]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/arm/net/bpf_jit_32.c
ARM: net: bpf: fix zero right shift
[karo-tx-linux.git] / arch / arm / net / bpf_jit_32.c
1 /*
2  * Just-In-Time compiler for BPF filters on 32bit ARM
3  *
4  * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation; version 2 of the License.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/compiler.h>
13 #include <linux/errno.h>
14 #include <linux/filter.h>
15 #include <linux/netdevice.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/if_vlan.h>
19
20 #include <asm/cacheflush.h>
21 #include <asm/hwcap.h>
22 #include <asm/opcodes.h>
23
24 #include "bpf_jit_32.h"
25
26 /*
27  * ABI:
28  *
29  * r0   scratch register
30  * r4   BPF register A
31  * r5   BPF register X
32  * r6   pointer to the skb
33  * r7   skb->data
34  * r8   skb_headlen(skb)
35  */
36
37 #define r_scratch       ARM_R0
38 /* r1-r3 are (also) used for the unaligned loads on the non-ARMv7 slowpath */
39 #define r_off           ARM_R1
40 #define r_A             ARM_R4
41 #define r_X             ARM_R5
42 #define r_skb           ARM_R6
43 #define r_skb_data      ARM_R7
44 #define r_skb_hl        ARM_R8
45
46 #define SCRATCH_SP_OFFSET       0
47 #define SCRATCH_OFF(k)          (SCRATCH_SP_OFFSET + 4 * (k))
48
49 #define SEEN_MEM                ((1 << BPF_MEMWORDS) - 1)
50 #define SEEN_MEM_WORD(k)        (1 << (k))
51 #define SEEN_X                  (1 << BPF_MEMWORDS)
52 #define SEEN_CALL               (1 << (BPF_MEMWORDS + 1))
53 #define SEEN_SKB                (1 << (BPF_MEMWORDS + 2))
54 #define SEEN_DATA               (1 << (BPF_MEMWORDS + 3))
55
56 #define FLAG_NEED_X_RESET       (1 << 0)
57 #define FLAG_IMM_OVERFLOW       (1 << 1)
58
59 struct jit_ctx {
60         const struct bpf_prog *skf;
61         unsigned idx;
62         unsigned prologue_bytes;
63         int ret0_fp_idx;
64         u32 seen;
65         u32 flags;
66         u32 *offsets;
67         u32 *target;
68 #if __LINUX_ARM_ARCH__ < 7
69         u16 epilogue_bytes;
70         u16 imm_count;
71         u32 *imms;
72 #endif
73 };
74
75 int bpf_jit_enable __read_mostly;
76
77 static inline int call_neg_helper(struct sk_buff *skb, int offset, void *ret,
78                       unsigned int size)
79 {
80         void *ptr = bpf_internal_load_pointer_neg_helper(skb, offset, size);
81
82         if (!ptr)
83                 return -EFAULT;
84         memcpy(ret, ptr, size);
85         return 0;
86 }
87
88 static u64 jit_get_skb_b(struct sk_buff *skb, int offset)
89 {
90         u8 ret;
91         int err;
92
93         if (offset < 0)
94                 err = call_neg_helper(skb, offset, &ret, 1);
95         else
96                 err = skb_copy_bits(skb, offset, &ret, 1);
97
98         return (u64)err << 32 | ret;
99 }
100
101 static u64 jit_get_skb_h(struct sk_buff *skb, int offset)
102 {
103         u16 ret;
104         int err;
105
106         if (offset < 0)
107                 err = call_neg_helper(skb, offset, &ret, 2);
108         else
109                 err = skb_copy_bits(skb, offset, &ret, 2);
110
111         return (u64)err << 32 | ntohs(ret);
112 }
113
114 static u64 jit_get_skb_w(struct sk_buff *skb, int offset)
115 {
116         u32 ret;
117         int err;
118
119         if (offset < 0)
120                 err = call_neg_helper(skb, offset, &ret, 4);
121         else
122                 err = skb_copy_bits(skb, offset, &ret, 4);
123
124         return (u64)err << 32 | ntohl(ret);
125 }
126
127 /*
128  * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
129  * (where the assembly routines like __aeabi_uidiv could cause problems).
130  */
131 static u32 jit_udiv(u32 dividend, u32 divisor)
132 {
133         return dividend / divisor;
134 }
135
136 static u32 jit_mod(u32 dividend, u32 divisor)
137 {
138         return dividend % divisor;
139 }
140
141 static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
142 {
143         inst |= (cond << 28);
144         inst = __opcode_to_mem_arm(inst);
145
146         if (ctx->target != NULL)
147                 ctx->target[ctx->idx] = inst;
148
149         ctx->idx++;
150 }
151
152 /*
153  * Emit an instruction that will be executed unconditionally.
154  */
155 static inline void emit(u32 inst, struct jit_ctx *ctx)
156 {
157         _emit(ARM_COND_AL, inst, ctx);
158 }
159
160 static u16 saved_regs(struct jit_ctx *ctx)
161 {
162         u16 ret = 0;
163
164         if ((ctx->skf->len > 1) ||
165             (ctx->skf->insns[0].code == (BPF_RET | BPF_A)))
166                 ret |= 1 << r_A;
167
168 #ifdef CONFIG_FRAME_POINTER
169         ret |= (1 << ARM_FP) | (1 << ARM_IP) | (1 << ARM_LR) | (1 << ARM_PC);
170 #else
171         if (ctx->seen & SEEN_CALL)
172                 ret |= 1 << ARM_LR;
173 #endif
174         if (ctx->seen & (SEEN_DATA | SEEN_SKB))
175                 ret |= 1 << r_skb;
176         if (ctx->seen & SEEN_DATA)
177                 ret |= (1 << r_skb_data) | (1 << r_skb_hl);
178         if (ctx->seen & SEEN_X)
179                 ret |= 1 << r_X;
180
181         return ret;
182 }
183
184 static inline int mem_words_used(struct jit_ctx *ctx)
185 {
186         /* yes, we do waste some stack space IF there are "holes" in the set" */
187         return fls(ctx->seen & SEEN_MEM);
188 }
189
190 static void jit_fill_hole(void *area, unsigned int size)
191 {
192         u32 *ptr;
193         /* We are guaranteed to have aligned memory. */
194         for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
195                 *ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
196 }
197
198 static void build_prologue(struct jit_ctx *ctx)
199 {
200         u16 reg_set = saved_regs(ctx);
201         u16 off;
202
203 #ifdef CONFIG_FRAME_POINTER
204         emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
205         emit(ARM_PUSH(reg_set), ctx);
206         emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
207 #else
208         if (reg_set)
209                 emit(ARM_PUSH(reg_set), ctx);
210 #endif
211
212         if (ctx->seen & (SEEN_DATA | SEEN_SKB))
213                 emit(ARM_MOV_R(r_skb, ARM_R0), ctx);
214
215         if (ctx->seen & SEEN_DATA) {
216                 off = offsetof(struct sk_buff, data);
217                 emit(ARM_LDR_I(r_skb_data, r_skb, off), ctx);
218                 /* headlen = len - data_len */
219                 off = offsetof(struct sk_buff, len);
220                 emit(ARM_LDR_I(r_skb_hl, r_skb, off), ctx);
221                 off = offsetof(struct sk_buff, data_len);
222                 emit(ARM_LDR_I(r_scratch, r_skb, off), ctx);
223                 emit(ARM_SUB_R(r_skb_hl, r_skb_hl, r_scratch), ctx);
224         }
225
226         if (ctx->flags & FLAG_NEED_X_RESET)
227                 emit(ARM_MOV_I(r_X, 0), ctx);
228
229         /* do not leak kernel data to userspace */
230         if (bpf_needs_clear_a(&ctx->skf->insns[0]))
231                 emit(ARM_MOV_I(r_A, 0), ctx);
232
233         /* stack space for the BPF_MEM words */
234         if (ctx->seen & SEEN_MEM)
235                 emit(ARM_SUB_I(ARM_SP, ARM_SP, mem_words_used(ctx) * 4), ctx);
236 }
237
238 static void build_epilogue(struct jit_ctx *ctx)
239 {
240         u16 reg_set = saved_regs(ctx);
241
242         if (ctx->seen & SEEN_MEM)
243                 emit(ARM_ADD_I(ARM_SP, ARM_SP, mem_words_used(ctx) * 4), ctx);
244
245         reg_set &= ~(1 << ARM_LR);
246
247 #ifdef CONFIG_FRAME_POINTER
248         /* the first instruction of the prologue was: mov ip, sp */
249         reg_set &= ~(1 << ARM_IP);
250         reg_set |= (1 << ARM_SP);
251         emit(ARM_LDM(ARM_SP, reg_set), ctx);
252 #else
253         if (reg_set) {
254                 if (ctx->seen & SEEN_CALL)
255                         reg_set |= 1 << ARM_PC;
256                 emit(ARM_POP(reg_set), ctx);
257         }
258
259         if (!(ctx->seen & SEEN_CALL))
260                 emit(ARM_BX(ARM_LR), ctx);
261 #endif
262 }
263
264 static int16_t imm8m(u32 x)
265 {
266         u32 rot;
267
268         for (rot = 0; rot < 16; rot++)
269                 if ((x & ~ror32(0xff, 2 * rot)) == 0)
270                         return rol32(x, 2 * rot) | (rot << 8);
271
272         return -1;
273 }
274
275 #if __LINUX_ARM_ARCH__ < 7
276
277 static u16 imm_offset(u32 k, struct jit_ctx *ctx)
278 {
279         unsigned i = 0, offset;
280         u16 imm;
281
282         /* on the "fake" run we just count them (duplicates included) */
283         if (ctx->target == NULL) {
284                 ctx->imm_count++;
285                 return 0;
286         }
287
288         while ((i < ctx->imm_count) && ctx->imms[i]) {
289                 if (ctx->imms[i] == k)
290                         break;
291                 i++;
292         }
293
294         if (ctx->imms[i] == 0)
295                 ctx->imms[i] = k;
296
297         /* constants go just after the epilogue */
298         offset =  ctx->offsets[ctx->skf->len];
299         offset += ctx->prologue_bytes;
300         offset += ctx->epilogue_bytes;
301         offset += i * 4;
302
303         ctx->target[offset / 4] = k;
304
305         /* PC in ARM mode == address of the instruction + 8 */
306         imm = offset - (8 + ctx->idx * 4);
307
308         if (imm & ~0xfff) {
309                 /*
310                  * literal pool is too far, signal it into flags. we
311                  * can only detect it on the second pass unfortunately.
312                  */
313                 ctx->flags |= FLAG_IMM_OVERFLOW;
314                 return 0;
315         }
316
317         return imm;
318 }
319
320 #endif /* __LINUX_ARM_ARCH__ */
321
322 /*
323  * Move an immediate that's not an imm8m to a core register.
324  */
325 static inline void emit_mov_i_no8m(int rd, u32 val, struct jit_ctx *ctx)
326 {
327 #if __LINUX_ARM_ARCH__ < 7
328         emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
329 #else
330         emit(ARM_MOVW(rd, val & 0xffff), ctx);
331         if (val > 0xffff)
332                 emit(ARM_MOVT(rd, val >> 16), ctx);
333 #endif
334 }
335
336 static inline void emit_mov_i(int rd, u32 val, struct jit_ctx *ctx)
337 {
338         int imm12 = imm8m(val);
339
340         if (imm12 >= 0)
341                 emit(ARM_MOV_I(rd, imm12), ctx);
342         else
343                 emit_mov_i_no8m(rd, val, ctx);
344 }
345
346 #if __LINUX_ARM_ARCH__ < 6
347
348 static void emit_load_be32(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
349 {
350         _emit(cond, ARM_LDRB_I(ARM_R3, r_addr, 1), ctx);
351         _emit(cond, ARM_LDRB_I(ARM_R1, r_addr, 0), ctx);
352         _emit(cond, ARM_LDRB_I(ARM_R2, r_addr, 3), ctx);
353         _emit(cond, ARM_LSL_I(ARM_R3, ARM_R3, 16), ctx);
354         _emit(cond, ARM_LDRB_I(ARM_R0, r_addr, 2), ctx);
355         _emit(cond, ARM_ORR_S(ARM_R3, ARM_R3, ARM_R1, SRTYPE_LSL, 24), ctx);
356         _emit(cond, ARM_ORR_R(ARM_R3, ARM_R3, ARM_R2), ctx);
357         _emit(cond, ARM_ORR_S(r_res, ARM_R3, ARM_R0, SRTYPE_LSL, 8), ctx);
358 }
359
360 static void emit_load_be16(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
361 {
362         _emit(cond, ARM_LDRB_I(ARM_R1, r_addr, 0), ctx);
363         _emit(cond, ARM_LDRB_I(ARM_R2, r_addr, 1), ctx);
364         _emit(cond, ARM_ORR_S(r_res, ARM_R2, ARM_R1, SRTYPE_LSL, 8), ctx);
365 }
366
367 static inline void emit_swap16(u8 r_dst, u8 r_src, struct jit_ctx *ctx)
368 {
369         /* r_dst = (r_src << 8) | (r_src >> 8) */
370         emit(ARM_LSL_I(ARM_R1, r_src, 8), ctx);
371         emit(ARM_ORR_S(r_dst, ARM_R1, r_src, SRTYPE_LSR, 8), ctx);
372
373         /*
374          * we need to mask out the bits set in r_dst[23:16] due to
375          * the first shift instruction.
376          *
377          * note that 0x8ff is the encoded immediate 0x00ff0000.
378          */
379         emit(ARM_BIC_I(r_dst, r_dst, 0x8ff), ctx);
380 }
381
382 #else  /* ARMv6+ */
383
384 static void emit_load_be32(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
385 {
386         _emit(cond, ARM_LDR_I(r_res, r_addr, 0), ctx);
387 #ifdef __LITTLE_ENDIAN
388         _emit(cond, ARM_REV(r_res, r_res), ctx);
389 #endif
390 }
391
392 static void emit_load_be16(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
393 {
394         _emit(cond, ARM_LDRH_I(r_res, r_addr, 0), ctx);
395 #ifdef __LITTLE_ENDIAN
396         _emit(cond, ARM_REV16(r_res, r_res), ctx);
397 #endif
398 }
399
400 static inline void emit_swap16(u8 r_dst __maybe_unused,
401                                u8 r_src __maybe_unused,
402                                struct jit_ctx *ctx __maybe_unused)
403 {
404 #ifdef __LITTLE_ENDIAN
405         emit(ARM_REV16(r_dst, r_src), ctx);
406 #endif
407 }
408
409 #endif /* __LINUX_ARM_ARCH__ < 6 */
410
411
412 /* Compute the immediate value for a PC-relative branch. */
413 static inline u32 b_imm(unsigned tgt, struct jit_ctx *ctx)
414 {
415         u32 imm;
416
417         if (ctx->target == NULL)
418                 return 0;
419         /*
420          * BPF allows only forward jumps and the offset of the target is
421          * still the one computed during the first pass.
422          */
423         imm  = ctx->offsets[tgt] + ctx->prologue_bytes - (ctx->idx * 4 + 8);
424
425         return imm >> 2;
426 }
427
428 #define OP_IMM3(op, r1, r2, imm_val, ctx)                               \
429         do {                                                            \
430                 imm12 = imm8m(imm_val);                                 \
431                 if (imm12 < 0) {                                        \
432                         emit_mov_i_no8m(r_scratch, imm_val, ctx);       \
433                         emit(op ## _R((r1), (r2), r_scratch), ctx);     \
434                 } else {                                                \
435                         emit(op ## _I((r1), (r2), imm12), ctx);         \
436                 }                                                       \
437         } while (0)
438
439 static inline void emit_err_ret(u8 cond, struct jit_ctx *ctx)
440 {
441         if (ctx->ret0_fp_idx >= 0) {
442                 _emit(cond, ARM_B(b_imm(ctx->ret0_fp_idx, ctx)), ctx);
443                 /* NOP to keep the size constant between passes */
444                 emit(ARM_MOV_R(ARM_R0, ARM_R0), ctx);
445         } else {
446                 _emit(cond, ARM_MOV_I(ARM_R0, 0), ctx);
447                 _emit(cond, ARM_B(b_imm(ctx->skf->len, ctx)), ctx);
448         }
449 }
450
451 static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
452 {
453 #if __LINUX_ARM_ARCH__ < 5
454         emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
455
456         if (elf_hwcap & HWCAP_THUMB)
457                 emit(ARM_BX(tgt_reg), ctx);
458         else
459                 emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
460 #else
461         emit(ARM_BLX_R(tgt_reg), ctx);
462 #endif
463 }
464
465 static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx,
466                                 int bpf_op)
467 {
468 #if __LINUX_ARM_ARCH__ == 7
469         if (elf_hwcap & HWCAP_IDIVA) {
470                 if (bpf_op == BPF_DIV)
471                         emit(ARM_UDIV(rd, rm, rn), ctx);
472                 else {
473                         emit(ARM_UDIV(ARM_R3, rm, rn), ctx);
474                         emit(ARM_MLS(rd, rn, ARM_R3, rm), ctx);
475                 }
476                 return;
477         }
478 #endif
479
480         /*
481          * For BPF_ALU | BPF_DIV | BPF_K instructions, rm is ARM_R4
482          * (r_A) and rn is ARM_R0 (r_scratch) so load rn first into
483          * ARM_R1 to avoid accidentally overwriting ARM_R0 with rm
484          * before using it as a source for ARM_R1.
485          *
486          * For BPF_ALU | BPF_DIV | BPF_X rm is ARM_R4 (r_A) and rn is
487          * ARM_R5 (r_X) so there is no particular register overlap
488          * issues.
489          */
490         if (rn != ARM_R1)
491                 emit(ARM_MOV_R(ARM_R1, rn), ctx);
492         if (rm != ARM_R0)
493                 emit(ARM_MOV_R(ARM_R0, rm), ctx);
494
495         ctx->seen |= SEEN_CALL;
496         emit_mov_i(ARM_R3, bpf_op == BPF_DIV ? (u32)jit_udiv : (u32)jit_mod,
497                    ctx);
498         emit_blx_r(ARM_R3, ctx);
499
500         if (rd != ARM_R0)
501                 emit(ARM_MOV_R(rd, ARM_R0), ctx);
502 }
503
504 static inline void update_on_xread(struct jit_ctx *ctx)
505 {
506         if (!(ctx->seen & SEEN_X))
507                 ctx->flags |= FLAG_NEED_X_RESET;
508
509         ctx->seen |= SEEN_X;
510 }
511
512 static int build_body(struct jit_ctx *ctx)
513 {
514         void *load_func[] = {jit_get_skb_b, jit_get_skb_h, jit_get_skb_w};
515         const struct bpf_prog *prog = ctx->skf;
516         const struct sock_filter *inst;
517         unsigned i, load_order, off, condt;
518         int imm12;
519         u32 k;
520
521         for (i = 0; i < prog->len; i++) {
522                 u16 code;
523
524                 inst = &(prog->insns[i]);
525                 /* K as an immediate value operand */
526                 k = inst->k;
527                 code = bpf_anc_helper(inst);
528
529                 /* compute offsets only in the fake pass */
530                 if (ctx->target == NULL)
531                         ctx->offsets[i] = ctx->idx * 4;
532
533                 switch (code) {
534                 case BPF_LD | BPF_IMM:
535                         emit_mov_i(r_A, k, ctx);
536                         break;
537                 case BPF_LD | BPF_W | BPF_LEN:
538                         ctx->seen |= SEEN_SKB;
539                         BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
540                         emit(ARM_LDR_I(r_A, r_skb,
541                                        offsetof(struct sk_buff, len)), ctx);
542                         break;
543                 case BPF_LD | BPF_MEM:
544                         /* A = scratch[k] */
545                         ctx->seen |= SEEN_MEM_WORD(k);
546                         emit(ARM_LDR_I(r_A, ARM_SP, SCRATCH_OFF(k)), ctx);
547                         break;
548                 case BPF_LD | BPF_W | BPF_ABS:
549                         load_order = 2;
550                         goto load;
551                 case BPF_LD | BPF_H | BPF_ABS:
552                         load_order = 1;
553                         goto load;
554                 case BPF_LD | BPF_B | BPF_ABS:
555                         load_order = 0;
556 load:
557                         emit_mov_i(r_off, k, ctx);
558 load_common:
559                         ctx->seen |= SEEN_DATA | SEEN_CALL;
560
561                         if (load_order > 0) {
562                                 emit(ARM_SUB_I(r_scratch, r_skb_hl,
563                                                1 << load_order), ctx);
564                                 emit(ARM_CMP_R(r_scratch, r_off), ctx);
565                                 condt = ARM_COND_GE;
566                         } else {
567                                 emit(ARM_CMP_R(r_skb_hl, r_off), ctx);
568                                 condt = ARM_COND_HI;
569                         }
570
571                         /*
572                          * test for negative offset, only if we are
573                          * currently scheduled to take the fast
574                          * path. this will update the flags so that
575                          * the slowpath instruction are ignored if the
576                          * offset is negative.
577                          *
578                          * for loard_order == 0 the HI condition will
579                          * make loads at offset 0 take the slow path too.
580                          */
581                         _emit(condt, ARM_CMP_I(r_off, 0), ctx);
582
583                         _emit(condt, ARM_ADD_R(r_scratch, r_off, r_skb_data),
584                               ctx);
585
586                         if (load_order == 0)
587                                 _emit(condt, ARM_LDRB_I(r_A, r_scratch, 0),
588                                       ctx);
589                         else if (load_order == 1)
590                                 emit_load_be16(condt, r_A, r_scratch, ctx);
591                         else if (load_order == 2)
592                                 emit_load_be32(condt, r_A, r_scratch, ctx);
593
594                         _emit(condt, ARM_B(b_imm(i + 1, ctx)), ctx);
595
596                         /* the slowpath */
597                         emit_mov_i(ARM_R3, (u32)load_func[load_order], ctx);
598                         emit(ARM_MOV_R(ARM_R0, r_skb), ctx);
599                         /* the offset is already in R1 */
600                         emit_blx_r(ARM_R3, ctx);
601                         /* check the result of skb_copy_bits */
602                         emit(ARM_CMP_I(ARM_R1, 0), ctx);
603                         emit_err_ret(ARM_COND_NE, ctx);
604                         emit(ARM_MOV_R(r_A, ARM_R0), ctx);
605                         break;
606                 case BPF_LD | BPF_W | BPF_IND:
607                         load_order = 2;
608                         goto load_ind;
609                 case BPF_LD | BPF_H | BPF_IND:
610                         load_order = 1;
611                         goto load_ind;
612                 case BPF_LD | BPF_B | BPF_IND:
613                         load_order = 0;
614 load_ind:
615                         update_on_xread(ctx);
616                         OP_IMM3(ARM_ADD, r_off, r_X, k, ctx);
617                         goto load_common;
618                 case BPF_LDX | BPF_IMM:
619                         ctx->seen |= SEEN_X;
620                         emit_mov_i(r_X, k, ctx);
621                         break;
622                 case BPF_LDX | BPF_W | BPF_LEN:
623                         ctx->seen |= SEEN_X | SEEN_SKB;
624                         emit(ARM_LDR_I(r_X, r_skb,
625                                        offsetof(struct sk_buff, len)), ctx);
626                         break;
627                 case BPF_LDX | BPF_MEM:
628                         ctx->seen |= SEEN_X | SEEN_MEM_WORD(k);
629                         emit(ARM_LDR_I(r_X, ARM_SP, SCRATCH_OFF(k)), ctx);
630                         break;
631                 case BPF_LDX | BPF_B | BPF_MSH:
632                         /* x = ((*(frame + k)) & 0xf) << 2; */
633                         ctx->seen |= SEEN_X | SEEN_DATA | SEEN_CALL;
634                         /* the interpreter should deal with the negative K */
635                         if ((int)k < 0)
636                                 return -1;
637                         /* offset in r1: we might have to take the slow path */
638                         emit_mov_i(r_off, k, ctx);
639                         emit(ARM_CMP_R(r_skb_hl, r_off), ctx);
640
641                         /* load in r0: common with the slowpath */
642                         _emit(ARM_COND_HI, ARM_LDRB_R(ARM_R0, r_skb_data,
643                                                       ARM_R1), ctx);
644                         /*
645                          * emit_mov_i() might generate one or two instructions,
646                          * the same holds for emit_blx_r()
647                          */
648                         _emit(ARM_COND_HI, ARM_B(b_imm(i + 1, ctx) - 2), ctx);
649
650                         emit(ARM_MOV_R(ARM_R0, r_skb), ctx);
651                         /* r_off is r1 */
652                         emit_mov_i(ARM_R3, (u32)jit_get_skb_b, ctx);
653                         emit_blx_r(ARM_R3, ctx);
654                         /* check the return value of skb_copy_bits */
655                         emit(ARM_CMP_I(ARM_R1, 0), ctx);
656                         emit_err_ret(ARM_COND_NE, ctx);
657
658                         emit(ARM_AND_I(r_X, ARM_R0, 0x00f), ctx);
659                         emit(ARM_LSL_I(r_X, r_X, 2), ctx);
660                         break;
661                 case BPF_ST:
662                         ctx->seen |= SEEN_MEM_WORD(k);
663                         emit(ARM_STR_I(r_A, ARM_SP, SCRATCH_OFF(k)), ctx);
664                         break;
665                 case BPF_STX:
666                         update_on_xread(ctx);
667                         ctx->seen |= SEEN_MEM_WORD(k);
668                         emit(ARM_STR_I(r_X, ARM_SP, SCRATCH_OFF(k)), ctx);
669                         break;
670                 case BPF_ALU | BPF_ADD | BPF_K:
671                         /* A += K */
672                         OP_IMM3(ARM_ADD, r_A, r_A, k, ctx);
673                         break;
674                 case BPF_ALU | BPF_ADD | BPF_X:
675                         update_on_xread(ctx);
676                         emit(ARM_ADD_R(r_A, r_A, r_X), ctx);
677                         break;
678                 case BPF_ALU | BPF_SUB | BPF_K:
679                         /* A -= K */
680                         OP_IMM3(ARM_SUB, r_A, r_A, k, ctx);
681                         break;
682                 case BPF_ALU | BPF_SUB | BPF_X:
683                         update_on_xread(ctx);
684                         emit(ARM_SUB_R(r_A, r_A, r_X), ctx);
685                         break;
686                 case BPF_ALU | BPF_MUL | BPF_K:
687                         /* A *= K */
688                         emit_mov_i(r_scratch, k, ctx);
689                         emit(ARM_MUL(r_A, r_A, r_scratch), ctx);
690                         break;
691                 case BPF_ALU | BPF_MUL | BPF_X:
692                         update_on_xread(ctx);
693                         emit(ARM_MUL(r_A, r_A, r_X), ctx);
694                         break;
695                 case BPF_ALU | BPF_DIV | BPF_K:
696                         if (k == 1)
697                                 break;
698                         emit_mov_i(r_scratch, k, ctx);
699                         emit_udivmod(r_A, r_A, r_scratch, ctx, BPF_DIV);
700                         break;
701                 case BPF_ALU | BPF_DIV | BPF_X:
702                         update_on_xread(ctx);
703                         emit(ARM_CMP_I(r_X, 0), ctx);
704                         emit_err_ret(ARM_COND_EQ, ctx);
705                         emit_udivmod(r_A, r_A, r_X, ctx, BPF_DIV);
706                         break;
707                 case BPF_ALU | BPF_MOD | BPF_K:
708                         if (k == 1) {
709                                 emit_mov_i(r_A, 0, ctx);
710                                 break;
711                         }
712                         emit_mov_i(r_scratch, k, ctx);
713                         emit_udivmod(r_A, r_A, r_scratch, ctx, BPF_MOD);
714                         break;
715                 case BPF_ALU | BPF_MOD | BPF_X:
716                         update_on_xread(ctx);
717                         emit(ARM_CMP_I(r_X, 0), ctx);
718                         emit_err_ret(ARM_COND_EQ, ctx);
719                         emit_udivmod(r_A, r_A, r_X, ctx, BPF_MOD);
720                         break;
721                 case BPF_ALU | BPF_OR | BPF_K:
722                         /* A |= K */
723                         OP_IMM3(ARM_ORR, r_A, r_A, k, ctx);
724                         break;
725                 case BPF_ALU | BPF_OR | BPF_X:
726                         update_on_xread(ctx);
727                         emit(ARM_ORR_R(r_A, r_A, r_X), ctx);
728                         break;
729                 case BPF_ALU | BPF_XOR | BPF_K:
730                         /* A ^= K; */
731                         OP_IMM3(ARM_EOR, r_A, r_A, k, ctx);
732                         break;
733                 case BPF_ANC | SKF_AD_ALU_XOR_X:
734                 case BPF_ALU | BPF_XOR | BPF_X:
735                         /* A ^= X */
736                         update_on_xread(ctx);
737                         emit(ARM_EOR_R(r_A, r_A, r_X), ctx);
738                         break;
739                 case BPF_ALU | BPF_AND | BPF_K:
740                         /* A &= K */
741                         OP_IMM3(ARM_AND, r_A, r_A, k, ctx);
742                         break;
743                 case BPF_ALU | BPF_AND | BPF_X:
744                         update_on_xread(ctx);
745                         emit(ARM_AND_R(r_A, r_A, r_X), ctx);
746                         break;
747                 case BPF_ALU | BPF_LSH | BPF_K:
748                         if (unlikely(k > 31))
749                                 return -1;
750                         emit(ARM_LSL_I(r_A, r_A, k), ctx);
751                         break;
752                 case BPF_ALU | BPF_LSH | BPF_X:
753                         update_on_xread(ctx);
754                         emit(ARM_LSL_R(r_A, r_A, r_X), ctx);
755                         break;
756                 case BPF_ALU | BPF_RSH | BPF_K:
757                         if (unlikely(k > 31))
758                                 return -1;
759                         if (k)
760                                 emit(ARM_LSR_I(r_A, r_A, k), ctx);
761                         break;
762                 case BPF_ALU | BPF_RSH | BPF_X:
763                         update_on_xread(ctx);
764                         emit(ARM_LSR_R(r_A, r_A, r_X), ctx);
765                         break;
766                 case BPF_ALU | BPF_NEG:
767                         /* A = -A */
768                         emit(ARM_RSB_I(r_A, r_A, 0), ctx);
769                         break;
770                 case BPF_JMP | BPF_JA:
771                         /* pc += K */
772                         emit(ARM_B(b_imm(i + k + 1, ctx)), ctx);
773                         break;
774                 case BPF_JMP | BPF_JEQ | BPF_K:
775                         /* pc += (A == K) ? pc->jt : pc->jf */
776                         condt  = ARM_COND_EQ;
777                         goto cmp_imm;
778                 case BPF_JMP | BPF_JGT | BPF_K:
779                         /* pc += (A > K) ? pc->jt : pc->jf */
780                         condt  = ARM_COND_HI;
781                         goto cmp_imm;
782                 case BPF_JMP | BPF_JGE | BPF_K:
783                         /* pc += (A >= K) ? pc->jt : pc->jf */
784                         condt  = ARM_COND_HS;
785 cmp_imm:
786                         imm12 = imm8m(k);
787                         if (imm12 < 0) {
788                                 emit_mov_i_no8m(r_scratch, k, ctx);
789                                 emit(ARM_CMP_R(r_A, r_scratch), ctx);
790                         } else {
791                                 emit(ARM_CMP_I(r_A, imm12), ctx);
792                         }
793 cond_jump:
794                         if (inst->jt)
795                                 _emit(condt, ARM_B(b_imm(i + inst->jt + 1,
796                                                    ctx)), ctx);
797                         if (inst->jf)
798                                 _emit(condt ^ 1, ARM_B(b_imm(i + inst->jf + 1,
799                                                              ctx)), ctx);
800                         break;
801                 case BPF_JMP | BPF_JEQ | BPF_X:
802                         /* pc += (A == X) ? pc->jt : pc->jf */
803                         condt   = ARM_COND_EQ;
804                         goto cmp_x;
805                 case BPF_JMP | BPF_JGT | BPF_X:
806                         /* pc += (A > X) ? pc->jt : pc->jf */
807                         condt   = ARM_COND_HI;
808                         goto cmp_x;
809                 case BPF_JMP | BPF_JGE | BPF_X:
810                         /* pc += (A >= X) ? pc->jt : pc->jf */
811                         condt   = ARM_COND_CS;
812 cmp_x:
813                         update_on_xread(ctx);
814                         emit(ARM_CMP_R(r_A, r_X), ctx);
815                         goto cond_jump;
816                 case BPF_JMP | BPF_JSET | BPF_K:
817                         /* pc += (A & K) ? pc->jt : pc->jf */
818                         condt  = ARM_COND_NE;
819                         /* not set iff all zeroes iff Z==1 iff EQ */
820
821                         imm12 = imm8m(k);
822                         if (imm12 < 0) {
823                                 emit_mov_i_no8m(r_scratch, k, ctx);
824                                 emit(ARM_TST_R(r_A, r_scratch), ctx);
825                         } else {
826                                 emit(ARM_TST_I(r_A, imm12), ctx);
827                         }
828                         goto cond_jump;
829                 case BPF_JMP | BPF_JSET | BPF_X:
830                         /* pc += (A & X) ? pc->jt : pc->jf */
831                         update_on_xread(ctx);
832                         condt  = ARM_COND_NE;
833                         emit(ARM_TST_R(r_A, r_X), ctx);
834                         goto cond_jump;
835                 case BPF_RET | BPF_A:
836                         emit(ARM_MOV_R(ARM_R0, r_A), ctx);
837                         goto b_epilogue;
838                 case BPF_RET | BPF_K:
839                         if ((k == 0) && (ctx->ret0_fp_idx < 0))
840                                 ctx->ret0_fp_idx = i;
841                         emit_mov_i(ARM_R0, k, ctx);
842 b_epilogue:
843                         if (i != ctx->skf->len - 1)
844                                 emit(ARM_B(b_imm(prog->len, ctx)), ctx);
845                         break;
846                 case BPF_MISC | BPF_TAX:
847                         /* X = A */
848                         ctx->seen |= SEEN_X;
849                         emit(ARM_MOV_R(r_X, r_A), ctx);
850                         break;
851                 case BPF_MISC | BPF_TXA:
852                         /* A = X */
853                         update_on_xread(ctx);
854                         emit(ARM_MOV_R(r_A, r_X), ctx);
855                         break;
856                 case BPF_ANC | SKF_AD_PROTOCOL:
857                         /* A = ntohs(skb->protocol) */
858                         ctx->seen |= SEEN_SKB;
859                         BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
860                                                   protocol) != 2);
861                         off = offsetof(struct sk_buff, protocol);
862                         emit(ARM_LDRH_I(r_scratch, r_skb, off), ctx);
863                         emit_swap16(r_A, r_scratch, ctx);
864                         break;
865                 case BPF_ANC | SKF_AD_CPU:
866                         /* r_scratch = current_thread_info() */
867                         OP_IMM3(ARM_BIC, r_scratch, ARM_SP, THREAD_SIZE - 1, ctx);
868                         /* A = current_thread_info()->cpu */
869                         BUILD_BUG_ON(FIELD_SIZEOF(struct thread_info, cpu) != 4);
870                         off = offsetof(struct thread_info, cpu);
871                         emit(ARM_LDR_I(r_A, r_scratch, off), ctx);
872                         break;
873                 case BPF_ANC | SKF_AD_IFINDEX:
874                 case BPF_ANC | SKF_AD_HATYPE:
875                         /* A = skb->dev->ifindex */
876                         /* A = skb->dev->type */
877                         ctx->seen |= SEEN_SKB;
878                         off = offsetof(struct sk_buff, dev);
879                         emit(ARM_LDR_I(r_scratch, r_skb, off), ctx);
880
881                         emit(ARM_CMP_I(r_scratch, 0), ctx);
882                         emit_err_ret(ARM_COND_EQ, ctx);
883
884                         BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
885                                                   ifindex) != 4);
886                         BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
887                                                   type) != 2);
888
889                         if (code == (BPF_ANC | SKF_AD_IFINDEX)) {
890                                 off = offsetof(struct net_device, ifindex);
891                                 emit(ARM_LDR_I(r_A, r_scratch, off), ctx);
892                         } else {
893                                 /*
894                                  * offset of field "type" in "struct
895                                  * net_device" is above what can be
896                                  * used in the ldrh rd, [rn, #imm]
897                                  * instruction, so load the offset in
898                                  * a register and use ldrh rd, [rn, rm]
899                                  */
900                                 off = offsetof(struct net_device, type);
901                                 emit_mov_i(ARM_R3, off, ctx);
902                                 emit(ARM_LDRH_R(r_A, r_scratch, ARM_R3), ctx);
903                         }
904                         break;
905                 case BPF_ANC | SKF_AD_MARK:
906                         ctx->seen |= SEEN_SKB;
907                         BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
908                         off = offsetof(struct sk_buff, mark);
909                         emit(ARM_LDR_I(r_A, r_skb, off), ctx);
910                         break;
911                 case BPF_ANC | SKF_AD_RXHASH:
912                         ctx->seen |= SEEN_SKB;
913                         BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
914                         off = offsetof(struct sk_buff, hash);
915                         emit(ARM_LDR_I(r_A, r_skb, off), ctx);
916                         break;
917                 case BPF_ANC | SKF_AD_VLAN_TAG:
918                 case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
919                         ctx->seen |= SEEN_SKB;
920                         BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
921                         off = offsetof(struct sk_buff, vlan_tci);
922                         emit(ARM_LDRH_I(r_A, r_skb, off), ctx);
923                         if (code == (BPF_ANC | SKF_AD_VLAN_TAG))
924                                 OP_IMM3(ARM_AND, r_A, r_A, ~VLAN_TAG_PRESENT, ctx);
925                         else {
926                                 OP_IMM3(ARM_LSR, r_A, r_A, 12, ctx);
927                                 OP_IMM3(ARM_AND, r_A, r_A, 0x1, ctx);
928                         }
929                         break;
930                 case BPF_ANC | SKF_AD_PKTTYPE:
931                         ctx->seen |= SEEN_SKB;
932                         BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
933                                                   __pkt_type_offset[0]) != 1);
934                         off = PKT_TYPE_OFFSET();
935                         emit(ARM_LDRB_I(r_A, r_skb, off), ctx);
936                         emit(ARM_AND_I(r_A, r_A, PKT_TYPE_MAX), ctx);
937 #ifdef __BIG_ENDIAN_BITFIELD
938                         emit(ARM_LSR_I(r_A, r_A, 5), ctx);
939 #endif
940                         break;
941                 case BPF_ANC | SKF_AD_QUEUE:
942                         ctx->seen |= SEEN_SKB;
943                         BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
944                                                   queue_mapping) != 2);
945                         BUILD_BUG_ON(offsetof(struct sk_buff,
946                                               queue_mapping) > 0xff);
947                         off = offsetof(struct sk_buff, queue_mapping);
948                         emit(ARM_LDRH_I(r_A, r_skb, off), ctx);
949                         break;
950                 case BPF_ANC | SKF_AD_PAY_OFFSET:
951                         ctx->seen |= SEEN_SKB | SEEN_CALL;
952
953                         emit(ARM_MOV_R(ARM_R0, r_skb), ctx);
954                         emit_mov_i(ARM_R3, (unsigned int)skb_get_poff, ctx);
955                         emit_blx_r(ARM_R3, ctx);
956                         emit(ARM_MOV_R(r_A, ARM_R0), ctx);
957                         break;
958                 case BPF_LDX | BPF_W | BPF_ABS:
959                         /*
960                          * load a 32bit word from struct seccomp_data.
961                          * seccomp_check_filter() will already have checked
962                          * that k is 32bit aligned and lies within the
963                          * struct seccomp_data.
964                          */
965                         ctx->seen |= SEEN_SKB;
966                         emit(ARM_LDR_I(r_A, r_skb, k), ctx);
967                         break;
968                 default:
969                         return -1;
970                 }
971
972                 if (ctx->flags & FLAG_IMM_OVERFLOW)
973                         /*
974                          * this instruction generated an overflow when
975                          * trying to access the literal pool, so
976                          * delegate this filter to the kernel interpreter.
977                          */
978                         return -1;
979         }
980
981         /* compute offsets only during the first pass */
982         if (ctx->target == NULL)
983                 ctx->offsets[i] = ctx->idx * 4;
984
985         return 0;
986 }
987
988
989 void bpf_jit_compile(struct bpf_prog *fp)
990 {
991         struct bpf_binary_header *header;
992         struct jit_ctx ctx;
993         unsigned tmp_idx;
994         unsigned alloc_size;
995         u8 *target_ptr;
996
997         if (!bpf_jit_enable)
998                 return;
999
1000         memset(&ctx, 0, sizeof(ctx));
1001         ctx.skf         = fp;
1002         ctx.ret0_fp_idx = -1;
1003
1004         ctx.offsets = kzalloc(4 * (ctx.skf->len + 1), GFP_KERNEL);
1005         if (ctx.offsets == NULL)
1006                 return;
1007
1008         /* fake pass to fill in the ctx->seen */
1009         if (unlikely(build_body(&ctx)))
1010                 goto out;
1011
1012         tmp_idx = ctx.idx;
1013         build_prologue(&ctx);
1014         ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1015
1016 #if __LINUX_ARM_ARCH__ < 7
1017         tmp_idx = ctx.idx;
1018         build_epilogue(&ctx);
1019         ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
1020
1021         ctx.idx += ctx.imm_count;
1022         if (ctx.imm_count) {
1023                 ctx.imms = kzalloc(4 * ctx.imm_count, GFP_KERNEL);
1024                 if (ctx.imms == NULL)
1025                         goto out;
1026         }
1027 #else
1028         /* there's nothing after the epilogue on ARMv7 */
1029         build_epilogue(&ctx);
1030 #endif
1031         alloc_size = 4 * ctx.idx;
1032         header = bpf_jit_binary_alloc(alloc_size, &target_ptr,
1033                                       4, jit_fill_hole);
1034         if (header == NULL)
1035                 goto out;
1036
1037         ctx.target = (u32 *) target_ptr;
1038         ctx.idx = 0;
1039
1040         build_prologue(&ctx);
1041         if (build_body(&ctx) < 0) {
1042 #if __LINUX_ARM_ARCH__ < 7
1043                 if (ctx.imm_count)
1044                         kfree(ctx.imms);
1045 #endif
1046                 bpf_jit_binary_free(header);
1047                 goto out;
1048         }
1049         build_epilogue(&ctx);
1050
1051         flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
1052
1053 #if __LINUX_ARM_ARCH__ < 7
1054         if (ctx.imm_count)
1055                 kfree(ctx.imms);
1056 #endif
1057
1058         if (bpf_jit_enable > 1)
1059                 /* there are 2 passes here */
1060                 bpf_jit_dump(fp->len, alloc_size, 2, ctx.target);
1061
1062         set_memory_ro((unsigned long)header, header->pages);
1063         fp->bpf_func = (void *)ctx.target;
1064         fp->jited = 1;
1065 out:
1066         kfree(ctx.offsets);
1067         return;
1068 }
1069
1070 void bpf_jit_free(struct bpf_prog *fp)
1071 {
1072         unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
1073         struct bpf_binary_header *header = (void *)addr;
1074
1075         if (!fp->jited)
1076                 goto free_filter;
1077
1078         set_memory_rw(addr, header->pages);
1079         bpf_jit_binary_free(header);
1080
1081 free_filter:
1082         bpf_prog_unlock_free(fp);
1083 }