]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/s390/kernel/ptrace.c
Merge tag 'char-misc-4.13-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/gregk...
[karo-tx-linux.git] / arch / s390 / kernel / ptrace.c
1 /*
2  *  Ptrace user space interface.
3  *
4  *    Copyright IBM Corp. 1999, 2010
5  *    Author(s): Denis Joseph Barrow
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/mm.h>
13 #include <linux/smp.h>
14 #include <linux/errno.h>
15 #include <linux/ptrace.h>
16 #include <linux/user.h>
17 #include <linux/security.h>
18 #include <linux/audit.h>
19 #include <linux/signal.h>
20 #include <linux/elf.h>
21 #include <linux/regset.h>
22 #include <linux/tracehook.h>
23 #include <linux/seccomp.h>
24 #include <linux/compat.h>
25 #include <trace/syscall.h>
26 #include <asm/segment.h>
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/pgalloc.h>
30 #include <linux/uaccess.h>
31 #include <asm/unistd.h>
32 #include <asm/switch_to.h>
33 #include "entry.h"
34
35 #ifdef CONFIG_COMPAT
36 #include "compat_ptrace.h"
37 #endif
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/syscalls.h>
41
42 void update_cr_regs(struct task_struct *task)
43 {
44         struct pt_regs *regs = task_pt_regs(task);
45         struct thread_struct *thread = &task->thread;
46         struct per_regs old, new;
47         unsigned long cr0_old, cr0_new;
48         unsigned long cr2_old, cr2_new;
49         int cr0_changed, cr2_changed;
50
51         __ctl_store(cr0_old, 0, 0);
52         __ctl_store(cr2_old, 2, 2);
53         cr0_new = cr0_old;
54         cr2_new = cr2_old;
55         /* Take care of the enable/disable of transactional execution. */
56         if (MACHINE_HAS_TE) {
57                 /* Set or clear transaction execution TXC bit 8. */
58                 cr0_new |= (1UL << 55);
59                 if (task->thread.per_flags & PER_FLAG_NO_TE)
60                         cr0_new &= ~(1UL << 55);
61                 /* Set or clear transaction execution TDC bits 62 and 63. */
62                 cr2_new &= ~3UL;
63                 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
64                         if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
65                                 cr2_new |= 1UL;
66                         else
67                                 cr2_new |= 2UL;
68                 }
69         }
70         /* Take care of enable/disable of guarded storage. */
71         if (MACHINE_HAS_GS) {
72                 cr2_new &= ~(1UL << 4);
73                 if (task->thread.gs_cb)
74                         cr2_new |= (1UL << 4);
75         }
76         /* Load control register 0/2 iff changed */
77         cr0_changed = cr0_new != cr0_old;
78         cr2_changed = cr2_new != cr2_old;
79         if (cr0_changed)
80                 __ctl_load(cr0_new, 0, 0);
81         if (cr2_changed)
82                 __ctl_load(cr2_new, 2, 2);
83         /* Copy user specified PER registers */
84         new.control = thread->per_user.control;
85         new.start = thread->per_user.start;
86         new.end = thread->per_user.end;
87
88         /* merge TIF_SINGLE_STEP into user specified PER registers. */
89         if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
90             test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
91                 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
92                         new.control |= PER_EVENT_BRANCH;
93                 else
94                         new.control |= PER_EVENT_IFETCH;
95                 new.control |= PER_CONTROL_SUSPENSION;
96                 new.control |= PER_EVENT_TRANSACTION_END;
97                 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
98                         new.control |= PER_EVENT_IFETCH;
99                 new.start = 0;
100                 new.end = -1UL;
101         }
102
103         /* Take care of the PER enablement bit in the PSW. */
104         if (!(new.control & PER_EVENT_MASK)) {
105                 regs->psw.mask &= ~PSW_MASK_PER;
106                 return;
107         }
108         regs->psw.mask |= PSW_MASK_PER;
109         __ctl_store(old, 9, 11);
110         if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
111                 __ctl_load(new, 9, 11);
112 }
113
114 void user_enable_single_step(struct task_struct *task)
115 {
116         clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
117         set_tsk_thread_flag(task, TIF_SINGLE_STEP);
118 }
119
120 void user_disable_single_step(struct task_struct *task)
121 {
122         clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
123         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
124 }
125
126 void user_enable_block_step(struct task_struct *task)
127 {
128         set_tsk_thread_flag(task, TIF_SINGLE_STEP);
129         set_tsk_thread_flag(task, TIF_BLOCK_STEP);
130 }
131
132 /*
133  * Called by kernel/ptrace.c when detaching..
134  *
135  * Clear all debugging related fields.
136  */
137 void ptrace_disable(struct task_struct *task)
138 {
139         memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
140         memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
141         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
142         clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
143         task->thread.per_flags = 0;
144 }
145
146 #define __ADDR_MASK 7
147
148 static inline unsigned long __peek_user_per(struct task_struct *child,
149                                             addr_t addr)
150 {
151         struct per_struct_kernel *dummy = NULL;
152
153         if (addr == (addr_t) &dummy->cr9)
154                 /* Control bits of the active per set. */
155                 return test_thread_flag(TIF_SINGLE_STEP) ?
156                         PER_EVENT_IFETCH : child->thread.per_user.control;
157         else if (addr == (addr_t) &dummy->cr10)
158                 /* Start address of the active per set. */
159                 return test_thread_flag(TIF_SINGLE_STEP) ?
160                         0 : child->thread.per_user.start;
161         else if (addr == (addr_t) &dummy->cr11)
162                 /* End address of the active per set. */
163                 return test_thread_flag(TIF_SINGLE_STEP) ?
164                         -1UL : child->thread.per_user.end;
165         else if (addr == (addr_t) &dummy->bits)
166                 /* Single-step bit. */
167                 return test_thread_flag(TIF_SINGLE_STEP) ?
168                         (1UL << (BITS_PER_LONG - 1)) : 0;
169         else if (addr == (addr_t) &dummy->starting_addr)
170                 /* Start address of the user specified per set. */
171                 return child->thread.per_user.start;
172         else if (addr == (addr_t) &dummy->ending_addr)
173                 /* End address of the user specified per set. */
174                 return child->thread.per_user.end;
175         else if (addr == (addr_t) &dummy->perc_atmid)
176                 /* PER code, ATMID and AI of the last PER trap */
177                 return (unsigned long)
178                         child->thread.per_event.cause << (BITS_PER_LONG - 16);
179         else if (addr == (addr_t) &dummy->address)
180                 /* Address of the last PER trap */
181                 return child->thread.per_event.address;
182         else if (addr == (addr_t) &dummy->access_id)
183                 /* Access id of the last PER trap */
184                 return (unsigned long)
185                         child->thread.per_event.paid << (BITS_PER_LONG - 8);
186         return 0;
187 }
188
189 /*
190  * Read the word at offset addr from the user area of a process. The
191  * trouble here is that the information is littered over different
192  * locations. The process registers are found on the kernel stack,
193  * the floating point stuff and the trace settings are stored in
194  * the task structure. In addition the different structures in
195  * struct user contain pad bytes that should be read as zeroes.
196  * Lovely...
197  */
198 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
199 {
200         struct user *dummy = NULL;
201         addr_t offset, tmp;
202
203         if (addr < (addr_t) &dummy->regs.acrs) {
204                 /*
205                  * psw and gprs are stored on the stack
206                  */
207                 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
208                 if (addr == (addr_t) &dummy->regs.psw.mask) {
209                         /* Return a clean psw mask. */
210                         tmp &= PSW_MASK_USER | PSW_MASK_RI;
211                         tmp |= PSW_USER_BITS;
212                 }
213
214         } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
215                 /*
216                  * access registers are stored in the thread structure
217                  */
218                 offset = addr - (addr_t) &dummy->regs.acrs;
219                 /*
220                  * Very special case: old & broken 64 bit gdb reading
221                  * from acrs[15]. Result is a 64 bit value. Read the
222                  * 32 bit acrs[15] value and shift it by 32. Sick...
223                  */
224                 if (addr == (addr_t) &dummy->regs.acrs[15])
225                         tmp = ((unsigned long) child->thread.acrs[15]) << 32;
226                 else
227                         tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
228
229         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
230                 /*
231                  * orig_gpr2 is stored on the kernel stack
232                  */
233                 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
234
235         } else if (addr < (addr_t) &dummy->regs.fp_regs) {
236                 /*
237                  * prevent reads of padding hole between
238                  * orig_gpr2 and fp_regs on s390.
239                  */
240                 tmp = 0;
241
242         } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
243                 /*
244                  * floating point control reg. is in the thread structure
245                  */
246                 tmp = child->thread.fpu.fpc;
247                 tmp <<= BITS_PER_LONG - 32;
248
249         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
250                 /*
251                  * floating point regs. are either in child->thread.fpu
252                  * or the child->thread.fpu.vxrs array
253                  */
254                 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
255                 if (MACHINE_HAS_VX)
256                         tmp = *(addr_t *)
257                                ((addr_t) child->thread.fpu.vxrs + 2*offset);
258                 else
259                         tmp = *(addr_t *)
260                                ((addr_t) child->thread.fpu.fprs + offset);
261
262         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
263                 /*
264                  * Handle access to the per_info structure.
265                  */
266                 addr -= (addr_t) &dummy->regs.per_info;
267                 tmp = __peek_user_per(child, addr);
268
269         } else
270                 tmp = 0;
271
272         return tmp;
273 }
274
275 static int
276 peek_user(struct task_struct *child, addr_t addr, addr_t data)
277 {
278         addr_t tmp, mask;
279
280         /*
281          * Stupid gdb peeks/pokes the access registers in 64 bit with
282          * an alignment of 4. Programmers from hell...
283          */
284         mask = __ADDR_MASK;
285         if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
286             addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
287                 mask = 3;
288         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
289                 return -EIO;
290
291         tmp = __peek_user(child, addr);
292         return put_user(tmp, (addr_t __user *) data);
293 }
294
295 static inline void __poke_user_per(struct task_struct *child,
296                                    addr_t addr, addr_t data)
297 {
298         struct per_struct_kernel *dummy = NULL;
299
300         /*
301          * There are only three fields in the per_info struct that the
302          * debugger user can write to.
303          * 1) cr9: the debugger wants to set a new PER event mask
304          * 2) starting_addr: the debugger wants to set a new starting
305          *    address to use with the PER event mask.
306          * 3) ending_addr: the debugger wants to set a new ending
307          *    address to use with the PER event mask.
308          * The user specified PER event mask and the start and end
309          * addresses are used only if single stepping is not in effect.
310          * Writes to any other field in per_info are ignored.
311          */
312         if (addr == (addr_t) &dummy->cr9)
313                 /* PER event mask of the user specified per set. */
314                 child->thread.per_user.control =
315                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
316         else if (addr == (addr_t) &dummy->starting_addr)
317                 /* Starting address of the user specified per set. */
318                 child->thread.per_user.start = data;
319         else if (addr == (addr_t) &dummy->ending_addr)
320                 /* Ending address of the user specified per set. */
321                 child->thread.per_user.end = data;
322 }
323
324 /*
325  * Write a word to the user area of a process at location addr. This
326  * operation does have an additional problem compared to peek_user.
327  * Stores to the program status word and on the floating point
328  * control register needs to get checked for validity.
329  */
330 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
331 {
332         struct user *dummy = NULL;
333         addr_t offset;
334
335         if (addr < (addr_t) &dummy->regs.acrs) {
336                 /*
337                  * psw and gprs are stored on the stack
338                  */
339                 if (addr == (addr_t) &dummy->regs.psw.mask) {
340                         unsigned long mask = PSW_MASK_USER;
341
342                         mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
343                         if ((data ^ PSW_USER_BITS) & ~mask)
344                                 /* Invalid psw mask. */
345                                 return -EINVAL;
346                         if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
347                                 /* Invalid address-space-control bits */
348                                 return -EINVAL;
349                         if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
350                                 /* Invalid addressing mode bits */
351                                 return -EINVAL;
352                 }
353                 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
354
355         } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
356                 /*
357                  * access registers are stored in the thread structure
358                  */
359                 offset = addr - (addr_t) &dummy->regs.acrs;
360                 /*
361                  * Very special case: old & broken 64 bit gdb writing
362                  * to acrs[15] with a 64 bit value. Ignore the lower
363                  * half of the value and write the upper 32 bit to
364                  * acrs[15]. Sick...
365                  */
366                 if (addr == (addr_t) &dummy->regs.acrs[15])
367                         child->thread.acrs[15] = (unsigned int) (data >> 32);
368                 else
369                         *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
370
371         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
372                 /*
373                  * orig_gpr2 is stored on the kernel stack
374                  */
375                 task_pt_regs(child)->orig_gpr2 = data;
376
377         } else if (addr < (addr_t) &dummy->regs.fp_regs) {
378                 /*
379                  * prevent writes of padding hole between
380                  * orig_gpr2 and fp_regs on s390.
381                  */
382                 return 0;
383
384         } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
385                 /*
386                  * floating point control reg. is in the thread structure
387                  */
388                 if ((unsigned int) data != 0 ||
389                     test_fp_ctl(data >> (BITS_PER_LONG - 32)))
390                         return -EINVAL;
391                 child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
392
393         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
394                 /*
395                  * floating point regs. are either in child->thread.fpu
396                  * or the child->thread.fpu.vxrs array
397                  */
398                 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
399                 if (MACHINE_HAS_VX)
400                         *(addr_t *)((addr_t)
401                                 child->thread.fpu.vxrs + 2*offset) = data;
402                 else
403                         *(addr_t *)((addr_t)
404                                 child->thread.fpu.fprs + offset) = data;
405
406         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
407                 /*
408                  * Handle access to the per_info structure.
409                  */
410                 addr -= (addr_t) &dummy->regs.per_info;
411                 __poke_user_per(child, addr, data);
412
413         }
414
415         return 0;
416 }
417
418 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
419 {
420         addr_t mask;
421
422         /*
423          * Stupid gdb peeks/pokes the access registers in 64 bit with
424          * an alignment of 4. Programmers from hell indeed...
425          */
426         mask = __ADDR_MASK;
427         if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
428             addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
429                 mask = 3;
430         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
431                 return -EIO;
432
433         return __poke_user(child, addr, data);
434 }
435
436 long arch_ptrace(struct task_struct *child, long request,
437                  unsigned long addr, unsigned long data)
438 {
439         ptrace_area parea; 
440         int copied, ret;
441
442         switch (request) {
443         case PTRACE_PEEKUSR:
444                 /* read the word at location addr in the USER area. */
445                 return peek_user(child, addr, data);
446
447         case PTRACE_POKEUSR:
448                 /* write the word at location addr in the USER area */
449                 return poke_user(child, addr, data);
450
451         case PTRACE_PEEKUSR_AREA:
452         case PTRACE_POKEUSR_AREA:
453                 if (copy_from_user(&parea, (void __force __user *) addr,
454                                                         sizeof(parea)))
455                         return -EFAULT;
456                 addr = parea.kernel_addr;
457                 data = parea.process_addr;
458                 copied = 0;
459                 while (copied < parea.len) {
460                         if (request == PTRACE_PEEKUSR_AREA)
461                                 ret = peek_user(child, addr, data);
462                         else {
463                                 addr_t utmp;
464                                 if (get_user(utmp,
465                                              (addr_t __force __user *) data))
466                                         return -EFAULT;
467                                 ret = poke_user(child, addr, utmp);
468                         }
469                         if (ret)
470                                 return ret;
471                         addr += sizeof(unsigned long);
472                         data += sizeof(unsigned long);
473                         copied += sizeof(unsigned long);
474                 }
475                 return 0;
476         case PTRACE_GET_LAST_BREAK:
477                 put_user(child->thread.last_break,
478                          (unsigned long __user *) data);
479                 return 0;
480         case PTRACE_ENABLE_TE:
481                 if (!MACHINE_HAS_TE)
482                         return -EIO;
483                 child->thread.per_flags &= ~PER_FLAG_NO_TE;
484                 return 0;
485         case PTRACE_DISABLE_TE:
486                 if (!MACHINE_HAS_TE)
487                         return -EIO;
488                 child->thread.per_flags |= PER_FLAG_NO_TE;
489                 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
490                 return 0;
491         case PTRACE_TE_ABORT_RAND:
492                 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
493                         return -EIO;
494                 switch (data) {
495                 case 0UL:
496                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
497                         break;
498                 case 1UL:
499                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
500                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
501                         break;
502                 case 2UL:
503                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
504                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
505                         break;
506                 default:
507                         return -EINVAL;
508                 }
509                 return 0;
510         default:
511                 return ptrace_request(child, request, addr, data);
512         }
513 }
514
515 #ifdef CONFIG_COMPAT
516 /*
517  * Now the fun part starts... a 31 bit program running in the
518  * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
519  * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
520  * to handle, the difference to the 64 bit versions of the requests
521  * is that the access is done in multiples of 4 byte instead of
522  * 8 bytes (sizeof(unsigned long) on 31/64 bit).
523  * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
524  * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
525  * is a 31 bit program too, the content of struct user can be
526  * emulated. A 31 bit program peeking into the struct user of
527  * a 64 bit program is a no-no.
528  */
529
530 /*
531  * Same as peek_user_per but for a 31 bit program.
532  */
533 static inline __u32 __peek_user_per_compat(struct task_struct *child,
534                                            addr_t addr)
535 {
536         struct compat_per_struct_kernel *dummy32 = NULL;
537
538         if (addr == (addr_t) &dummy32->cr9)
539                 /* Control bits of the active per set. */
540                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
541                         PER_EVENT_IFETCH : child->thread.per_user.control;
542         else if (addr == (addr_t) &dummy32->cr10)
543                 /* Start address of the active per set. */
544                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
545                         0 : child->thread.per_user.start;
546         else if (addr == (addr_t) &dummy32->cr11)
547                 /* End address of the active per set. */
548                 return test_thread_flag(TIF_SINGLE_STEP) ?
549                         PSW32_ADDR_INSN : child->thread.per_user.end;
550         else if (addr == (addr_t) &dummy32->bits)
551                 /* Single-step bit. */
552                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
553                         0x80000000 : 0;
554         else if (addr == (addr_t) &dummy32->starting_addr)
555                 /* Start address of the user specified per set. */
556                 return (__u32) child->thread.per_user.start;
557         else if (addr == (addr_t) &dummy32->ending_addr)
558                 /* End address of the user specified per set. */
559                 return (__u32) child->thread.per_user.end;
560         else if (addr == (addr_t) &dummy32->perc_atmid)
561                 /* PER code, ATMID and AI of the last PER trap */
562                 return (__u32) child->thread.per_event.cause << 16;
563         else if (addr == (addr_t) &dummy32->address)
564                 /* Address of the last PER trap */
565                 return (__u32) child->thread.per_event.address;
566         else if (addr == (addr_t) &dummy32->access_id)
567                 /* Access id of the last PER trap */
568                 return (__u32) child->thread.per_event.paid << 24;
569         return 0;
570 }
571
572 /*
573  * Same as peek_user but for a 31 bit program.
574  */
575 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
576 {
577         struct compat_user *dummy32 = NULL;
578         addr_t offset;
579         __u32 tmp;
580
581         if (addr < (addr_t) &dummy32->regs.acrs) {
582                 struct pt_regs *regs = task_pt_regs(child);
583                 /*
584                  * psw and gprs are stored on the stack
585                  */
586                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
587                         /* Fake a 31 bit psw mask. */
588                         tmp = (__u32)(regs->psw.mask >> 32);
589                         tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
590                         tmp |= PSW32_USER_BITS;
591                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
592                         /* Fake a 31 bit psw address. */
593                         tmp = (__u32) regs->psw.addr |
594                                 (__u32)(regs->psw.mask & PSW_MASK_BA);
595                 } else {
596                         /* gpr 0-15 */
597                         tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
598                 }
599         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
600                 /*
601                  * access registers are stored in the thread structure
602                  */
603                 offset = addr - (addr_t) &dummy32->regs.acrs;
604                 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
605
606         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
607                 /*
608                  * orig_gpr2 is stored on the kernel stack
609                  */
610                 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
611
612         } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
613                 /*
614                  * prevent reads of padding hole between
615                  * orig_gpr2 and fp_regs on s390.
616                  */
617                 tmp = 0;
618
619         } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
620                 /*
621                  * floating point control reg. is in the thread structure
622                  */
623                 tmp = child->thread.fpu.fpc;
624
625         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
626                 /*
627                  * floating point regs. are either in child->thread.fpu
628                  * or the child->thread.fpu.vxrs array
629                  */
630                 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
631                 if (MACHINE_HAS_VX)
632                         tmp = *(__u32 *)
633                                ((addr_t) child->thread.fpu.vxrs + 2*offset);
634                 else
635                         tmp = *(__u32 *)
636                                ((addr_t) child->thread.fpu.fprs + offset);
637
638         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
639                 /*
640                  * Handle access to the per_info structure.
641                  */
642                 addr -= (addr_t) &dummy32->regs.per_info;
643                 tmp = __peek_user_per_compat(child, addr);
644
645         } else
646                 tmp = 0;
647
648         return tmp;
649 }
650
651 static int peek_user_compat(struct task_struct *child,
652                             addr_t addr, addr_t data)
653 {
654         __u32 tmp;
655
656         if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
657                 return -EIO;
658
659         tmp = __peek_user_compat(child, addr);
660         return put_user(tmp, (__u32 __user *) data);
661 }
662
663 /*
664  * Same as poke_user_per but for a 31 bit program.
665  */
666 static inline void __poke_user_per_compat(struct task_struct *child,
667                                           addr_t addr, __u32 data)
668 {
669         struct compat_per_struct_kernel *dummy32 = NULL;
670
671         if (addr == (addr_t) &dummy32->cr9)
672                 /* PER event mask of the user specified per set. */
673                 child->thread.per_user.control =
674                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
675         else if (addr == (addr_t) &dummy32->starting_addr)
676                 /* Starting address of the user specified per set. */
677                 child->thread.per_user.start = data;
678         else if (addr == (addr_t) &dummy32->ending_addr)
679                 /* Ending address of the user specified per set. */
680                 child->thread.per_user.end = data;
681 }
682
683 /*
684  * Same as poke_user but for a 31 bit program.
685  */
686 static int __poke_user_compat(struct task_struct *child,
687                               addr_t addr, addr_t data)
688 {
689         struct compat_user *dummy32 = NULL;
690         __u32 tmp = (__u32) data;
691         addr_t offset;
692
693         if (addr < (addr_t) &dummy32->regs.acrs) {
694                 struct pt_regs *regs = task_pt_regs(child);
695                 /*
696                  * psw, gprs, acrs and orig_gpr2 are stored on the stack
697                  */
698                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
699                         __u32 mask = PSW32_MASK_USER;
700
701                         mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
702                         /* Build a 64 bit psw mask from 31 bit mask. */
703                         if ((tmp ^ PSW32_USER_BITS) & ~mask)
704                                 /* Invalid psw mask. */
705                                 return -EINVAL;
706                         if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
707                                 /* Invalid address-space-control bits */
708                                 return -EINVAL;
709                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
710                                 (regs->psw.mask & PSW_MASK_BA) |
711                                 (__u64)(tmp & mask) << 32;
712                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
713                         /* Build a 64 bit psw address from 31 bit address. */
714                         regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
715                         /* Transfer 31 bit amode bit to psw mask. */
716                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
717                                 (__u64)(tmp & PSW32_ADDR_AMODE);
718                 } else {
719                         /* gpr 0-15 */
720                         *(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
721                 }
722         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
723                 /*
724                  * access registers are stored in the thread structure
725                  */
726                 offset = addr - (addr_t) &dummy32->regs.acrs;
727                 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
728
729         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
730                 /*
731                  * orig_gpr2 is stored on the kernel stack
732                  */
733                 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
734
735         } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
736                 /*
737                  * prevent writess of padding hole between
738                  * orig_gpr2 and fp_regs on s390.
739                  */
740                 return 0;
741
742         } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
743                 /*
744                  * floating point control reg. is in the thread structure
745                  */
746                 if (test_fp_ctl(tmp))
747                         return -EINVAL;
748                 child->thread.fpu.fpc = data;
749
750         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
751                 /*
752                  * floating point regs. are either in child->thread.fpu
753                  * or the child->thread.fpu.vxrs array
754                  */
755                 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
756                 if (MACHINE_HAS_VX)
757                         *(__u32 *)((addr_t)
758                                 child->thread.fpu.vxrs + 2*offset) = tmp;
759                 else
760                         *(__u32 *)((addr_t)
761                                 child->thread.fpu.fprs + offset) = tmp;
762
763         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
764                 /*
765                  * Handle access to the per_info structure.
766                  */
767                 addr -= (addr_t) &dummy32->regs.per_info;
768                 __poke_user_per_compat(child, addr, data);
769         }
770
771         return 0;
772 }
773
774 static int poke_user_compat(struct task_struct *child,
775                             addr_t addr, addr_t data)
776 {
777         if (!is_compat_task() || (addr & 3) ||
778             addr > sizeof(struct compat_user) - 3)
779                 return -EIO;
780
781         return __poke_user_compat(child, addr, data);
782 }
783
784 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
785                         compat_ulong_t caddr, compat_ulong_t cdata)
786 {
787         unsigned long addr = caddr;
788         unsigned long data = cdata;
789         compat_ptrace_area parea;
790         int copied, ret;
791
792         switch (request) {
793         case PTRACE_PEEKUSR:
794                 /* read the word at location addr in the USER area. */
795                 return peek_user_compat(child, addr, data);
796
797         case PTRACE_POKEUSR:
798                 /* write the word at location addr in the USER area */
799                 return poke_user_compat(child, addr, data);
800
801         case PTRACE_PEEKUSR_AREA:
802         case PTRACE_POKEUSR_AREA:
803                 if (copy_from_user(&parea, (void __force __user *) addr,
804                                                         sizeof(parea)))
805                         return -EFAULT;
806                 addr = parea.kernel_addr;
807                 data = parea.process_addr;
808                 copied = 0;
809                 while (copied < parea.len) {
810                         if (request == PTRACE_PEEKUSR_AREA)
811                                 ret = peek_user_compat(child, addr, data);
812                         else {
813                                 __u32 utmp;
814                                 if (get_user(utmp,
815                                              (__u32 __force __user *) data))
816                                         return -EFAULT;
817                                 ret = poke_user_compat(child, addr, utmp);
818                         }
819                         if (ret)
820                                 return ret;
821                         addr += sizeof(unsigned int);
822                         data += sizeof(unsigned int);
823                         copied += sizeof(unsigned int);
824                 }
825                 return 0;
826         case PTRACE_GET_LAST_BREAK:
827                 put_user(child->thread.last_break,
828                          (unsigned int __user *) data);
829                 return 0;
830         }
831         return compat_ptrace_request(child, request, addr, data);
832 }
833 #endif
834
835 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
836 {
837         unsigned long mask = -1UL;
838
839         /*
840          * The sysc_tracesys code in entry.S stored the system
841          * call number to gprs[2].
842          */
843         if (test_thread_flag(TIF_SYSCALL_TRACE) &&
844             (tracehook_report_syscall_entry(regs) ||
845              regs->gprs[2] >= NR_syscalls)) {
846                 /*
847                  * Tracing decided this syscall should not happen or the
848                  * debugger stored an invalid system call number. Skip
849                  * the system call and the system call restart handling.
850                  */
851                 clear_pt_regs_flag(regs, PIF_SYSCALL);
852                 return -1;
853         }
854
855         /* Do the secure computing check after ptrace. */
856         if (secure_computing(NULL)) {
857                 /* seccomp failures shouldn't expose any additional code. */
858                 return -1;
859         }
860
861         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
862                 trace_sys_enter(regs, regs->gprs[2]);
863
864         if (is_compat_task())
865                 mask = 0xffffffff;
866
867         audit_syscall_entry(regs->gprs[2], regs->orig_gpr2 & mask,
868                             regs->gprs[3] &mask, regs->gprs[4] &mask,
869                             regs->gprs[5] &mask);
870
871         return regs->gprs[2];
872 }
873
874 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
875 {
876         audit_syscall_exit(regs);
877
878         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
879                 trace_sys_exit(regs, regs->gprs[2]);
880
881         if (test_thread_flag(TIF_SYSCALL_TRACE))
882                 tracehook_report_syscall_exit(regs, 0);
883 }
884
885 /*
886  * user_regset definitions.
887  */
888
889 static int s390_regs_get(struct task_struct *target,
890                          const struct user_regset *regset,
891                          unsigned int pos, unsigned int count,
892                          void *kbuf, void __user *ubuf)
893 {
894         if (target == current)
895                 save_access_regs(target->thread.acrs);
896
897         if (kbuf) {
898                 unsigned long *k = kbuf;
899                 while (count > 0) {
900                         *k++ = __peek_user(target, pos);
901                         count -= sizeof(*k);
902                         pos += sizeof(*k);
903                 }
904         } else {
905                 unsigned long __user *u = ubuf;
906                 while (count > 0) {
907                         if (__put_user(__peek_user(target, pos), u++))
908                                 return -EFAULT;
909                         count -= sizeof(*u);
910                         pos += sizeof(*u);
911                 }
912         }
913         return 0;
914 }
915
916 static int s390_regs_set(struct task_struct *target,
917                          const struct user_regset *regset,
918                          unsigned int pos, unsigned int count,
919                          const void *kbuf, const void __user *ubuf)
920 {
921         int rc = 0;
922
923         if (target == current)
924                 save_access_regs(target->thread.acrs);
925
926         if (kbuf) {
927                 const unsigned long *k = kbuf;
928                 while (count > 0 && !rc) {
929                         rc = __poke_user(target, pos, *k++);
930                         count -= sizeof(*k);
931                         pos += sizeof(*k);
932                 }
933         } else {
934                 const unsigned long  __user *u = ubuf;
935                 while (count > 0 && !rc) {
936                         unsigned long word;
937                         rc = __get_user(word, u++);
938                         if (rc)
939                                 break;
940                         rc = __poke_user(target, pos, word);
941                         count -= sizeof(*u);
942                         pos += sizeof(*u);
943                 }
944         }
945
946         if (rc == 0 && target == current)
947                 restore_access_regs(target->thread.acrs);
948
949         return rc;
950 }
951
952 static int s390_fpregs_get(struct task_struct *target,
953                            const struct user_regset *regset, unsigned int pos,
954                            unsigned int count, void *kbuf, void __user *ubuf)
955 {
956         _s390_fp_regs fp_regs;
957
958         if (target == current)
959                 save_fpu_regs();
960
961         fp_regs.fpc = target->thread.fpu.fpc;
962         fpregs_store(&fp_regs, &target->thread.fpu);
963
964         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
965                                    &fp_regs, 0, -1);
966 }
967
968 static int s390_fpregs_set(struct task_struct *target,
969                            const struct user_regset *regset, unsigned int pos,
970                            unsigned int count, const void *kbuf,
971                            const void __user *ubuf)
972 {
973         int rc = 0;
974         freg_t fprs[__NUM_FPRS];
975
976         if (target == current)
977                 save_fpu_regs();
978
979         if (MACHINE_HAS_VX)
980                 convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
981         else
982                 memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
983
984         /* If setting FPC, must validate it first. */
985         if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
986                 u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
987                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
988                                         0, offsetof(s390_fp_regs, fprs));
989                 if (rc)
990                         return rc;
991                 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
992                         return -EINVAL;
993                 target->thread.fpu.fpc = ufpc[0];
994         }
995
996         if (rc == 0 && count > 0)
997                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
998                                         fprs, offsetof(s390_fp_regs, fprs), -1);
999         if (rc)
1000                 return rc;
1001
1002         if (MACHINE_HAS_VX)
1003                 convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
1004         else
1005                 memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
1006
1007         return rc;
1008 }
1009
1010 static int s390_last_break_get(struct task_struct *target,
1011                                const struct user_regset *regset,
1012                                unsigned int pos, unsigned int count,
1013                                void *kbuf, void __user *ubuf)
1014 {
1015         if (count > 0) {
1016                 if (kbuf) {
1017                         unsigned long *k = kbuf;
1018                         *k = target->thread.last_break;
1019                 } else {
1020                         unsigned long  __user *u = ubuf;
1021                         if (__put_user(target->thread.last_break, u))
1022                                 return -EFAULT;
1023                 }
1024         }
1025         return 0;
1026 }
1027
1028 static int s390_last_break_set(struct task_struct *target,
1029                                const struct user_regset *regset,
1030                                unsigned int pos, unsigned int count,
1031                                const void *kbuf, const void __user *ubuf)
1032 {
1033         return 0;
1034 }
1035
1036 static int s390_tdb_get(struct task_struct *target,
1037                         const struct user_regset *regset,
1038                         unsigned int pos, unsigned int count,
1039                         void *kbuf, void __user *ubuf)
1040 {
1041         struct pt_regs *regs = task_pt_regs(target);
1042         unsigned char *data;
1043
1044         if (!(regs->int_code & 0x200))
1045                 return -ENODATA;
1046         data = target->thread.trap_tdb;
1047         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1048 }
1049
1050 static int s390_tdb_set(struct task_struct *target,
1051                         const struct user_regset *regset,
1052                         unsigned int pos, unsigned int count,
1053                         const void *kbuf, const void __user *ubuf)
1054 {
1055         return 0;
1056 }
1057
1058 static int s390_vxrs_low_get(struct task_struct *target,
1059                              const struct user_regset *regset,
1060                              unsigned int pos, unsigned int count,
1061                              void *kbuf, void __user *ubuf)
1062 {
1063         __u64 vxrs[__NUM_VXRS_LOW];
1064         int i;
1065
1066         if (!MACHINE_HAS_VX)
1067                 return -ENODEV;
1068         if (target == current)
1069                 save_fpu_regs();
1070         for (i = 0; i < __NUM_VXRS_LOW; i++)
1071                 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1072         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1073 }
1074
1075 static int s390_vxrs_low_set(struct task_struct *target,
1076                              const struct user_regset *regset,
1077                              unsigned int pos, unsigned int count,
1078                              const void *kbuf, const void __user *ubuf)
1079 {
1080         __u64 vxrs[__NUM_VXRS_LOW];
1081         int i, rc;
1082
1083         if (!MACHINE_HAS_VX)
1084                 return -ENODEV;
1085         if (target == current)
1086                 save_fpu_regs();
1087
1088         for (i = 0; i < __NUM_VXRS_LOW; i++)
1089                 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1090
1091         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1092         if (rc == 0)
1093                 for (i = 0; i < __NUM_VXRS_LOW; i++)
1094                         *((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1095
1096         return rc;
1097 }
1098
1099 static int s390_vxrs_high_get(struct task_struct *target,
1100                               const struct user_regset *regset,
1101                               unsigned int pos, unsigned int count,
1102                               void *kbuf, void __user *ubuf)
1103 {
1104         __vector128 vxrs[__NUM_VXRS_HIGH];
1105
1106         if (!MACHINE_HAS_VX)
1107                 return -ENODEV;
1108         if (target == current)
1109                 save_fpu_regs();
1110         memcpy(vxrs, target->thread.fpu.vxrs + __NUM_VXRS_LOW, sizeof(vxrs));
1111
1112         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1113 }
1114
1115 static int s390_vxrs_high_set(struct task_struct *target,
1116                               const struct user_regset *regset,
1117                               unsigned int pos, unsigned int count,
1118                               const void *kbuf, const void __user *ubuf)
1119 {
1120         int rc;
1121
1122         if (!MACHINE_HAS_VX)
1123                 return -ENODEV;
1124         if (target == current)
1125                 save_fpu_regs();
1126
1127         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1128                                 target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1129         return rc;
1130 }
1131
1132 static int s390_system_call_get(struct task_struct *target,
1133                                 const struct user_regset *regset,
1134                                 unsigned int pos, unsigned int count,
1135                                 void *kbuf, void __user *ubuf)
1136 {
1137         unsigned int *data = &target->thread.system_call;
1138         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1139                                    data, 0, sizeof(unsigned int));
1140 }
1141
1142 static int s390_system_call_set(struct task_struct *target,
1143                                 const struct user_regset *regset,
1144                                 unsigned int pos, unsigned int count,
1145                                 const void *kbuf, const void __user *ubuf)
1146 {
1147         unsigned int *data = &target->thread.system_call;
1148         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1149                                   data, 0, sizeof(unsigned int));
1150 }
1151
1152 static int s390_gs_cb_get(struct task_struct *target,
1153                           const struct user_regset *regset,
1154                           unsigned int pos, unsigned int count,
1155                           void *kbuf, void __user *ubuf)
1156 {
1157         struct gs_cb *data = target->thread.gs_cb;
1158
1159         if (!MACHINE_HAS_GS)
1160                 return -ENODEV;
1161         if (!data)
1162                 return -ENODATA;
1163         if (target == current)
1164                 save_gs_cb(data);
1165         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1166                                    data, 0, sizeof(struct gs_cb));
1167 }
1168
1169 static int s390_gs_cb_set(struct task_struct *target,
1170                           const struct user_regset *regset,
1171                           unsigned int pos, unsigned int count,
1172                           const void *kbuf, const void __user *ubuf)
1173 {
1174         struct gs_cb *data = target->thread.gs_cb;
1175         int rc;
1176
1177         if (!MACHINE_HAS_GS)
1178                 return -ENODEV;
1179         if (!data) {
1180                 data = kzalloc(sizeof(*data), GFP_KERNEL);
1181                 if (!data)
1182                         return -ENOMEM;
1183                 data->gsd = 25;
1184                 target->thread.gs_cb = data;
1185                 if (target == current)
1186                         __ctl_set_bit(2, 4);
1187         } else if (target == current) {
1188                 save_gs_cb(data);
1189         }
1190         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1191                                 data, 0, sizeof(struct gs_cb));
1192         if (target == current)
1193                 restore_gs_cb(data);
1194         return rc;
1195 }
1196
1197 static int s390_gs_bc_get(struct task_struct *target,
1198                           const struct user_regset *regset,
1199                           unsigned int pos, unsigned int count,
1200                           void *kbuf, void __user *ubuf)
1201 {
1202         struct gs_cb *data = target->thread.gs_bc_cb;
1203
1204         if (!MACHINE_HAS_GS)
1205                 return -ENODEV;
1206         if (!data)
1207                 return -ENODATA;
1208         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1209                                    data, 0, sizeof(struct gs_cb));
1210 }
1211
1212 static int s390_gs_bc_set(struct task_struct *target,
1213                           const struct user_regset *regset,
1214                           unsigned int pos, unsigned int count,
1215                           const void *kbuf, const void __user *ubuf)
1216 {
1217         struct gs_cb *data = target->thread.gs_bc_cb;
1218
1219         if (!MACHINE_HAS_GS)
1220                 return -ENODEV;
1221         if (!data) {
1222                 data = kzalloc(sizeof(*data), GFP_KERNEL);
1223                 if (!data)
1224                         return -ENOMEM;
1225                 target->thread.gs_bc_cb = data;
1226         }
1227         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1228                                   data, 0, sizeof(struct gs_cb));
1229 }
1230
1231 static const struct user_regset s390_regsets[] = {
1232         {
1233                 .core_note_type = NT_PRSTATUS,
1234                 .n = sizeof(s390_regs) / sizeof(long),
1235                 .size = sizeof(long),
1236                 .align = sizeof(long),
1237                 .get = s390_regs_get,
1238                 .set = s390_regs_set,
1239         },
1240         {
1241                 .core_note_type = NT_PRFPREG,
1242                 .n = sizeof(s390_fp_regs) / sizeof(long),
1243                 .size = sizeof(long),
1244                 .align = sizeof(long),
1245                 .get = s390_fpregs_get,
1246                 .set = s390_fpregs_set,
1247         },
1248         {
1249                 .core_note_type = NT_S390_SYSTEM_CALL,
1250                 .n = 1,
1251                 .size = sizeof(unsigned int),
1252                 .align = sizeof(unsigned int),
1253                 .get = s390_system_call_get,
1254                 .set = s390_system_call_set,
1255         },
1256         {
1257                 .core_note_type = NT_S390_LAST_BREAK,
1258                 .n = 1,
1259                 .size = sizeof(long),
1260                 .align = sizeof(long),
1261                 .get = s390_last_break_get,
1262                 .set = s390_last_break_set,
1263         },
1264         {
1265                 .core_note_type = NT_S390_TDB,
1266                 .n = 1,
1267                 .size = 256,
1268                 .align = 1,
1269                 .get = s390_tdb_get,
1270                 .set = s390_tdb_set,
1271         },
1272         {
1273                 .core_note_type = NT_S390_VXRS_LOW,
1274                 .n = __NUM_VXRS_LOW,
1275                 .size = sizeof(__u64),
1276                 .align = sizeof(__u64),
1277                 .get = s390_vxrs_low_get,
1278                 .set = s390_vxrs_low_set,
1279         },
1280         {
1281                 .core_note_type = NT_S390_VXRS_HIGH,
1282                 .n = __NUM_VXRS_HIGH,
1283                 .size = sizeof(__vector128),
1284                 .align = sizeof(__vector128),
1285                 .get = s390_vxrs_high_get,
1286                 .set = s390_vxrs_high_set,
1287         },
1288         {
1289                 .core_note_type = NT_S390_GS_CB,
1290                 .n = sizeof(struct gs_cb) / sizeof(__u64),
1291                 .size = sizeof(__u64),
1292                 .align = sizeof(__u64),
1293                 .get = s390_gs_cb_get,
1294                 .set = s390_gs_cb_set,
1295         },
1296         {
1297                 .core_note_type = NT_S390_GS_BC,
1298                 .n = sizeof(struct gs_cb) / sizeof(__u64),
1299                 .size = sizeof(__u64),
1300                 .align = sizeof(__u64),
1301                 .get = s390_gs_bc_get,
1302                 .set = s390_gs_bc_set,
1303         },
1304 };
1305
1306 static const struct user_regset_view user_s390_view = {
1307         .name = UTS_MACHINE,
1308         .e_machine = EM_S390,
1309         .regsets = s390_regsets,
1310         .n = ARRAY_SIZE(s390_regsets)
1311 };
1312
1313 #ifdef CONFIG_COMPAT
1314 static int s390_compat_regs_get(struct task_struct *target,
1315                                 const struct user_regset *regset,
1316                                 unsigned int pos, unsigned int count,
1317                                 void *kbuf, void __user *ubuf)
1318 {
1319         if (target == current)
1320                 save_access_regs(target->thread.acrs);
1321
1322         if (kbuf) {
1323                 compat_ulong_t *k = kbuf;
1324                 while (count > 0) {
1325                         *k++ = __peek_user_compat(target, pos);
1326                         count -= sizeof(*k);
1327                         pos += sizeof(*k);
1328                 }
1329         } else {
1330                 compat_ulong_t __user *u = ubuf;
1331                 while (count > 0) {
1332                         if (__put_user(__peek_user_compat(target, pos), u++))
1333                                 return -EFAULT;
1334                         count -= sizeof(*u);
1335                         pos += sizeof(*u);
1336                 }
1337         }
1338         return 0;
1339 }
1340
1341 static int s390_compat_regs_set(struct task_struct *target,
1342                                 const struct user_regset *regset,
1343                                 unsigned int pos, unsigned int count,
1344                                 const void *kbuf, const void __user *ubuf)
1345 {
1346         int rc = 0;
1347
1348         if (target == current)
1349                 save_access_regs(target->thread.acrs);
1350
1351         if (kbuf) {
1352                 const compat_ulong_t *k = kbuf;
1353                 while (count > 0 && !rc) {
1354                         rc = __poke_user_compat(target, pos, *k++);
1355                         count -= sizeof(*k);
1356                         pos += sizeof(*k);
1357                 }
1358         } else {
1359                 const compat_ulong_t  __user *u = ubuf;
1360                 while (count > 0 && !rc) {
1361                         compat_ulong_t word;
1362                         rc = __get_user(word, u++);
1363                         if (rc)
1364                                 break;
1365                         rc = __poke_user_compat(target, pos, word);
1366                         count -= sizeof(*u);
1367                         pos += sizeof(*u);
1368                 }
1369         }
1370
1371         if (rc == 0 && target == current)
1372                 restore_access_regs(target->thread.acrs);
1373
1374         return rc;
1375 }
1376
1377 static int s390_compat_regs_high_get(struct task_struct *target,
1378                                      const struct user_regset *regset,
1379                                      unsigned int pos, unsigned int count,
1380                                      void *kbuf, void __user *ubuf)
1381 {
1382         compat_ulong_t *gprs_high;
1383
1384         gprs_high = (compat_ulong_t *)
1385                 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1386         if (kbuf) {
1387                 compat_ulong_t *k = kbuf;
1388                 while (count > 0) {
1389                         *k++ = *gprs_high;
1390                         gprs_high += 2;
1391                         count -= sizeof(*k);
1392                 }
1393         } else {
1394                 compat_ulong_t __user *u = ubuf;
1395                 while (count > 0) {
1396                         if (__put_user(*gprs_high, u++))
1397                                 return -EFAULT;
1398                         gprs_high += 2;
1399                         count -= sizeof(*u);
1400                 }
1401         }
1402         return 0;
1403 }
1404
1405 static int s390_compat_regs_high_set(struct task_struct *target,
1406                                      const struct user_regset *regset,
1407                                      unsigned int pos, unsigned int count,
1408                                      const void *kbuf, const void __user *ubuf)
1409 {
1410         compat_ulong_t *gprs_high;
1411         int rc = 0;
1412
1413         gprs_high = (compat_ulong_t *)
1414                 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1415         if (kbuf) {
1416                 const compat_ulong_t *k = kbuf;
1417                 while (count > 0) {
1418                         *gprs_high = *k++;
1419                         *gprs_high += 2;
1420                         count -= sizeof(*k);
1421                 }
1422         } else {
1423                 const compat_ulong_t  __user *u = ubuf;
1424                 while (count > 0 && !rc) {
1425                         unsigned long word;
1426                         rc = __get_user(word, u++);
1427                         if (rc)
1428                                 break;
1429                         *gprs_high = word;
1430                         *gprs_high += 2;
1431                         count -= sizeof(*u);
1432                 }
1433         }
1434
1435         return rc;
1436 }
1437
1438 static int s390_compat_last_break_get(struct task_struct *target,
1439                                       const struct user_regset *regset,
1440                                       unsigned int pos, unsigned int count,
1441                                       void *kbuf, void __user *ubuf)
1442 {
1443         compat_ulong_t last_break;
1444
1445         if (count > 0) {
1446                 last_break = target->thread.last_break;
1447                 if (kbuf) {
1448                         unsigned long *k = kbuf;
1449                         *k = last_break;
1450                 } else {
1451                         unsigned long  __user *u = ubuf;
1452                         if (__put_user(last_break, u))
1453                                 return -EFAULT;
1454                 }
1455         }
1456         return 0;
1457 }
1458
1459 static int s390_compat_last_break_set(struct task_struct *target,
1460                                       const struct user_regset *regset,
1461                                       unsigned int pos, unsigned int count,
1462                                       const void *kbuf, const void __user *ubuf)
1463 {
1464         return 0;
1465 }
1466
1467 static const struct user_regset s390_compat_regsets[] = {
1468         {
1469                 .core_note_type = NT_PRSTATUS,
1470                 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1471                 .size = sizeof(compat_long_t),
1472                 .align = sizeof(compat_long_t),
1473                 .get = s390_compat_regs_get,
1474                 .set = s390_compat_regs_set,
1475         },
1476         {
1477                 .core_note_type = NT_PRFPREG,
1478                 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1479                 .size = sizeof(compat_long_t),
1480                 .align = sizeof(compat_long_t),
1481                 .get = s390_fpregs_get,
1482                 .set = s390_fpregs_set,
1483         },
1484         {
1485                 .core_note_type = NT_S390_SYSTEM_CALL,
1486                 .n = 1,
1487                 .size = sizeof(compat_uint_t),
1488                 .align = sizeof(compat_uint_t),
1489                 .get = s390_system_call_get,
1490                 .set = s390_system_call_set,
1491         },
1492         {
1493                 .core_note_type = NT_S390_LAST_BREAK,
1494                 .n = 1,
1495                 .size = sizeof(long),
1496                 .align = sizeof(long),
1497                 .get = s390_compat_last_break_get,
1498                 .set = s390_compat_last_break_set,
1499         },
1500         {
1501                 .core_note_type = NT_S390_TDB,
1502                 .n = 1,
1503                 .size = 256,
1504                 .align = 1,
1505                 .get = s390_tdb_get,
1506                 .set = s390_tdb_set,
1507         },
1508         {
1509                 .core_note_type = NT_S390_VXRS_LOW,
1510                 .n = __NUM_VXRS_LOW,
1511                 .size = sizeof(__u64),
1512                 .align = sizeof(__u64),
1513                 .get = s390_vxrs_low_get,
1514                 .set = s390_vxrs_low_set,
1515         },
1516         {
1517                 .core_note_type = NT_S390_VXRS_HIGH,
1518                 .n = __NUM_VXRS_HIGH,
1519                 .size = sizeof(__vector128),
1520                 .align = sizeof(__vector128),
1521                 .get = s390_vxrs_high_get,
1522                 .set = s390_vxrs_high_set,
1523         },
1524         {
1525                 .core_note_type = NT_S390_HIGH_GPRS,
1526                 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1527                 .size = sizeof(compat_long_t),
1528                 .align = sizeof(compat_long_t),
1529                 .get = s390_compat_regs_high_get,
1530                 .set = s390_compat_regs_high_set,
1531         },
1532         {
1533                 .core_note_type = NT_S390_GS_CB,
1534                 .n = sizeof(struct gs_cb) / sizeof(__u64),
1535                 .size = sizeof(__u64),
1536                 .align = sizeof(__u64),
1537                 .get = s390_gs_cb_get,
1538                 .set = s390_gs_cb_set,
1539         },
1540 };
1541
1542 static const struct user_regset_view user_s390_compat_view = {
1543         .name = "s390",
1544         .e_machine = EM_S390,
1545         .regsets = s390_compat_regsets,
1546         .n = ARRAY_SIZE(s390_compat_regsets)
1547 };
1548 #endif
1549
1550 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1551 {
1552 #ifdef CONFIG_COMPAT
1553         if (test_tsk_thread_flag(task, TIF_31BIT))
1554                 return &user_s390_compat_view;
1555 #endif
1556         return &user_s390_view;
1557 }
1558
1559 static const char *gpr_names[NUM_GPRS] = {
1560         "r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1561         "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1562 };
1563
1564 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1565 {
1566         if (offset >= NUM_GPRS)
1567                 return 0;
1568         return regs->gprs[offset];
1569 }
1570
1571 int regs_query_register_offset(const char *name)
1572 {
1573         unsigned long offset;
1574
1575         if (!name || *name != 'r')
1576                 return -EINVAL;
1577         if (kstrtoul(name + 1, 10, &offset))
1578                 return -EINVAL;
1579         if (offset >= NUM_GPRS)
1580                 return -EINVAL;
1581         return offset;
1582 }
1583
1584 const char *regs_query_register_name(unsigned int offset)
1585 {
1586         if (offset >= NUM_GPRS)
1587                 return NULL;
1588         return gpr_names[offset];
1589 }
1590
1591 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1592 {
1593         unsigned long ksp = kernel_stack_pointer(regs);
1594
1595         return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1596 }
1597
1598 /**
1599  * regs_get_kernel_stack_nth() - get Nth entry of the stack
1600  * @regs:pt_regs which contains kernel stack pointer.
1601  * @n:stack entry number.
1602  *
1603  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1604  * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1605  * this returns 0.
1606  */
1607 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1608 {
1609         unsigned long addr;
1610
1611         addr = kernel_stack_pointer(regs) + n * sizeof(long);
1612         if (!regs_within_kernel_stack(regs, addr))
1613                 return 0;
1614         return *(unsigned long *)addr;
1615 }