]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/arm/kvm/arm.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[karo-tx-linux.git] / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/vmalloc.h>
25 #include <linux/fs.h>
26 #include <linux/mman.h>
27 #include <linux/sched.h>
28 #include <linux/kvm.h>
29 #include <trace/events/kvm.h>
30 #include <kvm/arm_pmu.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47 #include <asm/sections.h>
48
49 #ifdef REQUIRES_VIRT
50 __asm__(".arch_extension        virt");
51 #endif
52
53 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
54 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
55 static unsigned long hyp_default_vectors;
56
57 /* Per-CPU variable containing the currently running vcpu. */
58 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
59
60 /* The VMID used in the VTTBR */
61 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
62 static u32 kvm_next_vmid;
63 static unsigned int kvm_vmid_bits __read_mostly;
64 static DEFINE_SPINLOCK(kvm_vmid_lock);
65
66 static bool vgic_present;
67
68 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
69
70 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
71 {
72         BUG_ON(preemptible());
73         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
74 }
75
76 /**
77  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
78  * Must be called from non-preemptible context
79  */
80 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
81 {
82         BUG_ON(preemptible());
83         return __this_cpu_read(kvm_arm_running_vcpu);
84 }
85
86 /**
87  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
88  */
89 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
90 {
91         return &kvm_arm_running_vcpu;
92 }
93
94 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
95 {
96         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
97 }
98
99 int kvm_arch_hardware_setup(void)
100 {
101         return 0;
102 }
103
104 void kvm_arch_check_processor_compat(void *rtn)
105 {
106         *(int *)rtn = 0;
107 }
108
109
110 /**
111  * kvm_arch_init_vm - initializes a VM data structure
112  * @kvm:        pointer to the KVM struct
113  */
114 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
115 {
116         int ret = 0;
117
118         if (type)
119                 return -EINVAL;
120
121         ret = kvm_alloc_stage2_pgd(kvm);
122         if (ret)
123                 goto out_fail_alloc;
124
125         ret = create_hyp_mappings(kvm, kvm + 1);
126         if (ret)
127                 goto out_free_stage2_pgd;
128
129         kvm_vgic_early_init(kvm);
130         kvm_timer_init(kvm);
131
132         /* Mark the initial VMID generation invalid */
133         kvm->arch.vmid_gen = 0;
134
135         /* The maximum number of VCPUs is limited by the host's GIC model */
136         kvm->arch.max_vcpus = vgic_present ?
137                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
138
139         return ret;
140 out_free_stage2_pgd:
141         kvm_free_stage2_pgd(kvm);
142 out_fail_alloc:
143         return ret;
144 }
145
146 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
147 {
148         return VM_FAULT_SIGBUS;
149 }
150
151
152 /**
153  * kvm_arch_destroy_vm - destroy the VM data structure
154  * @kvm:        pointer to the KVM struct
155  */
156 void kvm_arch_destroy_vm(struct kvm *kvm)
157 {
158         int i;
159
160         kvm_free_stage2_pgd(kvm);
161
162         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
163                 if (kvm->vcpus[i]) {
164                         kvm_arch_vcpu_free(kvm->vcpus[i]);
165                         kvm->vcpus[i] = NULL;
166                 }
167         }
168
169         kvm_vgic_destroy(kvm);
170 }
171
172 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
173 {
174         int r;
175         switch (ext) {
176         case KVM_CAP_IRQCHIP:
177                 r = vgic_present;
178                 break;
179         case KVM_CAP_IOEVENTFD:
180         case KVM_CAP_DEVICE_CTRL:
181         case KVM_CAP_USER_MEMORY:
182         case KVM_CAP_SYNC_MMU:
183         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
184         case KVM_CAP_ONE_REG:
185         case KVM_CAP_ARM_PSCI:
186         case KVM_CAP_ARM_PSCI_0_2:
187         case KVM_CAP_READONLY_MEM:
188         case KVM_CAP_MP_STATE:
189                 r = 1;
190                 break;
191         case KVM_CAP_COALESCED_MMIO:
192                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
193                 break;
194         case KVM_CAP_ARM_SET_DEVICE_ADDR:
195                 r = 1;
196                 break;
197         case KVM_CAP_NR_VCPUS:
198                 r = num_online_cpus();
199                 break;
200         case KVM_CAP_MAX_VCPUS:
201                 r = KVM_MAX_VCPUS;
202                 break;
203         default:
204                 r = kvm_arch_dev_ioctl_check_extension(ext);
205                 break;
206         }
207         return r;
208 }
209
210 long kvm_arch_dev_ioctl(struct file *filp,
211                         unsigned int ioctl, unsigned long arg)
212 {
213         return -EINVAL;
214 }
215
216
217 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
218 {
219         int err;
220         struct kvm_vcpu *vcpu;
221
222         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
223                 err = -EBUSY;
224                 goto out;
225         }
226
227         if (id >= kvm->arch.max_vcpus) {
228                 err = -EINVAL;
229                 goto out;
230         }
231
232         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
233         if (!vcpu) {
234                 err = -ENOMEM;
235                 goto out;
236         }
237
238         err = kvm_vcpu_init(vcpu, kvm, id);
239         if (err)
240                 goto free_vcpu;
241
242         err = create_hyp_mappings(vcpu, vcpu + 1);
243         if (err)
244                 goto vcpu_uninit;
245
246         return vcpu;
247 vcpu_uninit:
248         kvm_vcpu_uninit(vcpu);
249 free_vcpu:
250         kmem_cache_free(kvm_vcpu_cache, vcpu);
251 out:
252         return ERR_PTR(err);
253 }
254
255 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
256 {
257         kvm_vgic_vcpu_early_init(vcpu);
258 }
259
260 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
261 {
262         kvm_mmu_free_memory_caches(vcpu);
263         kvm_timer_vcpu_terminate(vcpu);
264         kvm_vgic_vcpu_destroy(vcpu);
265         kvm_pmu_vcpu_destroy(vcpu);
266         kvm_vcpu_uninit(vcpu);
267         kmem_cache_free(kvm_vcpu_cache, vcpu);
268 }
269
270 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
271 {
272         kvm_arch_vcpu_free(vcpu);
273 }
274
275 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
276 {
277         return kvm_timer_should_fire(vcpu);
278 }
279
280 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
281 {
282         kvm_timer_schedule(vcpu);
283 }
284
285 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
286 {
287         kvm_timer_unschedule(vcpu);
288 }
289
290 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
291 {
292         /* Force users to call KVM_ARM_VCPU_INIT */
293         vcpu->arch.target = -1;
294         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
295
296         /* Set up the timer */
297         kvm_timer_vcpu_init(vcpu);
298
299         kvm_arm_reset_debug_ptr(vcpu);
300
301         return 0;
302 }
303
304 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
305 {
306         vcpu->cpu = cpu;
307         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
308
309         kvm_arm_set_running_vcpu(vcpu);
310 }
311
312 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
313 {
314         /*
315          * The arch-generic KVM code expects the cpu field of a vcpu to be -1
316          * if the vcpu is no longer assigned to a cpu.  This is used for the
317          * optimized make_all_cpus_request path.
318          */
319         vcpu->cpu = -1;
320
321         kvm_arm_set_running_vcpu(NULL);
322         kvm_timer_vcpu_put(vcpu);
323 }
324
325 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
326                                     struct kvm_mp_state *mp_state)
327 {
328         if (vcpu->arch.power_off)
329                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
330         else
331                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
332
333         return 0;
334 }
335
336 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
337                                     struct kvm_mp_state *mp_state)
338 {
339         switch (mp_state->mp_state) {
340         case KVM_MP_STATE_RUNNABLE:
341                 vcpu->arch.power_off = false;
342                 break;
343         case KVM_MP_STATE_STOPPED:
344                 vcpu->arch.power_off = true;
345                 break;
346         default:
347                 return -EINVAL;
348         }
349
350         return 0;
351 }
352
353 /**
354  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
355  * @v:          The VCPU pointer
356  *
357  * If the guest CPU is not waiting for interrupts or an interrupt line is
358  * asserted, the CPU is by definition runnable.
359  */
360 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
361 {
362         return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
363                 && !v->arch.power_off && !v->arch.pause);
364 }
365
366 /* Just ensure a guest exit from a particular CPU */
367 static void exit_vm_noop(void *info)
368 {
369 }
370
371 void force_vm_exit(const cpumask_t *mask)
372 {
373         preempt_disable();
374         smp_call_function_many(mask, exit_vm_noop, NULL, true);
375         preempt_enable();
376 }
377
378 /**
379  * need_new_vmid_gen - check that the VMID is still valid
380  * @kvm: The VM's VMID to checkt
381  *
382  * return true if there is a new generation of VMIDs being used
383  *
384  * The hardware supports only 256 values with the value zero reserved for the
385  * host, so we check if an assigned value belongs to a previous generation,
386  * which which requires us to assign a new value. If we're the first to use a
387  * VMID for the new generation, we must flush necessary caches and TLBs on all
388  * CPUs.
389  */
390 static bool need_new_vmid_gen(struct kvm *kvm)
391 {
392         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
393 }
394
395 /**
396  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
397  * @kvm The guest that we are about to run
398  *
399  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
400  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
401  * caches and TLBs.
402  */
403 static void update_vttbr(struct kvm *kvm)
404 {
405         phys_addr_t pgd_phys;
406         u64 vmid;
407
408         if (!need_new_vmid_gen(kvm))
409                 return;
410
411         spin_lock(&kvm_vmid_lock);
412
413         /*
414          * We need to re-check the vmid_gen here to ensure that if another vcpu
415          * already allocated a valid vmid for this vm, then this vcpu should
416          * use the same vmid.
417          */
418         if (!need_new_vmid_gen(kvm)) {
419                 spin_unlock(&kvm_vmid_lock);
420                 return;
421         }
422
423         /* First user of a new VMID generation? */
424         if (unlikely(kvm_next_vmid == 0)) {
425                 atomic64_inc(&kvm_vmid_gen);
426                 kvm_next_vmid = 1;
427
428                 /*
429                  * On SMP we know no other CPUs can use this CPU's or each
430                  * other's VMID after force_vm_exit returns since the
431                  * kvm_vmid_lock blocks them from reentry to the guest.
432                  */
433                 force_vm_exit(cpu_all_mask);
434                 /*
435                  * Now broadcast TLB + ICACHE invalidation over the inner
436                  * shareable domain to make sure all data structures are
437                  * clean.
438                  */
439                 kvm_call_hyp(__kvm_flush_vm_context);
440         }
441
442         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
443         kvm->arch.vmid = kvm_next_vmid;
444         kvm_next_vmid++;
445         kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
446
447         /* update vttbr to be used with the new vmid */
448         pgd_phys = virt_to_phys(kvm->arch.pgd);
449         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
450         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
451         kvm->arch.vttbr = pgd_phys | vmid;
452
453         spin_unlock(&kvm_vmid_lock);
454 }
455
456 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
457 {
458         struct kvm *kvm = vcpu->kvm;
459         int ret = 0;
460
461         if (likely(vcpu->arch.has_run_once))
462                 return 0;
463
464         vcpu->arch.has_run_once = true;
465
466         /*
467          * Map the VGIC hardware resources before running a vcpu the first
468          * time on this VM.
469          */
470         if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
471                 ret = kvm_vgic_map_resources(kvm);
472                 if (ret)
473                         return ret;
474         }
475
476         /*
477          * Enable the arch timers only if we have an in-kernel VGIC
478          * and it has been properly initialized, since we cannot handle
479          * interrupts from the virtual timer with a userspace gic.
480          */
481         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
482                 ret = kvm_timer_enable(vcpu);
483
484         return ret;
485 }
486
487 bool kvm_arch_intc_initialized(struct kvm *kvm)
488 {
489         return vgic_initialized(kvm);
490 }
491
492 void kvm_arm_halt_guest(struct kvm *kvm)
493 {
494         int i;
495         struct kvm_vcpu *vcpu;
496
497         kvm_for_each_vcpu(i, vcpu, kvm)
498                 vcpu->arch.pause = true;
499         kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT);
500 }
501
502 void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu)
503 {
504         vcpu->arch.pause = true;
505         kvm_vcpu_kick(vcpu);
506 }
507
508 void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu)
509 {
510         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
511
512         vcpu->arch.pause = false;
513         swake_up(wq);
514 }
515
516 void kvm_arm_resume_guest(struct kvm *kvm)
517 {
518         int i;
519         struct kvm_vcpu *vcpu;
520
521         kvm_for_each_vcpu(i, vcpu, kvm)
522                 kvm_arm_resume_vcpu(vcpu);
523 }
524
525 static void vcpu_sleep(struct kvm_vcpu *vcpu)
526 {
527         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
528
529         swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
530                                        (!vcpu->arch.pause)));
531 }
532
533 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
534 {
535         return vcpu->arch.target >= 0;
536 }
537
538 /**
539  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
540  * @vcpu:       The VCPU pointer
541  * @run:        The kvm_run structure pointer used for userspace state exchange
542  *
543  * This function is called through the VCPU_RUN ioctl called from user space. It
544  * will execute VM code in a loop until the time slice for the process is used
545  * or some emulation is needed from user space in which case the function will
546  * return with return value 0 and with the kvm_run structure filled in with the
547  * required data for the requested emulation.
548  */
549 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
550 {
551         int ret;
552         sigset_t sigsaved;
553
554         if (unlikely(!kvm_vcpu_initialized(vcpu)))
555                 return -ENOEXEC;
556
557         ret = kvm_vcpu_first_run_init(vcpu);
558         if (ret)
559                 return ret;
560
561         if (run->exit_reason == KVM_EXIT_MMIO) {
562                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
563                 if (ret)
564                         return ret;
565         }
566
567         if (vcpu->sigset_active)
568                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
569
570         ret = 1;
571         run->exit_reason = KVM_EXIT_UNKNOWN;
572         while (ret > 0) {
573                 /*
574                  * Check conditions before entering the guest
575                  */
576                 cond_resched();
577
578                 update_vttbr(vcpu->kvm);
579
580                 if (vcpu->arch.power_off || vcpu->arch.pause)
581                         vcpu_sleep(vcpu);
582
583                 /*
584                  * Preparing the interrupts to be injected also
585                  * involves poking the GIC, which must be done in a
586                  * non-preemptible context.
587                  */
588                 preempt_disable();
589                 kvm_pmu_flush_hwstate(vcpu);
590                 kvm_timer_flush_hwstate(vcpu);
591                 kvm_vgic_flush_hwstate(vcpu);
592
593                 local_irq_disable();
594
595                 /*
596                  * Re-check atomic conditions
597                  */
598                 if (signal_pending(current)) {
599                         ret = -EINTR;
600                         run->exit_reason = KVM_EXIT_INTR;
601                 }
602
603                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
604                         vcpu->arch.power_off || vcpu->arch.pause) {
605                         local_irq_enable();
606                         kvm_pmu_sync_hwstate(vcpu);
607                         kvm_timer_sync_hwstate(vcpu);
608                         kvm_vgic_sync_hwstate(vcpu);
609                         preempt_enable();
610                         continue;
611                 }
612
613                 kvm_arm_setup_debug(vcpu);
614
615                 /**************************************************************
616                  * Enter the guest
617                  */
618                 trace_kvm_entry(*vcpu_pc(vcpu));
619                 __kvm_guest_enter();
620                 vcpu->mode = IN_GUEST_MODE;
621
622                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
623
624                 vcpu->mode = OUTSIDE_GUEST_MODE;
625                 vcpu->stat.exits++;
626                 /*
627                  * Back from guest
628                  *************************************************************/
629
630                 kvm_arm_clear_debug(vcpu);
631
632                 /*
633                  * We may have taken a host interrupt in HYP mode (ie
634                  * while executing the guest). This interrupt is still
635                  * pending, as we haven't serviced it yet!
636                  *
637                  * We're now back in SVC mode, with interrupts
638                  * disabled.  Enabling the interrupts now will have
639                  * the effect of taking the interrupt again, in SVC
640                  * mode this time.
641                  */
642                 local_irq_enable();
643
644                 /*
645                  * We do local_irq_enable() before calling kvm_guest_exit() so
646                  * that if a timer interrupt hits while running the guest we
647                  * account that tick as being spent in the guest.  We enable
648                  * preemption after calling kvm_guest_exit() so that if we get
649                  * preempted we make sure ticks after that is not counted as
650                  * guest time.
651                  */
652                 kvm_guest_exit();
653                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
654
655                 /*
656                  * We must sync the PMU and timer state before the vgic state so
657                  * that the vgic can properly sample the updated state of the
658                  * interrupt line.
659                  */
660                 kvm_pmu_sync_hwstate(vcpu);
661                 kvm_timer_sync_hwstate(vcpu);
662
663                 kvm_vgic_sync_hwstate(vcpu);
664
665                 preempt_enable();
666
667                 ret = handle_exit(vcpu, run, ret);
668         }
669
670         if (vcpu->sigset_active)
671                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
672         return ret;
673 }
674
675 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
676 {
677         int bit_index;
678         bool set;
679         unsigned long *ptr;
680
681         if (number == KVM_ARM_IRQ_CPU_IRQ)
682                 bit_index = __ffs(HCR_VI);
683         else /* KVM_ARM_IRQ_CPU_FIQ */
684                 bit_index = __ffs(HCR_VF);
685
686         ptr = (unsigned long *)&vcpu->arch.irq_lines;
687         if (level)
688                 set = test_and_set_bit(bit_index, ptr);
689         else
690                 set = test_and_clear_bit(bit_index, ptr);
691
692         /*
693          * If we didn't change anything, no need to wake up or kick other CPUs
694          */
695         if (set == level)
696                 return 0;
697
698         /*
699          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
700          * trigger a world-switch round on the running physical CPU to set the
701          * virtual IRQ/FIQ fields in the HCR appropriately.
702          */
703         kvm_vcpu_kick(vcpu);
704
705         return 0;
706 }
707
708 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
709                           bool line_status)
710 {
711         u32 irq = irq_level->irq;
712         unsigned int irq_type, vcpu_idx, irq_num;
713         int nrcpus = atomic_read(&kvm->online_vcpus);
714         struct kvm_vcpu *vcpu = NULL;
715         bool level = irq_level->level;
716
717         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
718         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
719         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
720
721         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
722
723         switch (irq_type) {
724         case KVM_ARM_IRQ_TYPE_CPU:
725                 if (irqchip_in_kernel(kvm))
726                         return -ENXIO;
727
728                 if (vcpu_idx >= nrcpus)
729                         return -EINVAL;
730
731                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
732                 if (!vcpu)
733                         return -EINVAL;
734
735                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
736                         return -EINVAL;
737
738                 return vcpu_interrupt_line(vcpu, irq_num, level);
739         case KVM_ARM_IRQ_TYPE_PPI:
740                 if (!irqchip_in_kernel(kvm))
741                         return -ENXIO;
742
743                 if (vcpu_idx >= nrcpus)
744                         return -EINVAL;
745
746                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
747                 if (!vcpu)
748                         return -EINVAL;
749
750                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
751                         return -EINVAL;
752
753                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
754         case KVM_ARM_IRQ_TYPE_SPI:
755                 if (!irqchip_in_kernel(kvm))
756                         return -ENXIO;
757
758                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
759                         return -EINVAL;
760
761                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
762         }
763
764         return -EINVAL;
765 }
766
767 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
768                                const struct kvm_vcpu_init *init)
769 {
770         unsigned int i;
771         int phys_target = kvm_target_cpu();
772
773         if (init->target != phys_target)
774                 return -EINVAL;
775
776         /*
777          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
778          * use the same target.
779          */
780         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
781                 return -EINVAL;
782
783         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
784         for (i = 0; i < sizeof(init->features) * 8; i++) {
785                 bool set = (init->features[i / 32] & (1 << (i % 32)));
786
787                 if (set && i >= KVM_VCPU_MAX_FEATURES)
788                         return -ENOENT;
789
790                 /*
791                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
792                  * use the same feature set.
793                  */
794                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
795                     test_bit(i, vcpu->arch.features) != set)
796                         return -EINVAL;
797
798                 if (set)
799                         set_bit(i, vcpu->arch.features);
800         }
801
802         vcpu->arch.target = phys_target;
803
804         /* Now we know what it is, we can reset it. */
805         return kvm_reset_vcpu(vcpu);
806 }
807
808
809 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
810                                          struct kvm_vcpu_init *init)
811 {
812         int ret;
813
814         ret = kvm_vcpu_set_target(vcpu, init);
815         if (ret)
816                 return ret;
817
818         /*
819          * Ensure a rebooted VM will fault in RAM pages and detect if the
820          * guest MMU is turned off and flush the caches as needed.
821          */
822         if (vcpu->arch.has_run_once)
823                 stage2_unmap_vm(vcpu->kvm);
824
825         vcpu_reset_hcr(vcpu);
826
827         /*
828          * Handle the "start in power-off" case.
829          */
830         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
831                 vcpu->arch.power_off = true;
832         else
833                 vcpu->arch.power_off = false;
834
835         return 0;
836 }
837
838 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
839                                  struct kvm_device_attr *attr)
840 {
841         int ret = -ENXIO;
842
843         switch (attr->group) {
844         default:
845                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
846                 break;
847         }
848
849         return ret;
850 }
851
852 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
853                                  struct kvm_device_attr *attr)
854 {
855         int ret = -ENXIO;
856
857         switch (attr->group) {
858         default:
859                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
860                 break;
861         }
862
863         return ret;
864 }
865
866 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
867                                  struct kvm_device_attr *attr)
868 {
869         int ret = -ENXIO;
870
871         switch (attr->group) {
872         default:
873                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
874                 break;
875         }
876
877         return ret;
878 }
879
880 long kvm_arch_vcpu_ioctl(struct file *filp,
881                          unsigned int ioctl, unsigned long arg)
882 {
883         struct kvm_vcpu *vcpu = filp->private_data;
884         void __user *argp = (void __user *)arg;
885         struct kvm_device_attr attr;
886
887         switch (ioctl) {
888         case KVM_ARM_VCPU_INIT: {
889                 struct kvm_vcpu_init init;
890
891                 if (copy_from_user(&init, argp, sizeof(init)))
892                         return -EFAULT;
893
894                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
895         }
896         case KVM_SET_ONE_REG:
897         case KVM_GET_ONE_REG: {
898                 struct kvm_one_reg reg;
899
900                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
901                         return -ENOEXEC;
902
903                 if (copy_from_user(&reg, argp, sizeof(reg)))
904                         return -EFAULT;
905                 if (ioctl == KVM_SET_ONE_REG)
906                         return kvm_arm_set_reg(vcpu, &reg);
907                 else
908                         return kvm_arm_get_reg(vcpu, &reg);
909         }
910         case KVM_GET_REG_LIST: {
911                 struct kvm_reg_list __user *user_list = argp;
912                 struct kvm_reg_list reg_list;
913                 unsigned n;
914
915                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
916                         return -ENOEXEC;
917
918                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
919                         return -EFAULT;
920                 n = reg_list.n;
921                 reg_list.n = kvm_arm_num_regs(vcpu);
922                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
923                         return -EFAULT;
924                 if (n < reg_list.n)
925                         return -E2BIG;
926                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
927         }
928         case KVM_SET_DEVICE_ATTR: {
929                 if (copy_from_user(&attr, argp, sizeof(attr)))
930                         return -EFAULT;
931                 return kvm_arm_vcpu_set_attr(vcpu, &attr);
932         }
933         case KVM_GET_DEVICE_ATTR: {
934                 if (copy_from_user(&attr, argp, sizeof(attr)))
935                         return -EFAULT;
936                 return kvm_arm_vcpu_get_attr(vcpu, &attr);
937         }
938         case KVM_HAS_DEVICE_ATTR: {
939                 if (copy_from_user(&attr, argp, sizeof(attr)))
940                         return -EFAULT;
941                 return kvm_arm_vcpu_has_attr(vcpu, &attr);
942         }
943         default:
944                 return -EINVAL;
945         }
946 }
947
948 /**
949  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
950  * @kvm: kvm instance
951  * @log: slot id and address to which we copy the log
952  *
953  * Steps 1-4 below provide general overview of dirty page logging. See
954  * kvm_get_dirty_log_protect() function description for additional details.
955  *
956  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
957  * always flush the TLB (step 4) even if previous step failed  and the dirty
958  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
959  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
960  * writes will be marked dirty for next log read.
961  *
962  *   1. Take a snapshot of the bit and clear it if needed.
963  *   2. Write protect the corresponding page.
964  *   3. Copy the snapshot to the userspace.
965  *   4. Flush TLB's if needed.
966  */
967 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
968 {
969         bool is_dirty = false;
970         int r;
971
972         mutex_lock(&kvm->slots_lock);
973
974         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
975
976         if (is_dirty)
977                 kvm_flush_remote_tlbs(kvm);
978
979         mutex_unlock(&kvm->slots_lock);
980         return r;
981 }
982
983 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
984                                         struct kvm_arm_device_addr *dev_addr)
985 {
986         unsigned long dev_id, type;
987
988         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
989                 KVM_ARM_DEVICE_ID_SHIFT;
990         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
991                 KVM_ARM_DEVICE_TYPE_SHIFT;
992
993         switch (dev_id) {
994         case KVM_ARM_DEVICE_VGIC_V2:
995                 if (!vgic_present)
996                         return -ENXIO;
997                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
998         default:
999                 return -ENODEV;
1000         }
1001 }
1002
1003 long kvm_arch_vm_ioctl(struct file *filp,
1004                        unsigned int ioctl, unsigned long arg)
1005 {
1006         struct kvm *kvm = filp->private_data;
1007         void __user *argp = (void __user *)arg;
1008
1009         switch (ioctl) {
1010         case KVM_CREATE_IRQCHIP: {
1011                 if (!vgic_present)
1012                         return -ENXIO;
1013                 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1014         }
1015         case KVM_ARM_SET_DEVICE_ADDR: {
1016                 struct kvm_arm_device_addr dev_addr;
1017
1018                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1019                         return -EFAULT;
1020                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1021         }
1022         case KVM_ARM_PREFERRED_TARGET: {
1023                 int err;
1024                 struct kvm_vcpu_init init;
1025
1026                 err = kvm_vcpu_preferred_target(&init);
1027                 if (err)
1028                         return err;
1029
1030                 if (copy_to_user(argp, &init, sizeof(init)))
1031                         return -EFAULT;
1032
1033                 return 0;
1034         }
1035         default:
1036                 return -EINVAL;
1037         }
1038 }
1039
1040 static void cpu_init_hyp_mode(void *dummy)
1041 {
1042         phys_addr_t boot_pgd_ptr;
1043         phys_addr_t pgd_ptr;
1044         unsigned long hyp_stack_ptr;
1045         unsigned long stack_page;
1046         unsigned long vector_ptr;
1047
1048         /* Switch from the HYP stub to our own HYP init vector */
1049         __hyp_set_vectors(kvm_get_idmap_vector());
1050
1051         boot_pgd_ptr = kvm_mmu_get_boot_httbr();
1052         pgd_ptr = kvm_mmu_get_httbr();
1053         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1054         hyp_stack_ptr = stack_page + PAGE_SIZE;
1055         vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1056
1057         __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
1058         __cpu_init_stage2();
1059
1060         kvm_arm_init_debug();
1061 }
1062
1063 static void cpu_hyp_reinit(void)
1064 {
1065         if (is_kernel_in_hyp_mode()) {
1066                 /*
1067                  * __cpu_init_stage2() is safe to call even if the PM
1068                  * event was cancelled before the CPU was reset.
1069                  */
1070                 __cpu_init_stage2();
1071         } else {
1072                 if (__hyp_get_vectors() == hyp_default_vectors)
1073                         cpu_init_hyp_mode(NULL);
1074         }
1075 }
1076
1077 static void cpu_hyp_reset(void)
1078 {
1079         phys_addr_t boot_pgd_ptr;
1080         phys_addr_t phys_idmap_start;
1081
1082         if (!is_kernel_in_hyp_mode()) {
1083                 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
1084                 phys_idmap_start = kvm_get_idmap_start();
1085
1086                 __cpu_reset_hyp_mode(boot_pgd_ptr, phys_idmap_start);
1087         }
1088 }
1089
1090 static void _kvm_arch_hardware_enable(void *discard)
1091 {
1092         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1093                 cpu_hyp_reinit();
1094                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1095         }
1096 }
1097
1098 int kvm_arch_hardware_enable(void)
1099 {
1100         _kvm_arch_hardware_enable(NULL);
1101         return 0;
1102 }
1103
1104 static void _kvm_arch_hardware_disable(void *discard)
1105 {
1106         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1107                 cpu_hyp_reset();
1108                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1109         }
1110 }
1111
1112 void kvm_arch_hardware_disable(void)
1113 {
1114         _kvm_arch_hardware_disable(NULL);
1115 }
1116
1117 #ifdef CONFIG_CPU_PM
1118 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1119                                     unsigned long cmd,
1120                                     void *v)
1121 {
1122         /*
1123          * kvm_arm_hardware_enabled is left with its old value over
1124          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1125          * re-enable hyp.
1126          */
1127         switch (cmd) {
1128         case CPU_PM_ENTER:
1129                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1130                         /*
1131                          * don't update kvm_arm_hardware_enabled here
1132                          * so that the hardware will be re-enabled
1133                          * when we resume. See below.
1134                          */
1135                         cpu_hyp_reset();
1136
1137                 return NOTIFY_OK;
1138         case CPU_PM_EXIT:
1139                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1140                         /* The hardware was enabled before suspend. */
1141                         cpu_hyp_reinit();
1142
1143                 return NOTIFY_OK;
1144
1145         default:
1146                 return NOTIFY_DONE;
1147         }
1148 }
1149
1150 static struct notifier_block hyp_init_cpu_pm_nb = {
1151         .notifier_call = hyp_init_cpu_pm_notifier,
1152 };
1153
1154 static void __init hyp_cpu_pm_init(void)
1155 {
1156         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1157 }
1158 static void __init hyp_cpu_pm_exit(void)
1159 {
1160         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1161 }
1162 #else
1163 static inline void hyp_cpu_pm_init(void)
1164 {
1165 }
1166 static inline void hyp_cpu_pm_exit(void)
1167 {
1168 }
1169 #endif
1170
1171 static void teardown_common_resources(void)
1172 {
1173         free_percpu(kvm_host_cpu_state);
1174 }
1175
1176 static int init_common_resources(void)
1177 {
1178         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1179         if (!kvm_host_cpu_state) {
1180                 kvm_err("Cannot allocate host CPU state\n");
1181                 return -ENOMEM;
1182         }
1183
1184         return 0;
1185 }
1186
1187 static int init_subsystems(void)
1188 {
1189         int err = 0;
1190
1191         /*
1192          * Enable hardware so that subsystem initialisation can access EL2.
1193          */
1194         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1195
1196         /*
1197          * Register CPU lower-power notifier
1198          */
1199         hyp_cpu_pm_init();
1200
1201         /*
1202          * Init HYP view of VGIC
1203          */
1204         err = kvm_vgic_hyp_init();
1205         switch (err) {
1206         case 0:
1207                 vgic_present = true;
1208                 break;
1209         case -ENODEV:
1210         case -ENXIO:
1211                 vgic_present = false;
1212                 err = 0;
1213                 break;
1214         default:
1215                 goto out;
1216         }
1217
1218         /*
1219          * Init HYP architected timer support
1220          */
1221         err = kvm_timer_hyp_init();
1222         if (err)
1223                 goto out;
1224
1225         kvm_perf_init();
1226         kvm_coproc_table_init();
1227
1228 out:
1229         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1230
1231         return err;
1232 }
1233
1234 static void teardown_hyp_mode(void)
1235 {
1236         int cpu;
1237
1238         if (is_kernel_in_hyp_mode())
1239                 return;
1240
1241         free_hyp_pgds();
1242         for_each_possible_cpu(cpu)
1243                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1244         hyp_cpu_pm_exit();
1245 }
1246
1247 static int init_vhe_mode(void)
1248 {
1249         /* set size of VMID supported by CPU */
1250         kvm_vmid_bits = kvm_get_vmid_bits();
1251         kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1252
1253         kvm_info("VHE mode initialized successfully\n");
1254         return 0;
1255 }
1256
1257 /**
1258  * Inits Hyp-mode on all online CPUs
1259  */
1260 static int init_hyp_mode(void)
1261 {
1262         int cpu;
1263         int err = 0;
1264
1265         /*
1266          * Allocate Hyp PGD and setup Hyp identity mapping
1267          */
1268         err = kvm_mmu_init();
1269         if (err)
1270                 goto out_err;
1271
1272         /*
1273          * It is probably enough to obtain the default on one
1274          * CPU. It's unlikely to be different on the others.
1275          */
1276         hyp_default_vectors = __hyp_get_vectors();
1277
1278         /*
1279          * Allocate stack pages for Hypervisor-mode
1280          */
1281         for_each_possible_cpu(cpu) {
1282                 unsigned long stack_page;
1283
1284                 stack_page = __get_free_page(GFP_KERNEL);
1285                 if (!stack_page) {
1286                         err = -ENOMEM;
1287                         goto out_err;
1288                 }
1289
1290                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1291         }
1292
1293         /*
1294          * Map the Hyp-code called directly from the host
1295          */
1296         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1297                                   kvm_ksym_ref(__hyp_text_end));
1298         if (err) {
1299                 kvm_err("Cannot map world-switch code\n");
1300                 goto out_err;
1301         }
1302
1303         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1304                                   kvm_ksym_ref(__end_rodata));
1305         if (err) {
1306                 kvm_err("Cannot map rodata section\n");
1307                 goto out_err;
1308         }
1309
1310         /*
1311          * Map the Hyp stack pages
1312          */
1313         for_each_possible_cpu(cpu) {
1314                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1315                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1316
1317                 if (err) {
1318                         kvm_err("Cannot map hyp stack\n");
1319                         goto out_err;
1320                 }
1321         }
1322
1323         for_each_possible_cpu(cpu) {
1324                 kvm_cpu_context_t *cpu_ctxt;
1325
1326                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1327                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1328
1329                 if (err) {
1330                         kvm_err("Cannot map host CPU state: %d\n", err);
1331                         goto out_err;
1332                 }
1333         }
1334
1335 #ifndef CONFIG_HOTPLUG_CPU
1336         free_boot_hyp_pgd();
1337 #endif
1338
1339         /* set size of VMID supported by CPU */
1340         kvm_vmid_bits = kvm_get_vmid_bits();
1341         kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1342
1343         kvm_info("Hyp mode initialized successfully\n");
1344
1345         return 0;
1346
1347 out_err:
1348         teardown_hyp_mode();
1349         kvm_err("error initializing Hyp mode: %d\n", err);
1350         return err;
1351 }
1352
1353 static void check_kvm_target_cpu(void *ret)
1354 {
1355         *(int *)ret = kvm_target_cpu();
1356 }
1357
1358 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1359 {
1360         struct kvm_vcpu *vcpu;
1361         int i;
1362
1363         mpidr &= MPIDR_HWID_BITMASK;
1364         kvm_for_each_vcpu(i, vcpu, kvm) {
1365                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1366                         return vcpu;
1367         }
1368         return NULL;
1369 }
1370
1371 /**
1372  * Initialize Hyp-mode and memory mappings on all CPUs.
1373  */
1374 int kvm_arch_init(void *opaque)
1375 {
1376         int err;
1377         int ret, cpu;
1378
1379         if (!is_hyp_mode_available()) {
1380                 kvm_err("HYP mode not available\n");
1381                 return -ENODEV;
1382         }
1383
1384         for_each_online_cpu(cpu) {
1385                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1386                 if (ret < 0) {
1387                         kvm_err("Error, CPU %d not supported!\n", cpu);
1388                         return -ENODEV;
1389                 }
1390         }
1391
1392         err = init_common_resources();
1393         if (err)
1394                 return err;
1395
1396         if (is_kernel_in_hyp_mode())
1397                 err = init_vhe_mode();
1398         else
1399                 err = init_hyp_mode();
1400         if (err)
1401                 goto out_err;
1402
1403         err = init_subsystems();
1404         if (err)
1405                 goto out_hyp;
1406
1407         return 0;
1408
1409 out_hyp:
1410         teardown_hyp_mode();
1411 out_err:
1412         teardown_common_resources();
1413         return err;
1414 }
1415
1416 /* NOP: Compiling as a module not supported */
1417 void kvm_arch_exit(void)
1418 {
1419         kvm_perf_teardown();
1420 }
1421
1422 static int arm_init(void)
1423 {
1424         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1425         return rc;
1426 }
1427
1428 module_init(arm_init);