]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/s390/kernel/ptrace.c
audit: fix a double fetch in audit_log_single_execve_arg()
[karo-tx-linux.git] / arch / s390 / kernel / ptrace.c
1 /*
2  *  Ptrace user space interface.
3  *
4  *    Copyright IBM Corp. 1999, 2010
5  *    Author(s): Denis Joseph Barrow
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/mm.h>
12 #include <linux/smp.h>
13 #include <linux/errno.h>
14 #include <linux/ptrace.h>
15 #include <linux/user.h>
16 #include <linux/security.h>
17 #include <linux/audit.h>
18 #include <linux/signal.h>
19 #include <linux/elf.h>
20 #include <linux/regset.h>
21 #include <linux/tracehook.h>
22 #include <linux/seccomp.h>
23 #include <linux/compat.h>
24 #include <trace/syscall.h>
25 #include <asm/segment.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/pgalloc.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/switch_to.h>
32 #include "entry.h"
33
34 #ifdef CONFIG_COMPAT
35 #include "compat_ptrace.h"
36 #endif
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/syscalls.h>
40
41 void update_cr_regs(struct task_struct *task)
42 {
43         struct pt_regs *regs = task_pt_regs(task);
44         struct thread_struct *thread = &task->thread;
45         struct per_regs old, new;
46
47         /* Take care of the enable/disable of transactional execution. */
48         if (MACHINE_HAS_TE) {
49                 unsigned long cr, cr_new;
50
51                 __ctl_store(cr, 0, 0);
52                 /* Set or clear transaction execution TXC bit 8. */
53                 cr_new = cr | (1UL << 55);
54                 if (task->thread.per_flags & PER_FLAG_NO_TE)
55                         cr_new &= ~(1UL << 55);
56                 if (cr_new != cr)
57                         __ctl_load(cr_new, 0, 0);
58                 /* Set or clear transaction execution TDC bits 62 and 63. */
59                 __ctl_store(cr, 2, 2);
60                 cr_new = cr & ~3UL;
61                 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
62                         if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
63                                 cr_new |= 1UL;
64                         else
65                                 cr_new |= 2UL;
66                 }
67                 if (cr_new != cr)
68                         __ctl_load(cr_new, 2, 2);
69         }
70         /* Copy user specified PER registers */
71         new.control = thread->per_user.control;
72         new.start = thread->per_user.start;
73         new.end = thread->per_user.end;
74
75         /* merge TIF_SINGLE_STEP into user specified PER registers. */
76         if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
77             test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
78                 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
79                         new.control |= PER_EVENT_BRANCH;
80                 else
81                         new.control |= PER_EVENT_IFETCH;
82                 new.control |= PER_CONTROL_SUSPENSION;
83                 new.control |= PER_EVENT_TRANSACTION_END;
84                 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
85                         new.control |= PER_EVENT_IFETCH;
86                 new.start = 0;
87                 new.end = -1UL;
88         }
89
90         /* Take care of the PER enablement bit in the PSW. */
91         if (!(new.control & PER_EVENT_MASK)) {
92                 regs->psw.mask &= ~PSW_MASK_PER;
93                 return;
94         }
95         regs->psw.mask |= PSW_MASK_PER;
96         __ctl_store(old, 9, 11);
97         if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
98                 __ctl_load(new, 9, 11);
99 }
100
101 void user_enable_single_step(struct task_struct *task)
102 {
103         clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
104         set_tsk_thread_flag(task, TIF_SINGLE_STEP);
105 }
106
107 void user_disable_single_step(struct task_struct *task)
108 {
109         clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
110         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
111 }
112
113 void user_enable_block_step(struct task_struct *task)
114 {
115         set_tsk_thread_flag(task, TIF_SINGLE_STEP);
116         set_tsk_thread_flag(task, TIF_BLOCK_STEP);
117 }
118
119 /*
120  * Called by kernel/ptrace.c when detaching..
121  *
122  * Clear all debugging related fields.
123  */
124 void ptrace_disable(struct task_struct *task)
125 {
126         memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
127         memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
128         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
129         clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
130         task->thread.per_flags = 0;
131 }
132
133 #define __ADDR_MASK 7
134
135 static inline unsigned long __peek_user_per(struct task_struct *child,
136                                             addr_t addr)
137 {
138         struct per_struct_kernel *dummy = NULL;
139
140         if (addr == (addr_t) &dummy->cr9)
141                 /* Control bits of the active per set. */
142                 return test_thread_flag(TIF_SINGLE_STEP) ?
143                         PER_EVENT_IFETCH : child->thread.per_user.control;
144         else if (addr == (addr_t) &dummy->cr10)
145                 /* Start address of the active per set. */
146                 return test_thread_flag(TIF_SINGLE_STEP) ?
147                         0 : child->thread.per_user.start;
148         else if (addr == (addr_t) &dummy->cr11)
149                 /* End address of the active per set. */
150                 return test_thread_flag(TIF_SINGLE_STEP) ?
151                         -1UL : child->thread.per_user.end;
152         else if (addr == (addr_t) &dummy->bits)
153                 /* Single-step bit. */
154                 return test_thread_flag(TIF_SINGLE_STEP) ?
155                         (1UL << (BITS_PER_LONG - 1)) : 0;
156         else if (addr == (addr_t) &dummy->starting_addr)
157                 /* Start address of the user specified per set. */
158                 return child->thread.per_user.start;
159         else if (addr == (addr_t) &dummy->ending_addr)
160                 /* End address of the user specified per set. */
161                 return child->thread.per_user.end;
162         else if (addr == (addr_t) &dummy->perc_atmid)
163                 /* PER code, ATMID and AI of the last PER trap */
164                 return (unsigned long)
165                         child->thread.per_event.cause << (BITS_PER_LONG - 16);
166         else if (addr == (addr_t) &dummy->address)
167                 /* Address of the last PER trap */
168                 return child->thread.per_event.address;
169         else if (addr == (addr_t) &dummy->access_id)
170                 /* Access id of the last PER trap */
171                 return (unsigned long)
172                         child->thread.per_event.paid << (BITS_PER_LONG - 8);
173         return 0;
174 }
175
176 /*
177  * Read the word at offset addr from the user area of a process. The
178  * trouble here is that the information is littered over different
179  * locations. The process registers are found on the kernel stack,
180  * the floating point stuff and the trace settings are stored in
181  * the task structure. In addition the different structures in
182  * struct user contain pad bytes that should be read as zeroes.
183  * Lovely...
184  */
185 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
186 {
187         struct user *dummy = NULL;
188         addr_t offset, tmp;
189
190         if (addr < (addr_t) &dummy->regs.acrs) {
191                 /*
192                  * psw and gprs are stored on the stack
193                  */
194                 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
195                 if (addr == (addr_t) &dummy->regs.psw.mask) {
196                         /* Return a clean psw mask. */
197                         tmp &= PSW_MASK_USER | PSW_MASK_RI;
198                         tmp |= PSW_USER_BITS;
199                 }
200
201         } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
202                 /*
203                  * access registers are stored in the thread structure
204                  */
205                 offset = addr - (addr_t) &dummy->regs.acrs;
206                 /*
207                  * Very special case: old & broken 64 bit gdb reading
208                  * from acrs[15]. Result is a 64 bit value. Read the
209                  * 32 bit acrs[15] value and shift it by 32. Sick...
210                  */
211                 if (addr == (addr_t) &dummy->regs.acrs[15])
212                         tmp = ((unsigned long) child->thread.acrs[15]) << 32;
213                 else
214                         tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
215
216         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
217                 /*
218                  * orig_gpr2 is stored on the kernel stack
219                  */
220                 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
221
222         } else if (addr < (addr_t) &dummy->regs.fp_regs) {
223                 /*
224                  * prevent reads of padding hole between
225                  * orig_gpr2 and fp_regs on s390.
226                  */
227                 tmp = 0;
228
229         } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
230                 /*
231                  * floating point control reg. is in the thread structure
232                  */
233                 tmp = child->thread.fpu.fpc;
234                 tmp <<= BITS_PER_LONG - 32;
235
236         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
237                 /*
238                  * floating point regs. are either in child->thread.fpu
239                  * or the child->thread.fpu.vxrs array
240                  */
241                 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
242                 if (MACHINE_HAS_VX)
243                         tmp = *(addr_t *)
244                                ((addr_t) child->thread.fpu.vxrs + 2*offset);
245                 else
246                         tmp = *(addr_t *)
247                                ((addr_t) child->thread.fpu.fprs + offset);
248
249         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
250                 /*
251                  * Handle access to the per_info structure.
252                  */
253                 addr -= (addr_t) &dummy->regs.per_info;
254                 tmp = __peek_user_per(child, addr);
255
256         } else
257                 tmp = 0;
258
259         return tmp;
260 }
261
262 static int
263 peek_user(struct task_struct *child, addr_t addr, addr_t data)
264 {
265         addr_t tmp, mask;
266
267         /*
268          * Stupid gdb peeks/pokes the access registers in 64 bit with
269          * an alignment of 4. Programmers from hell...
270          */
271         mask = __ADDR_MASK;
272         if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
273             addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
274                 mask = 3;
275         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
276                 return -EIO;
277
278         tmp = __peek_user(child, addr);
279         return put_user(tmp, (addr_t __user *) data);
280 }
281
282 static inline void __poke_user_per(struct task_struct *child,
283                                    addr_t addr, addr_t data)
284 {
285         struct per_struct_kernel *dummy = NULL;
286
287         /*
288          * There are only three fields in the per_info struct that the
289          * debugger user can write to.
290          * 1) cr9: the debugger wants to set a new PER event mask
291          * 2) starting_addr: the debugger wants to set a new starting
292          *    address to use with the PER event mask.
293          * 3) ending_addr: the debugger wants to set a new ending
294          *    address to use with the PER event mask.
295          * The user specified PER event mask and the start and end
296          * addresses are used only if single stepping is not in effect.
297          * Writes to any other field in per_info are ignored.
298          */
299         if (addr == (addr_t) &dummy->cr9)
300                 /* PER event mask of the user specified per set. */
301                 child->thread.per_user.control =
302                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
303         else if (addr == (addr_t) &dummy->starting_addr)
304                 /* Starting address of the user specified per set. */
305                 child->thread.per_user.start = data;
306         else if (addr == (addr_t) &dummy->ending_addr)
307                 /* Ending address of the user specified per set. */
308                 child->thread.per_user.end = data;
309 }
310
311 /*
312  * Write a word to the user area of a process at location addr. This
313  * operation does have an additional problem compared to peek_user.
314  * Stores to the program status word and on the floating point
315  * control register needs to get checked for validity.
316  */
317 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
318 {
319         struct user *dummy = NULL;
320         addr_t offset;
321
322         if (addr < (addr_t) &dummy->regs.acrs) {
323                 /*
324                  * psw and gprs are stored on the stack
325                  */
326                 if (addr == (addr_t) &dummy->regs.psw.mask) {
327                         unsigned long mask = PSW_MASK_USER;
328
329                         mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
330                         if ((data ^ PSW_USER_BITS) & ~mask)
331                                 /* Invalid psw mask. */
332                                 return -EINVAL;
333                         if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
334                                 /* Invalid address-space-control bits */
335                                 return -EINVAL;
336                         if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
337                                 /* Invalid addressing mode bits */
338                                 return -EINVAL;
339                 }
340                 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
341
342         } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
343                 /*
344                  * access registers are stored in the thread structure
345                  */
346                 offset = addr - (addr_t) &dummy->regs.acrs;
347                 /*
348                  * Very special case: old & broken 64 bit gdb writing
349                  * to acrs[15] with a 64 bit value. Ignore the lower
350                  * half of the value and write the upper 32 bit to
351                  * acrs[15]. Sick...
352                  */
353                 if (addr == (addr_t) &dummy->regs.acrs[15])
354                         child->thread.acrs[15] = (unsigned int) (data >> 32);
355                 else
356                         *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
357
358         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
359                 /*
360                  * orig_gpr2 is stored on the kernel stack
361                  */
362                 task_pt_regs(child)->orig_gpr2 = data;
363
364         } else if (addr < (addr_t) &dummy->regs.fp_regs) {
365                 /*
366                  * prevent writes of padding hole between
367                  * orig_gpr2 and fp_regs on s390.
368                  */
369                 return 0;
370
371         } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
372                 /*
373                  * floating point control reg. is in the thread structure
374                  */
375                 if ((unsigned int) data != 0 ||
376                     test_fp_ctl(data >> (BITS_PER_LONG - 32)))
377                         return -EINVAL;
378                 child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
379
380         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
381                 /*
382                  * floating point regs. are either in child->thread.fpu
383                  * or the child->thread.fpu.vxrs array
384                  */
385                 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
386                 if (MACHINE_HAS_VX)
387                         *(addr_t *)((addr_t)
388                                 child->thread.fpu.vxrs + 2*offset) = data;
389                 else
390                         *(addr_t *)((addr_t)
391                                 child->thread.fpu.fprs + offset) = data;
392
393         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
394                 /*
395                  * Handle access to the per_info structure.
396                  */
397                 addr -= (addr_t) &dummy->regs.per_info;
398                 __poke_user_per(child, addr, data);
399
400         }
401
402         return 0;
403 }
404
405 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
406 {
407         addr_t mask;
408
409         /*
410          * Stupid gdb peeks/pokes the access registers in 64 bit with
411          * an alignment of 4. Programmers from hell indeed...
412          */
413         mask = __ADDR_MASK;
414         if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
415             addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
416                 mask = 3;
417         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
418                 return -EIO;
419
420         return __poke_user(child, addr, data);
421 }
422
423 long arch_ptrace(struct task_struct *child, long request,
424                  unsigned long addr, unsigned long data)
425 {
426         ptrace_area parea; 
427         int copied, ret;
428
429         switch (request) {
430         case PTRACE_PEEKUSR:
431                 /* read the word at location addr in the USER area. */
432                 return peek_user(child, addr, data);
433
434         case PTRACE_POKEUSR:
435                 /* write the word at location addr in the USER area */
436                 return poke_user(child, addr, data);
437
438         case PTRACE_PEEKUSR_AREA:
439         case PTRACE_POKEUSR_AREA:
440                 if (copy_from_user(&parea, (void __force __user *) addr,
441                                                         sizeof(parea)))
442                         return -EFAULT;
443                 addr = parea.kernel_addr;
444                 data = parea.process_addr;
445                 copied = 0;
446                 while (copied < parea.len) {
447                         if (request == PTRACE_PEEKUSR_AREA)
448                                 ret = peek_user(child, addr, data);
449                         else {
450                                 addr_t utmp;
451                                 if (get_user(utmp,
452                                              (addr_t __force __user *) data))
453                                         return -EFAULT;
454                                 ret = poke_user(child, addr, utmp);
455                         }
456                         if (ret)
457                                 return ret;
458                         addr += sizeof(unsigned long);
459                         data += sizeof(unsigned long);
460                         copied += sizeof(unsigned long);
461                 }
462                 return 0;
463         case PTRACE_GET_LAST_BREAK:
464                 put_user(task_thread_info(child)->last_break,
465                          (unsigned long __user *) data);
466                 return 0;
467         case PTRACE_ENABLE_TE:
468                 if (!MACHINE_HAS_TE)
469                         return -EIO;
470                 child->thread.per_flags &= ~PER_FLAG_NO_TE;
471                 return 0;
472         case PTRACE_DISABLE_TE:
473                 if (!MACHINE_HAS_TE)
474                         return -EIO;
475                 child->thread.per_flags |= PER_FLAG_NO_TE;
476                 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
477                 return 0;
478         case PTRACE_TE_ABORT_RAND:
479                 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
480                         return -EIO;
481                 switch (data) {
482                 case 0UL:
483                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
484                         break;
485                 case 1UL:
486                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
487                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
488                         break;
489                 case 2UL:
490                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
491                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
492                         break;
493                 default:
494                         return -EINVAL;
495                 }
496                 return 0;
497         default:
498                 return ptrace_request(child, request, addr, data);
499         }
500 }
501
502 #ifdef CONFIG_COMPAT
503 /*
504  * Now the fun part starts... a 31 bit program running in the
505  * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
506  * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
507  * to handle, the difference to the 64 bit versions of the requests
508  * is that the access is done in multiples of 4 byte instead of
509  * 8 bytes (sizeof(unsigned long) on 31/64 bit).
510  * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
511  * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
512  * is a 31 bit program too, the content of struct user can be
513  * emulated. A 31 bit program peeking into the struct user of
514  * a 64 bit program is a no-no.
515  */
516
517 /*
518  * Same as peek_user_per but for a 31 bit program.
519  */
520 static inline __u32 __peek_user_per_compat(struct task_struct *child,
521                                            addr_t addr)
522 {
523         struct compat_per_struct_kernel *dummy32 = NULL;
524
525         if (addr == (addr_t) &dummy32->cr9)
526                 /* Control bits of the active per set. */
527                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
528                         PER_EVENT_IFETCH : child->thread.per_user.control;
529         else if (addr == (addr_t) &dummy32->cr10)
530                 /* Start address of the active per set. */
531                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
532                         0 : child->thread.per_user.start;
533         else if (addr == (addr_t) &dummy32->cr11)
534                 /* End address of the active per set. */
535                 return test_thread_flag(TIF_SINGLE_STEP) ?
536                         PSW32_ADDR_INSN : child->thread.per_user.end;
537         else if (addr == (addr_t) &dummy32->bits)
538                 /* Single-step bit. */
539                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
540                         0x80000000 : 0;
541         else if (addr == (addr_t) &dummy32->starting_addr)
542                 /* Start address of the user specified per set. */
543                 return (__u32) child->thread.per_user.start;
544         else if (addr == (addr_t) &dummy32->ending_addr)
545                 /* End address of the user specified per set. */
546                 return (__u32) child->thread.per_user.end;
547         else if (addr == (addr_t) &dummy32->perc_atmid)
548                 /* PER code, ATMID and AI of the last PER trap */
549                 return (__u32) child->thread.per_event.cause << 16;
550         else if (addr == (addr_t) &dummy32->address)
551                 /* Address of the last PER trap */
552                 return (__u32) child->thread.per_event.address;
553         else if (addr == (addr_t) &dummy32->access_id)
554                 /* Access id of the last PER trap */
555                 return (__u32) child->thread.per_event.paid << 24;
556         return 0;
557 }
558
559 /*
560  * Same as peek_user but for a 31 bit program.
561  */
562 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
563 {
564         struct compat_user *dummy32 = NULL;
565         addr_t offset;
566         __u32 tmp;
567
568         if (addr < (addr_t) &dummy32->regs.acrs) {
569                 struct pt_regs *regs = task_pt_regs(child);
570                 /*
571                  * psw and gprs are stored on the stack
572                  */
573                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
574                         /* Fake a 31 bit psw mask. */
575                         tmp = (__u32)(regs->psw.mask >> 32);
576                         tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
577                         tmp |= PSW32_USER_BITS;
578                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
579                         /* Fake a 31 bit psw address. */
580                         tmp = (__u32) regs->psw.addr |
581                                 (__u32)(regs->psw.mask & PSW_MASK_BA);
582                 } else {
583                         /* gpr 0-15 */
584                         tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
585                 }
586         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
587                 /*
588                  * access registers are stored in the thread structure
589                  */
590                 offset = addr - (addr_t) &dummy32->regs.acrs;
591                 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
592
593         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
594                 /*
595                  * orig_gpr2 is stored on the kernel stack
596                  */
597                 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
598
599         } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
600                 /*
601                  * prevent reads of padding hole between
602                  * orig_gpr2 and fp_regs on s390.
603                  */
604                 tmp = 0;
605
606         } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
607                 /*
608                  * floating point control reg. is in the thread structure
609                  */
610                 tmp = child->thread.fpu.fpc;
611
612         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
613                 /*
614                  * floating point regs. are either in child->thread.fpu
615                  * or the child->thread.fpu.vxrs array
616                  */
617                 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
618                 if (MACHINE_HAS_VX)
619                         tmp = *(__u32 *)
620                                ((addr_t) child->thread.fpu.vxrs + 2*offset);
621                 else
622                         tmp = *(__u32 *)
623                                ((addr_t) child->thread.fpu.fprs + offset);
624
625         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
626                 /*
627                  * Handle access to the per_info structure.
628                  */
629                 addr -= (addr_t) &dummy32->regs.per_info;
630                 tmp = __peek_user_per_compat(child, addr);
631
632         } else
633                 tmp = 0;
634
635         return tmp;
636 }
637
638 static int peek_user_compat(struct task_struct *child,
639                             addr_t addr, addr_t data)
640 {
641         __u32 tmp;
642
643         if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
644                 return -EIO;
645
646         tmp = __peek_user_compat(child, addr);
647         return put_user(tmp, (__u32 __user *) data);
648 }
649
650 /*
651  * Same as poke_user_per but for a 31 bit program.
652  */
653 static inline void __poke_user_per_compat(struct task_struct *child,
654                                           addr_t addr, __u32 data)
655 {
656         struct compat_per_struct_kernel *dummy32 = NULL;
657
658         if (addr == (addr_t) &dummy32->cr9)
659                 /* PER event mask of the user specified per set. */
660                 child->thread.per_user.control =
661                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
662         else if (addr == (addr_t) &dummy32->starting_addr)
663                 /* Starting address of the user specified per set. */
664                 child->thread.per_user.start = data;
665         else if (addr == (addr_t) &dummy32->ending_addr)
666                 /* Ending address of the user specified per set. */
667                 child->thread.per_user.end = data;
668 }
669
670 /*
671  * Same as poke_user but for a 31 bit program.
672  */
673 static int __poke_user_compat(struct task_struct *child,
674                               addr_t addr, addr_t data)
675 {
676         struct compat_user *dummy32 = NULL;
677         __u32 tmp = (__u32) data;
678         addr_t offset;
679
680         if (addr < (addr_t) &dummy32->regs.acrs) {
681                 struct pt_regs *regs = task_pt_regs(child);
682                 /*
683                  * psw, gprs, acrs and orig_gpr2 are stored on the stack
684                  */
685                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
686                         __u32 mask = PSW32_MASK_USER;
687
688                         mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
689                         /* Build a 64 bit psw mask from 31 bit mask. */
690                         if ((tmp ^ PSW32_USER_BITS) & ~mask)
691                                 /* Invalid psw mask. */
692                                 return -EINVAL;
693                         if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
694                                 /* Invalid address-space-control bits */
695                                 return -EINVAL;
696                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
697                                 (regs->psw.mask & PSW_MASK_BA) |
698                                 (__u64)(tmp & mask) << 32;
699                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
700                         /* Build a 64 bit psw address from 31 bit address. */
701                         regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
702                         /* Transfer 31 bit amode bit to psw mask. */
703                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
704                                 (__u64)(tmp & PSW32_ADDR_AMODE);
705                 } else {
706                         /* gpr 0-15 */
707                         *(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
708                 }
709         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
710                 /*
711                  * access registers are stored in the thread structure
712                  */
713                 offset = addr - (addr_t) &dummy32->regs.acrs;
714                 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
715
716         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
717                 /*
718                  * orig_gpr2 is stored on the kernel stack
719                  */
720                 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
721
722         } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
723                 /*
724                  * prevent writess of padding hole between
725                  * orig_gpr2 and fp_regs on s390.
726                  */
727                 return 0;
728
729         } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
730                 /*
731                  * floating point control reg. is in the thread structure
732                  */
733                 if (test_fp_ctl(tmp))
734                         return -EINVAL;
735                 child->thread.fpu.fpc = data;
736
737         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
738                 /*
739                  * floating point regs. are either in child->thread.fpu
740                  * or the child->thread.fpu.vxrs array
741                  */
742                 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
743                 if (MACHINE_HAS_VX)
744                         *(__u32 *)((addr_t)
745                                 child->thread.fpu.vxrs + 2*offset) = tmp;
746                 else
747                         *(__u32 *)((addr_t)
748                                 child->thread.fpu.fprs + offset) = tmp;
749
750         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
751                 /*
752                  * Handle access to the per_info structure.
753                  */
754                 addr -= (addr_t) &dummy32->regs.per_info;
755                 __poke_user_per_compat(child, addr, data);
756         }
757
758         return 0;
759 }
760
761 static int poke_user_compat(struct task_struct *child,
762                             addr_t addr, addr_t data)
763 {
764         if (!is_compat_task() || (addr & 3) ||
765             addr > sizeof(struct compat_user) - 3)
766                 return -EIO;
767
768         return __poke_user_compat(child, addr, data);
769 }
770
771 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
772                         compat_ulong_t caddr, compat_ulong_t cdata)
773 {
774         unsigned long addr = caddr;
775         unsigned long data = cdata;
776         compat_ptrace_area parea;
777         int copied, ret;
778
779         switch (request) {
780         case PTRACE_PEEKUSR:
781                 /* read the word at location addr in the USER area. */
782                 return peek_user_compat(child, addr, data);
783
784         case PTRACE_POKEUSR:
785                 /* write the word at location addr in the USER area */
786                 return poke_user_compat(child, addr, data);
787
788         case PTRACE_PEEKUSR_AREA:
789         case PTRACE_POKEUSR_AREA:
790                 if (copy_from_user(&parea, (void __force __user *) addr,
791                                                         sizeof(parea)))
792                         return -EFAULT;
793                 addr = parea.kernel_addr;
794                 data = parea.process_addr;
795                 copied = 0;
796                 while (copied < parea.len) {
797                         if (request == PTRACE_PEEKUSR_AREA)
798                                 ret = peek_user_compat(child, addr, data);
799                         else {
800                                 __u32 utmp;
801                                 if (get_user(utmp,
802                                              (__u32 __force __user *) data))
803                                         return -EFAULT;
804                                 ret = poke_user_compat(child, addr, utmp);
805                         }
806                         if (ret)
807                                 return ret;
808                         addr += sizeof(unsigned int);
809                         data += sizeof(unsigned int);
810                         copied += sizeof(unsigned int);
811                 }
812                 return 0;
813         case PTRACE_GET_LAST_BREAK:
814                 put_user(task_thread_info(child)->last_break,
815                          (unsigned int __user *) data);
816                 return 0;
817         }
818         return compat_ptrace_request(child, request, addr, data);
819 }
820 #endif
821
822 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
823 {
824         long ret = 0;
825         unsigned long mask = -1UL;
826
827         /* Do the secure computing check first. */
828         if (secure_computing()) {
829                 /* seccomp failures shouldn't expose any additional code. */
830                 ret = -1;
831                 goto out;
832         }
833
834         /*
835          * The sysc_tracesys code in entry.S stored the system
836          * call number to gprs[2].
837          */
838         if (test_thread_flag(TIF_SYSCALL_TRACE) &&
839             (tracehook_report_syscall_entry(regs) ||
840              regs->gprs[2] >= NR_syscalls)) {
841                 /*
842                  * Tracing decided this syscall should not happen or the
843                  * debugger stored an invalid system call number. Skip
844                  * the system call and the system call restart handling.
845                  */
846                 clear_pt_regs_flag(regs, PIF_SYSCALL);
847                 ret = -1;
848         }
849
850         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
851                 trace_sys_enter(regs, regs->gprs[2]);
852
853         if (is_compat_task())
854                 mask = 0xffffffff;
855
856         audit_syscall_entry(regs->gprs[2], regs->orig_gpr2 & mask,
857                             regs->gprs[3] & mask, regs->gprs[4] & mask,
858                             regs->gprs[5] & mask);
859 out:
860         return ret ?: regs->gprs[2];
861 }
862
863 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
864 {
865         audit_syscall_exit(regs);
866
867         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
868                 trace_sys_exit(regs, regs->gprs[2]);
869
870         if (test_thread_flag(TIF_SYSCALL_TRACE))
871                 tracehook_report_syscall_exit(regs, 0);
872 }
873
874 /*
875  * user_regset definitions.
876  */
877
878 static int s390_regs_get(struct task_struct *target,
879                          const struct user_regset *regset,
880                          unsigned int pos, unsigned int count,
881                          void *kbuf, void __user *ubuf)
882 {
883         if (target == current)
884                 save_access_regs(target->thread.acrs);
885
886         if (kbuf) {
887                 unsigned long *k = kbuf;
888                 while (count > 0) {
889                         *k++ = __peek_user(target, pos);
890                         count -= sizeof(*k);
891                         pos += sizeof(*k);
892                 }
893         } else {
894                 unsigned long __user *u = ubuf;
895                 while (count > 0) {
896                         if (__put_user(__peek_user(target, pos), u++))
897                                 return -EFAULT;
898                         count -= sizeof(*u);
899                         pos += sizeof(*u);
900                 }
901         }
902         return 0;
903 }
904
905 static int s390_regs_set(struct task_struct *target,
906                          const struct user_regset *regset,
907                          unsigned int pos, unsigned int count,
908                          const void *kbuf, const void __user *ubuf)
909 {
910         int rc = 0;
911
912         if (target == current)
913                 save_access_regs(target->thread.acrs);
914
915         if (kbuf) {
916                 const unsigned long *k = kbuf;
917                 while (count > 0 && !rc) {
918                         rc = __poke_user(target, pos, *k++);
919                         count -= sizeof(*k);
920                         pos += sizeof(*k);
921                 }
922         } else {
923                 const unsigned long  __user *u = ubuf;
924                 while (count > 0 && !rc) {
925                         unsigned long word;
926                         rc = __get_user(word, u++);
927                         if (rc)
928                                 break;
929                         rc = __poke_user(target, pos, word);
930                         count -= sizeof(*u);
931                         pos += sizeof(*u);
932                 }
933         }
934
935         if (rc == 0 && target == current)
936                 restore_access_regs(target->thread.acrs);
937
938         return rc;
939 }
940
941 static int s390_fpregs_get(struct task_struct *target,
942                            const struct user_regset *regset, unsigned int pos,
943                            unsigned int count, void *kbuf, void __user *ubuf)
944 {
945         _s390_fp_regs fp_regs;
946
947         if (target == current)
948                 save_fpu_regs();
949
950         fp_regs.fpc = target->thread.fpu.fpc;
951         fpregs_store(&fp_regs, &target->thread.fpu);
952
953         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
954                                    &fp_regs, 0, -1);
955 }
956
957 static int s390_fpregs_set(struct task_struct *target,
958                            const struct user_regset *regset, unsigned int pos,
959                            unsigned int count, const void *kbuf,
960                            const void __user *ubuf)
961 {
962         int rc = 0;
963         freg_t fprs[__NUM_FPRS];
964
965         if (target == current)
966                 save_fpu_regs();
967
968         /* If setting FPC, must validate it first. */
969         if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
970                 u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
971                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
972                                         0, offsetof(s390_fp_regs, fprs));
973                 if (rc)
974                         return rc;
975                 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
976                         return -EINVAL;
977                 target->thread.fpu.fpc = ufpc[0];
978         }
979
980         if (rc == 0 && count > 0)
981                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
982                                         fprs, offsetof(s390_fp_regs, fprs), -1);
983         if (rc)
984                 return rc;
985
986         if (MACHINE_HAS_VX)
987                 convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
988         else
989                 memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
990
991         return rc;
992 }
993
994 static int s390_last_break_get(struct task_struct *target,
995                                const struct user_regset *regset,
996                                unsigned int pos, unsigned int count,
997                                void *kbuf, void __user *ubuf)
998 {
999         if (count > 0) {
1000                 if (kbuf) {
1001                         unsigned long *k = kbuf;
1002                         *k = task_thread_info(target)->last_break;
1003                 } else {
1004                         unsigned long  __user *u = ubuf;
1005                         if (__put_user(task_thread_info(target)->last_break, u))
1006                                 return -EFAULT;
1007                 }
1008         }
1009         return 0;
1010 }
1011
1012 static int s390_last_break_set(struct task_struct *target,
1013                                const struct user_regset *regset,
1014                                unsigned int pos, unsigned int count,
1015                                const void *kbuf, const void __user *ubuf)
1016 {
1017         return 0;
1018 }
1019
1020 static int s390_tdb_get(struct task_struct *target,
1021                         const struct user_regset *regset,
1022                         unsigned int pos, unsigned int count,
1023                         void *kbuf, void __user *ubuf)
1024 {
1025         struct pt_regs *regs = task_pt_regs(target);
1026         unsigned char *data;
1027
1028         if (!(regs->int_code & 0x200))
1029                 return -ENODATA;
1030         data = target->thread.trap_tdb;
1031         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1032 }
1033
1034 static int s390_tdb_set(struct task_struct *target,
1035                         const struct user_regset *regset,
1036                         unsigned int pos, unsigned int count,
1037                         const void *kbuf, const void __user *ubuf)
1038 {
1039         return 0;
1040 }
1041
1042 static int s390_vxrs_low_get(struct task_struct *target,
1043                              const struct user_regset *regset,
1044                              unsigned int pos, unsigned int count,
1045                              void *kbuf, void __user *ubuf)
1046 {
1047         __u64 vxrs[__NUM_VXRS_LOW];
1048         int i;
1049
1050         if (!MACHINE_HAS_VX)
1051                 return -ENODEV;
1052         if (target == current)
1053                 save_fpu_regs();
1054         for (i = 0; i < __NUM_VXRS_LOW; i++)
1055                 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1056         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1057 }
1058
1059 static int s390_vxrs_low_set(struct task_struct *target,
1060                              const struct user_regset *regset,
1061                              unsigned int pos, unsigned int count,
1062                              const void *kbuf, const void __user *ubuf)
1063 {
1064         __u64 vxrs[__NUM_VXRS_LOW];
1065         int i, rc;
1066
1067         if (!MACHINE_HAS_VX)
1068                 return -ENODEV;
1069         if (target == current)
1070                 save_fpu_regs();
1071
1072         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1073         if (rc == 0)
1074                 for (i = 0; i < __NUM_VXRS_LOW; i++)
1075                         *((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1076
1077         return rc;
1078 }
1079
1080 static int s390_vxrs_high_get(struct task_struct *target,
1081                               const struct user_regset *regset,
1082                               unsigned int pos, unsigned int count,
1083                               void *kbuf, void __user *ubuf)
1084 {
1085         __vector128 vxrs[__NUM_VXRS_HIGH];
1086
1087         if (!MACHINE_HAS_VX)
1088                 return -ENODEV;
1089         if (target == current)
1090                 save_fpu_regs();
1091         memcpy(vxrs, target->thread.fpu.vxrs + __NUM_VXRS_LOW, sizeof(vxrs));
1092
1093         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1094 }
1095
1096 static int s390_vxrs_high_set(struct task_struct *target,
1097                               const struct user_regset *regset,
1098                               unsigned int pos, unsigned int count,
1099                               const void *kbuf, const void __user *ubuf)
1100 {
1101         int rc;
1102
1103         if (!MACHINE_HAS_VX)
1104                 return -ENODEV;
1105         if (target == current)
1106                 save_fpu_regs();
1107
1108         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1109                                 target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1110         return rc;
1111 }
1112
1113 static int s390_system_call_get(struct task_struct *target,
1114                                 const struct user_regset *regset,
1115                                 unsigned int pos, unsigned int count,
1116                                 void *kbuf, void __user *ubuf)
1117 {
1118         unsigned int *data = &task_thread_info(target)->system_call;
1119         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1120                                    data, 0, sizeof(unsigned int));
1121 }
1122
1123 static int s390_system_call_set(struct task_struct *target,
1124                                 const struct user_regset *regset,
1125                                 unsigned int pos, unsigned int count,
1126                                 const void *kbuf, const void __user *ubuf)
1127 {
1128         unsigned int *data = &task_thread_info(target)->system_call;
1129         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1130                                   data, 0, sizeof(unsigned int));
1131 }
1132
1133 static const struct user_regset s390_regsets[] = {
1134         {
1135                 .core_note_type = NT_PRSTATUS,
1136                 .n = sizeof(s390_regs) / sizeof(long),
1137                 .size = sizeof(long),
1138                 .align = sizeof(long),
1139                 .get = s390_regs_get,
1140                 .set = s390_regs_set,
1141         },
1142         {
1143                 .core_note_type = NT_PRFPREG,
1144                 .n = sizeof(s390_fp_regs) / sizeof(long),
1145                 .size = sizeof(long),
1146                 .align = sizeof(long),
1147                 .get = s390_fpregs_get,
1148                 .set = s390_fpregs_set,
1149         },
1150         {
1151                 .core_note_type = NT_S390_SYSTEM_CALL,
1152                 .n = 1,
1153                 .size = sizeof(unsigned int),
1154                 .align = sizeof(unsigned int),
1155                 .get = s390_system_call_get,
1156                 .set = s390_system_call_set,
1157         },
1158         {
1159                 .core_note_type = NT_S390_LAST_BREAK,
1160                 .n = 1,
1161                 .size = sizeof(long),
1162                 .align = sizeof(long),
1163                 .get = s390_last_break_get,
1164                 .set = s390_last_break_set,
1165         },
1166         {
1167                 .core_note_type = NT_S390_TDB,
1168                 .n = 1,
1169                 .size = 256,
1170                 .align = 1,
1171                 .get = s390_tdb_get,
1172                 .set = s390_tdb_set,
1173         },
1174         {
1175                 .core_note_type = NT_S390_VXRS_LOW,
1176                 .n = __NUM_VXRS_LOW,
1177                 .size = sizeof(__u64),
1178                 .align = sizeof(__u64),
1179                 .get = s390_vxrs_low_get,
1180                 .set = s390_vxrs_low_set,
1181         },
1182         {
1183                 .core_note_type = NT_S390_VXRS_HIGH,
1184                 .n = __NUM_VXRS_HIGH,
1185                 .size = sizeof(__vector128),
1186                 .align = sizeof(__vector128),
1187                 .get = s390_vxrs_high_get,
1188                 .set = s390_vxrs_high_set,
1189         },
1190 };
1191
1192 static const struct user_regset_view user_s390_view = {
1193         .name = UTS_MACHINE,
1194         .e_machine = EM_S390,
1195         .regsets = s390_regsets,
1196         .n = ARRAY_SIZE(s390_regsets)
1197 };
1198
1199 #ifdef CONFIG_COMPAT
1200 static int s390_compat_regs_get(struct task_struct *target,
1201                                 const struct user_regset *regset,
1202                                 unsigned int pos, unsigned int count,
1203                                 void *kbuf, void __user *ubuf)
1204 {
1205         if (target == current)
1206                 save_access_regs(target->thread.acrs);
1207
1208         if (kbuf) {
1209                 compat_ulong_t *k = kbuf;
1210                 while (count > 0) {
1211                         *k++ = __peek_user_compat(target, pos);
1212                         count -= sizeof(*k);
1213                         pos += sizeof(*k);
1214                 }
1215         } else {
1216                 compat_ulong_t __user *u = ubuf;
1217                 while (count > 0) {
1218                         if (__put_user(__peek_user_compat(target, pos), u++))
1219                                 return -EFAULT;
1220                         count -= sizeof(*u);
1221                         pos += sizeof(*u);
1222                 }
1223         }
1224         return 0;
1225 }
1226
1227 static int s390_compat_regs_set(struct task_struct *target,
1228                                 const struct user_regset *regset,
1229                                 unsigned int pos, unsigned int count,
1230                                 const void *kbuf, const void __user *ubuf)
1231 {
1232         int rc = 0;
1233
1234         if (target == current)
1235                 save_access_regs(target->thread.acrs);
1236
1237         if (kbuf) {
1238                 const compat_ulong_t *k = kbuf;
1239                 while (count > 0 && !rc) {
1240                         rc = __poke_user_compat(target, pos, *k++);
1241                         count -= sizeof(*k);
1242                         pos += sizeof(*k);
1243                 }
1244         } else {
1245                 const compat_ulong_t  __user *u = ubuf;
1246                 while (count > 0 && !rc) {
1247                         compat_ulong_t word;
1248                         rc = __get_user(word, u++);
1249                         if (rc)
1250                                 break;
1251                         rc = __poke_user_compat(target, pos, word);
1252                         count -= sizeof(*u);
1253                         pos += sizeof(*u);
1254                 }
1255         }
1256
1257         if (rc == 0 && target == current)
1258                 restore_access_regs(target->thread.acrs);
1259
1260         return rc;
1261 }
1262
1263 static int s390_compat_regs_high_get(struct task_struct *target,
1264                                      const struct user_regset *regset,
1265                                      unsigned int pos, unsigned int count,
1266                                      void *kbuf, void __user *ubuf)
1267 {
1268         compat_ulong_t *gprs_high;
1269
1270         gprs_high = (compat_ulong_t *)
1271                 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1272         if (kbuf) {
1273                 compat_ulong_t *k = kbuf;
1274                 while (count > 0) {
1275                         *k++ = *gprs_high;
1276                         gprs_high += 2;
1277                         count -= sizeof(*k);
1278                 }
1279         } else {
1280                 compat_ulong_t __user *u = ubuf;
1281                 while (count > 0) {
1282                         if (__put_user(*gprs_high, u++))
1283                                 return -EFAULT;
1284                         gprs_high += 2;
1285                         count -= sizeof(*u);
1286                 }
1287         }
1288         return 0;
1289 }
1290
1291 static int s390_compat_regs_high_set(struct task_struct *target,
1292                                      const struct user_regset *regset,
1293                                      unsigned int pos, unsigned int count,
1294                                      const void *kbuf, const void __user *ubuf)
1295 {
1296         compat_ulong_t *gprs_high;
1297         int rc = 0;
1298
1299         gprs_high = (compat_ulong_t *)
1300                 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1301         if (kbuf) {
1302                 const compat_ulong_t *k = kbuf;
1303                 while (count > 0) {
1304                         *gprs_high = *k++;
1305                         *gprs_high += 2;
1306                         count -= sizeof(*k);
1307                 }
1308         } else {
1309                 const compat_ulong_t  __user *u = ubuf;
1310                 while (count > 0 && !rc) {
1311                         unsigned long word;
1312                         rc = __get_user(word, u++);
1313                         if (rc)
1314                                 break;
1315                         *gprs_high = word;
1316                         *gprs_high += 2;
1317                         count -= sizeof(*u);
1318                 }
1319         }
1320
1321         return rc;
1322 }
1323
1324 static int s390_compat_last_break_get(struct task_struct *target,
1325                                       const struct user_regset *regset,
1326                                       unsigned int pos, unsigned int count,
1327                                       void *kbuf, void __user *ubuf)
1328 {
1329         compat_ulong_t last_break;
1330
1331         if (count > 0) {
1332                 last_break = task_thread_info(target)->last_break;
1333                 if (kbuf) {
1334                         unsigned long *k = kbuf;
1335                         *k = last_break;
1336                 } else {
1337                         unsigned long  __user *u = ubuf;
1338                         if (__put_user(last_break, u))
1339                                 return -EFAULT;
1340                 }
1341         }
1342         return 0;
1343 }
1344
1345 static int s390_compat_last_break_set(struct task_struct *target,
1346                                       const struct user_regset *regset,
1347                                       unsigned int pos, unsigned int count,
1348                                       const void *kbuf, const void __user *ubuf)
1349 {
1350         return 0;
1351 }
1352
1353 static const struct user_regset s390_compat_regsets[] = {
1354         {
1355                 .core_note_type = NT_PRSTATUS,
1356                 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1357                 .size = sizeof(compat_long_t),
1358                 .align = sizeof(compat_long_t),
1359                 .get = s390_compat_regs_get,
1360                 .set = s390_compat_regs_set,
1361         },
1362         {
1363                 .core_note_type = NT_PRFPREG,
1364                 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1365                 .size = sizeof(compat_long_t),
1366                 .align = sizeof(compat_long_t),
1367                 .get = s390_fpregs_get,
1368                 .set = s390_fpregs_set,
1369         },
1370         {
1371                 .core_note_type = NT_S390_SYSTEM_CALL,
1372                 .n = 1,
1373                 .size = sizeof(compat_uint_t),
1374                 .align = sizeof(compat_uint_t),
1375                 .get = s390_system_call_get,
1376                 .set = s390_system_call_set,
1377         },
1378         {
1379                 .core_note_type = NT_S390_LAST_BREAK,
1380                 .n = 1,
1381                 .size = sizeof(long),
1382                 .align = sizeof(long),
1383                 .get = s390_compat_last_break_get,
1384                 .set = s390_compat_last_break_set,
1385         },
1386         {
1387                 .core_note_type = NT_S390_TDB,
1388                 .n = 1,
1389                 .size = 256,
1390                 .align = 1,
1391                 .get = s390_tdb_get,
1392                 .set = s390_tdb_set,
1393         },
1394         {
1395                 .core_note_type = NT_S390_VXRS_LOW,
1396                 .n = __NUM_VXRS_LOW,
1397                 .size = sizeof(__u64),
1398                 .align = sizeof(__u64),
1399                 .get = s390_vxrs_low_get,
1400                 .set = s390_vxrs_low_set,
1401         },
1402         {
1403                 .core_note_type = NT_S390_VXRS_HIGH,
1404                 .n = __NUM_VXRS_HIGH,
1405                 .size = sizeof(__vector128),
1406                 .align = sizeof(__vector128),
1407                 .get = s390_vxrs_high_get,
1408                 .set = s390_vxrs_high_set,
1409         },
1410         {
1411                 .core_note_type = NT_S390_HIGH_GPRS,
1412                 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1413                 .size = sizeof(compat_long_t),
1414                 .align = sizeof(compat_long_t),
1415                 .get = s390_compat_regs_high_get,
1416                 .set = s390_compat_regs_high_set,
1417         },
1418 };
1419
1420 static const struct user_regset_view user_s390_compat_view = {
1421         .name = "s390",
1422         .e_machine = EM_S390,
1423         .regsets = s390_compat_regsets,
1424         .n = ARRAY_SIZE(s390_compat_regsets)
1425 };
1426 #endif
1427
1428 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1429 {
1430 #ifdef CONFIG_COMPAT
1431         if (test_tsk_thread_flag(task, TIF_31BIT))
1432                 return &user_s390_compat_view;
1433 #endif
1434         return &user_s390_view;
1435 }
1436
1437 static const char *gpr_names[NUM_GPRS] = {
1438         "r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1439         "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1440 };
1441
1442 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1443 {
1444         if (offset >= NUM_GPRS)
1445                 return 0;
1446         return regs->gprs[offset];
1447 }
1448
1449 int regs_query_register_offset(const char *name)
1450 {
1451         unsigned long offset;
1452
1453         if (!name || *name != 'r')
1454                 return -EINVAL;
1455         if (kstrtoul(name + 1, 10, &offset))
1456                 return -EINVAL;
1457         if (offset >= NUM_GPRS)
1458                 return -EINVAL;
1459         return offset;
1460 }
1461
1462 const char *regs_query_register_name(unsigned int offset)
1463 {
1464         if (offset >= NUM_GPRS)
1465                 return NULL;
1466         return gpr_names[offset];
1467 }
1468
1469 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1470 {
1471         unsigned long ksp = kernel_stack_pointer(regs);
1472
1473         return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1474 }
1475
1476 /**
1477  * regs_get_kernel_stack_nth() - get Nth entry of the stack
1478  * @regs:pt_regs which contains kernel stack pointer.
1479  * @n:stack entry number.
1480  *
1481  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1482  * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1483  * this returns 0.
1484  */
1485 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1486 {
1487         unsigned long addr;
1488
1489         addr = kernel_stack_pointer(regs) + n * sizeof(long);
1490         if (!regs_within_kernel_stack(regs, addr))
1491                 return 0;
1492         return *(unsigned long *)addr;
1493 }