                         if (fscki->references != fscki->nlink) {
2229                                 ubifs_err("inode %lu nlink is %d, but calculated nlink is %d",
2230                                           (unsigned long)fscki->inum,
2231                                           fscki->nlink, fscki->references);
2232                                 goto out_dump;
2233                         }
2234                 }
2235                 if (fscki->xattr_sz != fscki->calc_xsz) {
2236                         ubifs_err("inode %lu has xattr size %u, but calculated size is %lld",
2237                                   (unsigned long)fscki->inum, fscki->xattr_sz,
2238                                   fscki->calc_xsz);
2239                         goto out_dump;
2240                 }
2241                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2242                         ubifs_err("inode %lu has %u xattrs, but calculated count is %lld",
2243                                   (unsigned long)fscki->inum,
2244                                   fscki->xattr_cnt, fscki->calc_xcnt);
2245                         goto out_dump;
2246                 }
2247                 if (fscki->xattr_nms != fscki->calc_xnms) {
2248                         ubifs_err("inode %lu has xattr names' size %u, but calculated names' size is %lld",
2249                                   (unsigned long)fscki->inum, fscki->xattr_nms,
2250                                   fscki->calc_xnms);
2251                         goto out_dump;
2252                 }
2253         }
2254
2255         return 0;
2256
2257 out_dump:
2258         /* Read the bad inode and dump it */
2259         ino_key_init(c, &key, fscki->inum);
2260         err = ubifs_lookup_level0(c, &key, &znode, &n);
2261         if (!err) {
2262                 ubifs_err("inode %lu not found in index",
2263                           (unsigned long)fscki->inum);
2264                 return -ENOENT;
2265         } else if (err < 0) {
2266                 ubifs_err("error %d while looking up inode %lu",
2267                           err, (unsigned long)fscki->inum);
2268                 return err;
2269         }
2270
2271         zbr = &znode->zbranch[n];
2272         ino = kmalloc(zbr->len, GFP_NOFS);
2273         if (!ino)
2274                 return -ENOMEM;
2275
2276         err = ubifs_tnc_read_node(c, zbr, ino);
2277         if (err) {
2278                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2279                           zbr->lnum, zbr->offs, err);
2280                 kfree(ino);
2281                 return err;
2282         }
2283
2284         ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2285                   (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2286         ubifs_dump_node(c, ino);
2287         kfree(ino);
2288         return -EINVAL;
2289 }
2290
2291 /**
2292  * dbg_check_filesystem - check the file-system.
2293  * @c: UBIFS file-system description object
2294  *
2295  * This function checks the file system, namely:
2296  * o makes sure that all leaf nodes exist and their CRCs are correct;
2297  * o makes sure inode nlink, size, xattr size/count are correct (for all
2298  *   inodes).
2299  *
2300  * The function reads whole indexing tree and all nodes, so it is pretty
2301  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2302  * not, and a negative error code in case of failure.
2303  */
2304 int dbg_check_filesystem(struct ubifs_info *c)
2305 {
2306         int err;
2307         struct fsck_data fsckd;
2308
2309         if (!dbg_is_chk_fs(c))
2310                 return 0;
2311
2312         fsckd.inodes = RB_ROOT;
2313         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2314         if (err)
2315                 goto out_free;
2316
2317         err = check_inodes(c, &fsckd);
2318         if (err)
2319                 goto out_free;
2320
2321         free_inodes(&fsckd);
2322         return 0;
2323
2324 out_free:
2325         ubifs_err("file-system check failed with error %d", err);
2326         dump_stack();
2327         free_inodes(&fsckd);
2328         return err;
2329 }
2330
2331 /**
2332  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2333  * @c: UBIFS file-system description object
2334  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2335  *
2336  * This function returns zero if the list of data nodes is sorted correctly,
2337  * and %-EINVAL if not.
2338  */
2339 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2340 {
2341         struct list_head *cur;
2342         struct ubifs_scan_node *sa, *sb;
2343
2344         if (!dbg_is_chk_gen(c))
2345                 return 0;
2346
2347         for (cur = head->next; cur->next != head; cur = cur->next) {
2348                 ino_t inuma, inumb;
2349                 uint32_t blka, blkb;
2350
2351                 cond_resched();
2352                 sa = container_of(cur, struct ubifs_scan_node, list);
2353                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2354
2355                 if (sa->type != UBIFS_DATA_NODE) {
2356                         ubifs_err("bad node type %d", sa->type);
2357                         ubifs_dump_node(c, sa->node);
2358                         return -EINVAL;
2359                 }
2360                 if (sb->type != UBIFS_DATA_NODE) {
2361                         ubifs_err("bad node type %d", sb->type);
2362                         ubifs_dump_node(c, sb->node);
2363                         return -EINVAL;
2364                 }
2365
2366                 inuma = key_inum(c, &sa->key);
2367                 inumb = key_inum(c, &sb->key);
2368
2369                 if (inuma < inumb)
2370                         continue;
2371                 if (inuma > inumb) {
2372                         ubifs_err("larger inum %lu goes before inum %lu",
2373                                   (unsigned long)inuma, (unsigned long)inumb);
2374                         goto error_dump;
2375                 }
2376
2377                 blka = key_block(c, &sa->key);
2378                 blkb = key_block(c, &sb->key);
2379
2380                 if (blka > blkb) {
2381                         ubifs_err("larger block %u goes before %u", blka, blkb);
2382                         goto error_dump;
2383                 }
2384                 if (blka == blkb) {
2385                         ubifs_err("two data nodes for the same block");
2386                         goto error_dump;
2387                 }
2388         }
2389
2390         return 0;
2391
2392 error_dump:
2393         ubifs_dump_node(c, sa->node);
2394         ubifs_dump_node(c, sb->node);
2395         return -EINVAL;
2396 }
2397
2398 /**
2399  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2400  * @c: UBIFS file-system description object
2401  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2402  *
2403  * This function returns zero if the list of non-data nodes is sorted correctly,
2404  * and %-EINVAL if not.
2405  */
2406 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2407 {
2408         struct list_head *cur;
2409         struct ubifs_scan_node *sa, *sb;
2410
2411         if (!dbg_is_chk_gen(c))
2412                 return 0;
2413
2414         for (cur = head->next; cur->next != head; cur = cur->next) {
2415                 ino_t inuma, inumb;
2416                 uint32_t hasha, hashb;
2417
2418                 cond_resched();
2419                 sa = container_of(cur, struct ubifs_scan_node, list);
2420                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2421
2422                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2423                     sa->type != UBIFS_XENT_NODE) {
2424                         ubifs_err("bad node type %d", sa->type);
2425                         ubifs_dump_node(c, sa->node);
2426                         return -EINVAL;
2427                 }
2428                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2429                     sa->type != UBIFS_XENT_NODE) {
2430                         ubifs_err("bad node type %d", sb->type);
2431                         ubifs_dump_node(c, sb->node);
2432                         return -EINVAL;
2433                 }
2434
2435                 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2436                         ubifs_err("non-inode node goes before inode node");
2437                         goto error_dump;
2438                 }
2439
2440                 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2441                         continue;
2442
2443                 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2444                         /* Inode nodes are sorted in descending size order */
2445                         if (sa->len < sb->len) {
2446                                 ubifs_err("smaller inode node goes first");
2447                                 goto error_dump;
2448                         }
2449                         continue;
2450                 }
2451
2452                 /*
2453                  * This is either a dentry or xentry, which should be sorted in
2454                  * ascending (parent ino, hash) order.
2455                  */
2456                 inuma = key_inum(c, &sa->key);
2457                 inumb = key_inum(c, &sb->key);
2458
2459                 if (inuma < inumb)
2460                         continue;
2461                 if (inuma > inumb) {
2462                         ubifs_err("larger inum %lu goes before inum %lu",
2463                                   (unsigned long)inuma, (unsigned long)inumb);
2464                         goto error_dump;
2465                 }
2466
2467                 hasha = key_block(c, &sa->key);
2468                 hashb = key_block(c, &sb->key);
2469
2470                 if (hasha > hashb) {
2471                         ubifs_err("larger hash %u goes before %u",
2472                                   hasha, hashb);
2473                         goto error_dump;
2474                 }
2475         }
2476
2477         return 0;
2478
2479 error_dump:
2480         ubifs_msg("dumping first node");
2481         ubifs_dump_node(c, sa->node);
2482         ubifs_msg("dumping second node");
2483         ubifs_dump_node(c, sb->node);
2484         return -EINVAL;
2485         return 0;
2486 }
2487
2488 static inline int chance(unsigned int n, unsigned int out_of)
2489 {
2490         return !!((prandom_u32() % out_of) + 1 <= n);
2491
2492 }
2493
2494 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2495 {
2496         struct ubifs_debug_info *d = c->dbg;
2497
2498         ubifs_assert(dbg_is_tst_rcvry(c));
2499
2500         if (!d->pc_cnt) {
2501                 /* First call - decide delay to the power cut */
2502                 if (chance(1, 2)) {
2503                         unsigned long delay;
2504
2505                         if (chance(1, 2)) {
2506                                 d->pc_delay = 1;
2507                                 /* Fail withing 1 minute */
2508                                 delay = prandom_u32() % 60000;
2509                                 d->pc_timeout = jiffies;
2510                                 d->pc_timeout += msecs_to_jiffies(delay);
2511                                 ubifs_warn("failing after %lums", delay);
2512                         } else {
2513                                 d->pc_delay = 2;
2514                                 delay = prandom_u32() % 10000;
2515                                 /* Fail within 10000 operations */
2516                                 d->pc_cnt_max = delay;
2517                                 ubifs_warn("failing after %lu calls", delay);
2518                         }
2519                 }
2520
2521                 d->pc_cnt += 1;
2522         }
2523
2524         /* Determine if failure delay has expired */
2525         if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2526                         return 0;
2527         if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2528                         return 0;
2529
2530         if (lnum == UBIFS_SB_LNUM) {
2531                 if (write && chance(1, 2))
2532                         return 0;
2533                 if (chance(19, 20))
2534                         return 0;
2535                 ubifs_warn("failing in super block LEB %d", lnum);
2536         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2537                 if (chance(19, 20))
2538                         return 0;
2539                 ubifs_warn("failing in master LEB %d", lnum);
2540         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2541                 if (write && chance(99, 100))
2542                         return 0;
2543                 if (chance(399, 400))
2544                         return 0;
2545                 ubifs_warn("failing in log LEB %d", lnum);
2546         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2547                 if (write && chance(7, 8))
2548                         return 0;
2549                 if (chance(19, 20))
2550                         return 0;
2551                 ubifs_warn("failing in LPT LEB %d", lnum);
2552         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2553                 if (write && chance(1, 2))
2554                         return 0;
2555                 if (chance(9, 10))
2556                         return 0;
2557                 ubifs_warn("failing in orphan LEB %d", lnum);
2558         } else if (lnum == c->ihead_lnum) {
2559                 if (chance(99, 100))
2560                         return 0;
2561                 ubifs_warn("failing in index head LEB %d", lnum);
2562         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2563                 if (chance(9, 10))
2564                         return 0;
2565                 ubifs_warn("failing in GC head LEB %d", lnum);
2566         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2567                    !ubifs_search_bud(c, lnum)) {
2568                 if (chance(19, 20))
2569                         return 0;
2570                 ubifs_warn("failing in non-bud LEB %d", lnum);
2571         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2572                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2573                 if (chance(999, 1000))
2574                         return 0;
2575                 ubifs_warn("failing in bud LEB %d commit running", lnum);
2576         } else {
2577                 if (chance(9999, 10000))
2578                         return 0;
2579                 ubifs_warn("failing in bud LEB %d commit not running", lnum);
2580         }
2581
2582         d->pc_happened = 1;
2583         ubifs_warn("========== Power cut emulated ==========");
2584         dump_stack();
2585         return 1;
2586 }
2587
2588 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2589                         unsigned int len)
2590 {
2591         unsigned int from, to, ffs = chance(1, 2);
2592         unsigned char *p = (void *)buf;
2593
2594         from = prandom_u32() % len;
2595         /* Corruption span max to end of write unit */
2596         to = min(len, ALIGN(from + 1, c->max_write_size));
2597
2598         ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2599                    ffs ? "0xFFs" : "random data");
2600
2601         if (ffs)
2602                 memset(p + from, 0xFF, to - from);
2603         else
2604                 prandom_bytes(p + from, to - from);
2605
2606         return to;
2607 }
2608
2609 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2610                   int offs, int len)
2611 {
2612         int err, failing;
2613
2614         if (c->dbg->pc_happened)
2615                 return -EROFS;
2616
2617         failing = power_cut_emulated(c, lnum, 1);
2618         if (failing) {
2619                 len = corrupt_data(c, buf, len);
2620                 ubifs_warn("actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2621                            len, lnum, offs);
2622         }
2623         err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2624         if (err)
2625                 return err;
2626         if (failing)
2627                 return -EROFS;
2628         return 0;
2629 }
2630
2631 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2632                    int len)
2633 {
2634         int err;
2635
2636         if (c->dbg->pc_happened)
2637                 return -EROFS;
2638         if (power_cut_emulated(c, lnum, 1))
2639                 return -EROFS;
2640         err = ubi_leb_change(c->ubi, lnum, buf, len);
2641         if (err)
2642                 return err;
2643         if (power_cut_emulated(c, lnum, 1))
2644                 return -EROFS;
2645         return 0;
2646 }
2647
2648 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2649 {
2650         int err;
2651
2652         if (c->dbg->pc_happened)
2653                 return -EROFS;
2654         if (power_cut_emulated(c, lnum, 0))
2655                 return -EROFS;
2656         err = ubi_leb_unmap(c->ubi, lnum);
2657         if (err)
2658                 return err;
2659         if (power_cut_emulated(c, lnum, 0))
2660                 return -EROFS;
2661         return 0;
2662 }
2663
2664 int dbg_leb_map(struct ubifs_info *c, int lnum)
2665 {
2666         int err;
2667
2668         if (c->dbg->pc_happened)
2669                 return -EROFS;
2670         if (power_cut_emulated(c, lnum, 0))
2671                 return -EROFS;
2672         err = ubi_leb_map(c->ubi, lnum);
2673         if (err)
2674                 return err;
2675         if (power_cut_emulated(c, lnum, 0))
2676                 return -EROFS;
2677         return 0;
2678 }
2679
2680 /*
2681  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2682  * contain the stuff specific to particular file-system mounts.
2683  */
2684 static struct dentry *dfs_rootdir;
2685
2686 static int dfs_file_open(struct inode *inode, struct file *file)
2687 {
2688         file->private_data = inode->i_private;
2689         return nonseekable_open(inode, file);
2690 }
2691
2692 /**
2693  * provide_user_output - provide output to the user reading a debugfs file.
2694  * @val: boolean value for the answer
2695  * @u: the buffer to store the answer at
2696  * @count: size of the buffer
2697  * @ppos: position in the @u output buffer
2698  *
2699  * This is a simple helper function which stores @val boolean value in the user
2700  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2701  * bytes written to @u in case of success and a negative error code in case of
2702  * failure.
2703  */
2704 static int provide_user_output(int val, char __user *u, size_t count,
2705                                loff_t *ppos)
2706 {
2707         char buf[3];
2708
2709         if (val)
2710                 buf[0] = '1';
2711         else
2712                 buf[0] = '0';
2713         buf[1] = '\n';
2714         buf[2] = 0x00;
2715
2716         return simple_read_from_buffer(u, count, ppos, buf, 2);
2717 }
2718
2719 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2720                              loff_t *ppos)
2721 {
2722         struct dentry *dent = file->f_path.dentry;
2723         struct ubifs_info *c = file->private_data;
2724         struct ubifs_debug_info *d = c->dbg;
2725         int val;
2726
2727         if (dent == d->dfs_chk_gen)
2728                 val = d->chk_gen;
2729         else if (dent == d->dfs_chk_index)
2730                 val = d->chk_index;
2731         else if (dent == d->dfs_chk_orph)
2732                 val = d->chk_orph;
2733         else if (dent == d->dfs_chk_lprops)
2734                 val = d->chk_lprops;
2735         else if (dent == d->dfs_chk_fs)
2736                 val = d->chk_fs;
2737         else if (dent == d->dfs_tst_rcvry)
2738                 val = d->tst_rcvry;
2739         else if (dent == d->dfs_ro_error)
2740                 val = c->ro_error;
2741         else
2742                 return -EINVAL;
2743
2744         return provide_user_output(val, u, count, ppos);
2745 }
2746
2747 /**
2748  * interpret_user_input - interpret user debugfs file input.
2749  * @u: user-provided buffer with the input
2750  * @count: buffer size
2751  *
2752  * This is a helper function which interpret user input to a boolean UBIFS
2753  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2754  * in case of failure.
2755  */
2756 static int interpret_user_input(const char __user *u, size_t count)
2757 {
2758         size_t buf_size;
2759         char buf[8];
2760
2761         buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2762         if (copy_from_user(buf, u, buf_size))
2763                 return -EFAULT;
2764
2765         if (buf[0] == '1')
2766                 return 1;
2767         else if (buf[0] == '0')
2768                 return 0;
2769
2770         return -EINVAL;
2771 }
2772
2773 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2774                               size_t count, loff_t *ppos)
2775 {
2776         struct ubifs_info *c = file->private_data;
2777         struct ubifs_debug_info *d = c->dbg;
2778         struct dentry *dent = file->f_path.dentry;
2779         int val;
2780
2781         /*
2782          * TODO: this is racy - the file-system might have already been
2783          * unmounted and we'd oops in this case. The plan is to fix it with
2784          * help of 'iterate_supers_type()' which we should have in v3.0: when
2785          * a debugfs opened, we rember FS's UUID in file->private_data. Then
2786          * whenever we access the FS via a debugfs file, we iterate all UBIFS
2787          * superblocks and fine the one with the same UUID, and take the
2788          * locking right.
2789          *
2790          * The other way to go suggested by Al Viro is to create a separate
2791          * 'ubifs-debug' file-system instead.
2792          */
2793         if (file->f_path.dentry == d->dfs_dump_lprops) {
2794                 ubifs_dump_lprops(c);
2795                 return count;
2796         }
2797         if (file->f_path.dentry == d->dfs_dump_budg) {
2798                 ubifs_dump_budg(c, &c->bi);
2799                 return count;
2800         }
2801         if (file->f_path.dentry == d->dfs_dump_tnc) {
2802                 mutex_lock(&c->tnc_mutex);
2803                 ubifs_dump_tnc(c);
2804                 mutex_unlock(&c->tnc_mutex);
2805                 return count;
2806         }
2807
2808         val = interpret_user_input(u, count);
2809         if (val < 0)
2810                 return val;
2811
2812         if (dent == d->dfs_chk_gen)
2813                 d->chk_gen = val;
2814         else if (dent == d->dfs_chk_index)
2815                 d->chk_index = val;
2816         else if (dent == d->dfs_chk_orph)
2817                 d->chk_orph = val;
2818         else if (dent == d->dfs_chk_lprops)
2819                 d->chk_lprops = val;
2820         else if (dent == d->dfs_chk_fs)
2821                 d->chk_fs = val;
2822         else if (dent == d->dfs_tst_rcvry)
2823                 d->tst_rcvry = val;
2824         else if (dent == d->dfs_ro_error)
2825                 c->ro_error = !!val;
2826         else
2827                 return -EINVAL;
2828
2829         return count;
2830 }
2831
2832 static const struct file_operations dfs_fops = {
2833         .open = dfs_file_open,
2834         .read = dfs_file_read,
2835         .write = dfs_file_write,
2836         .owner = THIS_MODULE,
2837         .llseek = no_llseek,
2838 };
2839
2840 /**
2841  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2842  * @c: UBIFS file-system description object
2843  *
2844  * This function creates all debugfs files for this instance of UBIFS. Returns
2845  * zero in case of success and a negative error code in case of failure.
2846  *
2847  * Note, the only reason we have not merged this function with the
2848  * 'ubifs_debugging_init()' function is because it is better to initialize
2849  * debugfs interfaces at the very end of the mount process, and remove them at
2850  * the very beginning of the mount process.
2851  */
2852 int dbg_debugfs_init_fs(struct ubifs_info *c)
2853 {
2854         int err, n;
2855         const char *fname;
2856         struct dentry *dent;
2857         struct ubifs_debug_info *d = c->dbg;
2858
2859         if (!IS_ENABLED(CONFIG_DEBUG_FS))
2860                 return 0;
2861
2862         n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2863                      c->vi.ubi_num, c->vi.vol_id);
2864         if (n == UBIFS_DFS_DIR_LEN) {
2865                 /* The array size is too small */
2866                 fname = UBIFS_DFS_DIR_NAME;
2867                 dent = ERR_PTR(-EINVAL);
2868                 goto out;
2869         }
2870
2871         fname = d->dfs_dir_name;
2872         dent = debugfs_create_dir(fname, dfs_rootdir);
2873         if (IS_ERR_OR_NULL(dent))
2874                 goto out;
2875         d->dfs_dir = dent;
2876
2877         fname = "dump_lprops";
2878         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2879         if (IS_ERR_OR_NULL(dent))
2880                 goto out_remove;
2881         d->dfs_dump_lprops = dent;
2882
2883         fname = "dump_budg";
2884         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2885         if (IS_ERR_OR_NULL(dent))
2886                 goto out_remove;
2887         d->dfs_dump_budg = dent;
2888
2889         fname = "dump_tnc";
2890         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2891         if (IS_ERR_OR_NULL(dent))
2892                 goto out_remove;
2893         d->dfs_dump_tnc = dent;
2894
2895         fname = "chk_general";
2896         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2897                                    &dfs_fops);
2898         if (IS_ERR_OR_NULL(dent))
2899                 goto out_remove;
2900         d->dfs_chk_gen = dent;
2901
2902         fname = "chk_index";
2903         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2904                                    &dfs_fops);
2905         if (IS_ERR_OR_NULL(dent))
2906                 goto out_remove;
2907         d->dfs_chk_index = dent;
2908
2909         fname = "chk_orphans";
2910         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2911                                    &dfs_fops);
2912         if (IS_ERR_OR_NULL(dent))
2913                 goto out_remove;
2914         d->dfs_chk_orph = dent;
2915
2916         fname = "chk_lprops";
2917         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2918                                    &dfs_fops);
2919         if (IS_ERR_OR_NULL(dent))
2920                 goto out_remove;
2921         d->dfs_chk_lprops = dent;
2922
2923         fname = "chk_fs";
2924         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2925                                    &dfs_fops);
2926         if (IS_ERR_OR_NULL(dent))
2927                 goto out_remove;
2928         d->dfs_chk_fs = dent;
2929
2930         fname = "tst_recovery";
2931         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2932                                    &dfs_fops);
2933         if (IS_ERR_OR_NULL(dent))
2934                 goto out_remove;
2935         d->dfs_tst_rcvry = dent;
2936
2937         fname = "ro_error";
2938         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2939                                    &dfs_fops);
2940         if (IS_ERR_OR_NULL(dent))
2941                 goto out_remove;
2942         d->dfs_ro_error = dent;
2943
2944         return 0;
2945
2946 out_remove:
2947         debugfs_remove_recursive(d->dfs_dir);
2948 out:
2949         err = dent ? PTR_ERR(dent) : -ENODEV;
2950         ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
2951                   fname, err);
2952         return err;
2953 }
2954
2955 /**
2956  * dbg_debugfs_exit_fs - remove all debugfs files.
2957  * @c: UBIFS file-system description object
2958  */
2959 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2960 {
2961         if (IS_ENABLED(CONFIG_DEBUG_FS))
2962                 debugfs_remove_recursive(c->dbg->dfs_dir);
2963 }
2964
2965 struct ubifs_global_debug_info ubifs_dbg;
2966
2967 static struct dentry *dfs_chk_gen;
2968 static struct dentry *dfs_chk_index;
2969 static struct dentry *dfs_chk_orph;
2970 static struct dentry *dfs_chk_lprops;
2971 static struct dentry *dfs_chk_fs;
2972 static struct dentry *dfs_tst_rcvry;
2973
2974 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2975                                     size_t count, loff_t *ppos)
2976 {
2977         struct dentry *dent = file->f_path.dentry;
2978         int val;
2979
2980         if (dent == dfs_chk_gen)
2981                 val = ubifs_dbg.chk_gen;
2982         else if (dent == dfs_chk_index)
2983                 val = ubifs_dbg.chk_index;
2984         else if (dent == dfs_chk_orph)
2985                 val = ubifs_dbg.chk_orph;
2986         else if (dent == dfs_chk_lprops)
2987                 val = ubifs_dbg.chk_lprops;
2988         else if (dent == dfs_chk_fs)
2989                 val = ubifs_dbg.chk_fs;
2990         else if (dent == dfs_tst_rcvry)
2991                 val = ubifs_dbg.tst_rcvry;
2992         else
2993                 return -EINVAL;
2994
2995         return provide_user_output(val, u, count, ppos);
2996 }
2997
2998 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2999                                      size_t count, loff_t *ppos)
3000 {
3001         struct dentry *dent = file->f_path.dentry;
3002         int val;
3003
3004         val = interpret_user_input(u, count);
3005         if (val < 0)
3006                 return val;
3007
3008         if (dent == dfs_chk_gen)
3009                 ubifs_dbg.chk_gen = val;
3010         else if (dent == dfs_chk_index)
3011                 ubifs_dbg.chk_index = val;
3012         else if (dent == dfs_chk_orph)
3013                 ubifs_dbg.chk_orph = val;
3014         else if (dent == dfs_chk_lprops)
3015                 ubifs_dbg.chk_lprops = val;
3016         else if (dent == dfs_chk_fs)
3017                 ubifs_dbg.chk_fs = val;
3018         else if (dent == dfs_tst_rcvry)
3019                 ubifs_dbg.tst_rcvry = val;
3020         else
3021                 return -EINVAL;
3022
3023         return count;
3024 }
3025
3026 static const struct file_operations dfs_global_fops = {
3027         .read = dfs_global_file_read,
3028         .write = dfs_global_file_write,
3029         .owner = THIS_MODULE,
3030         .llseek = no_llseek,
3031 };
3032
3033 /**
3034  * dbg_debugfs_init - initialize debugfs file-system.
3035  *
3036  * UBIFS uses debugfs file-system to expose various debugging knobs to
3037  * user-space. This function creates "ubifs" directory in the debugfs
3038  * file-system. Returns zero in case of success and a negative error code in
3039  * case of failure.
3040  */
3041 int dbg_debugfs_init(void)
3042 {
3043         int err;
3044         const char *fname;
3045         struct dentry *dent;
3046
3047         if (!IS_ENABLED(CONFIG_DEBUG_FS))
3048                 return 0;
3049
3050         fname = "ubifs";
3051         dent = debugfs_create_dir(fname, NULL);
3052         if (IS_ERR_OR_NULL(dent))
3053                 goto out;
3054         dfs_rootdir = dent;
3055
3056         fname = "chk_general";
3057         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3058                                    &dfs_global_fops);
3059         if (IS_ERR_OR_NULL(dent))
3060                 goto out_remove;
3061         dfs_chk_gen = dent;
3062
3063         fname = "chk_index";
3064         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3065                                    &dfs_global_fops);
3066         if (IS_ERR_OR_NULL(dent))
3067                 goto out_remove;
3068         dfs_chk_index = dent;
3069
3070         fname = "chk_orphans";
3071         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3072                                    &dfs_global_fops);
3073         if (IS_ERR_OR_NULL(dent))
3074                 goto out_remove;
3075         dfs_chk_orph = dent;
3076
3077         fname = "chk_lprops";
3078         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3079                                    &dfs_global_fops);
3080         if (IS_ERR_OR_NULL(dent))
3081                 goto out_remove;
3082         dfs_chk_lprops = dent;
3083
3084         fname = "chk_fs";
3085         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3086                                    &dfs_global_fops);
3087         if (IS_ERR_OR_NULL(dent))
3088                 goto out_remove;
3089         dfs_chk_fs = dent;
3090
3091         fname = "tst_recovery";
3092         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3093                                    &dfs_global_fops);
3094         if (IS_ERR_OR_NULL(dent))
3095                 goto out_remove;
3096         dfs_tst_rcvry = dent;
3097
3098         return 0;
3099
3100 out_remove:
3101         debugfs_remove_recursive(dfs_rootdir);
3102 out:
3103         err = dent ? PTR_ERR(dent) : -ENODEV;
3104         ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3105                   fname, err);
3106         return err;
3107 }
3108
3109 /**
3110  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3111  */
3112 void dbg_debugfs_exit(void)
3113 {
3114         if (IS_ENABLED(CONFIG_DEBUG_FS))
3115                 debugfs_remove_recursive(dfs_rootdir);
3116 }
3117
3118 /**
3119  * ubifs_debugging_init - initialize UBIFS debugging.
3120  * @c: UBIFS file-system description object
3121  *
3122  * This function initializes debugging-related data for the file system.
3123  * Returns zero in case of success and a negative error code in case of
3124  * failure.
3125  */
3126 int ubifs_debugging_init(struct ubifs_info *c)
3127 {
3128         c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3129         if (!c->dbg)
3130                 return -ENOMEM;
3131
3132         return 0;
3133 }
3134
3135 /**
3136  * ubifs_debugging_exit - free debugging data.
3137  * @c: UBIFS file-system description object
3138  */
3139 void ubifs_debugging_exit(struct ubifs_info *c)
3140 {
3141         kfree(c->dbg);
3142 }
3143 #endif