]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/powerpc/mm/init_64.c
Merge tag 'armsoc-defconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[karo-tx-linux.git] / arch / powerpc / mm / init_64.c
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
7  *    Copyright (C) 1996 Paul Mackerras
8  *
9  *  Derived from "arch/i386/mm/init.c"
10  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
11  *
12  *  Dave Engebretsen <engebret@us.ibm.com>
13  *      Rework for PPC64 port.
14  *
15  *  This program is free software; you can redistribute it and/or
16  *  modify it under the terms of the GNU General Public License
17  *  as published by the Free Software Foundation; either version
18  *  2 of the License, or (at your option) any later version.
19  *
20  */
21
22 #undef DEBUG
23
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/mman.h>
31 #include <linux/mm.h>
32 #include <linux/swap.h>
33 #include <linux/stddef.h>
34 #include <linux/vmalloc.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/highmem.h>
38 #include <linux/idr.h>
39 #include <linux/nodemask.h>
40 #include <linux/module.h>
41 #include <linux/poison.h>
42 #include <linux/memblock.h>
43 #include <linux/hugetlb.h>
44 #include <linux/slab.h>
45 #include <linux/of_fdt.h>
46 #include <linux/libfdt.h>
47
48 #include <asm/pgalloc.h>
49 #include <asm/page.h>
50 #include <asm/prom.h>
51 #include <asm/rtas.h>
52 #include <asm/io.h>
53 #include <asm/mmu_context.h>
54 #include <asm/pgtable.h>
55 #include <asm/mmu.h>
56 #include <linux/uaccess.h>
57 #include <asm/smp.h>
58 #include <asm/machdep.h>
59 #include <asm/tlb.h>
60 #include <asm/eeh.h>
61 #include <asm/processor.h>
62 #include <asm/mmzone.h>
63 #include <asm/cputable.h>
64 #include <asm/sections.h>
65 #include <asm/iommu.h>
66 #include <asm/vdso.h>
67
68 #include "mmu_decl.h"
69
70 #ifdef CONFIG_PPC_STD_MMU_64
71 #if H_PGTABLE_RANGE > USER_VSID_RANGE
72 #warning Limited user VSID range means pagetable space is wasted
73 #endif
74 #endif /* CONFIG_PPC_STD_MMU_64 */
75
76 phys_addr_t memstart_addr = ~0;
77 EXPORT_SYMBOL_GPL(memstart_addr);
78 phys_addr_t kernstart_addr;
79 EXPORT_SYMBOL_GPL(kernstart_addr);
80
81 #ifdef CONFIG_SPARSEMEM_VMEMMAP
82 /*
83  * Given an address within the vmemmap, determine the pfn of the page that
84  * represents the start of the section it is within.  Note that we have to
85  * do this by hand as the proffered address may not be correctly aligned.
86  * Subtraction of non-aligned pointers produces undefined results.
87  */
88 static unsigned long __meminit vmemmap_section_start(unsigned long page)
89 {
90         unsigned long offset = page - ((unsigned long)(vmemmap));
91
92         /* Return the pfn of the start of the section. */
93         return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
94 }
95
96 /*
97  * Check if this vmemmap page is already initialised.  If any section
98  * which overlaps this vmemmap page is initialised then this page is
99  * initialised already.
100  */
101 static int __meminit vmemmap_populated(unsigned long start, int page_size)
102 {
103         unsigned long end = start + page_size;
104         start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
105
106         for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
107                 if (pfn_valid(page_to_pfn((struct page *)start)))
108                         return 1;
109
110         return 0;
111 }
112
113 struct vmemmap_backing *vmemmap_list;
114 static struct vmemmap_backing *next;
115 static int num_left;
116 static int num_freed;
117
118 static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
119 {
120         struct vmemmap_backing *vmem_back;
121         /* get from freed entries first */
122         if (num_freed) {
123                 num_freed--;
124                 vmem_back = next;
125                 next = next->list;
126
127                 return vmem_back;
128         }
129
130         /* allocate a page when required and hand out chunks */
131         if (!num_left) {
132                 next = vmemmap_alloc_block(PAGE_SIZE, node);
133                 if (unlikely(!next)) {
134                         WARN_ON(1);
135                         return NULL;
136                 }
137                 num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
138         }
139
140         num_left--;
141
142         return next++;
143 }
144
145 static __meminit void vmemmap_list_populate(unsigned long phys,
146                                             unsigned long start,
147                                             int node)
148 {
149         struct vmemmap_backing *vmem_back;
150
151         vmem_back = vmemmap_list_alloc(node);
152         if (unlikely(!vmem_back)) {
153                 WARN_ON(1);
154                 return;
155         }
156
157         vmem_back->phys = phys;
158         vmem_back->virt_addr = start;
159         vmem_back->list = vmemmap_list;
160
161         vmemmap_list = vmem_back;
162 }
163
164 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
165 {
166         unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
167
168         /* Align to the page size of the linear mapping. */
169         start = _ALIGN_DOWN(start, page_size);
170
171         pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
172
173         for (; start < end; start += page_size) {
174                 void *p;
175                 int rc;
176
177                 if (vmemmap_populated(start, page_size))
178                         continue;
179
180                 p = vmemmap_alloc_block(page_size, node);
181                 if (!p)
182                         return -ENOMEM;
183
184                 vmemmap_list_populate(__pa(p), start, node);
185
186                 pr_debug("      * %016lx..%016lx allocated at %p\n",
187                          start, start + page_size, p);
188
189                 rc = vmemmap_create_mapping(start, page_size, __pa(p));
190                 if (rc < 0) {
191                         pr_warning(
192                                 "vmemmap_populate: Unable to create vmemmap mapping: %d\n",
193                                 rc);
194                         return -EFAULT;
195                 }
196         }
197
198         return 0;
199 }
200
201 #ifdef CONFIG_MEMORY_HOTPLUG
202 static unsigned long vmemmap_list_free(unsigned long start)
203 {
204         struct vmemmap_backing *vmem_back, *vmem_back_prev;
205
206         vmem_back_prev = vmem_back = vmemmap_list;
207
208         /* look for it with prev pointer recorded */
209         for (; vmem_back; vmem_back = vmem_back->list) {
210                 if (vmem_back->virt_addr == start)
211                         break;
212                 vmem_back_prev = vmem_back;
213         }
214
215         if (unlikely(!vmem_back)) {
216                 WARN_ON(1);
217                 return 0;
218         }
219
220         /* remove it from vmemmap_list */
221         if (vmem_back == vmemmap_list) /* remove head */
222                 vmemmap_list = vmem_back->list;
223         else
224                 vmem_back_prev->list = vmem_back->list;
225
226         /* next point to this freed entry */
227         vmem_back->list = next;
228         next = vmem_back;
229         num_freed++;
230
231         return vmem_back->phys;
232 }
233
234 void __ref vmemmap_free(unsigned long start, unsigned long end)
235 {
236         unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
237
238         start = _ALIGN_DOWN(start, page_size);
239
240         pr_debug("vmemmap_free %lx...%lx\n", start, end);
241
242         for (; start < end; start += page_size) {
243                 unsigned long addr;
244
245                 /*
246                  * the section has already be marked as invalid, so
247                  * vmemmap_populated() true means some other sections still
248                  * in this page, so skip it.
249                  */
250                 if (vmemmap_populated(start, page_size))
251                         continue;
252
253                 addr = vmemmap_list_free(start);
254                 if (addr) {
255                         struct page *page = pfn_to_page(addr >> PAGE_SHIFT);
256
257                         if (PageReserved(page)) {
258                                 /* allocated from bootmem */
259                                 if (page_size < PAGE_SIZE) {
260                                         /*
261                                          * this shouldn't happen, but if it is
262                                          * the case, leave the memory there
263                                          */
264                                         WARN_ON_ONCE(1);
265                                 } else {
266                                         unsigned int nr_pages =
267                                                 1 << get_order(page_size);
268                                         while (nr_pages--)
269                                                 free_reserved_page(page++);
270                                 }
271                         } else
272                                 free_pages((unsigned long)(__va(addr)),
273                                                         get_order(page_size));
274
275                         vmemmap_remove_mapping(start, page_size);
276                 }
277         }
278 }
279 #endif
280 void register_page_bootmem_memmap(unsigned long section_nr,
281                                   struct page *start_page, unsigned long size)
282 {
283 }
284
285 /*
286  * We do not have access to the sparsemem vmemmap, so we fallback to
287  * walking the list of sparsemem blocks which we already maintain for
288  * the sake of crashdump. In the long run, we might want to maintain
289  * a tree if performance of that linear walk becomes a problem.
290  *
291  * realmode_pfn_to_page functions can fail due to:
292  * 1) As real sparsemem blocks do not lay in RAM continously (they
293  * are in virtual address space which is not available in the real mode),
294  * the requested page struct can be split between blocks so get_page/put_page
295  * may fail.
296  * 2) When huge pages are used, the get_page/put_page API will fail
297  * in real mode as the linked addresses in the page struct are virtual
298  * too.
299  */
300 struct page *realmode_pfn_to_page(unsigned long pfn)
301 {
302         struct vmemmap_backing *vmem_back;
303         struct page *page;
304         unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
305         unsigned long pg_va = (unsigned long) pfn_to_page(pfn);
306
307         for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) {
308                 if (pg_va < vmem_back->virt_addr)
309                         continue;
310
311                 /* After vmemmap_list entry free is possible, need check all */
312                 if ((pg_va + sizeof(struct page)) <=
313                                 (vmem_back->virt_addr + page_size)) {
314                         page = (struct page *) (vmem_back->phys + pg_va -
315                                 vmem_back->virt_addr);
316                         return page;
317                 }
318         }
319
320         /* Probably that page struct is split between real pages */
321         return NULL;
322 }
323 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
324
325 #elif defined(CONFIG_FLATMEM)
326
327 struct page *realmode_pfn_to_page(unsigned long pfn)
328 {
329         struct page *page = pfn_to_page(pfn);
330         return page;
331 }
332 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
333
334 #endif /* CONFIG_SPARSEMEM_VMEMMAP/CONFIG_FLATMEM */
335
336 #ifdef CONFIG_PPC_STD_MMU_64
337 static bool disable_radix;
338 static int __init parse_disable_radix(char *p)
339 {
340         disable_radix = true;
341         return 0;
342 }
343 early_param("disable_radix", parse_disable_radix);
344
345 /*
346  * If we're running under a hypervisor, we need to check the contents of
347  * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do
348  * radix.  If not, we clear the radix feature bit so we fall back to hash.
349  */
350 static void early_check_vec5(void)
351 {
352         unsigned long root, chosen;
353         int size;
354         const u8 *vec5;
355         u8 mmu_supported;
356
357         root = of_get_flat_dt_root();
358         chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
359         if (chosen == -FDT_ERR_NOTFOUND) {
360                 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
361                 return;
362         }
363         vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
364         if (!vec5) {
365                 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
366                 return;
367         }
368         if (size <= OV5_INDX(OV5_MMU_SUPPORT)) {
369                 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
370                 return;
371         }
372
373         /* Check for supported configuration */
374         mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] &
375                         OV5_FEAT(OV5_MMU_SUPPORT);
376         if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) {
377                 /* Hypervisor only supports radix - check enabled && GTSE */
378                 if (!early_radix_enabled()) {
379                         pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
380                 }
381                 if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] &
382                                                 OV5_FEAT(OV5_RADIX_GTSE))) {
383                         pr_warn("WARNING: Hypervisor doesn't support RADIX with GTSE\n");
384                 }
385                 /* Do radix anyway - the hypervisor said we had to */
386                 cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX;
387         } else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) {
388                 /* Hypervisor only supports hash - disable radix */
389                 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
390         }
391 }
392
393 void __init mmu_early_init_devtree(void)
394 {
395         /* Disable radix mode based on kernel command line. */
396         if (disable_radix)
397                 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
398
399         /*
400          * Check /chosen/ibm,architecture-vec-5 if running as a guest.
401          * When running bare-metal, we can use radix if we like
402          * even though the ibm,architecture-vec-5 property created by
403          * skiboot doesn't have the necessary bits set.
404          */
405         if (!(mfmsr() & MSR_HV))
406                 early_check_vec5();
407
408         if (early_radix_enabled())
409                 radix__early_init_devtree();
410         else
411                 hash__early_init_devtree();
412 }
413 #endif /* CONFIG_PPC_STD_MMU_64 */