]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - include/galileo/core.h
Merge branch 'master' of git://www.denx.de/git/u-boot-cfi-flash
[karo-tx-uboot.git] / include / galileo / core.h
1 /* Core.h - Basic core logic functions and definitions */
2
3 /* Copyright Galileo Technology. */
4
5 /*
6 DESCRIPTION
7 This header file contains simple read/write macros for addressing
8 the SDRAM, devices, GT`s internal registers and PCI (using the PCI`s address
9 space). The macros take care of Big/Little endian conversions.
10 */
11
12 #ifndef __INCcoreh
13 #define __INCcoreh
14
15 /* includes */
16 #include "gt64260R.h"
17 #include <stdbool.h>
18
19 extern unsigned int INTERNAL_REG_BASE_ADDR;
20
21 /*
22  * GT-6426x variants
23  */
24 #define GT_64260        0  /* includes both 64260A and 64260B */
25 #define GT_64261        1
26
27 #if (CONFIG_SYS_GT_6426x == GT_64260)
28 #ifdef CONFIG_ETHER_PORT_MII
29 #define GAL_ETH_DEVS 2
30 #else
31 #define GAL_ETH_DEVS 3
32 #endif
33 #elif (CONFIG_SYS_GT_6426x == GT_64261)
34 #define GAL_ETH_DEVS 2
35 #else
36 #define GAL_ETH_DEVS 3  /* default to a 64260 */
37 #endif
38
39 /****************************************/
40 /*          GENERAL Definitions                 */
41 /****************************************/
42
43 #define NO_BIT          0x00000000
44 #define BIT0            0x00000001
45 #define BIT1            0x00000002
46 #define BIT2            0x00000004
47 #define BIT3            0x00000008
48 #define BIT4            0x00000010
49 #define BIT5            0x00000020
50 #define BIT6            0x00000040
51 #define BIT7            0x00000080
52 #define BIT8            0x00000100
53 #define BIT9            0x00000200
54 #define BIT10           0x00000400
55 #define BIT11           0x00000800
56 #define BIT12           0x00001000
57 #define BIT13           0x00002000
58 #define BIT14           0x00004000
59 #define BIT15           0x00008000
60 #define BIT16           0x00010000
61 #define BIT17           0x00020000
62 #define BIT18           0x00040000
63 #define BIT19           0x00080000
64 #define BIT20           0x00100000
65 #define BIT21           0x00200000
66 #define BIT22           0x00400000
67 #define BIT23           0x00800000
68 #define BIT24           0x01000000
69 #define BIT25           0x02000000
70 #define BIT26           0x04000000
71 #define BIT27           0x08000000
72 #define BIT28           0x10000000
73 #define BIT29           0x20000000
74 #define BIT30           0x40000000
75 #define BIT31           0x80000000
76
77 #define _1K             0x00000400
78 #define _2K             0x00000800
79 #define _4K             0x00001000
80 #define _8K             0x00002000
81 #define _16K            0x00004000
82 #define _32K            0x00008000
83 #define _64K            0x00010000
84 #define _128K           0x00020000
85 #define _256K           0x00040000
86 #define _512K           0x00080000
87
88 #define _1M             0x00100000
89 #define _2M             0x00200000
90 #define _3M             0x00300000
91 #define _4M             0x00400000
92 #define _5M             0x00500000
93 #define _6M             0x00600000
94 #define _7M             0x00700000
95 #define _8M             0x00800000
96 #define _9M             0x00900000
97 #define _10M            0x00a00000
98 #define _11M            0x00b00000
99 #define _12M            0x00c00000
100 #define _13M            0x00d00000
101 #define _14M            0x00e00000
102 #define _15M            0x00f00000
103 #define _16M            0x01000000
104
105 #define _32M            0x02000000
106 #define _64M            0x04000000
107 #define _128M           0x08000000
108 #define _256M           0x10000000
109 #define _512M           0x20000000
110
111 #define _1G             0x40000000
112 #define _2G             0x80000000
113
114 /* Little to Big endian conversion macros */
115
116 #ifdef LE /* Little Endian */
117 #define SHORT_SWAP(X) (X)
118 #define WORD_SWAP(X) (X)
119 #define LONG_SWAP(X) ((l64)(X))
120
121 #else    /* Big Endian */
122 #define SHORT_SWAP(X) ((X <<8 ) | (X >> 8))
123
124 #define WORD_SWAP(X) (((X)&0xff)<<24)+      \
125                     (((X)&0xff00)<<8)+      \
126                     (((X)&0xff0000)>>8)+    \
127                     (((X)&0xff000000)>>24)
128
129 #define LONG_SWAP(X) ( (l64) (((X)&0xffULL)<<56)+               \
130                             (((X)&0xff00ULL)<<40)+              \
131                             (((X)&0xff0000ULL)<<24)+            \
132                             (((X)&0xff000000ULL)<<8)+           \
133                             (((X)&0xff00000000ULL)>>8)+         \
134                             (((X)&0xff0000000000ULL)>>24)+      \
135                             (((X)&0xff000000000000ULL)>>40)+    \
136                             (((X)&0xff00000000000000ULL)>>56))
137
138 #endif
139
140 #ifndef NULL
141 #define NULL 0
142 #endif
143
144 /* Those two definitions were defined to be compatible with MIPS */
145 #define NONE_CACHEABLE          0x00000000
146 #define CACHEABLE                       0x00000000
147
148 /* 750 cache line */
149 #define CACHE_LINE_SIZE 32
150 #define CACHELINE_MASK_BITS (CACHE_LINE_SIZE - 1)
151 #define CACHELINE_ROUNDUP(A) (((A)+CACHELINE_MASK_BITS) & ~CACHELINE_MASK_BITS)
152
153 /* Read/Write to/from GT`s internal registers */
154 #define GT_REG_READ(offset, pData)                                          \
155 *pData = ( *((volatile unsigned int *)(NONE_CACHEABLE |                     \
156                 INTERNAL_REG_BASE_ADDR | (offset))) ) ;                                              \
157 *pData = WORD_SWAP(*pData)
158
159 #define GTREGREAD(offset)                                                   \
160          (WORD_SWAP( *((volatile unsigned int *)(NONE_CACHEABLE |            \
161                    INTERNAL_REG_BASE_ADDR | (offset))) ))
162
163 #define GT_REG_WRITE(offset, data)                                          \
164 *((unsigned int *)( INTERNAL_REG_BASE_ADDR | (offset))) =                   \
165                     WORD_SWAP(data)
166
167 /* Write 32/16/8 bit */
168 #define WRITE_CHAR(address, data)                                           \
169         *((unsigned char *)(address)) = data
170 #define WRITE_SHORT(address, data)                                          \
171         *((unsigned short *)(address)) = data
172 #define WRITE_WORD(address, data)                                           \
173         *((unsigned int *)(address)) = data
174
175 /* Read 32/16/8 bits - returns data in variable. */
176 #define READ_CHAR(address, pData)                                           \
177         *pData = *((volatile unsigned char *)(address))
178
179 #define READ_SHORT(address, pData)                                          \
180         *pData = *((volatile unsigned short *)(address))
181
182 #define READ_WORD(address, pData)                                           \
183         *pData = *((volatile unsigned int *)(address))
184
185 /* Read 32/16/8 bit - returns data direct. */
186 #define READCHAR(address)                                                   \
187         *((volatile unsigned char *)((address) | NONE_CACHEABLE))
188
189 #define READSHORT(address)                                                  \
190         *((volatile unsigned short *)((address) | NONE_CACHEABLE))
191
192 #define READWORD(address)                                                   \
193         *((volatile unsigned int *)((address) | NONE_CACHEABLE))
194
195 /* Those two Macros were defined to be compatible with MIPS */
196 #define VIRTUAL_TO_PHY(x)    (((unsigned int)x) & 0xffffffff)
197 #define PHY_TO_VIRTUAL(x)    (((unsigned int)x) | NONE_CACHEABLE)
198
199 /*  SET_REG_BITS(regOffset,bits) -
200    gets register offset and bits: a 32bit value. It set to logic '1' in the
201    internal register the bits which given as an input example:
202    SET_REG_BITS(0x840,BIT3 | BIT24 | BIT30) - set bits: 3,24 and 30 to logic
203    '1' in register 0x840 while the other bits stays as is. */
204 #define SET_REG_BITS(regOffset,bits) \
205         *(unsigned int*)(NONE_CACHEABLE | INTERNAL_REG_BASE_ADDR |  \
206         regOffset) |= (unsigned int)WORD_SWAP(bits)
207
208 /*  RESET_REG_BITS(regOffset,bits) -
209    gets register offset and bits: a 32bit value. It set to logic '0' in the
210    internal register the bits which given as an input example:
211    RESET_REG_BITS(0x840,BIT3 | BIT24 | BIT30) - set bits: 3,24 and 30 to logic
212    '0' in register 0x840 while the other bits stays as is. */
213 #define RESET_REG_BITS(regOffset,bits) \
214         *(unsigned int*)(NONE_CACHEABLE | INTERNAL_REG_BASE_ADDR   \
215         | regOffset) &= ~( (unsigned int)WORD_SWAP(bits) )
216
217 #endif /* __INCcoreh */