]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/arc/mm/cache.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / arch / arc / mm / cache.c
1 /*
2  * ARC Cache Management
3  *
4  * Copyright (C) 2014-15 Synopsys, Inc. (www.synopsys.com)
5  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/sched.h>
15 #include <linux/cache.h>
16 #include <linux/mmu_context.h>
17 #include <linux/syscalls.h>
18 #include <linux/uaccess.h>
19 #include <linux/pagemap.h>
20 #include <asm/cacheflush.h>
21 #include <asm/cachectl.h>
22 #include <asm/setup.h>
23
24 static int l2_line_sz;
25 int ioc_exists;
26 volatile int slc_enable = 1, ioc_enable = 1;
27 unsigned long perip_base = ARC_UNCACHED_ADDR_SPACE; /* legacy value for boot */
28
29 void (*_cache_line_loop_ic_fn)(phys_addr_t paddr, unsigned long vaddr,
30                                unsigned long sz, const int cacheop);
31
32 void (*__dma_cache_wback_inv)(phys_addr_t start, unsigned long sz);
33 void (*__dma_cache_inv)(phys_addr_t start, unsigned long sz);
34 void (*__dma_cache_wback)(phys_addr_t start, unsigned long sz);
35
36 char *arc_cache_mumbojumbo(int c, char *buf, int len)
37 {
38         int n = 0;
39         struct cpuinfo_arc_cache *p;
40
41 #define PR_CACHE(p, cfg, str)                                           \
42         if (!(p)->ver)                                                  \
43                 n += scnprintf(buf + n, len - n, str"\t\t: N/A\n");     \
44         else                                                            \
45                 n += scnprintf(buf + n, len - n,                        \
46                         str"\t\t: %uK, %dway/set, %uB Line, %s%s%s\n",  \
47                         (p)->sz_k, (p)->assoc, (p)->line_len,           \
48                         (p)->vipt ? "VIPT" : "PIPT",                    \
49                         (p)->alias ? " aliasing" : "",                  \
50                         IS_USED_CFG(cfg));
51
52         PR_CACHE(&cpuinfo_arc700[c].icache, CONFIG_ARC_HAS_ICACHE, "I-Cache");
53         PR_CACHE(&cpuinfo_arc700[c].dcache, CONFIG_ARC_HAS_DCACHE, "D-Cache");
54
55         if (!is_isa_arcv2())
56                 return buf;
57
58         p = &cpuinfo_arc700[c].slc;
59         if (p->ver)
60                 n += scnprintf(buf + n, len - n,
61                                "SLC\t\t: %uK, %uB Line%s\n",
62                                p->sz_k, p->line_len, IS_USED_RUN(slc_enable));
63
64         if (ioc_exists)
65                 n += scnprintf(buf + n, len - n, "IOC\t\t:%s\n",
66                                 IS_DISABLED_RUN(ioc_enable));
67
68         return buf;
69 }
70
71 /*
72  * Read the Cache Build Confuration Registers, Decode them and save into
73  * the cpuinfo structure for later use.
74  * No Validation done here, simply read/convert the BCRs
75  */
76 static void read_decode_cache_bcr_arcv2(int cpu)
77 {
78         struct cpuinfo_arc_cache *p_slc = &cpuinfo_arc700[cpu].slc;
79         struct bcr_generic uncached_space;
80         struct bcr_generic sbcr;
81
82         struct bcr_slc_cfg {
83 #ifdef CONFIG_CPU_BIG_ENDIAN
84                 unsigned int pad:24, way:2, lsz:2, sz:4;
85 #else
86                 unsigned int sz:4, lsz:2, way:2, pad:24;
87 #endif
88         } slc_cfg;
89
90         struct bcr_clust_cfg {
91 #ifdef CONFIG_CPU_BIG_ENDIAN
92                 unsigned int pad:7, c:1, num_entries:8, num_cores:8, ver:8;
93 #else
94                 unsigned int ver:8, num_cores:8, num_entries:8, c:1, pad:7;
95 #endif
96         } cbcr;
97
98         READ_BCR(ARC_REG_SLC_BCR, sbcr);
99         if (sbcr.ver) {
100                 READ_BCR(ARC_REG_SLC_CFG, slc_cfg);
101                 p_slc->ver = sbcr.ver;
102                 p_slc->sz_k = 128 << slc_cfg.sz;
103                 l2_line_sz = p_slc->line_len = (slc_cfg.lsz == 0) ? 128 : 64;
104         }
105
106         READ_BCR(ARC_REG_CLUSTER_BCR, cbcr);
107         if (cbcr.c && ioc_enable)
108                 ioc_exists = 1;
109
110         /* Legacy Data Uncached BCR is deprecated from v3 onwards */
111         READ_BCR(ARC_REG_D_UNCACH_BCR, uncached_space);
112         if (uncached_space.ver > 2)
113                 perip_base = read_aux_reg(AUX_NON_VOL) & 0xF0000000;
114 }
115
116 void read_decode_cache_bcr(void)
117 {
118         struct cpuinfo_arc_cache *p_ic, *p_dc;
119         unsigned int cpu = smp_processor_id();
120         struct bcr_cache {
121 #ifdef CONFIG_CPU_BIG_ENDIAN
122                 unsigned int pad:12, line_len:4, sz:4, config:4, ver:8;
123 #else
124                 unsigned int ver:8, config:4, sz:4, line_len:4, pad:12;
125 #endif
126         } ibcr, dbcr;
127
128         p_ic = &cpuinfo_arc700[cpu].icache;
129         READ_BCR(ARC_REG_IC_BCR, ibcr);
130
131         if (!ibcr.ver)
132                 goto dc_chk;
133
134         if (ibcr.ver <= 3) {
135                 BUG_ON(ibcr.config != 3);
136                 p_ic->assoc = 2;                /* Fixed to 2w set assoc */
137         } else if (ibcr.ver >= 4) {
138                 p_ic->assoc = 1 << ibcr.config; /* 1,2,4,8 */
139         }
140
141         p_ic->line_len = 8 << ibcr.line_len;
142         p_ic->sz_k = 1 << (ibcr.sz - 1);
143         p_ic->ver = ibcr.ver;
144         p_ic->vipt = 1;
145         p_ic->alias = p_ic->sz_k/p_ic->assoc/TO_KB(PAGE_SIZE) > 1;
146
147 dc_chk:
148         p_dc = &cpuinfo_arc700[cpu].dcache;
149         READ_BCR(ARC_REG_DC_BCR, dbcr);
150
151         if (!dbcr.ver)
152                 goto slc_chk;
153
154         if (dbcr.ver <= 3) {
155                 BUG_ON(dbcr.config != 2);
156                 p_dc->assoc = 4;                /* Fixed to 4w set assoc */
157                 p_dc->vipt = 1;
158                 p_dc->alias = p_dc->sz_k/p_dc->assoc/TO_KB(PAGE_SIZE) > 1;
159         } else if (dbcr.ver >= 4) {
160                 p_dc->assoc = 1 << dbcr.config; /* 1,2,4,8 */
161                 p_dc->vipt = 0;
162                 p_dc->alias = 0;                /* PIPT so can't VIPT alias */
163         }
164
165         p_dc->line_len = 16 << dbcr.line_len;
166         p_dc->sz_k = 1 << (dbcr.sz - 1);
167         p_dc->ver = dbcr.ver;
168
169 slc_chk:
170         if (is_isa_arcv2())
171                 read_decode_cache_bcr_arcv2(cpu);
172 }
173
174 /*
175  * Line Operation on {I,D}-Cache
176  */
177
178 #define OP_INV          0x1
179 #define OP_FLUSH        0x2
180 #define OP_FLUSH_N_INV  0x3
181 #define OP_INV_IC       0x4
182
183 /*
184  *              I-Cache Aliasing in ARC700 VIPT caches (MMU v1-v3)
185  *
186  * ARC VIPT I-cache uses vaddr to index into cache and paddr to match the tag.
187  * The orig Cache Management Module "CDU" only required paddr to invalidate a
188  * certain line since it sufficed as index in Non-Aliasing VIPT cache-geometry.
189  * Infact for distinct V1,V2,P: all of {V1-P},{V2-P},{P-P} would end up fetching
190  * the exact same line.
191  *
192  * However for larger Caches (way-size > page-size) - i.e. in Aliasing config,
193  * paddr alone could not be used to correctly index the cache.
194  *
195  * ------------------
196  * MMU v1/v2 (Fixed Page Size 8k)
197  * ------------------
198  * The solution was to provide CDU with these additonal vaddr bits. These
199  * would be bits [x:13], x would depend on cache-geometry, 13 comes from
200  * standard page size of 8k.
201  * H/w folks chose [17:13] to be a future safe range, and moreso these 5 bits
202  * of vaddr could easily be "stuffed" in the paddr as bits [4:0] since the
203  * orig 5 bits of paddr were anyways ignored by CDU line ops, as they
204  * represent the offset within cache-line. The adv of using this "clumsy"
205  * interface for additional info was no new reg was needed in CDU programming
206  * model.
207  *
208  * 17:13 represented the max num of bits passable, actual bits needed were
209  * fewer, based on the num-of-aliases possible.
210  * -for 2 alias possibility, only bit 13 needed (32K cache)
211  * -for 4 alias possibility, bits 14:13 needed (64K cache)
212  *
213  * ------------------
214  * MMU v3
215  * ------------------
216  * This ver of MMU supports variable page sizes (1k-16k): although Linux will
217  * only support 8k (default), 16k and 4k.
218  * However from hardware perspective, smaller page sizes aggravate aliasing
219  * meaning more vaddr bits needed to disambiguate the cache-line-op ;
220  * the existing scheme of piggybacking won't work for certain configurations.
221  * Two new registers IC_PTAG and DC_PTAG inttoduced.
222  * "tag" bits are provided in PTAG, index bits in existing IVIL/IVDL/FLDL regs
223  */
224
225 static inline
226 void __cache_line_loop_v2(phys_addr_t paddr, unsigned long vaddr,
227                           unsigned long sz, const int op)
228 {
229         unsigned int aux_cmd;
230         int num_lines;
231         const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
232
233         if (op == OP_INV_IC) {
234                 aux_cmd = ARC_REG_IC_IVIL;
235         } else {
236                 /* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
237                 aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
238         }
239
240         /* Ensure we properly floor/ceil the non-line aligned/sized requests
241          * and have @paddr - aligned to cache line and integral @num_lines.
242          * This however can be avoided for page sized since:
243          *  -@paddr will be cache-line aligned already (being page aligned)
244          *  -@sz will be integral multiple of line size (being page sized).
245          */
246         if (!full_page) {
247                 sz += paddr & ~CACHE_LINE_MASK;
248                 paddr &= CACHE_LINE_MASK;
249                 vaddr &= CACHE_LINE_MASK;
250         }
251
252         num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
253
254         /* MMUv2 and before: paddr contains stuffed vaddrs bits */
255         paddr |= (vaddr >> PAGE_SHIFT) & 0x1F;
256
257         while (num_lines-- > 0) {
258                 write_aux_reg(aux_cmd, paddr);
259                 paddr += L1_CACHE_BYTES;
260         }
261 }
262
263 /*
264  * For ARC700 MMUv3 I-cache and D-cache flushes
265  * Also reused for HS38 aliasing I-cache configuration
266  */
267 static inline
268 void __cache_line_loop_v3(phys_addr_t paddr, unsigned long vaddr,
269                           unsigned long sz, const int op)
270 {
271         unsigned int aux_cmd, aux_tag;
272         int num_lines;
273         const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
274
275         if (op == OP_INV_IC) {
276                 aux_cmd = ARC_REG_IC_IVIL;
277                 aux_tag = ARC_REG_IC_PTAG;
278         } else {
279                 aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
280                 aux_tag = ARC_REG_DC_PTAG;
281         }
282
283         /* Ensure we properly floor/ceil the non-line aligned/sized requests
284          * and have @paddr - aligned to cache line and integral @num_lines.
285          * This however can be avoided for page sized since:
286          *  -@paddr will be cache-line aligned already (being page aligned)
287          *  -@sz will be integral multiple of line size (being page sized).
288          */
289         if (!full_page) {
290                 sz += paddr & ~CACHE_LINE_MASK;
291                 paddr &= CACHE_LINE_MASK;
292                 vaddr &= CACHE_LINE_MASK;
293         }
294         num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
295
296         /*
297          * MMUv3, cache ops require paddr in PTAG reg
298          * if V-P const for loop, PTAG can be written once outside loop
299          */
300         if (full_page)
301                 write_aux_reg(aux_tag, paddr);
302
303         /*
304          * This is technically for MMU v4, using the MMU v3 programming model
305          * Special work for HS38 aliasing I-cache configuration with PAE40
306          *   - upper 8 bits of paddr need to be written into PTAG_HI
307          *   - (and needs to be written before the lower 32 bits)
308          * Note that PTAG_HI is hoisted outside the line loop
309          */
310         if (is_pae40_enabled() && op == OP_INV_IC)
311                 write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
312
313         while (num_lines-- > 0) {
314                 if (!full_page) {
315                         write_aux_reg(aux_tag, paddr);
316                         paddr += L1_CACHE_BYTES;
317                 }
318
319                 write_aux_reg(aux_cmd, vaddr);
320                 vaddr += L1_CACHE_BYTES;
321         }
322 }
323
324 /*
325  * In HS38x (MMU v4), I-cache is VIPT (can alias), D-cache is PIPT
326  * Here's how cache ops are implemented
327  *
328  *  - D-cache: only paddr needed (in DC_IVDL/DC_FLDL)
329  *  - I-cache Non Aliasing: Despite VIPT, only paddr needed (in IC_IVIL)
330  *  - I-cache Aliasing: Both vaddr and paddr needed (in IC_IVIL, IC_PTAG
331  *    respectively, similar to MMU v3 programming model, hence
332  *    __cache_line_loop_v3() is used)
333  *
334  * If PAE40 is enabled, independent of aliasing considerations, the higher bits
335  * needs to be written into PTAG_HI
336  */
337 static inline
338 void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr,
339                           unsigned long sz, const int cacheop)
340 {
341         unsigned int aux_cmd;
342         int num_lines;
343         const int full_page_op = __builtin_constant_p(sz) && sz == PAGE_SIZE;
344
345         if (cacheop == OP_INV_IC) {
346                 aux_cmd = ARC_REG_IC_IVIL;
347         } else {
348                 /* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
349                 aux_cmd = cacheop & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
350         }
351
352         /* Ensure we properly floor/ceil the non-line aligned/sized requests
353          * and have @paddr - aligned to cache line and integral @num_lines.
354          * This however can be avoided for page sized since:
355          *  -@paddr will be cache-line aligned already (being page aligned)
356          *  -@sz will be integral multiple of line size (being page sized).
357          */
358         if (!full_page_op) {
359                 sz += paddr & ~CACHE_LINE_MASK;
360                 paddr &= CACHE_LINE_MASK;
361         }
362
363         num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
364
365         /*
366          * For HS38 PAE40 configuration
367          *   - upper 8 bits of paddr need to be written into PTAG_HI
368          *   - (and needs to be written before the lower 32 bits)
369          */
370         if (is_pae40_enabled()) {
371                 if (cacheop == OP_INV_IC)
372                         /*
373                          * Non aliasing I-cache in HS38,
374                          * aliasing I-cache handled in __cache_line_loop_v3()
375                          */
376                         write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
377                 else
378                         write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32);
379         }
380
381         while (num_lines-- > 0) {
382                 write_aux_reg(aux_cmd, paddr);
383                 paddr += L1_CACHE_BYTES;
384         }
385 }
386
387 #if (CONFIG_ARC_MMU_VER < 3)
388 #define __cache_line_loop       __cache_line_loop_v2
389 #elif (CONFIG_ARC_MMU_VER == 3)
390 #define __cache_line_loop       __cache_line_loop_v3
391 #elif (CONFIG_ARC_MMU_VER > 3)
392 #define __cache_line_loop       __cache_line_loop_v4
393 #endif
394
395 #ifdef CONFIG_ARC_HAS_DCACHE
396
397 /***************************************************************
398  * Machine specific helpers for Entire D-Cache or Per Line ops
399  */
400
401 static inline void __before_dc_op(const int op)
402 {
403         if (op == OP_FLUSH_N_INV) {
404                 /* Dcache provides 2 cmd: FLUSH or INV
405                  * INV inturn has sub-modes: DISCARD or FLUSH-BEFORE
406                  * flush-n-inv is achieved by INV cmd but with IM=1
407                  * So toggle INV sub-mode depending on op request and default
408                  */
409                 const unsigned int ctl = ARC_REG_DC_CTRL;
410                 write_aux_reg(ctl, read_aux_reg(ctl) | DC_CTRL_INV_MODE_FLUSH);
411         }
412 }
413
414 static inline void __after_dc_op(const int op)
415 {
416         if (op & OP_FLUSH) {
417                 const unsigned int ctl = ARC_REG_DC_CTRL;
418                 unsigned int reg;
419
420                 /* flush / flush-n-inv both wait */
421                 while ((reg = read_aux_reg(ctl)) & DC_CTRL_FLUSH_STATUS)
422                         ;
423
424                 /* Switch back to default Invalidate mode */
425                 if (op == OP_FLUSH_N_INV)
426                         write_aux_reg(ctl, reg & ~DC_CTRL_INV_MODE_FLUSH);
427         }
428 }
429
430 /*
431  * Operation on Entire D-Cache
432  * @op = {OP_INV, OP_FLUSH, OP_FLUSH_N_INV}
433  * Note that constant propagation ensures all the checks are gone
434  * in generated code
435  */
436 static inline void __dc_entire_op(const int op)
437 {
438         int aux;
439
440         __before_dc_op(op);
441
442         if (op & OP_INV)        /* Inv or flush-n-inv use same cmd reg */
443                 aux = ARC_REG_DC_IVDC;
444         else
445                 aux = ARC_REG_DC_FLSH;
446
447         write_aux_reg(aux, 0x1);
448
449         __after_dc_op(op);
450 }
451
452 /* For kernel mappings cache operation: index is same as paddr */
453 #define __dc_line_op_k(p, sz, op)       __dc_line_op(p, p, sz, op)
454
455 /*
456  * D-Cache Line ops: Per Line INV (discard or wback+discard) or FLUSH (wback)
457  */
458 static inline void __dc_line_op(phys_addr_t paddr, unsigned long vaddr,
459                                 unsigned long sz, const int op)
460 {
461         unsigned long flags;
462
463         local_irq_save(flags);
464
465         __before_dc_op(op);
466
467         __cache_line_loop(paddr, vaddr, sz, op);
468
469         __after_dc_op(op);
470
471         local_irq_restore(flags);
472 }
473
474 #else
475
476 #define __dc_entire_op(op)
477 #define __dc_line_op(paddr, vaddr, sz, op)
478 #define __dc_line_op_k(paddr, sz, op)
479
480 #endif /* CONFIG_ARC_HAS_DCACHE */
481
482 #ifdef CONFIG_ARC_HAS_ICACHE
483
484 static inline void __ic_entire_inv(void)
485 {
486         write_aux_reg(ARC_REG_IC_IVIC, 1);
487         read_aux_reg(ARC_REG_IC_CTRL);  /* blocks */
488 }
489
490 static inline void
491 __ic_line_inv_vaddr_local(phys_addr_t paddr, unsigned long vaddr,
492                           unsigned long sz)
493 {
494         unsigned long flags;
495
496         local_irq_save(flags);
497         (*_cache_line_loop_ic_fn)(paddr, vaddr, sz, OP_INV_IC);
498         local_irq_restore(flags);
499 }
500
501 #ifndef CONFIG_SMP
502
503 #define __ic_line_inv_vaddr(p, v, s)    __ic_line_inv_vaddr_local(p, v, s)
504
505 #else
506
507 struct ic_inv_args {
508         phys_addr_t paddr, vaddr;
509         int sz;
510 };
511
512 static void __ic_line_inv_vaddr_helper(void *info)
513 {
514         struct ic_inv_args *ic_inv = info;
515
516         __ic_line_inv_vaddr_local(ic_inv->paddr, ic_inv->vaddr, ic_inv->sz);
517 }
518
519 static void __ic_line_inv_vaddr(phys_addr_t paddr, unsigned long vaddr,
520                                 unsigned long sz)
521 {
522         struct ic_inv_args ic_inv = {
523                 .paddr = paddr,
524                 .vaddr = vaddr,
525                 .sz    = sz
526         };
527
528         on_each_cpu(__ic_line_inv_vaddr_helper, &ic_inv, 1);
529 }
530
531 #endif  /* CONFIG_SMP */
532
533 #else   /* !CONFIG_ARC_HAS_ICACHE */
534
535 #define __ic_entire_inv()
536 #define __ic_line_inv_vaddr(pstart, vstart, sz)
537
538 #endif /* CONFIG_ARC_HAS_ICACHE */
539
540 noinline void slc_op(phys_addr_t paddr, unsigned long sz, const int op)
541 {
542 #ifdef CONFIG_ISA_ARCV2
543         /*
544          * SLC is shared between all cores and concurrent aux operations from
545          * multiple cores need to be serialized using a spinlock
546          * A concurrent operation can be silently ignored and/or the old/new
547          * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
548          * below)
549          */
550         static DEFINE_SPINLOCK(lock);
551         unsigned long flags;
552         unsigned int ctrl;
553
554         spin_lock_irqsave(&lock, flags);
555
556         /*
557          * The Region Flush operation is specified by CTRL.RGN_OP[11..9]
558          *  - b'000 (default) is Flush,
559          *  - b'001 is Invalidate if CTRL.IM == 0
560          *  - b'001 is Flush-n-Invalidate if CTRL.IM == 1
561          */
562         ctrl = read_aux_reg(ARC_REG_SLC_CTRL);
563
564         /* Don't rely on default value of IM bit */
565         if (!(op & OP_FLUSH))           /* i.e. OP_INV */
566                 ctrl &= ~SLC_CTRL_IM;   /* clear IM: Disable flush before Inv */
567         else
568                 ctrl |= SLC_CTRL_IM;
569
570         if (op & OP_INV)
571                 ctrl |= SLC_CTRL_RGN_OP_INV;    /* Inv or flush-n-inv */
572         else
573                 ctrl &= ~SLC_CTRL_RGN_OP_INV;
574
575         write_aux_reg(ARC_REG_SLC_CTRL, ctrl);
576
577         /*
578          * Lower bits are ignored, no need to clip
579          * END needs to be setup before START (latter triggers the operation)
580          * END can't be same as START, so add (l2_line_sz - 1) to sz
581          */
582         write_aux_reg(ARC_REG_SLC_RGN_END, (paddr + sz + l2_line_sz - 1));
583         write_aux_reg(ARC_REG_SLC_RGN_START, paddr);
584
585         while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
586
587         spin_unlock_irqrestore(&lock, flags);
588 #endif
589 }
590
591 /***********************************************************
592  * Exported APIs
593  */
594
595 /*
596  * Handle cache congruency of kernel and userspace mappings of page when kernel
597  * writes-to/reads-from
598  *
599  * The idea is to defer flushing of kernel mapping after a WRITE, possible if:
600  *  -dcache is NOT aliasing, hence any U/K-mappings of page are congruent
601  *  -U-mapping doesn't exist yet for page (finalised in update_mmu_cache)
602  *  -In SMP, if hardware caches are coherent
603  *
604  * There's a corollary case, where kernel READs from a userspace mapped page.
605  * If the U-mapping is not congruent to to K-mapping, former needs flushing.
606  */
607 void flush_dcache_page(struct page *page)
608 {
609         struct address_space *mapping;
610
611         if (!cache_is_vipt_aliasing()) {
612                 clear_bit(PG_dc_clean, &page->flags);
613                 return;
614         }
615
616         /* don't handle anon pages here */
617         mapping = page_mapping(page);
618         if (!mapping)
619                 return;
620
621         /*
622          * pagecache page, file not yet mapped to userspace
623          * Make a note that K-mapping is dirty
624          */
625         if (!mapping_mapped(mapping)) {
626                 clear_bit(PG_dc_clean, &page->flags);
627         } else if (page_mapcount(page)) {
628
629                 /* kernel reading from page with U-mapping */
630                 phys_addr_t paddr = (unsigned long)page_address(page);
631                 unsigned long vaddr = page->index << PAGE_SHIFT;
632
633                 if (addr_not_cache_congruent(paddr, vaddr))
634                         __flush_dcache_page(paddr, vaddr);
635         }
636 }
637 EXPORT_SYMBOL(flush_dcache_page);
638
639 /*
640  * DMA ops for systems with L1 cache only
641  * Make memory coherent with L1 cache by flushing/invalidating L1 lines
642  */
643 static void __dma_cache_wback_inv_l1(phys_addr_t start, unsigned long sz)
644 {
645         __dc_line_op_k(start, sz, OP_FLUSH_N_INV);
646 }
647
648 static void __dma_cache_inv_l1(phys_addr_t start, unsigned long sz)
649 {
650         __dc_line_op_k(start, sz, OP_INV);
651 }
652
653 static void __dma_cache_wback_l1(phys_addr_t start, unsigned long sz)
654 {
655         __dc_line_op_k(start, sz, OP_FLUSH);
656 }
657
658 /*
659  * DMA ops for systems with both L1 and L2 caches, but without IOC
660  * Both L1 and L2 lines need to be explicitly flushed/invalidated
661  */
662 static void __dma_cache_wback_inv_slc(phys_addr_t start, unsigned long sz)
663 {
664         __dc_line_op_k(start, sz, OP_FLUSH_N_INV);
665         slc_op(start, sz, OP_FLUSH_N_INV);
666 }
667
668 static void __dma_cache_inv_slc(phys_addr_t start, unsigned long sz)
669 {
670         __dc_line_op_k(start, sz, OP_INV);
671         slc_op(start, sz, OP_INV);
672 }
673
674 static void __dma_cache_wback_slc(phys_addr_t start, unsigned long sz)
675 {
676         __dc_line_op_k(start, sz, OP_FLUSH);
677         slc_op(start, sz, OP_FLUSH);
678 }
679
680 /*
681  * DMA ops for systems with IOC
682  * IOC hardware snoops all DMA traffic keeping the caches consistent with
683  * memory - eliding need for any explicit cache maintenance of DMA buffers
684  */
685 static void __dma_cache_wback_inv_ioc(phys_addr_t start, unsigned long sz) {}
686 static void __dma_cache_inv_ioc(phys_addr_t start, unsigned long sz) {}
687 static void __dma_cache_wback_ioc(phys_addr_t start, unsigned long sz) {}
688
689 /*
690  * Exported DMA API
691  */
692 void dma_cache_wback_inv(phys_addr_t start, unsigned long sz)
693 {
694         __dma_cache_wback_inv(start, sz);
695 }
696 EXPORT_SYMBOL(dma_cache_wback_inv);
697
698 void dma_cache_inv(phys_addr_t start, unsigned long sz)
699 {
700         __dma_cache_inv(start, sz);
701 }
702 EXPORT_SYMBOL(dma_cache_inv);
703
704 void dma_cache_wback(phys_addr_t start, unsigned long sz)
705 {
706         __dma_cache_wback(start, sz);
707 }
708 EXPORT_SYMBOL(dma_cache_wback);
709
710 /*
711  * This is API for making I/D Caches consistent when modifying
712  * kernel code (loadable modules, kprobes, kgdb...)
713  * This is called on insmod, with kernel virtual address for CODE of
714  * the module. ARC cache maintenance ops require PHY address thus we
715  * need to convert vmalloc addr to PHY addr
716  */
717 void flush_icache_range(unsigned long kstart, unsigned long kend)
718 {
719         unsigned int tot_sz;
720
721         WARN(kstart < TASK_SIZE, "%s() can't handle user vaddr", __func__);
722
723         /* Shortcut for bigger flush ranges.
724          * Here we don't care if this was kernel virtual or phy addr
725          */
726         tot_sz = kend - kstart;
727         if (tot_sz > PAGE_SIZE) {
728                 flush_cache_all();
729                 return;
730         }
731
732         /* Case: Kernel Phy addr (0x8000_0000 onwards) */
733         if (likely(kstart > PAGE_OFFSET)) {
734                 /*
735                  * The 2nd arg despite being paddr will be used to index icache
736                  * This is OK since no alternate virtual mappings will exist
737                  * given the callers for this case: kprobe/kgdb in built-in
738                  * kernel code only.
739                  */
740                 __sync_icache_dcache(kstart, kstart, kend - kstart);
741                 return;
742         }
743
744         /*
745          * Case: Kernel Vaddr (0x7000_0000 to 0x7fff_ffff)
746          * (1) ARC Cache Maintenance ops only take Phy addr, hence special
747          *     handling of kernel vaddr.
748          *
749          * (2) Despite @tot_sz being < PAGE_SIZE (bigger cases handled already),
750          *     it still needs to handle  a 2 page scenario, where the range
751          *     straddles across 2 virtual pages and hence need for loop
752          */
753         while (tot_sz > 0) {
754                 unsigned int off, sz;
755                 unsigned long phy, pfn;
756
757                 off = kstart % PAGE_SIZE;
758                 pfn = vmalloc_to_pfn((void *)kstart);
759                 phy = (pfn << PAGE_SHIFT) + off;
760                 sz = min_t(unsigned int, tot_sz, PAGE_SIZE - off);
761                 __sync_icache_dcache(phy, kstart, sz);
762                 kstart += sz;
763                 tot_sz -= sz;
764         }
765 }
766 EXPORT_SYMBOL(flush_icache_range);
767
768 /*
769  * General purpose helper to make I and D cache lines consistent.
770  * @paddr is phy addr of region
771  * @vaddr is typically user vaddr (breakpoint) or kernel vaddr (vmalloc)
772  *    However in one instance, when called by kprobe (for a breakpt in
773  *    builtin kernel code) @vaddr will be paddr only, meaning CDU operation will
774  *    use a paddr to index the cache (despite VIPT). This is fine since since a
775  *    builtin kernel page will not have any virtual mappings.
776  *    kprobe on loadable module will be kernel vaddr.
777  */
778 void __sync_icache_dcache(phys_addr_t paddr, unsigned long vaddr, int len)
779 {
780         __dc_line_op(paddr, vaddr, len, OP_FLUSH_N_INV);
781         __ic_line_inv_vaddr(paddr, vaddr, len);
782 }
783
784 /* wrapper to compile time eliminate alignment checks in flush loop */
785 void __inv_icache_page(phys_addr_t paddr, unsigned long vaddr)
786 {
787         __ic_line_inv_vaddr(paddr, vaddr, PAGE_SIZE);
788 }
789
790 /*
791  * wrapper to clearout kernel or userspace mappings of a page
792  * For kernel mappings @vaddr == @paddr
793  */
794 void __flush_dcache_page(phys_addr_t paddr, unsigned long vaddr)
795 {
796         __dc_line_op(paddr, vaddr & PAGE_MASK, PAGE_SIZE, OP_FLUSH_N_INV);
797 }
798
799 noinline void flush_cache_all(void)
800 {
801         unsigned long flags;
802
803         local_irq_save(flags);
804
805         __ic_entire_inv();
806         __dc_entire_op(OP_FLUSH_N_INV);
807
808         local_irq_restore(flags);
809
810 }
811
812 #ifdef CONFIG_ARC_CACHE_VIPT_ALIASING
813
814 void flush_cache_mm(struct mm_struct *mm)
815 {
816         flush_cache_all();
817 }
818
819 void flush_cache_page(struct vm_area_struct *vma, unsigned long u_vaddr,
820                       unsigned long pfn)
821 {
822         unsigned int paddr = pfn << PAGE_SHIFT;
823
824         u_vaddr &= PAGE_MASK;
825
826         __flush_dcache_page(paddr, u_vaddr);
827
828         if (vma->vm_flags & VM_EXEC)
829                 __inv_icache_page(paddr, u_vaddr);
830 }
831
832 void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
833                        unsigned long end)
834 {
835         flush_cache_all();
836 }
837
838 void flush_anon_page(struct vm_area_struct *vma, struct page *page,
839                      unsigned long u_vaddr)
840 {
841         /* TBD: do we really need to clear the kernel mapping */
842         __flush_dcache_page(page_address(page), u_vaddr);
843         __flush_dcache_page(page_address(page), page_address(page));
844
845 }
846
847 #endif
848
849 void copy_user_highpage(struct page *to, struct page *from,
850         unsigned long u_vaddr, struct vm_area_struct *vma)
851 {
852         void *kfrom = kmap_atomic(from);
853         void *kto = kmap_atomic(to);
854         int clean_src_k_mappings = 0;
855
856         /*
857          * If SRC page was already mapped in userspace AND it's U-mapping is
858          * not congruent with K-mapping, sync former to physical page so that
859          * K-mapping in memcpy below, sees the right data
860          *
861          * Note that while @u_vaddr refers to DST page's userspace vaddr, it is
862          * equally valid for SRC page as well
863          *
864          * For !VIPT cache, all of this gets compiled out as
865          * addr_not_cache_congruent() is 0
866          */
867         if (page_mapcount(from) && addr_not_cache_congruent(kfrom, u_vaddr)) {
868                 __flush_dcache_page((unsigned long)kfrom, u_vaddr);
869                 clean_src_k_mappings = 1;
870         }
871
872         copy_page(kto, kfrom);
873
874         /*
875          * Mark DST page K-mapping as dirty for a later finalization by
876          * update_mmu_cache(). Although the finalization could have been done
877          * here as well (given that both vaddr/paddr are available).
878          * But update_mmu_cache() already has code to do that for other
879          * non copied user pages (e.g. read faults which wire in pagecache page
880          * directly).
881          */
882         clear_bit(PG_dc_clean, &to->flags);
883
884         /*
885          * if SRC was already usermapped and non-congruent to kernel mapping
886          * sync the kernel mapping back to physical page
887          */
888         if (clean_src_k_mappings) {
889                 __flush_dcache_page((unsigned long)kfrom, (unsigned long)kfrom);
890                 set_bit(PG_dc_clean, &from->flags);
891         } else {
892                 clear_bit(PG_dc_clean, &from->flags);
893         }
894
895         kunmap_atomic(kto);
896         kunmap_atomic(kfrom);
897 }
898
899 void clear_user_page(void *to, unsigned long u_vaddr, struct page *page)
900 {
901         clear_page(to);
902         clear_bit(PG_dc_clean, &page->flags);
903 }
904
905
906 /**********************************************************************
907  * Explicit Cache flush request from user space via syscall
908  * Needed for JITs which generate code on the fly
909  */
910 SYSCALL_DEFINE3(cacheflush, uint32_t, start, uint32_t, sz, uint32_t, flags)
911 {
912         /* TBD: optimize this */
913         flush_cache_all();
914         return 0;
915 }
916
917 void arc_cache_init(void)
918 {
919         unsigned int __maybe_unused cpu = smp_processor_id();
920         char str[256];
921
922         printk(arc_cache_mumbojumbo(0, str, sizeof(str)));
923
924         if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE)) {
925                 struct cpuinfo_arc_cache *ic = &cpuinfo_arc700[cpu].icache;
926
927                 if (!ic->ver)
928                         panic("cache support enabled but non-existent cache\n");
929
930                 if (ic->line_len != L1_CACHE_BYTES)
931                         panic("ICache line [%d] != kernel Config [%d]",
932                               ic->line_len, L1_CACHE_BYTES);
933
934                 if (ic->ver != CONFIG_ARC_MMU_VER)
935                         panic("Cache ver [%d] doesn't match MMU ver [%d]\n",
936                               ic->ver, CONFIG_ARC_MMU_VER);
937
938                 /*
939                  * In MMU v4 (HS38x) the aliasing icache config uses IVIL/PTAG
940                  * pair to provide vaddr/paddr respectively, just as in MMU v3
941                  */
942                 if (is_isa_arcv2() && ic->alias)
943                         _cache_line_loop_ic_fn = __cache_line_loop_v3;
944                 else
945                         _cache_line_loop_ic_fn = __cache_line_loop;
946         }
947
948         if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE)) {
949                 struct cpuinfo_arc_cache *dc = &cpuinfo_arc700[cpu].dcache;
950
951                 if (!dc->ver)
952                         panic("cache support enabled but non-existent cache\n");
953
954                 if (dc->line_len != L1_CACHE_BYTES)
955                         panic("DCache line [%d] != kernel Config [%d]",
956                               dc->line_len, L1_CACHE_BYTES);
957
958                 /* check for D-Cache aliasing on ARCompact: ARCv2 has PIPT */
959                 if (is_isa_arcompact()) {
960                         int handled = IS_ENABLED(CONFIG_ARC_CACHE_VIPT_ALIASING);
961
962                         if (dc->alias && !handled)
963                                 panic("Enable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
964                         else if (!dc->alias && handled)
965                                 panic("Disable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
966                 }
967         }
968
969         if (is_isa_arcv2() && l2_line_sz && !slc_enable) {
970
971                 /* IM set : flush before invalidate */
972                 write_aux_reg(ARC_REG_SLC_CTRL,
973                         read_aux_reg(ARC_REG_SLC_CTRL) | SLC_CTRL_IM);
974
975                 write_aux_reg(ARC_REG_SLC_INVALIDATE, 1);
976
977                 /* Important to wait for flush to complete */
978                 while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
979                 write_aux_reg(ARC_REG_SLC_CTRL,
980                         read_aux_reg(ARC_REG_SLC_CTRL) | SLC_CTRL_DISABLE);
981         }
982
983         if (is_isa_arcv2() && ioc_exists) {
984                 /* IO coherency base - 0x8z */
985                 write_aux_reg(ARC_REG_IO_COH_AP0_BASE, 0x80000);
986                 /* IO coherency aperture size - 512Mb: 0x8z-0xAz */
987                 write_aux_reg(ARC_REG_IO_COH_AP0_SIZE, 0x11);
988                 /* Enable partial writes */
989                 write_aux_reg(ARC_REG_IO_COH_PARTIAL, 1);
990                 /* Enable IO coherency */
991                 write_aux_reg(ARC_REG_IO_COH_ENABLE, 1);
992
993                 __dma_cache_wback_inv = __dma_cache_wback_inv_ioc;
994                 __dma_cache_inv = __dma_cache_inv_ioc;
995                 __dma_cache_wback = __dma_cache_wback_ioc;
996         } else if (is_isa_arcv2() && l2_line_sz && slc_enable) {
997                 __dma_cache_wback_inv = __dma_cache_wback_inv_slc;
998                 __dma_cache_inv = __dma_cache_inv_slc;
999                 __dma_cache_wback = __dma_cache_wback_slc;
1000         } else {
1001                 __dma_cache_wback_inv = __dma_cache_wback_inv_l1;
1002                 __dma_cache_inv = __dma_cache_inv_l1;
1003                 __dma_cache_wback = __dma_cache_wback_l1;
1004         }
1005 }