]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/mips/kernel/smp-cps.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[karo-tx-linux.git] / arch / mips / kernel / smp-cps.c
1 /*
2  * Copyright (C) 2013 Imagination Technologies
3  * Author: Paul Burton <paul.burton@imgtec.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10
11 #include <linux/cpu.h>
12 #include <linux/delay.h>
13 #include <linux/io.h>
14 #include <linux/irqchip/mips-gic.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/sched/hotplug.h>
17 #include <linux/slab.h>
18 #include <linux/smp.h>
19 #include <linux/types.h>
20
21 #include <asm/bcache.h>
22 #include <asm/mips-cm.h>
23 #include <asm/mips-cpc.h>
24 #include <asm/mips_mt.h>
25 #include <asm/mipsregs.h>
26 #include <asm/pm-cps.h>
27 #include <asm/r4kcache.h>
28 #include <asm/smp-cps.h>
29 #include <asm/time.h>
30 #include <asm/uasm.h>
31
32 static bool threads_disabled;
33 static DECLARE_BITMAP(core_power, NR_CPUS);
34
35 struct core_boot_config *mips_cps_core_bootcfg;
36
37 static int __init setup_nothreads(char *s)
38 {
39         threads_disabled = true;
40         return 0;
41 }
42 early_param("nothreads", setup_nothreads);
43
44 static unsigned core_vpe_count(unsigned core)
45 {
46         unsigned cfg;
47
48         if (threads_disabled)
49                 return 1;
50
51         if ((!IS_ENABLED(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt)
52                 && (!IS_ENABLED(CONFIG_CPU_MIPSR6) || !cpu_has_vp))
53                 return 1;
54
55         mips_cm_lock_other(core, 0);
56         cfg = read_gcr_co_config() & CM_GCR_Cx_CONFIG_PVPE_MSK;
57         mips_cm_unlock_other();
58         return (cfg >> CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
59 }
60
61 static void __init cps_smp_setup(void)
62 {
63         unsigned int ncores, nvpes, core_vpes;
64         unsigned long core_entry;
65         int c, v;
66
67         /* Detect & record VPE topology */
68         ncores = mips_cm_numcores();
69         pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
70         for (c = nvpes = 0; c < ncores; c++) {
71                 core_vpes = core_vpe_count(c);
72                 pr_cont("%c%u", c ? ',' : '{', core_vpes);
73
74                 /* Use the number of VPEs in core 0 for smp_num_siblings */
75                 if (!c)
76                         smp_num_siblings = core_vpes;
77
78                 for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
79                         cpu_data[nvpes + v].core = c;
80 #if defined(CONFIG_MIPS_MT_SMP) || defined(CONFIG_CPU_MIPSR6)
81                         cpu_data[nvpes + v].vpe_id = v;
82 #endif
83                 }
84
85                 nvpes += core_vpes;
86         }
87         pr_cont("} total %u\n", nvpes);
88
89         /* Indicate present CPUs (CPU being synonymous with VPE) */
90         for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
91                 set_cpu_possible(v, true);
92                 set_cpu_present(v, true);
93                 __cpu_number_map[v] = v;
94                 __cpu_logical_map[v] = v;
95         }
96
97         /* Set a coherent default CCA (CWB) */
98         change_c0_config(CONF_CM_CMASK, 0x5);
99
100         /* Core 0 is powered up (we're running on it) */
101         bitmap_set(core_power, 0, 1);
102
103         /* Initialise core 0 */
104         mips_cps_core_init();
105
106         /* Make core 0 coherent with everything */
107         write_gcr_cl_coherence(0xff);
108
109         if (mips_cm_revision() >= CM_REV_CM3) {
110                 core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
111                 write_gcr_bev_base(core_entry);
112         }
113
114 #ifdef CONFIG_MIPS_MT_FPAFF
115         /* If we have an FPU, enroll ourselves in the FPU-full mask */
116         if (cpu_has_fpu)
117                 cpumask_set_cpu(0, &mt_fpu_cpumask);
118 #endif /* CONFIG_MIPS_MT_FPAFF */
119 }
120
121 static void __init cps_prepare_cpus(unsigned int max_cpus)
122 {
123         unsigned ncores, core_vpes, c, cca;
124         bool cca_unsuitable;
125         u32 *entry_code;
126
127         mips_mt_set_cpuoptions();
128
129         /* Detect whether the CCA is unsuited to multi-core SMP */
130         cca = read_c0_config() & CONF_CM_CMASK;
131         switch (cca) {
132         case 0x4: /* CWBE */
133         case 0x5: /* CWB */
134                 /* The CCA is coherent, multi-core is fine */
135                 cca_unsuitable = false;
136                 break;
137
138         default:
139                 /* CCA is not coherent, multi-core is not usable */
140                 cca_unsuitable = true;
141         }
142
143         /* Warn the user if the CCA prevents multi-core */
144         ncores = mips_cm_numcores();
145         if (cca_unsuitable && ncores > 1) {
146                 pr_warn("Using only one core due to unsuitable CCA 0x%x\n",
147                         cca);
148
149                 for_each_present_cpu(c) {
150                         if (cpu_data[c].core)
151                                 set_cpu_present(c, false);
152                 }
153         }
154
155         /*
156          * Patch the start of mips_cps_core_entry to provide:
157          *
158          * s0 = kseg0 CCA
159          */
160         entry_code = (u32 *)&mips_cps_core_entry;
161         uasm_i_addiu(&entry_code, 16, 0, cca);
162         blast_dcache_range((unsigned long)&mips_cps_core_entry,
163                            (unsigned long)entry_code);
164         bc_wback_inv((unsigned long)&mips_cps_core_entry,
165                      (void *)entry_code - (void *)&mips_cps_core_entry);
166         __sync();
167
168         /* Allocate core boot configuration structs */
169         mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
170                                         GFP_KERNEL);
171         if (!mips_cps_core_bootcfg) {
172                 pr_err("Failed to allocate boot config for %u cores\n", ncores);
173                 goto err_out;
174         }
175
176         /* Allocate VPE boot configuration structs */
177         for (c = 0; c < ncores; c++) {
178                 core_vpes = core_vpe_count(c);
179                 mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
180                                 sizeof(*mips_cps_core_bootcfg[c].vpe_config),
181                                 GFP_KERNEL);
182                 if (!mips_cps_core_bootcfg[c].vpe_config) {
183                         pr_err("Failed to allocate %u VPE boot configs\n",
184                                core_vpes);
185                         goto err_out;
186                 }
187         }
188
189         /* Mark this CPU as booted */
190         atomic_set(&mips_cps_core_bootcfg[current_cpu_data.core].vpe_mask,
191                    1 << cpu_vpe_id(&current_cpu_data));
192
193         return;
194 err_out:
195         /* Clean up allocations */
196         if (mips_cps_core_bootcfg) {
197                 for (c = 0; c < ncores; c++)
198                         kfree(mips_cps_core_bootcfg[c].vpe_config);
199                 kfree(mips_cps_core_bootcfg);
200                 mips_cps_core_bootcfg = NULL;
201         }
202
203         /* Effectively disable SMP by declaring CPUs not present */
204         for_each_possible_cpu(c) {
205                 if (c == 0)
206                         continue;
207                 set_cpu_present(c, false);
208         }
209 }
210
211 static void boot_core(unsigned int core, unsigned int vpe_id)
212 {
213         u32 access, stat, seq_state;
214         unsigned timeout;
215
216         /* Select the appropriate core */
217         mips_cm_lock_other(core, 0);
218
219         /* Set its reset vector */
220         write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
221
222         /* Ensure its coherency is disabled */
223         write_gcr_co_coherence(0);
224
225         /* Start it with the legacy memory map and exception base */
226         write_gcr_co_reset_ext_base(CM_GCR_RESET_EXT_BASE_UEB);
227
228         /* Ensure the core can access the GCRs */
229         access = read_gcr_access();
230         access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + core);
231         write_gcr_access(access);
232
233         if (mips_cpc_present()) {
234                 /* Reset the core */
235                 mips_cpc_lock_other(core);
236
237                 if (mips_cm_revision() >= CM_REV_CM3) {
238                         /* Run only the requested VP following the reset */
239                         write_cpc_co_vp_stop(0xf);
240                         write_cpc_co_vp_run(1 << vpe_id);
241
242                         /*
243                          * Ensure that the VP_RUN register is written before the
244                          * core leaves reset.
245                          */
246                         wmb();
247                 }
248
249                 write_cpc_co_cmd(CPC_Cx_CMD_RESET);
250
251                 timeout = 100;
252                 while (true) {
253                         stat = read_cpc_co_stat_conf();
254                         seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE_MSK;
255
256                         /* U6 == coherent execution, ie. the core is up */
257                         if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
258                                 break;
259
260                         /* Delay a little while before we start warning */
261                         if (timeout) {
262                                 timeout--;
263                                 mdelay(10);
264                                 continue;
265                         }
266
267                         pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
268                                 core, stat);
269                         mdelay(1000);
270                 }
271
272                 mips_cpc_unlock_other();
273         } else {
274                 /* Take the core out of reset */
275                 write_gcr_co_reset_release(0);
276         }
277
278         mips_cm_unlock_other();
279
280         /* The core is now powered up */
281         bitmap_set(core_power, core, 1);
282 }
283
284 static void remote_vpe_boot(void *dummy)
285 {
286         unsigned core = current_cpu_data.core;
287         struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
288
289         mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
290 }
291
292 static void cps_boot_secondary(int cpu, struct task_struct *idle)
293 {
294         unsigned core = cpu_data[cpu].core;
295         unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
296         struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
297         struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
298         unsigned long core_entry;
299         unsigned int remote;
300         int err;
301
302         vpe_cfg->pc = (unsigned long)&smp_bootstrap;
303         vpe_cfg->sp = __KSTK_TOS(idle);
304         vpe_cfg->gp = (unsigned long)task_thread_info(idle);
305
306         atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
307
308         preempt_disable();
309
310         if (!test_bit(core, core_power)) {
311                 /* Boot a VPE on a powered down core */
312                 boot_core(core, vpe_id);
313                 goto out;
314         }
315
316         if (cpu_has_vp) {
317                 mips_cm_lock_other(core, vpe_id);
318                 core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
319                 write_gcr_co_reset_base(core_entry);
320                 mips_cm_unlock_other();
321         }
322
323         if (core != current_cpu_data.core) {
324                 /* Boot a VPE on another powered up core */
325                 for (remote = 0; remote < NR_CPUS; remote++) {
326                         if (cpu_data[remote].core != core)
327                                 continue;
328                         if (cpu_online(remote))
329                                 break;
330                 }
331                 if (remote >= NR_CPUS) {
332                         pr_crit("No online CPU in core %u to start CPU%d\n",
333                                 core, cpu);
334                         goto out;
335                 }
336
337                 err = smp_call_function_single(remote, remote_vpe_boot,
338                                                NULL, 1);
339                 if (err)
340                         panic("Failed to call remote CPU\n");
341                 goto out;
342         }
343
344         BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
345
346         /* Boot a VPE on this core */
347         mips_cps_boot_vpes(core_cfg, vpe_id);
348 out:
349         preempt_enable();
350 }
351
352 static void cps_init_secondary(void)
353 {
354         /* Disable MT - we only want to run 1 TC per VPE */
355         if (cpu_has_mipsmt)
356                 dmt();
357
358         if (mips_cm_revision() >= CM_REV_CM3) {
359                 unsigned ident = gic_read_local_vp_id();
360
361                 /*
362                  * Ensure that our calculation of the VP ID matches up with
363                  * what the GIC reports, otherwise we'll have configured
364                  * interrupts incorrectly.
365                  */
366                 BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
367         }
368
369         if (cpu_has_veic)
370                 clear_c0_status(ST0_IM);
371         else
372                 change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
373                                          STATUSF_IP4 | STATUSF_IP5 |
374                                          STATUSF_IP6 | STATUSF_IP7);
375 }
376
377 static void cps_smp_finish(void)
378 {
379         write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
380
381 #ifdef CONFIG_MIPS_MT_FPAFF
382         /* If we have an FPU, enroll ourselves in the FPU-full mask */
383         if (cpu_has_fpu)
384                 cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
385 #endif /* CONFIG_MIPS_MT_FPAFF */
386
387         local_irq_enable();
388 }
389
390 #ifdef CONFIG_HOTPLUG_CPU
391
392 static int cps_cpu_disable(void)
393 {
394         unsigned cpu = smp_processor_id();
395         struct core_boot_config *core_cfg;
396
397         if (!cpu)
398                 return -EBUSY;
399
400         if (!cps_pm_support_state(CPS_PM_POWER_GATED))
401                 return -EINVAL;
402
403         core_cfg = &mips_cps_core_bootcfg[current_cpu_data.core];
404         atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
405         smp_mb__after_atomic();
406         set_cpu_online(cpu, false);
407         calculate_cpu_foreign_map();
408
409         return 0;
410 }
411
412 static unsigned cpu_death_sibling;
413 static enum {
414         CPU_DEATH_HALT,
415         CPU_DEATH_POWER,
416 } cpu_death;
417
418 void play_dead(void)
419 {
420         unsigned int cpu, core, vpe_id;
421
422         local_irq_disable();
423         idle_task_exit();
424         cpu = smp_processor_id();
425         core = cpu_data[cpu].core;
426         cpu_death = CPU_DEATH_POWER;
427
428         pr_debug("CPU%d going offline\n", cpu);
429
430         if (cpu_has_mipsmt || cpu_has_vp) {
431                 /* Look for another online VPE within the core */
432                 for_each_online_cpu(cpu_death_sibling) {
433                         if (cpu_data[cpu_death_sibling].core != core)
434                                 continue;
435
436                         /*
437                          * There is an online VPE within the core. Just halt
438                          * this TC and leave the core alone.
439                          */
440                         cpu_death = CPU_DEATH_HALT;
441                         break;
442                 }
443         }
444
445         /* This CPU has chosen its way out */
446         (void)cpu_report_death();
447
448         if (cpu_death == CPU_DEATH_HALT) {
449                 vpe_id = cpu_vpe_id(&cpu_data[cpu]);
450
451                 pr_debug("Halting core %d VP%d\n", core, vpe_id);
452                 if (cpu_has_mipsmt) {
453                         /* Halt this TC */
454                         write_c0_tchalt(TCHALT_H);
455                         instruction_hazard();
456                 } else if (cpu_has_vp) {
457                         write_cpc_cl_vp_stop(1 << vpe_id);
458
459                         /* Ensure that the VP_STOP register is written */
460                         wmb();
461                 }
462         } else {
463                 pr_debug("Gating power to core %d\n", core);
464                 /* Power down the core */
465                 cps_pm_enter_state(CPS_PM_POWER_GATED);
466         }
467
468         /* This should never be reached */
469         panic("Failed to offline CPU %u", cpu);
470 }
471
472 static void wait_for_sibling_halt(void *ptr_cpu)
473 {
474         unsigned cpu = (unsigned long)ptr_cpu;
475         unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
476         unsigned halted;
477         unsigned long flags;
478
479         do {
480                 local_irq_save(flags);
481                 settc(vpe_id);
482                 halted = read_tc_c0_tchalt();
483                 local_irq_restore(flags);
484         } while (!(halted & TCHALT_H));
485 }
486
487 static void cps_cpu_die(unsigned int cpu)
488 {
489         unsigned core = cpu_data[cpu].core;
490         unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
491         unsigned stat;
492         int err;
493
494         /* Wait for the cpu to choose its way out */
495         if (!cpu_wait_death(cpu, 5)) {
496                 pr_err("CPU%u: didn't offline\n", cpu);
497                 return;
498         }
499
500         /*
501          * Now wait for the CPU to actually offline. Without doing this that
502          * offlining may race with one or more of:
503          *
504          *   - Onlining the CPU again.
505          *   - Powering down the core if another VPE within it is offlined.
506          *   - A sibling VPE entering a non-coherent state.
507          *
508          * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
509          * with which we could race, so do nothing.
510          */
511         if (cpu_death == CPU_DEATH_POWER) {
512                 /*
513                  * Wait for the core to enter a powered down or clock gated
514                  * state, the latter happening when a JTAG probe is connected
515                  * in which case the CPC will refuse to power down the core.
516                  */
517                 do {
518                         mips_cm_lock_other(core, 0);
519                         mips_cpc_lock_other(core);
520                         stat = read_cpc_co_stat_conf();
521                         stat &= CPC_Cx_STAT_CONF_SEQSTATE_MSK;
522                         mips_cpc_unlock_other();
523                         mips_cm_unlock_other();
524                 } while (stat != CPC_Cx_STAT_CONF_SEQSTATE_D0 &&
525                          stat != CPC_Cx_STAT_CONF_SEQSTATE_D2 &&
526                          stat != CPC_Cx_STAT_CONF_SEQSTATE_U2);
527
528                 /* Indicate the core is powered off */
529                 bitmap_clear(core_power, core, 1);
530         } else if (cpu_has_mipsmt) {
531                 /*
532                  * Have a CPU with access to the offlined CPUs registers wait
533                  * for its TC to halt.
534                  */
535                 err = smp_call_function_single(cpu_death_sibling,
536                                                wait_for_sibling_halt,
537                                                (void *)(unsigned long)cpu, 1);
538                 if (err)
539                         panic("Failed to call remote sibling CPU\n");
540         } else if (cpu_has_vp) {
541                 do {
542                         mips_cm_lock_other(core, vpe_id);
543                         stat = read_cpc_co_vp_running();
544                         mips_cm_unlock_other();
545                 } while (stat & (1 << vpe_id));
546         }
547 }
548
549 #endif /* CONFIG_HOTPLUG_CPU */
550
551 static struct plat_smp_ops cps_smp_ops = {
552         .smp_setup              = cps_smp_setup,
553         .prepare_cpus           = cps_prepare_cpus,
554         .boot_secondary         = cps_boot_secondary,
555         .init_secondary         = cps_init_secondary,
556         .smp_finish             = cps_smp_finish,
557         .send_ipi_single        = mips_smp_send_ipi_single,
558         .send_ipi_mask          = mips_smp_send_ipi_mask,
559 #ifdef CONFIG_HOTPLUG_CPU
560         .cpu_disable            = cps_cpu_disable,
561         .cpu_die                = cps_cpu_die,
562 #endif
563 };
564
565 bool mips_cps_smp_in_use(void)
566 {
567         extern struct plat_smp_ops *mp_ops;
568         return mp_ops == &cps_smp_ops;
569 }
570
571 int register_cps_smp_ops(void)
572 {
573         if (!mips_cm_present()) {
574                 pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
575                 return -ENODEV;
576         }
577
578         /* check we have a GIC - we need one for IPIs */
579         if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
580                 pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
581                 return -ENODEV;
582         }
583
584         register_smp_ops(&cps_smp_ops);
585         return 0;
586 }