]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - fs/ubifs/debug.c
Merge branch 'master' of git://git.denx.de/u-boot-arm
[karo-tx-uboot.git] / fs / ubifs / debug.c
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * SPDX-License-Identifier:     GPL-2.0+
7  *
8  * Authors: Artem Bityutskiy (Битюцкий Артём)
9  *          Adrian Hunter
10  */
11
12 /*
13  * This file implements most of the debugging stuff which is compiled in only
14  * when it is enabled. But some debugging check functions are implemented in
15  * corresponding subsystem, just because they are closely related and utilize
16  * various local functions of those subsystems.
17  */
18
19 #ifndef __UBOOT__
20 #include <linux/module.h>
21 #include <linux/debugfs.h>
22 #include <linux/math64.h>
23 #include <linux/uaccess.h>
24 #include <linux/random.h>
25 #else
26 #include <linux/compat.h>
27 #include <linux/err.h>
28 #endif
29 #include "ubifs.h"
30
31 #ifndef __UBOOT__
32 static DEFINE_SPINLOCK(dbg_lock);
33 #endif
34
35 static const char *get_key_fmt(int fmt)
36 {
37         switch (fmt) {
38         case UBIFS_SIMPLE_KEY_FMT:
39                 return "simple";
40         default:
41                 return "unknown/invalid format";
42         }
43 }
44
45 static const char *get_key_hash(int hash)
46 {
47         switch (hash) {
48         case UBIFS_KEY_HASH_R5:
49                 return "R5";
50         case UBIFS_KEY_HASH_TEST:
51                 return "test";
52         default:
53                 return "unknown/invalid name hash";
54         }
55 }
56
57 static const char *get_key_type(int type)
58 {
59         switch (type) {
60         case UBIFS_INO_KEY:
61                 return "inode";
62         case UBIFS_DENT_KEY:
63                 return "direntry";
64         case UBIFS_XENT_KEY:
65                 return "xentry";
66         case UBIFS_DATA_KEY:
67                 return "data";
68         case UBIFS_TRUN_KEY:
69                 return "truncate";
70         default:
71                 return "unknown/invalid key";
72         }
73 }
74
75 #ifndef __UBOOT__
76 static const char *get_dent_type(int type)
77 {
78         switch (type) {
79         case UBIFS_ITYPE_REG:
80                 return "file";
81         case UBIFS_ITYPE_DIR:
82                 return "dir";
83         case UBIFS_ITYPE_LNK:
84                 return "symlink";
85         case UBIFS_ITYPE_BLK:
86                 return "blkdev";
87         case UBIFS_ITYPE_CHR:
88                 return "char dev";
89         case UBIFS_ITYPE_FIFO:
90                 return "fifo";
91         case UBIFS_ITYPE_SOCK:
92                 return "socket";
93         default:
94                 return "unknown/invalid type";
95         }
96 }
97 #endif
98
99 const char *dbg_snprintf_key(const struct ubifs_info *c,
100                              const union ubifs_key *key, char *buffer, int len)
101 {
102         char *p = buffer;
103         int type = key_type(c, key);
104
105         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
106                 switch (type) {
107                 case UBIFS_INO_KEY:
108                         len -= snprintf(p, len, "(%lu, %s)",
109                                         (unsigned long)key_inum(c, key),
110                                         get_key_type(type));
111                         break;
112                 case UBIFS_DENT_KEY:
113                 case UBIFS_XENT_KEY:
114                         len -= snprintf(p, len, "(%lu, %s, %#08x)",
115                                         (unsigned long)key_inum(c, key),
116                                         get_key_type(type), key_hash(c, key));
117                         break;
118                 case UBIFS_DATA_KEY:
119                         len -= snprintf(p, len, "(%lu, %s, %u)",
120                                         (unsigned long)key_inum(c, key),
121                                         get_key_type(type), key_block(c, key));
122                         break;
123                 case UBIFS_TRUN_KEY:
124                         len -= snprintf(p, len, "(%lu, %s)",
125                                         (unsigned long)key_inum(c, key),
126                                         get_key_type(type));
127                         break;
128                 default:
129                         len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
130                                         key->u32[0], key->u32[1]);
131                 }
132         } else
133                 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
134         ubifs_assert(len > 0);
135         return p;
136 }
137
138 const char *dbg_ntype(int type)
139 {
140         switch (type) {
141         case UBIFS_PAD_NODE:
142                 return "padding node";
143         case UBIFS_SB_NODE:
144                 return "superblock node";
145         case UBIFS_MST_NODE:
146                 return "master node";
147         case UBIFS_REF_NODE:
148                 return "reference node";
149         case UBIFS_INO_NODE:
150                 return "inode node";
151         case UBIFS_DENT_NODE:
152                 return "direntry node";
153         case UBIFS_XENT_NODE:
154                 return "xentry node";
155         case UBIFS_DATA_NODE:
156                 return "data node";
157         case UBIFS_TRUN_NODE:
158                 return "truncate node";
159         case UBIFS_IDX_NODE:
160                 return "indexing node";
161         case UBIFS_CS_NODE:
162                 return "commit start node";
163         case UBIFS_ORPH_NODE:
164                 return "orphan node";
165         default:
166                 return "unknown node";
167         }
168 }
169
170 static const char *dbg_gtype(int type)
171 {
172         switch (type) {
173         case UBIFS_NO_NODE_GROUP:
174                 return "no node group";
175         case UBIFS_IN_NODE_GROUP:
176                 return "in node group";
177         case UBIFS_LAST_OF_NODE_GROUP:
178                 return "last of node group";
179         default:
180                 return "unknown";
181         }
182 }
183
184 const char *dbg_cstate(int cmt_state)
185 {
186         switch (cmt_state) {
187         case COMMIT_RESTING:
188                 return "commit resting";
189         case COMMIT_BACKGROUND:
190                 return "background commit requested";
191         case COMMIT_REQUIRED:
192                 return "commit required";
193         case COMMIT_RUNNING_BACKGROUND:
194                 return "BACKGROUND commit running";
195         case COMMIT_RUNNING_REQUIRED:
196                 return "commit running and required";
197         case COMMIT_BROKEN:
198                 return "broken commit";
199         default:
200                 return "unknown commit state";
201         }
202 }
203
204 const char *dbg_jhead(int jhead)
205 {
206         switch (jhead) {
207         case GCHD:
208                 return "0 (GC)";
209         case BASEHD:
210                 return "1 (base)";
211         case DATAHD:
212                 return "2 (data)";
213         default:
214                 return "unknown journal head";
215         }
216 }
217
218 static void dump_ch(const struct ubifs_ch *ch)
219 {
220         pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
221         pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
222         pr_err("\tnode_type      %d (%s)\n", ch->node_type,
223                dbg_ntype(ch->node_type));
224         pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
225                dbg_gtype(ch->group_type));
226         pr_err("\tsqnum          %llu\n",
227                (unsigned long long)le64_to_cpu(ch->sqnum));
228         pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
229 }
230
231 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
232 {
233 #ifndef __UBOOT__
234         const struct ubifs_inode *ui = ubifs_inode(inode);
235         struct qstr nm = { .name = NULL };
236         union ubifs_key key;
237         struct ubifs_dent_node *dent, *pdent = NULL;
238         int count = 2;
239
240         pr_err("Dump in-memory inode:");
241         pr_err("\tinode          %lu\n", inode->i_ino);
242         pr_err("\tsize           %llu\n",
243                (unsigned long long)i_size_read(inode));
244         pr_err("\tnlink          %u\n", inode->i_nlink);
245         pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
246         pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
247         pr_err("\tatime          %u.%u\n",
248                (unsigned int)inode->i_atime.tv_sec,
249                (unsigned int)inode->i_atime.tv_nsec);
250         pr_err("\tmtime          %u.%u\n",
251                (unsigned int)inode->i_mtime.tv_sec,
252                (unsigned int)inode->i_mtime.tv_nsec);
253         pr_err("\tctime          %u.%u\n",
254                (unsigned int)inode->i_ctime.tv_sec,
255                (unsigned int)inode->i_ctime.tv_nsec);
256         pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
257         pr_err("\txattr_size     %u\n", ui->xattr_size);
258         pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
259         pr_err("\txattr_names    %u\n", ui->xattr_names);
260         pr_err("\tdirty          %u\n", ui->dirty);
261         pr_err("\txattr          %u\n", ui->xattr);
262         pr_err("\tbulk_read      %u\n", ui->xattr);
263         pr_err("\tsynced_i_size  %llu\n",
264                (unsigned long long)ui->synced_i_size);
265         pr_err("\tui_size        %llu\n",
266                (unsigned long long)ui->ui_size);
267         pr_err("\tflags          %d\n", ui->flags);
268         pr_err("\tcompr_type     %d\n", ui->compr_type);
269         pr_err("\tlast_page_read %lu\n", ui->last_page_read);
270         pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
271         pr_err("\tdata_len       %d\n", ui->data_len);
272
273         if (!S_ISDIR(inode->i_mode))
274                 return;
275
276         pr_err("List of directory entries:\n");
277         ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
278
279         lowest_dent_key(c, &key, inode->i_ino);
280         while (1) {
281                 dent = ubifs_tnc_next_ent(c, &key, &nm);
282                 if (IS_ERR(dent)) {
283                         if (PTR_ERR(dent) != -ENOENT)
284                                 pr_err("error %ld\n", PTR_ERR(dent));
285                         break;
286                 }
287
288                 pr_err("\t%d: %s (%s)\n",
289                        count++, dent->name, get_dent_type(dent->type));
290
291                 nm.name = dent->name;
292                 nm.len = le16_to_cpu(dent->nlen);
293                 kfree(pdent);
294                 pdent = dent;
295                 key_read(c, &dent->key, &key);
296         }
297         kfree(pdent);
298 #endif
299 }
300
301 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
302 {
303         int i, n;
304         union ubifs_key key;
305         const struct ubifs_ch *ch = node;
306         char key_buf[DBG_KEY_BUF_LEN];
307
308         /* If the magic is incorrect, just hexdump the first bytes */
309         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
310                 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
311                 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
312                                (void *)node, UBIFS_CH_SZ, 1);
313                 return;
314         }
315
316         spin_lock(&dbg_lock);
317         dump_ch(node);
318
319         switch (ch->node_type) {
320         case UBIFS_PAD_NODE:
321         {
322                 const struct ubifs_pad_node *pad = node;
323
324                 pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
325                 break;
326         }
327         case UBIFS_SB_NODE:
328         {
329                 const struct ubifs_sb_node *sup = node;
330                 unsigned int sup_flags = le32_to_cpu(sup->flags);
331
332                 pr_err("\tkey_hash       %d (%s)\n",
333                        (int)sup->key_hash, get_key_hash(sup->key_hash));
334                 pr_err("\tkey_fmt        %d (%s)\n",
335                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
336                 pr_err("\tflags          %#x\n", sup_flags);
337                 pr_err("\t  big_lpt      %u\n",
338                        !!(sup_flags & UBIFS_FLG_BIGLPT));
339                 pr_err("\t  space_fixup  %u\n",
340                        !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
341                 pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
342                 pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
343                 pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
344                 pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
345                 pr_err("\tmax_bud_bytes  %llu\n",
346                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
347                 pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
348                 pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
349                 pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
350                 pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
351                 pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
352                 pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
353                 pr_err("\tdefault_compr  %u\n",
354                        (int)le16_to_cpu(sup->default_compr));
355                 pr_err("\trp_size        %llu\n",
356                        (unsigned long long)le64_to_cpu(sup->rp_size));
357                 pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
358                 pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
359                 pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
360                 pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
361                 pr_err("\tUUID           %pUB\n", sup->uuid);
362                 break;
363         }
364         case UBIFS_MST_NODE:
365         {
366                 const struct ubifs_mst_node *mst = node;
367
368                 pr_err("\thighest_inum   %llu\n",
369                        (unsigned long long)le64_to_cpu(mst->highest_inum));
370                 pr_err("\tcommit number  %llu\n",
371                        (unsigned long long)le64_to_cpu(mst->cmt_no));
372                 pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
373                 pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
374                 pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
375                 pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
376                 pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
377                 pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
378                 pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
379                 pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
380                 pr_err("\tindex_size     %llu\n",
381                        (unsigned long long)le64_to_cpu(mst->index_size));
382                 pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
383                 pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
384                 pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
385                 pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
386                 pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
387                 pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
388                 pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
389                 pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
390                 pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
391                 pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
392                 pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
393                 pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
394                 pr_err("\ttotal_free     %llu\n",
395                        (unsigned long long)le64_to_cpu(mst->total_free));
396                 pr_err("\ttotal_dirty    %llu\n",
397                        (unsigned long long)le64_to_cpu(mst->total_dirty));
398                 pr_err("\ttotal_used     %llu\n",
399                        (unsigned long long)le64_to_cpu(mst->total_used));
400                 pr_err("\ttotal_dead     %llu\n",
401                        (unsigned long long)le64_to_cpu(mst->total_dead));
402                 pr_err("\ttotal_dark     %llu\n",
403                        (unsigned long long)le64_to_cpu(mst->total_dark));
404                 break;
405         }
406         case UBIFS_REF_NODE:
407         {
408                 const struct ubifs_ref_node *ref = node;
409
410                 pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
411                 pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
412                 pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
413                 break;
414         }
415         case UBIFS_INO_NODE:
416         {
417                 const struct ubifs_ino_node *ino = node;
418
419                 key_read(c, &ino->key, &key);
420                 pr_err("\tkey            %s\n",
421                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
422                 pr_err("\tcreat_sqnum    %llu\n",
423                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
424                 pr_err("\tsize           %llu\n",
425                        (unsigned long long)le64_to_cpu(ino->size));
426                 pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
427                 pr_err("\tatime          %lld.%u\n",
428                        (long long)le64_to_cpu(ino->atime_sec),
429                        le32_to_cpu(ino->atime_nsec));
430                 pr_err("\tmtime          %lld.%u\n",
431                        (long long)le64_to_cpu(ino->mtime_sec),
432                        le32_to_cpu(ino->mtime_nsec));
433                 pr_err("\tctime          %lld.%u\n",
434                        (long long)le64_to_cpu(ino->ctime_sec),
435                        le32_to_cpu(ino->ctime_nsec));
436                 pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
437                 pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
438                 pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
439                 pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
440                 pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
441                 pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
442                 pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
443                 pr_err("\tcompr_type     %#x\n",
444                        (int)le16_to_cpu(ino->compr_type));
445                 pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
446                 break;
447         }
448         case UBIFS_DENT_NODE:
449         case UBIFS_XENT_NODE:
450         {
451                 const struct ubifs_dent_node *dent = node;
452                 int nlen = le16_to_cpu(dent->nlen);
453
454                 key_read(c, &dent->key, &key);
455                 pr_err("\tkey            %s\n",
456                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
457                 pr_err("\tinum           %llu\n",
458                        (unsigned long long)le64_to_cpu(dent->inum));
459                 pr_err("\ttype           %d\n", (int)dent->type);
460                 pr_err("\tnlen           %d\n", nlen);
461                 pr_err("\tname           ");
462
463                 if (nlen > UBIFS_MAX_NLEN)
464                         pr_err("(bad name length, not printing, bad or corrupted node)");
465                 else {
466                         for (i = 0; i < nlen && dent->name[i]; i++)
467                                 pr_cont("%c", dent->name[i]);
468                 }
469                 pr_cont("\n");
470
471                 break;
472         }
473         case UBIFS_DATA_NODE:
474         {
475                 const struct ubifs_data_node *dn = node;
476                 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
477
478                 key_read(c, &dn->key, &key);
479                 pr_err("\tkey            %s\n",
480                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
481                 pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
482                 pr_err("\tcompr_typ      %d\n",
483                        (int)le16_to_cpu(dn->compr_type));
484                 pr_err("\tdata size      %d\n", dlen);
485                 pr_err("\tdata:\n");
486                 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
487                                (void *)&dn->data, dlen, 0);
488                 break;
489         }
490         case UBIFS_TRUN_NODE:
491         {
492                 const struct ubifs_trun_node *trun = node;
493
494                 pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
495                 pr_err("\told_size       %llu\n",
496                        (unsigned long long)le64_to_cpu(trun->old_size));
497                 pr_err("\tnew_size       %llu\n",
498                        (unsigned long long)le64_to_cpu(trun->new_size));
499                 break;
500         }
501         case UBIFS_IDX_NODE:
502         {
503                 const struct ubifs_idx_node *idx = node;
504
505                 n = le16_to_cpu(idx->child_cnt);
506                 pr_err("\tchild_cnt      %d\n", n);
507                 pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
508                 pr_err("\tBranches:\n");
509
510                 for (i = 0; i < n && i < c->fanout - 1; i++) {
511                         const struct ubifs_branch *br;
512
513                         br = ubifs_idx_branch(c, idx, i);
514                         key_read(c, &br->key, &key);
515                         pr_err("\t%d: LEB %d:%d len %d key %s\n",
516                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
517                                le32_to_cpu(br->len),
518                                dbg_snprintf_key(c, &key, key_buf,
519                                                 DBG_KEY_BUF_LEN));
520                 }
521                 break;
522         }
523         case UBIFS_CS_NODE:
524                 break;
525         case UBIFS_ORPH_NODE:
526         {
527                 const struct ubifs_orph_node *orph = node;
528
529                 pr_err("\tcommit number  %llu\n",
530                        (unsigned long long)
531                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
532                 pr_err("\tlast node flag %llu\n",
533                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
534                 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
535                 pr_err("\t%d orphan inode numbers:\n", n);
536                 for (i = 0; i < n; i++)
537                         pr_err("\t  ino %llu\n",
538                                (unsigned long long)le64_to_cpu(orph->inos[i]));
539                 break;
540         }
541         default:
542                 pr_err("node type %d was not recognized\n",
543                        (int)ch->node_type);
544         }
545         spin_unlock(&dbg_lock);
546 }
547
548 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
549 {
550         spin_lock(&dbg_lock);
551         pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
552                req->new_ino, req->dirtied_ino);
553         pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
554                req->new_ino_d, req->dirtied_ino_d);
555         pr_err("\tnew_page    %d, dirtied_page %d\n",
556                req->new_page, req->dirtied_page);
557         pr_err("\tnew_dent    %d, mod_dent     %d\n",
558                req->new_dent, req->mod_dent);
559         pr_err("\tidx_growth  %d\n", req->idx_growth);
560         pr_err("\tdata_growth %d dd_growth     %d\n",
561                req->data_growth, req->dd_growth);
562         spin_unlock(&dbg_lock);
563 }
564
565 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
566 {
567         spin_lock(&dbg_lock);
568         pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
569                current->pid, lst->empty_lebs, lst->idx_lebs);
570         pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
571                lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
572         pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
573                lst->total_used, lst->total_dark, lst->total_dead);
574         spin_unlock(&dbg_lock);
575 }
576
577 #ifndef __UBOOT__
578 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
579 {
580         int i;
581         struct rb_node *rb;
582         struct ubifs_bud *bud;
583         struct ubifs_gced_idx_leb *idx_gc;
584         long long available, outstanding, free;
585
586         spin_lock(&c->space_lock);
587         spin_lock(&dbg_lock);
588         pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
589                current->pid, bi->data_growth + bi->dd_growth,
590                bi->data_growth + bi->dd_growth + bi->idx_growth);
591         pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
592                bi->data_growth, bi->dd_growth, bi->idx_growth);
593         pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
594                bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
595         pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
596                bi->page_budget, bi->inode_budget, bi->dent_budget);
597         pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
598         pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
599                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
600
601         if (bi != &c->bi)
602                 /*
603                  * If we are dumping saved budgeting data, do not print
604                  * additional information which is about the current state, not
605                  * the old one which corresponded to the saved budgeting data.
606                  */
607                 goto out_unlock;
608
609         pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
610                c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
611         pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
612                atomic_long_read(&c->dirty_pg_cnt),
613                atomic_long_read(&c->dirty_zn_cnt),
614                atomic_long_read(&c->clean_zn_cnt));
615         pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
616
617         /* If we are in R/O mode, journal heads do not exist */
618         if (c->jheads)
619                 for (i = 0; i < c->jhead_cnt; i++)
620                         pr_err("\tjhead %s\t LEB %d\n",
621                                dbg_jhead(c->jheads[i].wbuf.jhead),
622                                c->jheads[i].wbuf.lnum);
623         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
624                 bud = rb_entry(rb, struct ubifs_bud, rb);
625                 pr_err("\tbud LEB %d\n", bud->lnum);
626         }
627         list_for_each_entry(bud, &c->old_buds, list)
628                 pr_err("\told bud LEB %d\n", bud->lnum);
629         list_for_each_entry(idx_gc, &c->idx_gc, list)
630                 pr_err("\tGC'ed idx LEB %d unmap %d\n",
631                        idx_gc->lnum, idx_gc->unmap);
632         pr_err("\tcommit state %d\n", c->cmt_state);
633
634         /* Print budgeting predictions */
635         available = ubifs_calc_available(c, c->bi.min_idx_lebs);
636         outstanding = c->bi.data_growth + c->bi.dd_growth;
637         free = ubifs_get_free_space_nolock(c);
638         pr_err("Budgeting predictions:\n");
639         pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
640                available, outstanding, free);
641 out_unlock:
642         spin_unlock(&dbg_lock);
643         spin_unlock(&c->space_lock);
644 }
645 #else
646 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
647 {
648 }
649 #endif
650
651 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
652 {
653         int i, spc, dark = 0, dead = 0;
654         struct rb_node *rb;
655         struct ubifs_bud *bud;
656
657         spc = lp->free + lp->dirty;
658         if (spc < c->dead_wm)
659                 dead = spc;
660         else
661                 dark = ubifs_calc_dark(c, spc);
662
663         if (lp->flags & LPROPS_INDEX)
664                 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
665                        lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
666                        lp->flags);
667         else
668                 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
669                        lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
670                        dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
671
672         if (lp->flags & LPROPS_TAKEN) {
673                 if (lp->flags & LPROPS_INDEX)
674                         pr_cont("index, taken");
675                 else
676                         pr_cont("taken");
677         } else {
678                 const char *s;
679
680                 if (lp->flags & LPROPS_INDEX) {
681                         switch (lp->flags & LPROPS_CAT_MASK) {
682                         case LPROPS_DIRTY_IDX:
683                                 s = "dirty index";
684                                 break;
685                         case LPROPS_FRDI_IDX:
686                                 s = "freeable index";
687                                 break;
688                         default:
689                                 s = "index";
690                         }
691                 } else {
692                         switch (lp->flags & LPROPS_CAT_MASK) {
693                         case LPROPS_UNCAT:
694                                 s = "not categorized";
695                                 break;
696                         case LPROPS_DIRTY:
697                                 s = "dirty";
698                                 break;
699                         case LPROPS_FREE:
700                                 s = "free";
701                                 break;
702                         case LPROPS_EMPTY:
703                                 s = "empty";
704                                 break;
705                         case LPROPS_FREEABLE:
706                                 s = "freeable";
707                                 break;
708                         default:
709                                 s = NULL;
710                                 break;
711                         }
712                 }
713                 pr_cont("%s", s);
714         }
715
716         for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
717                 bud = rb_entry(rb, struct ubifs_bud, rb);
718                 if (bud->lnum == lp->lnum) {
719                         int head = 0;
720                         for (i = 0; i < c->jhead_cnt; i++) {
721                                 /*
722                                  * Note, if we are in R/O mode or in the middle
723                                  * of mounting/re-mounting, the write-buffers do
724                                  * not exist.
725                                  */
726                                 if (c->jheads &&
727                                     lp->lnum == c->jheads[i].wbuf.lnum) {
728                                         pr_cont(", jhead %s", dbg_jhead(i));
729                                         head = 1;
730                                 }
731                         }
732                         if (!head)
733                                 pr_cont(", bud of jhead %s",
734                                        dbg_jhead(bud->jhead));
735                 }
736         }
737         if (lp->lnum == c->gc_lnum)
738                 pr_cont(", GC LEB");
739         pr_cont(")\n");
740 }
741
742 void ubifs_dump_lprops(struct ubifs_info *c)
743 {
744         int lnum, err;
745         struct ubifs_lprops lp;
746         struct ubifs_lp_stats lst;
747
748         pr_err("(pid %d) start dumping LEB properties\n", current->pid);
749         ubifs_get_lp_stats(c, &lst);
750         ubifs_dump_lstats(&lst);
751
752         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
753                 err = ubifs_read_one_lp(c, lnum, &lp);
754                 if (err)
755                         ubifs_err("cannot read lprops for LEB %d", lnum);
756
757                 ubifs_dump_lprop(c, &lp);
758         }
759         pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
760 }
761
762 void ubifs_dump_lpt_info(struct ubifs_info *c)
763 {
764         int i;
765
766         spin_lock(&dbg_lock);
767         pr_err("(pid %d) dumping LPT information\n", current->pid);
768         pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
769         pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
770         pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
771         pr_err("\tltab_sz:       %d\n", c->ltab_sz);
772         pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
773         pr_err("\tbig_lpt:       %d\n", c->big_lpt);
774         pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
775         pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
776         pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
777         pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
778         pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
779         pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
780         pr_err("\tspace_bits:    %d\n", c->space_bits);
781         pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
782         pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
783         pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
784         pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
785         pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
786         pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
787         pr_err("\tLPT head is at %d:%d\n",
788                c->nhead_lnum, c->nhead_offs);
789         pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
790         if (c->big_lpt)
791                 pr_err("\tLPT lsave is at %d:%d\n",
792                        c->lsave_lnum, c->lsave_offs);
793         for (i = 0; i < c->lpt_lebs; i++)
794                 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
795                        i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
796                        c->ltab[i].tgc, c->ltab[i].cmt);
797         spin_unlock(&dbg_lock);
798 }
799
800 void ubifs_dump_sleb(const struct ubifs_info *c,
801                      const struct ubifs_scan_leb *sleb, int offs)
802 {
803         struct ubifs_scan_node *snod;
804
805         pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
806                current->pid, sleb->lnum, offs);
807
808         list_for_each_entry(snod, &sleb->nodes, list) {
809                 cond_resched();
810                 pr_err("Dumping node at LEB %d:%d len %d\n",
811                        sleb->lnum, snod->offs, snod->len);
812                 ubifs_dump_node(c, snod->node);
813         }
814 }
815
816 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
817 {
818         struct ubifs_scan_leb *sleb;
819         struct ubifs_scan_node *snod;
820         void *buf;
821
822         pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
823
824         buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
825         if (!buf) {
826                 ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
827                 return;
828         }
829
830         sleb = ubifs_scan(c, lnum, 0, buf, 0);
831         if (IS_ERR(sleb)) {
832                 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
833                 goto out;
834         }
835
836         pr_err("LEB %d has %d nodes ending at %d\n", lnum,
837                sleb->nodes_cnt, sleb->endpt);
838
839         list_for_each_entry(snod, &sleb->nodes, list) {
840                 cond_resched();
841                 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
842                        snod->offs, snod->len);
843                 ubifs_dump_node(c, snod->node);
844         }
845
846         pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
847         ubifs_scan_destroy(sleb);
848
849 out:
850         vfree(buf);
851         return;
852 }
853
854 void ubifs_dump_znode(const struct ubifs_info *c,
855                       const struct ubifs_znode *znode)
856 {
857         int n;
858         const struct ubifs_zbranch *zbr;
859         char key_buf[DBG_KEY_BUF_LEN];
860
861         spin_lock(&dbg_lock);
862         if (znode->parent)
863                 zbr = &znode->parent->zbranch[znode->iip];
864         else
865                 zbr = &c->zroot;
866
867         pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
868                znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
869                znode->level, znode->child_cnt, znode->flags);
870
871         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
872                 spin_unlock(&dbg_lock);
873                 return;
874         }
875
876         pr_err("zbranches:\n");
877         for (n = 0; n < znode->child_cnt; n++) {
878                 zbr = &znode->zbranch[n];
879                 if (znode->level > 0)
880                         pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
881                                n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
882                                dbg_snprintf_key(c, &zbr->key, key_buf,
883                                                 DBG_KEY_BUF_LEN));
884                 else
885                         pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
886                                n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
887                                dbg_snprintf_key(c, &zbr->key, key_buf,
888                                                 DBG_KEY_BUF_LEN));
889         }
890         spin_unlock(&dbg_lock);
891 }
892
893 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
894 {
895         int i;
896
897         pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
898                current->pid, cat, heap->cnt);
899         for (i = 0; i < heap->cnt; i++) {
900                 struct ubifs_lprops *lprops = heap->arr[i];
901
902                 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
903                        i, lprops->lnum, lprops->hpos, lprops->free,
904                        lprops->dirty, lprops->flags);
905         }
906         pr_err("(pid %d) finish dumping heap\n", current->pid);
907 }
908
909 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
910                       struct ubifs_nnode *parent, int iip)
911 {
912         int i;
913
914         pr_err("(pid %d) dumping pnode:\n", current->pid);
915         pr_err("\taddress %zx parent %zx cnext %zx\n",
916                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
917         pr_err("\tflags %lu iip %d level %d num %d\n",
918                pnode->flags, iip, pnode->level, pnode->num);
919         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
920                 struct ubifs_lprops *lp = &pnode->lprops[i];
921
922                 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
923                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
924         }
925 }
926
927 void ubifs_dump_tnc(struct ubifs_info *c)
928 {
929         struct ubifs_znode *znode;
930         int level;
931
932         pr_err("\n");
933         pr_err("(pid %d) start dumping TNC tree\n", current->pid);
934         znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
935         level = znode->level;
936         pr_err("== Level %d ==\n", level);
937         while (znode) {
938                 if (level != znode->level) {
939                         level = znode->level;
940                         pr_err("== Level %d ==\n", level);
941                 }
942                 ubifs_dump_znode(c, znode);
943                 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
944         }
945         pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
946 }
947
948 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
949                       void *priv)
950 {
951         ubifs_dump_znode(c, znode);
952         return 0;
953 }
954
955 /**
956  * ubifs_dump_index - dump the on-flash index.
957  * @c: UBIFS file-system description object
958  *
959  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
960  * which dumps only in-memory znodes and does not read znodes which from flash.
961  */
962 void ubifs_dump_index(struct ubifs_info *c)
963 {
964         dbg_walk_index(c, NULL, dump_znode, NULL);
965 }
966
967 #ifndef __UBOOT__
968 /**
969  * dbg_save_space_info - save information about flash space.
970  * @c: UBIFS file-system description object
971  *
972  * This function saves information about UBIFS free space, dirty space, etc, in
973  * order to check it later.
974  */
975 void dbg_save_space_info(struct ubifs_info *c)
976 {
977         struct ubifs_debug_info *d = c->dbg;
978         int freeable_cnt;
979
980         spin_lock(&c->space_lock);
981         memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
982         memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
983         d->saved_idx_gc_cnt = c->idx_gc_cnt;
984
985         /*
986          * We use a dirty hack here and zero out @c->freeable_cnt, because it
987          * affects the free space calculations, and UBIFS might not know about
988          * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
989          * only when we read their lprops, and we do this only lazily, upon the
990          * need. So at any given point of time @c->freeable_cnt might be not
991          * exactly accurate.
992          *
993          * Just one example about the issue we hit when we did not zero
994          * @c->freeable_cnt.
995          * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
996          *    amount of free space in @d->saved_free
997          * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
998          *    information from flash, where we cache LEBs from various
999          *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1000          *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1001          *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1002          *    -> 'ubifs_add_to_cat()').
1003          * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1004          *    becomes %1.
1005          * 4. We calculate the amount of free space when the re-mount is
1006          *    finished in 'dbg_check_space_info()' and it does not match
1007          *    @d->saved_free.
1008          */
1009         freeable_cnt = c->freeable_cnt;
1010         c->freeable_cnt = 0;
1011         d->saved_free = ubifs_get_free_space_nolock(c);
1012         c->freeable_cnt = freeable_cnt;
1013         spin_unlock(&c->space_lock);
1014 }
1015
1016 /**
1017  * dbg_check_space_info - check flash space information.
1018  * @c: UBIFS file-system description object
1019  *
1020  * This function compares current flash space information with the information
1021  * which was saved when the 'dbg_save_space_info()' function was called.
1022  * Returns zero if the information has not changed, and %-EINVAL it it has
1023  * changed.
1024  */
1025 int dbg_check_space_info(struct ubifs_info *c)
1026 {
1027         struct ubifs_debug_info *d = c->dbg;
1028         struct ubifs_lp_stats lst;
1029         long long free;
1030         int freeable_cnt;
1031
1032         spin_lock(&c->space_lock);
1033         freeable_cnt = c->freeable_cnt;
1034         c->freeable_cnt = 0;
1035         free = ubifs_get_free_space_nolock(c);
1036         c->freeable_cnt = freeable_cnt;
1037         spin_unlock(&c->space_lock);
1038
1039         if (free != d->saved_free) {
1040                 ubifs_err("free space changed from %lld to %lld",
1041                           d->saved_free, free);
1042                 goto out;
1043         }
1044
1045         return 0;
1046
1047 out:
1048         ubifs_msg("saved lprops statistics dump");
1049         ubifs_dump_lstats(&d->saved_lst);
1050         ubifs_msg("saved budgeting info dump");
1051         ubifs_dump_budg(c, &d->saved_bi);
1052         ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1053         ubifs_msg("current lprops statistics dump");
1054         ubifs_get_lp_stats(c, &lst);
1055         ubifs_dump_lstats(&lst);
1056         ubifs_msg("current budgeting info dump");
1057         ubifs_dump_budg(c, &c->bi);
1058         dump_stack();
1059         return -EINVAL;
1060 }
1061
1062 /**
1063  * dbg_check_synced_i_size - check synchronized inode size.
1064  * @c: UBIFS file-system description object
1065  * @inode: inode to check
1066  *
1067  * If inode is clean, synchronized inode size has to be equivalent to current
1068  * inode size. This function has to be called only for locked inodes (@i_mutex
1069  * has to be locked). Returns %0 if synchronized inode size if correct, and
1070  * %-EINVAL if not.
1071  */
1072 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1073 {
1074         int err = 0;
1075         struct ubifs_inode *ui = ubifs_inode(inode);
1076
1077         if (!dbg_is_chk_gen(c))
1078                 return 0;
1079         if (!S_ISREG(inode->i_mode))
1080                 return 0;
1081
1082         mutex_lock(&ui->ui_mutex);
1083         spin_lock(&ui->ui_lock);
1084         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1085                 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode is clean",
1086                           ui->ui_size, ui->synced_i_size);
1087                 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1088                           inode->i_mode, i_size_read(inode));
1089                 dump_stack();
1090                 err = -EINVAL;
1091         }
1092         spin_unlock(&ui->ui_lock);
1093         mutex_unlock(&ui->ui_mutex);
1094         return err;
1095 }
1096
1097 /*
1098  * dbg_check_dir - check directory inode size and link count.
1099  * @c: UBIFS file-system description object
1100  * @dir: the directory to calculate size for
1101  * @size: the result is returned here
1102  *
1103  * This function makes sure that directory size and link count are correct.
1104  * Returns zero in case of success and a negative error code in case of
1105  * failure.
1106  *
1107  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1108  * calling this function.
1109  */
1110 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1111 {
1112         unsigned int nlink = 2;
1113         union ubifs_key key;
1114         struct ubifs_dent_node *dent, *pdent = NULL;
1115         struct qstr nm = { .name = NULL };
1116         loff_t size = UBIFS_INO_NODE_SZ;
1117
1118         if (!dbg_is_chk_gen(c))
1119                 return 0;
1120
1121         if (!S_ISDIR(dir->i_mode))
1122                 return 0;
1123
1124         lowest_dent_key(c, &key, dir->i_ino);
1125         while (1) {
1126                 int err;
1127
1128                 dent = ubifs_tnc_next_ent(c, &key, &nm);
1129                 if (IS_ERR(dent)) {
1130                         err = PTR_ERR(dent);
1131                         if (err == -ENOENT)
1132                                 break;
1133                         return err;
1134                 }
1135
1136                 nm.name = dent->name;
1137                 nm.len = le16_to_cpu(dent->nlen);
1138                 size += CALC_DENT_SIZE(nm.len);
1139                 if (dent->type == UBIFS_ITYPE_DIR)
1140                         nlink += 1;
1141                 kfree(pdent);
1142                 pdent = dent;
1143                 key_read(c, &dent->key, &key);
1144         }
1145         kfree(pdent);
1146
1147         if (i_size_read(dir) != size) {
1148                 ubifs_err("directory inode %lu has size %llu, but calculated size is %llu",
1149                           dir->i_ino, (unsigned long long)i_size_read(dir),
1150                           (unsigned long long)size);
1151                 ubifs_dump_inode(c, dir);
1152                 dump_stack();
1153                 return -EINVAL;
1154         }
1155         if (dir->i_nlink != nlink) {
1156                 ubifs_err("directory inode %lu has nlink %u, but calculated nlink is %u",
1157                           dir->i_ino, dir->i_nlink, nlink);
1158                 ubifs_dump_inode(c, dir);
1159                 dump_stack();
1160                 return -EINVAL;
1161         }
1162
1163         return 0;
1164 }
1165
1166 /**
1167  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1168  * @c: UBIFS file-system description object
1169  * @zbr1: first zbranch
1170  * @zbr2: following zbranch
1171  *
1172  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1173  * names of the direntries/xentries which are referred by the keys. This
1174  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1175  * sure the name of direntry/xentry referred by @zbr1 is less than
1176  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1177  * and a negative error code in case of failure.
1178  */
1179 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1180                                struct ubifs_zbranch *zbr2)
1181 {
1182         int err, nlen1, nlen2, cmp;
1183         struct ubifs_dent_node *dent1, *dent2;
1184         union ubifs_key key;
1185         char key_buf[DBG_KEY_BUF_LEN];
1186
1187         ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1188         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1189         if (!dent1)
1190                 return -ENOMEM;
1191         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1192         if (!dent2) {
1193                 err = -ENOMEM;
1194                 goto out_free;
1195         }
1196
1197         err = ubifs_tnc_read_node(c, zbr1, dent1);
1198         if (err)
1199                 goto out_free;
1200         err = ubifs_validate_entry(c, dent1);
1201         if (err)
1202                 goto out_free;
1203
1204         err = ubifs_tnc_read_node(c, zbr2, dent2);
1205         if (err)
1206                 goto out_free;
1207         err = ubifs_validate_entry(c, dent2);
1208         if (err)
1209                 goto out_free;
1210
1211         /* Make sure node keys are the same as in zbranch */
1212         err = 1;
1213         key_read(c, &dent1->key, &key);
1214         if (keys_cmp(c, &zbr1->key, &key)) {
1215                 ubifs_err("1st entry at %d:%d has key %s", zbr1->lnum,
1216                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1217                                                        DBG_KEY_BUF_LEN));
1218                 ubifs_err("but it should have key %s according to tnc",
1219                           dbg_snprintf_key(c, &zbr1->key, key_buf,
1220                                            DBG_KEY_BUF_LEN));
1221                 ubifs_dump_node(c, dent1);
1222                 goto out_free;
1223         }
1224
1225         key_read(c, &dent2->key, &key);
1226         if (keys_cmp(c, &zbr2->key, &key)) {
1227                 ubifs_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1228                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1229                                                        DBG_KEY_BUF_LEN));
1230                 ubifs_err("but it should have key %s according to tnc",
1231                           dbg_snprintf_key(c, &zbr2->key, key_buf,
1232                                            DBG_KEY_BUF_LEN));
1233                 ubifs_dump_node(c, dent2);
1234                 goto out_free;
1235         }
1236
1237         nlen1 = le16_to_cpu(dent1->nlen);
1238         nlen2 = le16_to_cpu(dent2->nlen);
1239
1240         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1241         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1242                 err = 0;
1243                 goto out_free;
1244         }
1245         if (cmp == 0 && nlen1 == nlen2)
1246                 ubifs_err("2 xent/dent nodes with the same name");
1247         else
1248                 ubifs_err("bad order of colliding key %s",
1249                           dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1250
1251         ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1252         ubifs_dump_node(c, dent1);
1253         ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1254         ubifs_dump_node(c, dent2);
1255
1256 out_free:
1257         kfree(dent2);
1258         kfree(dent1);
1259         return err;
1260 }
1261
1262 /**
1263  * dbg_check_znode - check if znode is all right.
1264  * @c: UBIFS file-system description object
1265  * @zbr: zbranch which points to this znode
1266  *
1267  * This function makes sure that znode referred to by @zbr is all right.
1268  * Returns zero if it is, and %-EINVAL if it is not.
1269  */
1270 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1271 {
1272         struct ubifs_znode *znode = zbr->znode;
1273         struct ubifs_znode *zp = znode->parent;
1274         int n, err, cmp;
1275
1276         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1277                 err = 1;
1278                 goto out;
1279         }
1280         if (znode->level < 0) {
1281                 err = 2;
1282                 goto out;
1283         }
1284         if (znode->iip < 0 || znode->iip >= c->fanout) {
1285                 err = 3;
1286                 goto out;
1287         }
1288
1289         if (zbr->len == 0)
1290                 /* Only dirty zbranch may have no on-flash nodes */
1291                 if (!ubifs_zn_dirty(znode)) {
1292                         err = 4;
1293                         goto out;
1294                 }
1295
1296         if (ubifs_zn_dirty(znode)) {
1297                 /*
1298                  * If znode is dirty, its parent has to be dirty as well. The
1299                  * order of the operation is important, so we have to have
1300                  * memory barriers.
1301                  */
1302                 smp_mb();
1303                 if (zp && !ubifs_zn_dirty(zp)) {
1304                         /*
1305                          * The dirty flag is atomic and is cleared outside the
1306                          * TNC mutex, so znode's dirty flag may now have
1307                          * been cleared. The child is always cleared before the
1308                          * parent, so we just need to check again.
1309                          */
1310                         smp_mb();
1311                         if (ubifs_zn_dirty(znode)) {
1312                                 err = 5;
1313                                 goto out;
1314                         }
1315                 }
1316         }
1317
1318         if (zp) {
1319                 const union ubifs_key *min, *max;
1320
1321                 if (znode->level != zp->level - 1) {
1322                         err = 6;
1323                         goto out;
1324                 }
1325
1326                 /* Make sure the 'parent' pointer in our znode is correct */
1327                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1328                 if (!err) {
1329                         /* This zbranch does not exist in the parent */
1330                         err = 7;
1331                         goto out;
1332                 }
1333
1334                 if (znode->iip >= zp->child_cnt) {
1335                         err = 8;
1336                         goto out;
1337                 }
1338
1339                 if (znode->iip != n) {
1340                         /* This may happen only in case of collisions */
1341                         if (keys_cmp(c, &zp->zbranch[n].key,
1342                                      &zp->zbranch[znode->iip].key)) {
1343                                 err = 9;
1344                                 goto out;
1345                         }
1346                         n = znode->iip;
1347                 }
1348
1349                 /*
1350                  * Make sure that the first key in our znode is greater than or
1351                  * equal to the key in the pointing zbranch.
1352                  */
1353                 min = &zbr->key;
1354                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1355                 if (cmp == 1) {
1356                         err = 10;
1357                         goto out;
1358                 }
1359
1360                 if (n + 1 < zp->child_cnt) {
1361                         max = &zp->zbranch[n + 1].key;
1362
1363                         /*
1364                          * Make sure the last key in our znode is less or
1365                          * equivalent than the key in the zbranch which goes
1366                          * after our pointing zbranch.
1367                          */
1368                         cmp = keys_cmp(c, max,
1369                                 &znode->zbranch[znode->child_cnt - 1].key);
1370                         if (cmp == -1) {
1371                                 err = 11;
1372                                 goto out;
1373                         }
1374                 }
1375         } else {
1376                 /* This may only be root znode */
1377                 if (zbr != &c->zroot) {
1378                         err = 12;
1379                         goto out;
1380                 }
1381         }
1382
1383         /*
1384          * Make sure that next key is greater or equivalent then the previous
1385          * one.
1386          */
1387         for (n = 1; n < znode->child_cnt; n++) {
1388                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1389                                &znode->zbranch[n].key);
1390                 if (cmp > 0) {
1391                         err = 13;
1392                         goto out;
1393                 }
1394                 if (cmp == 0) {
1395                         /* This can only be keys with colliding hash */
1396                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1397                                 err = 14;
1398                                 goto out;
1399                         }
1400
1401                         if (znode->level != 0 || c->replaying)
1402                                 continue;
1403
1404                         /*
1405                          * Colliding keys should follow binary order of
1406                          * corresponding xentry/dentry names.
1407                          */
1408                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1409                                                   &znode->zbranch[n]);
1410                         if (err < 0)
1411                                 return err;
1412                         if (err) {
1413                                 err = 15;
1414                                 goto out;
1415                         }
1416                 }
1417         }
1418
1419         for (n = 0; n < znode->child_cnt; n++) {
1420                 if (!znode->zbranch[n].znode &&
1421                     (znode->zbranch[n].lnum == 0 ||
1422                      znode->zbranch[n].len == 0)) {
1423                         err = 16;
1424                         goto out;
1425                 }
1426
1427                 if (znode->zbranch[n].lnum != 0 &&
1428                     znode->zbranch[n].len == 0) {
1429                         err = 17;
1430                         goto out;
1431                 }
1432
1433                 if (znode->zbranch[n].lnum == 0 &&
1434                     znode->zbranch[n].len != 0) {
1435                         err = 18;
1436                         goto out;
1437                 }
1438
1439                 if (znode->zbranch[n].lnum == 0 &&
1440                     znode->zbranch[n].offs != 0) {
1441                         err = 19;
1442                         goto out;
1443                 }
1444
1445                 if (znode->level != 0 && znode->zbranch[n].znode)
1446                         if (znode->zbranch[n].znode->parent != znode) {
1447                                 err = 20;
1448                                 goto out;
1449                         }
1450         }
1451
1452         return 0;
1453
1454 out:
1455         ubifs_err("failed, error %d", err);
1456         ubifs_msg("dump of the znode");
1457         ubifs_dump_znode(c, znode);
1458         if (zp) {
1459                 ubifs_msg("dump of the parent znode");
1460                 ubifs_dump_znode(c, zp);
1461         }
1462         dump_stack();
1463         return -EINVAL;
1464 }
1465 #else
1466
1467 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1468 {
1469         return 0;
1470 }
1471
1472 void dbg_debugfs_exit_fs(struct ubifs_info *c)
1473 {
1474         return;
1475 }
1476
1477 int ubifs_debugging_init(struct ubifs_info *c)
1478 {
1479         return 0;
1480 }
1481 void ubifs_debugging_exit(struct ubifs_info *c)
1482 {
1483 }
1484 int dbg_check_filesystem(struct ubifs_info *c)
1485 {
1486         return 0;
1487 }
1488 int dbg_debugfs_init_fs(struct ubifs_info *c)
1489 {
1490         return 0;
1491 }
1492 #endif
1493
1494 #ifndef __UBOOT__
1495 /**
1496  * dbg_check_tnc - check TNC tree.
1497  * @c: UBIFS file-system description object
1498  * @extra: do extra checks that are possible at start commit
1499  *
1500  * This function traverses whole TNC tree and checks every znode. Returns zero
1501  * if everything is all right and %-EINVAL if something is wrong with TNC.
1502  */
1503 int dbg_check_tnc(struct ubifs_info *c, int extra)
1504 {
1505         struct ubifs_znode *znode;
1506         long clean_cnt = 0, dirty_cnt = 0;
1507         int err, last;
1508
1509         if (!dbg_is_chk_index(c))
1510                 return 0;
1511
1512         ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1513         if (!c->zroot.znode)
1514                 return 0;
1515
1516         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1517         while (1) {
1518                 struct ubifs_znode *prev;
1519                 struct ubifs_zbranch *zbr;
1520
1521                 if (!znode->parent)
1522                         zbr = &c->zroot;
1523                 else
1524                         zbr = &znode->parent->zbranch[znode->iip];
1525
1526                 err = dbg_check_znode(c, zbr);
1527                 if (err)
1528                         return err;
1529
1530                 if (extra) {
1531                         if (ubifs_zn_dirty(znode))
1532                                 dirty_cnt += 1;
1533                         else
1534                                 clean_cnt += 1;
1535                 }
1536
1537                 prev = znode;
1538                 znode = ubifs_tnc_postorder_next(znode);
1539                 if (!znode)
1540                         break;
1541
1542                 /*
1543                  * If the last key of this znode is equivalent to the first key
1544                  * of the next znode (collision), then check order of the keys.
1545                  */
1546                 last = prev->child_cnt - 1;
1547                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1548                     !keys_cmp(c, &prev->zbranch[last].key,
1549                               &znode->zbranch[0].key)) {
1550                         err = dbg_check_key_order(c, &prev->zbranch[last],
1551                                                   &znode->zbranch[0]);
1552                         if (err < 0)
1553                                 return err;
1554                         if (err) {
1555                                 ubifs_msg("first znode");
1556                                 ubifs_dump_znode(c, prev);
1557                                 ubifs_msg("second znode");
1558                                 ubifs_dump_znode(c, znode);
1559                                 return -EINVAL;
1560                         }
1561                 }
1562         }
1563
1564         if (extra) {
1565                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1566                         ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1567                                   atomic_long_read(&c->clean_zn_cnt),
1568                                   clean_cnt);
1569                         return -EINVAL;
1570                 }
1571                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1572                         ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1573                                   atomic_long_read(&c->dirty_zn_cnt),
1574                                   dirty_cnt);
1575                         return -EINVAL;
1576                 }
1577         }
1578
1579         return 0;
1580 }
1581 #else
1582 int dbg_check_tnc(struct ubifs_info *c, int extra)
1583 {
1584         return 0;
1585 }
1586 #endif
1587
1588 /**
1589  * dbg_walk_index - walk the on-flash index.
1590  * @c: UBIFS file-system description object
1591  * @leaf_cb: called for each leaf node
1592  * @znode_cb: called for each indexing node
1593  * @priv: private data which is passed to callbacks
1594  *
1595  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1596  * node and @znode_cb for each indexing node. Returns zero in case of success
1597  * and a negative error code in case of failure.
1598  *
1599  * It would be better if this function removed every znode it pulled to into
1600  * the TNC, so that the behavior more closely matched the non-debugging
1601  * behavior.
1602  */
1603 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1604                    dbg_znode_callback znode_cb, void *priv)
1605 {
1606         int err;
1607         struct ubifs_zbranch *zbr;
1608         struct ubifs_znode *znode, *child;
1609
1610         mutex_lock(&c->tnc_mutex);
1611         /* If the root indexing node is not in TNC - pull it */
1612         if (!c->zroot.znode) {
1613                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1614                 if (IS_ERR(c->zroot.znode)) {
1615                         err = PTR_ERR(c->zroot.znode);
1616                         c->zroot.znode = NULL;
1617                         goto out_unlock;
1618                 }
1619         }
1620
1621         /*
1622          * We are going to traverse the indexing tree in the postorder manner.
1623          * Go down and find the leftmost indexing node where we are going to
1624          * start from.
1625          */
1626         znode = c->zroot.znode;
1627         while (znode->level > 0) {
1628                 zbr = &znode->zbranch[0];
1629                 child = zbr->znode;
1630                 if (!child) {
1631                         child = ubifs_load_znode(c, zbr, znode, 0);
1632                         if (IS_ERR(child)) {
1633                                 err = PTR_ERR(child);
1634                                 goto out_unlock;
1635                         }
1636                         zbr->znode = child;
1637                 }
1638
1639                 znode = child;
1640         }
1641
1642         /* Iterate over all indexing nodes */
1643         while (1) {
1644                 int idx;
1645
1646                 cond_resched();
1647
1648                 if (znode_cb) {
1649                         err = znode_cb(c, znode, priv);
1650                         if (err) {
1651                                 ubifs_err("znode checking function returned error %d",
1652                                           err);
1653                                 ubifs_dump_znode(c, znode);
1654                                 goto out_dump;
1655                         }
1656                 }
1657                 if (leaf_cb && znode->level == 0) {
1658                         for (idx = 0; idx < znode->child_cnt; idx++) {
1659                                 zbr = &znode->zbranch[idx];
1660                                 err = leaf_cb(c, zbr, priv);
1661                                 if (err) {
1662                                         ubifs_err("leaf checking function returned error %d, for leaf at LEB %d:%d",
1663                                                   err, zbr->lnum, zbr->offs);
1664                                         goto out_dump;
1665                                 }
1666                         }
1667                 }
1668
1669                 if (!znode->parent)
1670                         break;
1671
1672                 idx = znode->iip + 1;
1673                 znode = znode->parent;
1674                 if (idx < znode->child_cnt) {
1675                         /* Switch to the next index in the parent */
1676                         zbr = &znode->zbranch[idx];
1677                         child = zbr->znode;
1678                         if (!child) {
1679                                 child = ubifs_load_znode(c, zbr, znode, idx);
1680                                 if (IS_ERR(child)) {
1681                                         err = PTR_ERR(child);
1682                                         goto out_unlock;
1683                                 }
1684                                 zbr->znode = child;
1685                         }
1686                         znode = child;
1687                 } else
1688                         /*
1689                          * This is the last child, switch to the parent and
1690                          * continue.
1691                          */
1692                         continue;
1693
1694                 /* Go to the lowest leftmost znode in the new sub-tree */
1695                 while (znode->level > 0) {
1696                         zbr = &znode->zbranch[0];
1697                         child = zbr->znode;
1698                         if (!child) {
1699                                 child = ubifs_load_znode(c, zbr, znode, 0);
1700                                 if (IS_ERR(child)) {
1701                                         err = PTR_ERR(child);
1702                                         goto out_unlock;
1703                                 }
1704                                 zbr->znode = child;
1705                         }
1706                         znode = child;
1707                 }
1708         }
1709
1710         mutex_unlock(&c->tnc_mutex);
1711         return 0;
1712
1713 out_dump:
1714         if (znode->parent)
1715                 zbr = &znode->parent->zbranch[znode->iip];
1716         else
1717                 zbr = &c->zroot;
1718         ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1719         ubifs_dump_znode(c, znode);
1720 out_unlock:
1721         mutex_unlock(&c->tnc_mutex);
1722         return err;
1723 }
1724
1725 /**
1726  * add_size - add znode size to partially calculated index size.
1727  * @c: UBIFS file-system description object
1728  * @znode: znode to add size for
1729  * @priv: partially calculated index size
1730  *
1731  * This is a helper function for 'dbg_check_idx_size()' which is called for
1732  * every indexing node and adds its size to the 'long long' variable pointed to
1733  * by @priv.
1734  */
1735 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1736 {
1737         long long *idx_size = priv;
1738         int add;
1739
1740         add = ubifs_idx_node_sz(c, znode->child_cnt);
1741         add = ALIGN(add, 8);
1742         *idx_size += add;
1743         return 0;
1744 }
1745
1746 /**
1747  * dbg_check_idx_size - check index size.
1748  * @c: UBIFS file-system description object
1749  * @idx_size: size to check
1750  *
1751  * This function walks the UBIFS index, calculates its size and checks that the
1752  * size is equivalent to @idx_size. Returns zero in case of success and a
1753  * negative error code in case of failure.
1754  */
1755 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1756 {
1757         int err;
1758         long long calc = 0;
1759
1760         if (!dbg_is_chk_index(c))
1761                 return 0;
1762
1763         err = dbg_walk_index(c, NULL, add_size, &calc);
1764         if (err) {
1765                 ubifs_err("error %d while walking the index", err);
1766                 return err;
1767         }
1768
1769         if (calc != idx_size) {
1770                 ubifs_err("index size check failed: calculated size is %lld, should be %lld",
1771                           calc, idx_size);
1772                 dump_stack();
1773                 return -EINVAL;
1774         }
1775
1776         return 0;
1777 }
1778
1779 #ifndef __UBOOT__
1780 /**
1781  * struct fsck_inode - information about an inode used when checking the file-system.
1782  * @rb: link in the RB-tree of inodes
1783  * @inum: inode number
1784  * @mode: inode type, permissions, etc
1785  * @nlink: inode link count
1786  * @xattr_cnt: count of extended attributes
1787  * @references: how many directory/xattr entries refer this inode (calculated
1788  *              while walking the index)
1789  * @calc_cnt: for directory inode count of child directories
1790  * @size: inode size (read from on-flash inode)
1791  * @xattr_sz: summary size of all extended attributes (read from on-flash
1792  *            inode)
1793  * @calc_sz: for directories calculated directory size
1794  * @calc_xcnt: count of extended attributes
1795  * @calc_xsz: calculated summary size of all extended attributes
1796  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1797  *             inode (read from on-flash inode)
1798  * @calc_xnms: calculated sum of lengths of all extended attribute names
1799  */
1800 struct fsck_inode {
1801         struct rb_node rb;
1802         ino_t inum;
1803         umode_t mode;
1804         unsigned int nlink;
1805         unsigned int xattr_cnt;
1806         int references;
1807         int calc_cnt;
1808         long long size;
1809         unsigned int xattr_sz;
1810         long long calc_sz;
1811         long long calc_xcnt;
1812         long long calc_xsz;
1813         unsigned int xattr_nms;
1814         long long calc_xnms;
1815 };
1816
1817 /**
1818  * struct fsck_data - private FS checking information.
1819  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1820  */
1821 struct fsck_data {
1822         struct rb_root inodes;
1823 };
1824
1825 /**
1826  * add_inode - add inode information to RB-tree of inodes.
1827  * @c: UBIFS file-system description object
1828  * @fsckd: FS checking information
1829  * @ino: raw UBIFS inode to add
1830  *
1831  * This is a helper function for 'check_leaf()' which adds information about
1832  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1833  * case of success and a negative error code in case of failure.
1834  */
1835 static struct fsck_inode *add_inode(struct ubifs_info *c,
1836                                     struct fsck_data *fsckd,
1837                                     struct ubifs_ino_node *ino)
1838 {
1839         struct rb_node **p, *parent = NULL;
1840         struct fsck_inode *fscki;
1841         ino_t inum = key_inum_flash(c, &ino->key);
1842         struct inode *inode;
1843         struct ubifs_inode *ui;
1844
1845         p = &fsckd->inodes.rb_node;
1846         while (*p) {
1847                 parent = *p;
1848                 fscki = rb_entry(parent, struct fsck_inode, rb);
1849                 if (inum < fscki->inum)
1850                         p = &(*p)->rb_left;
1851                 else if (inum > fscki->inum)
1852                         p = &(*p)->rb_right;
1853                 else
1854                         return fscki;
1855         }
1856
1857         if (inum > c->highest_inum) {
1858                 ubifs_err("too high inode number, max. is %lu",
1859                           (unsigned long)c->highest_inum);
1860                 return ERR_PTR(-EINVAL);
1861         }
1862
1863         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1864         if (!fscki)
1865                 return ERR_PTR(-ENOMEM);
1866
1867         inode = ilookup(c->vfs_sb, inum);
1868
1869         fscki->inum = inum;
1870         /*
1871          * If the inode is present in the VFS inode cache, use it instead of
1872          * the on-flash inode which might be out-of-date. E.g., the size might
1873          * be out-of-date. If we do not do this, the following may happen, for
1874          * example:
1875          *   1. A power cut happens
1876          *   2. We mount the file-system R/O, the replay process fixes up the
1877          *      inode size in the VFS cache, but on on-flash.
1878          *   3. 'check_leaf()' fails because it hits a data node beyond inode
1879          *      size.
1880          */
1881         if (!inode) {
1882                 fscki->nlink = le32_to_cpu(ino->nlink);
1883                 fscki->size = le64_to_cpu(ino->size);
1884                 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1885                 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1886                 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1887                 fscki->mode = le32_to_cpu(ino->mode);
1888         } else {
1889                 ui = ubifs_inode(inode);
1890                 fscki->nlink = inode->i_nlink;
1891                 fscki->size = inode->i_size;
1892                 fscki->xattr_cnt = ui->xattr_cnt;
1893                 fscki->xattr_sz = ui->xattr_size;
1894                 fscki->xattr_nms = ui->xattr_names;
1895                 fscki->mode = inode->i_mode;
1896                 iput(inode);
1897         }
1898
1899         if (S_ISDIR(fscki->mode)) {
1900                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1901                 fscki->calc_cnt = 2;
1902         }
1903
1904         rb_link_node(&fscki->rb, parent, p);
1905         rb_insert_color(&fscki->rb, &fsckd->inodes);
1906
1907         return fscki;
1908 }
1909
1910 /**
1911  * search_inode - search inode in the RB-tree of inodes.
1912  * @fsckd: FS checking information
1913  * @inum: inode number to search
1914  *
1915  * This is a helper function for 'check_leaf()' which searches inode @inum in
1916  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1917  * the inode was not found.
1918  */
1919 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1920 {
1921         struct rb_node *p;
1922         struct fsck_inode *fscki;
1923
1924         p = fsckd->inodes.rb_node;
1925         while (p) {
1926                 fscki = rb_entry(p, struct fsck_inode, rb);
1927                 if (inum < fscki->inum)
1928                         p = p->rb_left;
1929                 else if (inum > fscki->inum)
1930                         p = p->rb_right;
1931                 else
1932                         return fscki;
1933         }
1934         return NULL;
1935 }
1936
1937 /**
1938  * read_add_inode - read inode node and add it to RB-tree of inodes.
1939  * @c: UBIFS file-system description object
1940  * @fsckd: FS checking information
1941  * @inum: inode number to read
1942  *
1943  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1944  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1945  * information pointer in case of success and a negative error code in case of
1946  * failure.
1947  */
1948 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1949                                          struct fsck_data *fsckd, ino_t inum)
1950 {
1951         int n, err;
1952         union ubifs_key key;
1953         struct ubifs_znode *znode;
1954         struct ubifs_zbranch *zbr;
1955         struct ubifs_ino_node *ino;
1956         struct fsck_inode *fscki;
1957
1958         fscki = search_inode(fsckd, inum);
1959         if (fscki)
1960                 return fscki;
1961
1962         ino_key_init(c, &key, inum);
1963         err = ubifs_lookup_level0(c, &key, &znode, &n);
1964         if (!err) {
1965                 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1966                 return ERR_PTR(-ENOENT);
1967         } else if (err < 0) {
1968                 ubifs_err("error %d while looking up inode %lu",
1969                           err, (unsigned long)inum);
1970                 return ERR_PTR(err);
1971         }
1972
1973         zbr = &znode->zbranch[n];
1974         if (zbr->len < UBIFS_INO_NODE_SZ) {
1975                 ubifs_err("bad node %lu node length %d",
1976                           (unsigned long)inum, zbr->len);
1977                 return ERR_PTR(-EINVAL);
1978         }
1979
1980         ino = kmalloc(zbr->len, GFP_NOFS);
1981         if (!ino)
1982                 return ERR_PTR(-ENOMEM);
1983
1984         err = ubifs_tnc_read_node(c, zbr, ino);
1985         if (err) {
1986                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1987                           zbr->lnum, zbr->offs, err);
1988                 kfree(ino);
1989                 return ERR_PTR(err);
1990         }
1991
1992         fscki = add_inode(c, fsckd, ino);
1993         kfree(ino);
1994         if (IS_ERR(fscki)) {
1995                 ubifs_err("error %ld while adding inode %lu node",
1996                           PTR_ERR(fscki), (unsigned long)inum);
1997                 return fscki;
1998         }
1999
2000         return fscki;
2001 }
2002
2003 /**
2004  * check_leaf - check leaf node.
2005  * @c: UBIFS file-system description object
2006  * @zbr: zbranch of the leaf node to check
2007  * @priv: FS checking information
2008  *
2009  * This is a helper function for 'dbg_check_filesystem()' which is called for
2010  * every single leaf node while walking the indexing tree. It checks that the
2011  * leaf node referred from the indexing tree exists, has correct CRC, and does
2012  * some other basic validation. This function is also responsible for building
2013  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2014  * calculates reference count, size, etc for each inode in order to later
2015  * compare them to the information stored inside the inodes and detect possible
2016  * inconsistencies. Returns zero in case of success and a negative error code
2017  * in case of failure.
2018  */
2019 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2020                       void *priv)
2021 {
2022         ino_t inum;
2023         void *node;
2024         struct ubifs_ch *ch;
2025         int err, type = key_type(c, &zbr->key);
2026         struct fsck_inode *fscki;
2027
2028         if (zbr->len < UBIFS_CH_SZ) {
2029                 ubifs_err("bad leaf length %d (LEB %d:%d)",
2030                           zbr->len, zbr->lnum, zbr->offs);
2031                 return -EINVAL;
2032         }
2033
2034         node = kmalloc(zbr->len, GFP_NOFS);
2035         if (!node)
2036                 return -ENOMEM;
2037
2038         err = ubifs_tnc_read_node(c, zbr, node);
2039         if (err) {
2040                 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2041                           zbr->lnum, zbr->offs, err);
2042                 goto out_free;
2043         }
2044
2045         /* If this is an inode node, add it to RB-tree of inodes */
2046         if (type == UBIFS_INO_KEY) {
2047                 fscki = add_inode(c, priv, node);
2048                 if (IS_ERR(fscki)) {
2049                         err = PTR_ERR(fscki);
2050                         ubifs_err("error %d while adding inode node", err);
2051                         goto out_dump;
2052                 }
2053                 goto out;
2054         }
2055
2056         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2057             type != UBIFS_DATA_KEY) {
2058                 ubifs_err("unexpected node type %d at LEB %d:%d",
2059                           type, zbr->lnum, zbr->offs);
2060                 err = -EINVAL;
2061                 goto out_free;
2062         }
2063
2064         ch = node;
2065         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2066                 ubifs_err("too high sequence number, max. is %llu",
2067                           c->max_sqnum);
2068                 err = -EINVAL;
2069                 goto out_dump;
2070         }
2071
2072         if (type == UBIFS_DATA_KEY) {
2073                 long long blk_offs;
2074                 struct ubifs_data_node *dn = node;
2075
2076                 /*
2077                  * Search the inode node this data node belongs to and insert
2078                  * it to the RB-tree of inodes.
2079                  */
2080                 inum = key_inum_flash(c, &dn->key);
2081                 fscki = read_add_inode(c, priv, inum);
2082                 if (IS_ERR(fscki)) {
2083                         err = PTR_ERR(fscki);
2084                         ubifs_err("error %d while processing data node and trying to find inode node %lu",
2085                                   err, (unsigned long)inum);
2086                         goto out_dump;
2087                 }
2088
2089                 /* Make sure the data node is within inode size */
2090                 blk_offs = key_block_flash(c, &dn->key);
2091                 blk_offs <<= UBIFS_BLOCK_SHIFT;
2092                 blk_offs += le32_to_cpu(dn->size);
2093                 if (blk_offs > fscki->size) {
2094                         ubifs_err("data node at LEB %d:%d is not within inode size %lld",
2095                                   zbr->lnum, zbr->offs, fscki->size);
2096                         err = -EINVAL;
2097                         goto out_dump;
2098                 }
2099         } else {
2100                 int nlen;
2101                 struct ubifs_dent_node *dent = node;
2102                 struct fsck_inode *fscki1;
2103
2104                 err = ubifs_validate_entry(c, dent);
2105                 if (err)
2106                         goto out_dump;
2107
2108                 /*
2109                  * Search the inode node this entry refers to and the parent
2110                  * inode node and insert them to the RB-tree of inodes.
2111                  */
2112                 inum = le64_to_cpu(dent->inum);
2113                 fscki = read_add_inode(c, priv, inum);
2114                 if (IS_ERR(fscki)) {
2115                         err = PTR_ERR(fscki);
2116                         ubifs_err("error %d while processing entry node and trying to find inode node %lu",
2117                                   err, (unsigned long)inum);
2118                         goto out_dump;
2119                 }
2120
2121                 /* Count how many direntries or xentries refers this inode */
2122                 fscki->references += 1;
2123
2124                 inum = key_inum_flash(c, &dent->key);
2125                 fscki1 = read_add_inode(c, priv, inum);
2126                 if (IS_ERR(fscki1)) {
2127                         err = PTR_ERR(fscki1);
2128                         ubifs_err("error %d while processing entry node and trying to find parent inode node %lu",
2129                                   err, (unsigned long)inum);
2130                         goto out_dump;
2131                 }
2132
2133                 nlen = le16_to_cpu(dent->nlen);
2134                 if (type == UBIFS_XENT_KEY) {
2135                         fscki1->calc_xcnt += 1;
2136                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2137                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2138                         fscki1->calc_xnms += nlen;
2139                 } else {
2140                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2141                         if (dent->type == UBIFS_ITYPE_DIR)
2142                                 fscki1->calc_cnt += 1;
2143                 }
2144         }
2145
2146 out:
2147         kfree(node);
2148         return 0;
2149
2150 out_dump:
2151         ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2152         ubifs_dump_node(c, node);
2153 out_free:
2154         kfree(node);
2155         return err;
2156 }
2157
2158 /**
2159  * free_inodes - free RB-tree of inodes.
2160  * @fsckd: FS checking information
2161  */
2162 static void free_inodes(struct fsck_data *fsckd)
2163 {
2164         struct fsck_inode *fscki, *n;
2165
2166         rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2167                 kfree(fscki);
2168 }
2169
2170 /**
2171  * check_inodes - checks all inodes.
2172  * @c: UBIFS file-system description object
2173  * @fsckd: FS checking information
2174  *
2175  * This is a helper function for 'dbg_check_filesystem()' which walks the
2176  * RB-tree of inodes after the index scan has been finished, and checks that
2177  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2178  * %-EINVAL if not, and a negative error code in case of failure.
2179  */
2180 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2181 {
2182         int n, err;
2183         union ubifs_key key;
2184         struct ubifs_znode *znode;
2185         struct ubifs_zbranch *zbr;
2186         struct ubifs_ino_node *ino;
2187         struct fsck_inode *fscki;
2188         struct rb_node *this = rb_first(&fsckd->inodes);
2189
2190         while (this) {
2191                 fscki = rb_entry(this, struct fsck_inode, rb);
2192                 this = rb_next(this);
2193
2194                 if (S_ISDIR(fscki->mode)) {
2195                         /*
2196                          * Directories have to have exactly one reference (they
2197                          * cannot have hardlinks), although root inode is an
2198                          * exception.
2199                          */
2200                         if (fscki->inum != UBIFS_ROOT_INO &&
2201                             fscki->references != 1) {
2202                                 ubifs_err("directory inode %lu has %d direntries which refer it, but should be 1",
2203                                           (unsigned long)fscki->inum,
2204                                           fscki->references);
2205                                 goto out_dump;
2206                         }
2207                         if (fscki->inum == UBIFS_ROOT_INO &&
2208                             fscki->references != 0) {
2209                                 ubifs_err("root inode %lu has non-zero (%d) direntries which refer it",
2210                                           (unsigned long)fscki->inum,
2211                                           fscki->references);
2212                                 goto out_dump;
2213                         }
2214                         if (fscki->calc_sz != fscki->size) {
2215                                 ubifs_err("directory inode %lu size is %lld, but calculated size is %lld",
2216                                           (unsigned long)fscki->inum,
2217                                           fscki->size, fscki->calc_sz);
2218                                 goto out_dump;
2219                         }
2220                         if (fscki->calc_cnt != fscki->nlink) {
2221                                 ubifs_err("directory inode %lu nlink is %d, but calculated nlink is %d",
2222                                           (unsigned long)fscki->inum,
2223                                           fscki->nlink, fscki->calc_cnt);
2224                                 goto out_dump;
2225                         }
2226                 } else {
2227                         if (fscki->references != fscki->nlink) {
2228                                 ubifs_err("inode %lu nlink is %d, but calculated nlink is %d",
2229                                           (unsigned long)fscki->inum,
2230                                           fscki->nlink, fscki->references);
2231                                 goto out_dump;
2232                         }
2233                 }
2234                 if (fscki->xattr_sz != fscki->calc_xsz) {
2235                         ubifs_err("inode %lu has xattr size %u, but calculated size is %lld",
2236                                   (unsigned long)fscki->inum, fscki->xattr_sz,
2237                                   fscki->calc_xsz);
2238                         goto out_dump;
2239                 }
2240                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2241                         ubifs_err("inode %lu has %u xattrs, but calculated count is %lld",
2242                                   (unsigned long)fscki->inum,
2243                                   fscki->xattr_cnt, fscki->calc_xcnt);
2244                         goto out_dump;
2245                 }
2246                 if (fscki->xattr_nms != fscki->calc_xnms) {
2247                         ubifs_err("inode %lu has xattr names' size %u, but calculated names' size is %lld",
2248                                   (unsigned long)fscki->inum, fscki->xattr_nms,
2249                                   fscki->calc_xnms);
2250                         goto out_dump;
2251                 }
2252         }
2253
2254         return 0;
2255
2256 out_dump:
2257         /* Read the bad inode and dump it */
2258         ino_key_init(c, &key, fscki->inum);
2259         err = ubifs_lookup_level0(c, &key, &znode, &n);
2260         if (!err) {
2261                 ubifs_err("inode %lu not found in index",
2262                           (unsigned long)fscki->inum);
2263                 return -ENOENT;
2264         } else if (err < 0) {
2265                 ubifs_err("error %d while looking up inode %lu",
2266                           err, (unsigned long)fscki->inum);
2267                 return err;
2268         }
2269
2270         zbr = &znode->zbranch[n];
2271         ino = kmalloc(zbr->len, GFP_NOFS);
2272         if (!ino)
2273                 return -ENOMEM;
2274
2275         err = ubifs_tnc_read_node(c, zbr, ino);
2276         if (err) {
2277                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2278                           zbr->lnum, zbr->offs, err);
2279                 kfree(ino);
2280                 return err;
2281         }
2282
2283         ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2284                   (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2285         ubifs_dump_node(c, ino);
2286         kfree(ino);
2287         return -EINVAL;
2288 }
2289
2290 /**
2291  * dbg_check_filesystem - check the file-system.
2292  * @c: UBIFS file-system description object
2293  *
2294  * This function checks the file system, namely:
2295  * o makes sure that all leaf nodes exist and their CRCs are correct;
2296  * o makes sure inode nlink, size, xattr size/count are correct (for all
2297  *   inodes).
2298  *
2299  * The function reads whole indexing tree and all nodes, so it is pretty
2300  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2301  * not, and a negative error code in case of failure.
2302  */
2303 int dbg_check_filesystem(struct ubifs_info *c)
2304 {
2305         int err;
2306         struct fsck_data fsckd;
2307
2308         if (!dbg_is_chk_fs(c))
2309                 return 0;
2310
2311         fsckd.inodes = RB_ROOT;
2312         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2313         if (err)
2314                 goto out_free;
2315
2316         err = check_inodes(c, &fsckd);
2317         if (err)
2318                 goto out_free;
2319
2320         free_inodes(&fsckd);
2321         return 0;
2322
2323 out_free:
2324         ubifs_err("file-system check failed with error %d", err);
2325         dump_stack();
2326         free_inodes(&fsckd);
2327         return err;
2328 }
2329
2330 /**
2331  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2332  * @c: UBIFS file-system description object
2333  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2334  *
2335  * This function returns zero if the list of data nodes is sorted correctly,
2336  * and %-EINVAL if not.
2337  */
2338 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2339 {
2340         struct list_head *cur;
2341         struct ubifs_scan_node *sa, *sb;
2342
2343         if (!dbg_is_chk_gen(c))
2344                 return 0;
2345
2346         for (cur = head->next; cur->next != head; cur = cur->next) {
2347                 ino_t inuma, inumb;
2348                 uint32_t blka, blkb;
2349
2350                 cond_resched();
2351                 sa = container_of(cur, struct ubifs_scan_node, list);
2352                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2353
2354                 if (sa->type != UBIFS_DATA_NODE) {
2355                         ubifs_err("bad node type %d", sa->type);
2356                         ubifs_dump_node(c, sa->node);
2357                         return -EINVAL;
2358                 }
2359                 if (sb->type != UBIFS_DATA_NODE) {
2360                         ubifs_err("bad node type %d", sb->type);
2361                         ubifs_dump_node(c, sb->node);
2362                         return -EINVAL;
2363                 }
2364
2365                 inuma = key_inum(c, &sa->key);
2366                 inumb = key_inum(c, &sb->key);
2367
2368                 if (inuma < inumb)
2369                         continue;
2370                 if (inuma > inumb) {
2371                         ubifs_err("larger inum %lu goes before inum %lu",
2372                                   (unsigned long)inuma, (unsigned long)inumb);
2373                         goto error_dump;
2374                 }
2375
2376                 blka = key_block(c, &sa->key);
2377                 blkb = key_block(c, &sb->key);
2378
2379                 if (blka > blkb) {
2380                         ubifs_err("larger block %u goes before %u", blka, blkb);
2381                         goto error_dump;
2382                 }
2383                 if (blka == blkb) {
2384                         ubifs_err("two data nodes for the same block");
2385                         goto error_dump;
2386                 }
2387         }
2388
2389         return 0;
2390
2391 error_dump:
2392         ubifs_dump_node(c, sa->node);
2393         ubifs_dump_node(c, sb->node);
2394         return -EINVAL;
2395 }
2396
2397 /**
2398  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2399  * @c: UBIFS file-system description object
2400  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2401  *
2402  * This function returns zero if the list of non-data nodes is sorted correctly,
2403  * and %-EINVAL if not.
2404  */
2405 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2406 {
2407         struct list_head *cur;
2408         struct ubifs_scan_node *sa, *sb;
2409
2410         if (!dbg_is_chk_gen(c))
2411                 return 0;
2412
2413         for (cur = head->next; cur->next != head; cur = cur->next) {
2414                 ino_t inuma, inumb;
2415                 uint32_t hasha, hashb;
2416
2417                 cond_resched();
2418                 sa = container_of(cur, struct ubifs_scan_node, list);
2419                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2420
2421                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2422                     sa->type != UBIFS_XENT_NODE) {
2423                         ubifs_err("bad node type %d", sa->type);
2424                         ubifs_dump_node(c, sa->node);
2425                         return -EINVAL;
2426                 }
2427                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2428                     sa->type != UBIFS_XENT_NODE) {
2429                         ubifs_err("bad node type %d", sb->type);
2430                         ubifs_dump_node(c, sb->node);
2431                         return -EINVAL;
2432                 }
2433
2434                 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2435                         ubifs_err("non-inode node goes before inode node");
2436                         goto error_dump;
2437                 }
2438
2439                 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2440                         continue;
2441
2442                 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2443                         /* Inode nodes are sorted in descending size order */
2444                         if (sa->len < sb->len) {
2445                                 ubifs_err("smaller inode node goes first");
2446                                 goto error_dump;
2447                         }
2448                         continue;
2449                 }
2450
2451                 /*
2452                  * This is either a dentry or xentry, which should be sorted in
2453                  * ascending (parent ino, hash) order.
2454                  */
2455                 inuma = key_inum(c, &sa->key);
2456                 inumb = key_inum(c, &sb->key);
2457
2458                 if (inuma < inumb)
2459                         continue;
2460                 if (inuma > inumb) {
2461                         ubifs_err("larger inum %lu goes before inum %lu",
2462                                   (unsigned long)inuma, (unsigned long)inumb);
2463                         goto error_dump;
2464                 }
2465
2466                 hasha = key_block(c, &sa->key);
2467                 hashb = key_block(c, &sb->key);
2468
2469                 if (hasha > hashb) {
2470                         ubifs_err("larger hash %u goes before %u",
2471                                   hasha, hashb);
2472                         goto error_dump;
2473                 }
2474         }
2475
2476         return 0;
2477
2478 error_dump:
2479         ubifs_msg("dumping first node");
2480         ubifs_dump_node(c, sa->node);
2481         ubifs_msg("dumping second node");
2482         ubifs_dump_node(c, sb->node);
2483         return -EINVAL;
2484         return 0;
2485 }
2486
2487 static inline int chance(unsigned int n, unsigned int out_of)
2488 {
2489         return !!((prandom_u32() % out_of) + 1 <= n);
2490
2491 }
2492
2493 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2494 {
2495         struct ubifs_debug_info *d = c->dbg;
2496
2497         ubifs_assert(dbg_is_tst_rcvry(c));
2498
2499         if (!d->pc_cnt) {
2500                 /* First call - decide delay to the power cut */
2501                 if (chance(1, 2)) {
2502                         unsigned long delay;
2503
2504                         if (chance(1, 2)) {
2505                                 d->pc_delay = 1;
2506                                 /* Fail withing 1 minute */
2507                                 delay = prandom_u32() % 60000;
2508                                 d->pc_timeout = jiffies;
2509                                 d->pc_timeout += msecs_to_jiffies(delay);
2510                                 ubifs_warn("failing after %lums", delay);
2511                         } else {
2512                                 d->pc_delay = 2;
2513                                 delay = prandom_u32() % 10000;
2514                                 /* Fail within 10000 operations */
2515                                 d->pc_cnt_max = delay;
2516                                 ubifs_warn("failing after %lu calls", delay);
2517                         }
2518                 }
2519
2520                 d->pc_cnt += 1;
2521         }
2522
2523         /* Determine if failure delay has expired */
2524         if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2525                         return 0;
2526         if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2527                         return 0;
2528
2529         if (lnum == UBIFS_SB_LNUM) {
2530                 if (write && chance(1, 2))
2531                         return 0;
2532                 if (chance(19, 20))
2533                         return 0;
2534                 ubifs_warn("failing in super block LEB %d", lnum);
2535         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2536                 if (chance(19, 20))
2537                         return 0;
2538                 ubifs_warn("failing in master LEB %d", lnum);
2539         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2540                 if (write && chance(99, 100))
2541                         return 0;
2542                 if (chance(399, 400))
2543                         return 0;
2544                 ubifs_warn("failing in log LEB %d", lnum);
2545         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2546                 if (write && chance(7, 8))
2547                         return 0;
2548                 if (chance(19, 20))
2549                         return 0;
2550                 ubifs_warn("failing in LPT LEB %d", lnum);
2551         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2552                 if (write && chance(1, 2))
2553                         return 0;
2554                 if (chance(9, 10))
2555                         return 0;
2556                 ubifs_warn("failing in orphan LEB %d", lnum);
2557         } else if (lnum == c->ihead_lnum) {
2558                 if (chance(99, 100))
2559                         return 0;
2560                 ubifs_warn("failing in index head LEB %d", lnum);
2561         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2562                 if (chance(9, 10))
2563                         return 0;
2564                 ubifs_warn("failing in GC head LEB %d", lnum);
2565         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2566                    !ubifs_search_bud(c, lnum)) {
2567                 if (chance(19, 20))
2568                         return 0;
2569                 ubifs_warn("failing in non-bud LEB %d", lnum);
2570         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2571                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2572                 if (chance(999, 1000))
2573                         return 0;
2574                 ubifs_warn("failing in bud LEB %d commit running", lnum);
2575         } else {
2576                 if (chance(9999, 10000))
2577                         return 0;
2578                 ubifs_warn("failing in bud LEB %d commit not running", lnum);
2579         }
2580
2581         d->pc_happened = 1;
2582         ubifs_warn("========== Power cut emulated ==========");
2583         dump_stack();
2584         return 1;
2585 }
2586
2587 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2588                         unsigned int len)
2589 {
2590         unsigned int from, to, ffs = chance(1, 2);
2591         unsigned char *p = (void *)buf;
2592
2593         from = prandom_u32() % len;
2594         /* Corruption span max to end of write unit */
2595         to = min(len, ALIGN(from + 1, c->max_write_size));
2596
2597         ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2598                    ffs ? "0xFFs" : "random data");
2599
2600         if (ffs)
2601                 memset(p + from, 0xFF, to - from);
2602         else
2603                 prandom_bytes(p + from, to - from);
2604
2605         return to;
2606 }
2607
2608 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2609                   int offs, int len)
2610 {
2611         int err, failing;
2612
2613         if (c->dbg->pc_happened)
2614                 return -EROFS;
2615
2616         failing = power_cut_emulated(c, lnum, 1);
2617         if (failing) {
2618                 len = corrupt_data(c, buf, len);
2619                 ubifs_warn("actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2620                            len, lnum, offs);
2621         }
2622         err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2623         if (err)
2624                 return err;
2625         if (failing)
2626                 return -EROFS;
2627         return 0;
2628 }
2629
2630 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2631                    int len)
2632 {
2633         int err;
2634
2635         if (c->dbg->pc_happened)
2636                 return -EROFS;
2637         if (power_cut_emulated(c, lnum, 1))
2638                 return -EROFS;
2639         err = ubi_leb_change(c->ubi, lnum, buf, len);
2640         if (err)
2641                 return err;
2642         if (power_cut_emulated(c, lnum, 1))
2643                 return -EROFS;
2644         return 0;
2645 }
2646
2647 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2648 {
2649         int err;
2650
2651         if (c->dbg->pc_happened)
2652                 return -EROFS;
2653         if (power_cut_emulated(c, lnum, 0))
2654                 return -EROFS;
2655         err = ubi_leb_unmap(c->ubi, lnum);
2656         if (err)
2657                 return err;
2658         if (power_cut_emulated(c, lnum, 0))
2659                 return -EROFS;
2660         return 0;
2661 }
2662
2663 int dbg_leb_map(struct ubifs_info *c, int lnum)
2664 {
2665         int err;
2666
2667         if (c->dbg->pc_happened)
2668                 return -EROFS;
2669         if (power_cut_emulated(c, lnum, 0))
2670                 return -EROFS;
2671         err = ubi_leb_map(c->ubi, lnum);
2672         if (err)
2673                 return err;
2674         if (power_cut_emulated(c, lnum, 0))
2675                 return -EROFS;
2676         return 0;
2677 }
2678
2679 /*
2680  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2681  * contain the stuff specific to particular file-system mounts.
2682  */
2683 static struct dentry *dfs_rootdir;
2684
2685 static int dfs_file_open(struct inode *inode, struct file *file)
2686 {
2687         file->private_data = inode->i_private;
2688         return nonseekable_open(inode, file);
2689 }
2690
2691 /**
2692  * provide_user_output - provide output to the user reading a debugfs file.
2693  * @val: boolean value for the answer
2694  * @u: the buffer to store the answer at
2695  * @count: size of the buffer
2696  * @ppos: position in the @u output buffer
2697  *
2698  * This is a simple helper function which stores @val boolean value in the user
2699  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2700  * bytes written to @u in case of success and a negative error code in case of
2701  * failure.
2702  */
2703 static int provide_user_output(int val, char __user *u, size_t count,
2704                                loff_t *ppos)
2705 {
2706         char buf[3];
2707
2708         if (val)
2709                 buf[0] = '1';
2710         else
2711                 buf[0] = '0';
2712         buf[1] = '\n';
2713         buf[2] = 0x00;
2714
2715         return simple_read_from_buffer(u, count, ppos, buf, 2);
2716 }
2717
2718 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2719                              loff_t *ppos)
2720 {
2721         struct dentry *dent = file->f_path.dentry;
2722         struct ubifs_info *c = file->private_data;
2723         struct ubifs_debug_info *d = c->dbg;
2724         int val;
2725
2726         if (dent == d->dfs_chk_gen)
2727                 val = d->chk_gen;
2728         else if (dent == d->dfs_chk_index)
2729                 val = d->chk_index;
2730         else if (dent == d->dfs_chk_orph)
2731                 val = d->chk_orph;
2732         else if (dent == d->dfs_chk_lprops)
2733                 val = d->chk_lprops;
2734         else if (dent == d->dfs_chk_fs)
2735                 val = d->chk_fs;
2736         else if (dent == d->dfs_tst_rcvry)
2737                 val = d->tst_rcvry;
2738         else if (dent == d->dfs_ro_error)
2739                 val = c->ro_error;
2740         else
2741                 return -EINVAL;
2742
2743         return provide_user_output(val, u, count, ppos);
2744 }
2745
2746 /**
2747  * interpret_user_input - interpret user debugfs file input.
2748  * @u: user-provided buffer with the input
2749  * @count: buffer size
2750  *
2751  * This is a helper function which interpret user input to a boolean UBIFS
2752  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2753  * in case of failure.
2754  */
2755 static int interpret_user_input(const char __user *u, size_t count)
2756 {
2757         size_t buf_size;
2758         char buf[8];
2759
2760         buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2761         if (copy_from_user(buf, u, buf_size))
2762                 return -EFAULT;
2763
2764         if (buf[0] == '1')
2765                 return 1;
2766         else if (buf[0] == '0')
2767                 return 0;
2768
2769         return -EINVAL;
2770 }
2771
2772 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2773                               size_t count, loff_t *ppos)
2774 {
2775         struct ubifs_info *c = file->private_data;
2776         struct ubifs_debug_info *d = c->dbg;
2777         struct dentry *dent = file->f_path.dentry;
2778         int val;
2779
2780         /*
2781          * TODO: this is racy - the file-system might have already been
2782          * unmounted and we'd oops in this case. The plan is to fix it with
2783          * help of 'iterate_supers_type()' which we should have in v3.0: when
2784          * a debugfs opened, we rember FS's UUID in file->private_data. Then
2785          * whenever we access the FS via a debugfs file, we iterate all UBIFS
2786          * superblocks and fine the one with the same UUID, and take the
2787          * locking right.
2788          *
2789          * The other way to go suggested by Al Viro is to create a separate
2790          * 'ubifs-debug' file-system instead.
2791          */
2792         if (file->f_path.dentry == d->dfs_dump_lprops) {
2793                 ubifs_dump_lprops(c);
2794                 return count;
2795         }
2796         if (file->f_path.dentry == d->dfs_dump_budg) {
2797                 ubifs_dump_budg(c, &c->bi);
2798                 return count;
2799         }
2800         if (file->f_path.dentry == d->dfs_dump_tnc) {
2801                 mutex_lock(&c->tnc_mutex);
2802                 ubifs_dump_tnc(c);
2803                 mutex_unlock(&c->tnc_mutex);
2804                 return count;
2805         }
2806
2807         val = interpret_user_input(u, count);
2808         if (val < 0)
2809                 return val;
2810
2811         if (dent == d->dfs_chk_gen)
2812                 d->chk_gen = val;
2813         else if (dent == d->dfs_chk_index)
2814                 d->chk_index = val;
2815         else if (dent == d->dfs_chk_orph)
2816                 d->chk_orph = val;
2817         else if (dent == d->dfs_chk_lprops)
2818                 d->chk_lprops = val;
2819         else if (dent == d->dfs_chk_fs)
2820                 d->chk_fs = val;
2821         else if (dent == d->dfs_tst_rcvry)
2822                 d->tst_rcvry = val;
2823         else if (dent == d->dfs_ro_error)
2824                 c->ro_error = !!val;
2825         else
2826                 return -EINVAL;
2827
2828         return count;
2829 }
2830
2831 static const struct file_operations dfs_fops = {
2832         .open = dfs_file_open,
2833         .read = dfs_file_read,
2834         .write = dfs_file_write,
2835         .owner = THIS_MODULE,
2836         .llseek = no_llseek,
2837 };
2838
2839 /**
2840  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2841  * @c: UBIFS file-system description object
2842  *
2843  * This function creates all debugfs files for this instance of UBIFS. Returns
2844  * zero in case of success and a negative error code in case of failure.
2845  *
2846  * Note, the only reason we have not merged this function with the
2847  * 'ubifs_debugging_init()' function is because it is better to initialize
2848  * debugfs interfaces at the very end of the mount process, and remove them at
2849  * the very beginning of the mount process.
2850  */
2851 int dbg_debugfs_init_fs(struct ubifs_info *c)
2852 {
2853         int err, n;
2854         const char *fname;
2855         struct dentry *dent;
2856         struct ubifs_debug_info *d = c->dbg;
2857
2858         if (!IS_ENABLED(CONFIG_DEBUG_FS))
2859                 return 0;
2860
2861         n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2862                      c->vi.ubi_num, c->vi.vol_id);
2863         if (n == UBIFS_DFS_DIR_LEN) {
2864                 /* The array size is too small */
2865                 fname = UBIFS_DFS_DIR_NAME;
2866                 dent = ERR_PTR(-EINVAL);
2867                 goto out;
2868         }
2869
2870         fname = d->dfs_dir_name;
2871         dent = debugfs_create_dir(fname, dfs_rootdir);
2872         if (IS_ERR_OR_NULL(dent))
2873                 goto out;
2874         d->dfs_dir = dent;
2875
2876         fname = "dump_lprops";
2877         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2878         if (IS_ERR_OR_NULL(dent))
2879                 goto out_remove;
2880         d->dfs_dump_lprops = dent;
2881
2882         fname = "dump_budg";
2883         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2884         if (IS_ERR_OR_NULL(dent))
2885                 goto out_remove;
2886         d->dfs_dump_budg = dent;
2887
2888         fname = "dump_tnc";
2889         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2890         if (IS_ERR_OR_NULL(dent))
2891                 goto out_remove;
2892         d->dfs_dump_tnc = dent;
2893
2894         fname = "chk_general";
2895         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2896                                    &dfs_fops);
2897         if (IS_ERR_OR_NULL(dent))
2898                 goto out_remove;
2899         d->dfs_chk_gen = dent;
2900
2901         fname = "chk_index";
2902         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2903                                    &dfs_fops);
2904         if (IS_ERR_OR_NULL(dent))
2905                 goto out_remove;
2906         d->dfs_chk_index = dent;
2907
2908         fname = "chk_orphans";
2909         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2910                                    &dfs_fops);
2911         if (IS_ERR_OR_NULL(dent))
2912                 goto out_remove;
2913         d->dfs_chk_orph = dent;
2914
2915         fname = "chk_lprops";
2916         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2917                                    &dfs_fops);
2918         if (IS_ERR_OR_NULL(dent))
2919                 goto out_remove;
2920         d->dfs_chk_lprops = dent;
2921
2922         fname = "chk_fs";
2923         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2924                                    &dfs_fops);
2925         if (IS_ERR_OR_NULL(dent))
2926                 goto out_remove;
2927         d->dfs_chk_fs = dent;
2928
2929         fname = "tst_recovery";
2930         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2931                                    &dfs_fops);
2932         if (IS_ERR_OR_NULL(dent))
2933                 goto out_remove;
2934         d->dfs_tst_rcvry = dent;
2935
2936         fname = "ro_error";
2937         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2938                                    &dfs_fops);
2939         if (IS_ERR_OR_NULL(dent))
2940                 goto out_remove;
2941         d->dfs_ro_error = dent;
2942
2943         return 0;
2944
2945 out_remove:
2946         debugfs_remove_recursive(d->dfs_dir);
2947 out:
2948         err = dent ? PTR_ERR(dent) : -ENODEV;
2949         ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
2950                   fname, err);
2951         return err;
2952 }
2953
2954 /**
2955  * dbg_debugfs_exit_fs - remove all debugfs files.
2956  * @c: UBIFS file-system description object
2957  */
2958 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2959 {
2960         if (IS_ENABLED(CONFIG_DEBUG_FS))
2961                 debugfs_remove_recursive(c->dbg->dfs_dir);
2962 }
2963
2964 struct ubifs_global_debug_info ubifs_dbg;
2965
2966 static struct dentry *dfs_chk_gen;
2967 static struct dentry *dfs_chk_index;
2968 static struct dentry *dfs_chk_orph;
2969 static struct dentry *dfs_chk_lprops;
2970 static struct dentry *dfs_chk_fs;
2971 static struct dentry *dfs_tst_rcvry;
2972
2973 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2974                                     size_t count, loff_t *ppos)
2975 {
2976         struct dentry *dent = file->f_path.dentry;
2977         int val;
2978
2979         if (dent == dfs_chk_gen)
2980                 val = ubifs_dbg.chk_gen;
2981         else if (dent == dfs_chk_index)
2982                 val = ubifs_dbg.chk_index;
2983         else if (dent == dfs_chk_orph)
2984                 val = ubifs_dbg.chk_orph;
2985         else if (dent == dfs_chk_lprops)
2986                 val = ubifs_dbg.chk_lprops;
2987         else if (dent == dfs_chk_fs)
2988                 val = ubifs_dbg.chk_fs;
2989         else if (dent == dfs_tst_rcvry)
2990                 val = ubifs_dbg.tst_rcvry;
2991         else
2992                 return -EINVAL;
2993
2994         return provide_user_output(val, u, count, ppos);
2995 }
2996
2997 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2998                                      size_t count, loff_t *ppos)
2999 {
3000         struct dentry *dent = file->f_path.dentry;
3001         int val;
3002
3003         val = interpret_user_input(u, count);
3004         if (val < 0)
3005                 return val;
3006
3007         if (dent == dfs_chk_gen)
3008                 ubifs_dbg.chk_gen = val;
3009         else if (dent == dfs_chk_index)
3010                 ubifs_dbg.chk_index = val;
3011         else if (dent == dfs_chk_orph)
3012                 ubifs_dbg.chk_orph = val;
3013         else if (dent == dfs_chk_lprops)
3014                 ubifs_dbg.chk_lprops = val;
3015         else if (dent == dfs_chk_fs)
3016                 ubifs_dbg.chk_fs = val;
3017         else if (dent == dfs_tst_rcvry)
3018                 ubifs_dbg.tst_rcvry = val;
3019         else
3020                 return -EINVAL;
3021
3022         return count;
3023 }
3024
3025 static const struct file_operations dfs_global_fops = {
3026         .read = dfs_global_file_read,
3027         .write = dfs_global_file_write,
3028         .owner = THIS_MODULE,
3029         .llseek = no_llseek,
3030 };
3031
3032 /**
3033  * dbg_debugfs_init - initialize debugfs file-system.
3034  *
3035  * UBIFS uses debugfs file-system to expose various debugging knobs to
3036  * user-space. This function creates "ubifs" directory in the debugfs
3037  * file-system. Returns zero in case of success and a negative error code in
3038  * case of failure.
3039  */
3040 int dbg_debugfs_init(void)
3041 {
3042         int err;
3043         const char *fname;
3044         struct dentry *dent;
3045
3046         if (!IS_ENABLED(CONFIG_DEBUG_FS))
3047                 return 0;
3048
3049         fname = "ubifs";
3050         dent = debugfs_create_dir(fname, NULL);
3051         if (IS_ERR_OR_NULL(dent))
3052                 goto out;
3053         dfs_rootdir = dent;
3054
3055         fname = "chk_general";
3056         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3057                                    &dfs_global_fops);
3058         if (IS_ERR_OR_NULL(dent))
3059                 goto out_remove;
3060         dfs_chk_gen = dent;
3061
3062         fname = "chk_index";
3063         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3064                                    &dfs_global_fops);
3065         if (IS_ERR_OR_NULL(dent))
3066                 goto out_remove;
3067         dfs_chk_index = dent;
3068
3069         fname = "chk_orphans";
3070         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3071                                    &dfs_global_fops);
3072         if (IS_ERR_OR_NULL(dent))
3073                 goto out_remove;
3074         dfs_chk_orph = dent;
3075
3076         fname = "chk_lprops";
3077         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3078                                    &dfs_global_fops);
3079         if (IS_ERR_OR_NULL(dent))
3080                 goto out_remove;
3081         dfs_chk_lprops = dent;
3082
3083         fname = "chk_fs";
3084         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3085                                    &dfs_global_fops);
3086         if (IS_ERR_OR_NULL(dent))
3087                 goto out_remove;
3088         dfs_chk_fs = dent;
3089
3090         fname = "tst_recovery";
3091         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3092                                    &dfs_global_fops);
3093         if (IS_ERR_OR_NULL(dent))
3094                 goto out_remove;
3095         dfs_tst_rcvry = dent;
3096
3097         return 0;
3098
3099 out_remove:
3100         debugfs_remove_recursive(dfs_rootdir);
3101 out:
3102         err = dent ? PTR_ERR(dent) : -ENODEV;
3103         ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3104                   fname, err);
3105         return err;
3106 }
3107
3108 /**
3109  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3110  */
3111 void dbg_debugfs_exit(void)
3112 {
3113         if (IS_ENABLED(CONFIG_DEBUG_FS))
3114                 debugfs_remove_recursive(dfs_rootdir);
3115 }
3116
3117 /**
3118  * ubifs_debugging_init - initialize UBIFS debugging.
3119  * @c: UBIFS file-system description object
3120  *
3121  * This function initializes debugging-related data for the file system.
3122  * Returns zero in case of success and a negative error code in case of
3123  * failure.
3124  */
3125 int ubifs_debugging_init(struct ubifs_info *c)
3126 {
3127         c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3128         if (!c->dbg)
3129                 return -ENOMEM;
3130
3131         return 0;
3132 }
3133
3134 /**
3135  * ubifs_debugging_exit - free debugging data.
3136  * @c: UBIFS file-system description object
3137  */
3138 void ubifs_debugging_exit(struct ubifs_info *c)
3139 {
3140         kfree(c->dbg);
3141 }
3142 #endif