]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/s390/kernel/smp.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / arch / s390 / kernel / smp.c
1 /*
2  *  SMP related functions
3  *
4  *    Copyright IBM Corp. 1999, 2012
5  *    Author(s): Denis Joseph Barrow,
6  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
7  *               Heiko Carstens <heiko.carstens@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/workqueue.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/mm.h>
25 #include <linux/err.h>
26 #include <linux/spinlock.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/irqflags.h>
31 #include <linux/cpu.h>
32 #include <linux/slab.h>
33 #include <linux/crash_dump.h>
34 #include <linux/memblock.h>
35 #include <asm/asm-offsets.h>
36 #include <asm/diag.h>
37 #include <asm/switch_to.h>
38 #include <asm/facility.h>
39 #include <asm/ipl.h>
40 #include <asm/setup.h>
41 #include <asm/irq.h>
42 #include <asm/tlbflush.h>
43 #include <asm/vtimer.h>
44 #include <asm/lowcore.h>
45 #include <asm/sclp.h>
46 #include <asm/vdso.h>
47 #include <asm/debug.h>
48 #include <asm/os_info.h>
49 #include <asm/sigp.h>
50 #include <asm/idle.h>
51 #include "entry.h"
52
53 enum {
54         ec_schedule = 0,
55         ec_call_function_single,
56         ec_stop_cpu,
57 };
58
59 enum {
60         CPU_STATE_STANDBY,
61         CPU_STATE_CONFIGURED,
62 };
63
64 static DEFINE_PER_CPU(struct cpu *, cpu_device);
65
66 struct pcpu {
67         struct lowcore *lowcore;        /* lowcore page(s) for the cpu */
68         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
69         unsigned long ec_clk;           /* sigp timestamp for ec_xxx */
70         signed char state;              /* physical cpu state */
71         signed char polarization;       /* physical polarization */
72         u16 address;                    /* physical cpu address */
73 };
74
75 static u8 boot_core_type;
76 static struct pcpu pcpu_devices[NR_CPUS];
77
78 unsigned int smp_cpu_mt_shift;
79 EXPORT_SYMBOL(smp_cpu_mt_shift);
80
81 unsigned int smp_cpu_mtid;
82 EXPORT_SYMBOL(smp_cpu_mtid);
83
84 #ifdef CONFIG_CRASH_DUMP
85 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
86 #endif
87
88 static unsigned int smp_max_threads __initdata = -1U;
89
90 static int __init early_nosmt(char *s)
91 {
92         smp_max_threads = 1;
93         return 0;
94 }
95 early_param("nosmt", early_nosmt);
96
97 static int __init early_smt(char *s)
98 {
99         get_option(&s, &smp_max_threads);
100         return 0;
101 }
102 early_param("smt", early_smt);
103
104 /*
105  * The smp_cpu_state_mutex must be held when changing the state or polarization
106  * member of a pcpu data structure within the pcpu_devices arreay.
107  */
108 DEFINE_MUTEX(smp_cpu_state_mutex);
109
110 /*
111  * Signal processor helper functions.
112  */
113 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
114 {
115         int cc;
116
117         while (1) {
118                 cc = __pcpu_sigp(addr, order, parm, NULL);
119                 if (cc != SIGP_CC_BUSY)
120                         return cc;
121                 cpu_relax();
122         }
123 }
124
125 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
126 {
127         int cc, retry;
128
129         for (retry = 0; ; retry++) {
130                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
131                 if (cc != SIGP_CC_BUSY)
132                         break;
133                 if (retry >= 3)
134                         udelay(10);
135         }
136         return cc;
137 }
138
139 static inline int pcpu_stopped(struct pcpu *pcpu)
140 {
141         u32 uninitialized_var(status);
142
143         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
144                         0, &status) != SIGP_CC_STATUS_STORED)
145                 return 0;
146         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
147 }
148
149 static inline int pcpu_running(struct pcpu *pcpu)
150 {
151         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
152                         0, NULL) != SIGP_CC_STATUS_STORED)
153                 return 1;
154         /* Status stored condition code is equivalent to cpu not running. */
155         return 0;
156 }
157
158 /*
159  * Find struct pcpu by cpu address.
160  */
161 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
162 {
163         int cpu;
164
165         for_each_cpu(cpu, mask)
166                 if (pcpu_devices[cpu].address == address)
167                         return pcpu_devices + cpu;
168         return NULL;
169 }
170
171 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
172 {
173         int order;
174
175         if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
176                 return;
177         order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
178         pcpu->ec_clk = get_tod_clock_fast();
179         pcpu_sigp_retry(pcpu, order, 0);
180 }
181
182 #define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
183 #define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
184
185 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
186 {
187         unsigned long async_stack, panic_stack;
188         struct lowcore *lc;
189
190         if (pcpu != &pcpu_devices[0]) {
191                 pcpu->lowcore = (struct lowcore *)
192                         __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
193                 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
194                 panic_stack = __get_free_page(GFP_KERNEL);
195                 if (!pcpu->lowcore || !panic_stack || !async_stack)
196                         goto out;
197         } else {
198                 async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
199                 panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
200         }
201         lc = pcpu->lowcore;
202         memcpy(lc, &S390_lowcore, 512);
203         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
204         lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
205         lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
206         lc->cpu_nr = cpu;
207         lc->spinlock_lockval = arch_spin_lockval(cpu);
208         if (MACHINE_HAS_VX)
209                 lc->vector_save_area_addr =
210                         (unsigned long) &lc->vector_save_area;
211         if (vdso_alloc_per_cpu(lc))
212                 goto out;
213         lowcore_ptr[cpu] = lc;
214         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
215         return 0;
216 out:
217         if (pcpu != &pcpu_devices[0]) {
218                 free_page(panic_stack);
219                 free_pages(async_stack, ASYNC_ORDER);
220                 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
221         }
222         return -ENOMEM;
223 }
224
225 #ifdef CONFIG_HOTPLUG_CPU
226
227 static void pcpu_free_lowcore(struct pcpu *pcpu)
228 {
229         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
230         lowcore_ptr[pcpu - pcpu_devices] = NULL;
231         vdso_free_per_cpu(pcpu->lowcore);
232         if (pcpu == &pcpu_devices[0])
233                 return;
234         free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
235         free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
236         free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
237 }
238
239 #endif /* CONFIG_HOTPLUG_CPU */
240
241 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
242 {
243         struct lowcore *lc = pcpu->lowcore;
244
245         cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
246         cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
247         lc->cpu_nr = cpu;
248         lc->spinlock_lockval = arch_spin_lockval(cpu);
249         lc->percpu_offset = __per_cpu_offset[cpu];
250         lc->kernel_asce = S390_lowcore.kernel_asce;
251         lc->machine_flags = S390_lowcore.machine_flags;
252         lc->user_timer = lc->system_timer = lc->steal_timer = 0;
253         __ctl_store(lc->cregs_save_area, 0, 15);
254         save_access_regs((unsigned int *) lc->access_regs_save_area);
255         memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
256                MAX_FACILITY_BIT/8);
257 }
258
259 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
260 {
261         struct lowcore *lc = pcpu->lowcore;
262         struct thread_info *ti = task_thread_info(tsk);
263
264         lc->kernel_stack = (unsigned long) task_stack_page(tsk)
265                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
266         lc->thread_info = (unsigned long) task_thread_info(tsk);
267         lc->current_task = (unsigned long) tsk;
268         lc->lpp = LPP_MAGIC;
269         lc->current_pid = tsk->pid;
270         lc->user_timer = ti->user_timer;
271         lc->system_timer = ti->system_timer;
272         lc->steal_timer = 0;
273 }
274
275 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
276 {
277         struct lowcore *lc = pcpu->lowcore;
278
279         lc->restart_stack = lc->kernel_stack;
280         lc->restart_fn = (unsigned long) func;
281         lc->restart_data = (unsigned long) data;
282         lc->restart_source = -1UL;
283         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
284 }
285
286 /*
287  * Call function via PSW restart on pcpu and stop the current cpu.
288  */
289 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
290                           void *data, unsigned long stack)
291 {
292         struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
293         unsigned long source_cpu = stap();
294
295         __load_psw_mask(PSW_KERNEL_BITS);
296         if (pcpu->address == source_cpu)
297                 func(data);     /* should not return */
298         /* Stop target cpu (if func returns this stops the current cpu). */
299         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
300         /* Restart func on the target cpu and stop the current cpu. */
301         mem_assign_absolute(lc->restart_stack, stack);
302         mem_assign_absolute(lc->restart_fn, (unsigned long) func);
303         mem_assign_absolute(lc->restart_data, (unsigned long) data);
304         mem_assign_absolute(lc->restart_source, source_cpu);
305         asm volatile(
306                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
307                 "       brc     2,0b    # busy, try again\n"
308                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
309                 "       brc     2,1b    # busy, try again\n"
310                 : : "d" (pcpu->address), "d" (source_cpu),
311                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
312                 : "0", "1", "cc");
313         for (;;) ;
314 }
315
316 /*
317  * Enable additional logical cpus for multi-threading.
318  */
319 static int pcpu_set_smt(unsigned int mtid)
320 {
321         int cc;
322
323         if (smp_cpu_mtid == mtid)
324                 return 0;
325         cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
326         if (cc == 0) {
327                 smp_cpu_mtid = mtid;
328                 smp_cpu_mt_shift = 0;
329                 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
330                         smp_cpu_mt_shift++;
331                 pcpu_devices[0].address = stap();
332         }
333         return cc;
334 }
335
336 /*
337  * Call function on an online CPU.
338  */
339 void smp_call_online_cpu(void (*func)(void *), void *data)
340 {
341         struct pcpu *pcpu;
342
343         /* Use the current cpu if it is online. */
344         pcpu = pcpu_find_address(cpu_online_mask, stap());
345         if (!pcpu)
346                 /* Use the first online cpu. */
347                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
348         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
349 }
350
351 /*
352  * Call function on the ipl CPU.
353  */
354 void smp_call_ipl_cpu(void (*func)(void *), void *data)
355 {
356         pcpu_delegate(&pcpu_devices[0], func, data,
357                       pcpu_devices->lowcore->panic_stack -
358                       PANIC_FRAME_OFFSET + PAGE_SIZE);
359 }
360
361 int smp_find_processor_id(u16 address)
362 {
363         int cpu;
364
365         for_each_present_cpu(cpu)
366                 if (pcpu_devices[cpu].address == address)
367                         return cpu;
368         return -1;
369 }
370
371 int smp_vcpu_scheduled(int cpu)
372 {
373         return pcpu_running(pcpu_devices + cpu);
374 }
375
376 void smp_yield_cpu(int cpu)
377 {
378         if (MACHINE_HAS_DIAG9C) {
379                 diag_stat_inc_norecursion(DIAG_STAT_X09C);
380                 asm volatile("diag %0,0,0x9c"
381                              : : "d" (pcpu_devices[cpu].address));
382         } else if (MACHINE_HAS_DIAG44) {
383                 diag_stat_inc_norecursion(DIAG_STAT_X044);
384                 asm volatile("diag 0,0,0x44");
385         }
386 }
387
388 /*
389  * Send cpus emergency shutdown signal. This gives the cpus the
390  * opportunity to complete outstanding interrupts.
391  */
392 static void smp_emergency_stop(cpumask_t *cpumask)
393 {
394         u64 end;
395         int cpu;
396
397         end = get_tod_clock() + (1000000UL << 12);
398         for_each_cpu(cpu, cpumask) {
399                 struct pcpu *pcpu = pcpu_devices + cpu;
400                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
401                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
402                                    0, NULL) == SIGP_CC_BUSY &&
403                        get_tod_clock() < end)
404                         cpu_relax();
405         }
406         while (get_tod_clock() < end) {
407                 for_each_cpu(cpu, cpumask)
408                         if (pcpu_stopped(pcpu_devices + cpu))
409                                 cpumask_clear_cpu(cpu, cpumask);
410                 if (cpumask_empty(cpumask))
411                         break;
412                 cpu_relax();
413         }
414 }
415
416 /*
417  * Stop all cpus but the current one.
418  */
419 void smp_send_stop(void)
420 {
421         cpumask_t cpumask;
422         int cpu;
423
424         /* Disable all interrupts/machine checks */
425         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
426         trace_hardirqs_off();
427
428         debug_set_critical();
429         cpumask_copy(&cpumask, cpu_online_mask);
430         cpumask_clear_cpu(smp_processor_id(), &cpumask);
431
432         if (oops_in_progress)
433                 smp_emergency_stop(&cpumask);
434
435         /* stop all processors */
436         for_each_cpu(cpu, &cpumask) {
437                 struct pcpu *pcpu = pcpu_devices + cpu;
438                 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
439                 while (!pcpu_stopped(pcpu))
440                         cpu_relax();
441         }
442 }
443
444 /*
445  * This is the main routine where commands issued by other
446  * cpus are handled.
447  */
448 static void smp_handle_ext_call(void)
449 {
450         unsigned long bits;
451
452         /* handle bit signal external calls */
453         bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
454         if (test_bit(ec_stop_cpu, &bits))
455                 smp_stop_cpu();
456         if (test_bit(ec_schedule, &bits))
457                 scheduler_ipi();
458         if (test_bit(ec_call_function_single, &bits))
459                 generic_smp_call_function_single_interrupt();
460 }
461
462 static void do_ext_call_interrupt(struct ext_code ext_code,
463                                   unsigned int param32, unsigned long param64)
464 {
465         inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
466         smp_handle_ext_call();
467 }
468
469 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
470 {
471         int cpu;
472
473         for_each_cpu(cpu, mask)
474                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
475 }
476
477 void arch_send_call_function_single_ipi(int cpu)
478 {
479         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
480 }
481
482 /*
483  * this function sends a 'reschedule' IPI to another CPU.
484  * it goes straight through and wastes no time serializing
485  * anything. Worst case is that we lose a reschedule ...
486  */
487 void smp_send_reschedule(int cpu)
488 {
489         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
490 }
491
492 /*
493  * parameter area for the set/clear control bit callbacks
494  */
495 struct ec_creg_mask_parms {
496         unsigned long orval;
497         unsigned long andval;
498         int cr;
499 };
500
501 /*
502  * callback for setting/clearing control bits
503  */
504 static void smp_ctl_bit_callback(void *info)
505 {
506         struct ec_creg_mask_parms *pp = info;
507         unsigned long cregs[16];
508
509         __ctl_store(cregs, 0, 15);
510         cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
511         __ctl_load(cregs, 0, 15);
512 }
513
514 /*
515  * Set a bit in a control register of all cpus
516  */
517 void smp_ctl_set_bit(int cr, int bit)
518 {
519         struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
520
521         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
522 }
523 EXPORT_SYMBOL(smp_ctl_set_bit);
524
525 /*
526  * Clear a bit in a control register of all cpus
527  */
528 void smp_ctl_clear_bit(int cr, int bit)
529 {
530         struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
531
532         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
533 }
534 EXPORT_SYMBOL(smp_ctl_clear_bit);
535
536 #ifdef CONFIG_CRASH_DUMP
537
538 int smp_store_status(int cpu)
539 {
540         struct pcpu *pcpu = pcpu_devices + cpu;
541         unsigned long pa;
542
543         pa = __pa(&pcpu->lowcore->floating_pt_save_area);
544         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
545                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
546                 return -EIO;
547         if (!MACHINE_HAS_VX)
548                 return 0;
549         pa = __pa(pcpu->lowcore->vector_save_area_addr);
550         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
551                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
552                 return -EIO;
553         return 0;
554 }
555
556 /*
557  * Collect CPU state of the previous, crashed system.
558  * There are four cases:
559  * 1) standard zfcp dump
560  *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
561  *    The state for all CPUs except the boot CPU needs to be collected
562  *    with sigp stop-and-store-status. The boot CPU state is located in
563  *    the absolute lowcore of the memory stored in the HSA. The zcore code
564  *    will copy the boot CPU state from the HSA.
565  * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
566  *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
567  *    The state for all CPUs except the boot CPU needs to be collected
568  *    with sigp stop-and-store-status. The firmware or the boot-loader
569  *    stored the registers of the boot CPU in the absolute lowcore in the
570  *    memory of the old system.
571  * 3) kdump and the old kernel did not store the CPU state,
572  *    or stand-alone kdump for DASD
573  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
574  *    The state for all CPUs except the boot CPU needs to be collected
575  *    with sigp stop-and-store-status. The kexec code or the boot-loader
576  *    stored the registers of the boot CPU in the memory of the old system.
577  * 4) kdump and the old kernel stored the CPU state
578  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
579  *    This case does not exist for s390 anymore, setup_arch explicitly
580  *    deactivates the elfcorehdr= kernel parameter
581  */
582 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
583                                      bool is_boot_cpu, unsigned long page)
584 {
585         __vector128 *vxrs = (__vector128 *) page;
586
587         if (is_boot_cpu)
588                 vxrs = boot_cpu_vector_save_area;
589         else
590                 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
591         save_area_add_vxrs(sa, vxrs);
592 }
593
594 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
595                                      bool is_boot_cpu, unsigned long page)
596 {
597         void *regs = (void *) page;
598
599         if (is_boot_cpu)
600                 copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
601         else
602                 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
603         save_area_add_regs(sa, regs);
604 }
605
606 void __init smp_save_dump_cpus(void)
607 {
608         int addr, boot_cpu_addr, max_cpu_addr;
609         struct save_area *sa;
610         unsigned long page;
611         bool is_boot_cpu;
612
613         if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
614                 /* No previous system present, normal boot. */
615                 return;
616         /* Allocate a page as dumping area for the store status sigps */
617         page = memblock_alloc_base(PAGE_SIZE, PAGE_SIZE, 1UL << 31);
618         /* Set multi-threading state to the previous system. */
619         pcpu_set_smt(sclp.mtid_prev);
620         boot_cpu_addr = stap();
621         max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
622         for (addr = 0; addr <= max_cpu_addr; addr++) {
623                 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
624                     SIGP_CC_NOT_OPERATIONAL)
625                         continue;
626                 is_boot_cpu = (addr == boot_cpu_addr);
627                 /* Allocate save area */
628                 sa = save_area_alloc(is_boot_cpu);
629                 if (!sa)
630                         panic("could not allocate memory for save area\n");
631                 if (MACHINE_HAS_VX)
632                         /* Get the vector registers */
633                         smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
634                 /*
635                  * For a zfcp dump OLDMEM_BASE == NULL and the registers
636                  * of the boot CPU are stored in the HSA. To retrieve
637                  * these registers an SCLP request is required which is
638                  * done by drivers/s390/char/zcore.c:init_cpu_info()
639                  */
640                 if (!is_boot_cpu || OLDMEM_BASE)
641                         /* Get the CPU registers */
642                         smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
643         }
644         memblock_free(page, PAGE_SIZE);
645         diag308_reset();
646         pcpu_set_smt(0);
647 }
648 #endif /* CONFIG_CRASH_DUMP */
649
650 void smp_cpu_set_polarization(int cpu, int val)
651 {
652         pcpu_devices[cpu].polarization = val;
653 }
654
655 int smp_cpu_get_polarization(int cpu)
656 {
657         return pcpu_devices[cpu].polarization;
658 }
659
660 static struct sclp_core_info *smp_get_core_info(void)
661 {
662         static int use_sigp_detection;
663         struct sclp_core_info *info;
664         int address;
665
666         info = kzalloc(sizeof(*info), GFP_KERNEL);
667         if (info && (use_sigp_detection || sclp_get_core_info(info))) {
668                 use_sigp_detection = 1;
669                 for (address = 0;
670                      address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
671                      address += (1U << smp_cpu_mt_shift)) {
672                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
673                             SIGP_CC_NOT_OPERATIONAL)
674                                 continue;
675                         info->core[info->configured].core_id =
676                                 address >> smp_cpu_mt_shift;
677                         info->configured++;
678                 }
679                 info->combined = info->configured;
680         }
681         return info;
682 }
683
684 static int smp_add_present_cpu(int cpu);
685
686 static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
687 {
688         struct pcpu *pcpu;
689         cpumask_t avail;
690         int cpu, nr, i, j;
691         u16 address;
692
693         nr = 0;
694         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
695         cpu = cpumask_first(&avail);
696         for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
697                 if (sclp.has_core_type && info->core[i].type != boot_core_type)
698                         continue;
699                 address = info->core[i].core_id << smp_cpu_mt_shift;
700                 for (j = 0; j <= smp_cpu_mtid; j++) {
701                         if (pcpu_find_address(cpu_present_mask, address + j))
702                                 continue;
703                         pcpu = pcpu_devices + cpu;
704                         pcpu->address = address + j;
705                         pcpu->state =
706                                 (cpu >= info->configured*(smp_cpu_mtid + 1)) ?
707                                 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
708                         smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
709                         set_cpu_present(cpu, true);
710                         if (sysfs_add && smp_add_present_cpu(cpu) != 0)
711                                 set_cpu_present(cpu, false);
712                         else
713                                 nr++;
714                         cpu = cpumask_next(cpu, &avail);
715                         if (cpu >= nr_cpu_ids)
716                                 break;
717                 }
718         }
719         return nr;
720 }
721
722 static void __init smp_detect_cpus(void)
723 {
724         unsigned int cpu, mtid, c_cpus, s_cpus;
725         struct sclp_core_info *info;
726         u16 address;
727
728         /* Get CPU information */
729         info = smp_get_core_info();
730         if (!info)
731                 panic("smp_detect_cpus failed to allocate memory\n");
732
733         /* Find boot CPU type */
734         if (sclp.has_core_type) {
735                 address = stap();
736                 for (cpu = 0; cpu < info->combined; cpu++)
737                         if (info->core[cpu].core_id == address) {
738                                 /* The boot cpu dictates the cpu type. */
739                                 boot_core_type = info->core[cpu].type;
740                                 break;
741                         }
742                 if (cpu >= info->combined)
743                         panic("Could not find boot CPU type");
744         }
745
746         /* Set multi-threading state for the current system */
747         mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
748         mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
749         pcpu_set_smt(mtid);
750
751         /* Print number of CPUs */
752         c_cpus = s_cpus = 0;
753         for (cpu = 0; cpu < info->combined; cpu++) {
754                 if (sclp.has_core_type &&
755                     info->core[cpu].type != boot_core_type)
756                         continue;
757                 if (cpu < info->configured)
758                         c_cpus += smp_cpu_mtid + 1;
759                 else
760                         s_cpus += smp_cpu_mtid + 1;
761         }
762         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
763
764         /* Add CPUs present at boot */
765         get_online_cpus();
766         __smp_rescan_cpus(info, 0);
767         put_online_cpus();
768         kfree(info);
769 }
770
771 /*
772  *      Activate a secondary processor.
773  */
774 static void smp_start_secondary(void *cpuvoid)
775 {
776         S390_lowcore.last_update_clock = get_tod_clock();
777         S390_lowcore.restart_stack = (unsigned long) restart_stack;
778         S390_lowcore.restart_fn = (unsigned long) do_restart;
779         S390_lowcore.restart_data = 0;
780         S390_lowcore.restart_source = -1UL;
781         restore_access_regs(S390_lowcore.access_regs_save_area);
782         __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
783         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
784         cpu_init();
785         preempt_disable();
786         init_cpu_timer();
787         vtime_init();
788         pfault_init();
789         notify_cpu_starting(smp_processor_id());
790         set_cpu_online(smp_processor_id(), true);
791         inc_irq_stat(CPU_RST);
792         local_irq_enable();
793         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
794 }
795
796 /* Upping and downing of CPUs */
797 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
798 {
799         struct pcpu *pcpu;
800         int base, i, rc;
801
802         pcpu = pcpu_devices + cpu;
803         if (pcpu->state != CPU_STATE_CONFIGURED)
804                 return -EIO;
805         base = cpu - (cpu % (smp_cpu_mtid + 1));
806         for (i = 0; i <= smp_cpu_mtid; i++) {
807                 if (base + i < nr_cpu_ids)
808                         if (cpu_online(base + i))
809                                 break;
810         }
811         /*
812          * If this is the first CPU of the core to get online
813          * do an initial CPU reset.
814          */
815         if (i > smp_cpu_mtid &&
816             pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
817             SIGP_CC_ORDER_CODE_ACCEPTED)
818                 return -EIO;
819
820         rc = pcpu_alloc_lowcore(pcpu, cpu);
821         if (rc)
822                 return rc;
823         pcpu_prepare_secondary(pcpu, cpu);
824         pcpu_attach_task(pcpu, tidle);
825         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
826         /* Wait until cpu puts itself in the online & active maps */
827         while (!cpu_online(cpu))
828                 cpu_relax();
829         return 0;
830 }
831
832 static unsigned int setup_possible_cpus __initdata;
833
834 static int __init _setup_possible_cpus(char *s)
835 {
836         get_option(&s, &setup_possible_cpus);
837         return 0;
838 }
839 early_param("possible_cpus", _setup_possible_cpus);
840
841 #ifdef CONFIG_HOTPLUG_CPU
842
843 int __cpu_disable(void)
844 {
845         unsigned long cregs[16];
846
847         /* Handle possible pending IPIs */
848         smp_handle_ext_call();
849         set_cpu_online(smp_processor_id(), false);
850         /* Disable pseudo page faults on this cpu. */
851         pfault_fini();
852         /* Disable interrupt sources via control register. */
853         __ctl_store(cregs, 0, 15);
854         cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
855         cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
856         cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
857         __ctl_load(cregs, 0, 15);
858         clear_cpu_flag(CIF_NOHZ_DELAY);
859         return 0;
860 }
861
862 void __cpu_die(unsigned int cpu)
863 {
864         struct pcpu *pcpu;
865
866         /* Wait until target cpu is down */
867         pcpu = pcpu_devices + cpu;
868         while (!pcpu_stopped(pcpu))
869                 cpu_relax();
870         pcpu_free_lowcore(pcpu);
871         cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
872         cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
873 }
874
875 void __noreturn cpu_die(void)
876 {
877         idle_task_exit();
878         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
879         for (;;) ;
880 }
881
882 #endif /* CONFIG_HOTPLUG_CPU */
883
884 void __init smp_fill_possible_mask(void)
885 {
886         unsigned int possible, sclp_max, cpu;
887
888         sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
889         sclp_max = min(smp_max_threads, sclp_max);
890         sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
891         possible = setup_possible_cpus ?: nr_cpu_ids;
892         possible = min(possible, sclp_max);
893         for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
894                 set_cpu_possible(cpu, true);
895 }
896
897 void __init smp_prepare_cpus(unsigned int max_cpus)
898 {
899         /* request the 0x1201 emergency signal external interrupt */
900         if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
901                 panic("Couldn't request external interrupt 0x1201");
902         /* request the 0x1202 external call external interrupt */
903         if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
904                 panic("Couldn't request external interrupt 0x1202");
905         smp_detect_cpus();
906 }
907
908 void __init smp_prepare_boot_cpu(void)
909 {
910         struct pcpu *pcpu = pcpu_devices;
911
912         pcpu->state = CPU_STATE_CONFIGURED;
913         pcpu->address = stap();
914         pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
915         S390_lowcore.percpu_offset = __per_cpu_offset[0];
916         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
917         set_cpu_present(0, true);
918         set_cpu_online(0, true);
919 }
920
921 void __init smp_cpus_done(unsigned int max_cpus)
922 {
923 }
924
925 void __init smp_setup_processor_id(void)
926 {
927         S390_lowcore.cpu_nr = 0;
928         S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
929 }
930
931 /*
932  * the frequency of the profiling timer can be changed
933  * by writing a multiplier value into /proc/profile.
934  *
935  * usually you want to run this on all CPUs ;)
936  */
937 int setup_profiling_timer(unsigned int multiplier)
938 {
939         return 0;
940 }
941
942 #ifdef CONFIG_HOTPLUG_CPU
943 static ssize_t cpu_configure_show(struct device *dev,
944                                   struct device_attribute *attr, char *buf)
945 {
946         ssize_t count;
947
948         mutex_lock(&smp_cpu_state_mutex);
949         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
950         mutex_unlock(&smp_cpu_state_mutex);
951         return count;
952 }
953
954 static ssize_t cpu_configure_store(struct device *dev,
955                                    struct device_attribute *attr,
956                                    const char *buf, size_t count)
957 {
958         struct pcpu *pcpu;
959         int cpu, val, rc, i;
960         char delim;
961
962         if (sscanf(buf, "%d %c", &val, &delim) != 1)
963                 return -EINVAL;
964         if (val != 0 && val != 1)
965                 return -EINVAL;
966         get_online_cpus();
967         mutex_lock(&smp_cpu_state_mutex);
968         rc = -EBUSY;
969         /* disallow configuration changes of online cpus and cpu 0 */
970         cpu = dev->id;
971         cpu -= cpu % (smp_cpu_mtid + 1);
972         if (cpu == 0)
973                 goto out;
974         for (i = 0; i <= smp_cpu_mtid; i++)
975                 if (cpu_online(cpu + i))
976                         goto out;
977         pcpu = pcpu_devices + cpu;
978         rc = 0;
979         switch (val) {
980         case 0:
981                 if (pcpu->state != CPU_STATE_CONFIGURED)
982                         break;
983                 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
984                 if (rc)
985                         break;
986                 for (i = 0; i <= smp_cpu_mtid; i++) {
987                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
988                                 continue;
989                         pcpu[i].state = CPU_STATE_STANDBY;
990                         smp_cpu_set_polarization(cpu + i,
991                                                  POLARIZATION_UNKNOWN);
992                 }
993                 topology_expect_change();
994                 break;
995         case 1:
996                 if (pcpu->state != CPU_STATE_STANDBY)
997                         break;
998                 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
999                 if (rc)
1000                         break;
1001                 for (i = 0; i <= smp_cpu_mtid; i++) {
1002                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1003                                 continue;
1004                         pcpu[i].state = CPU_STATE_CONFIGURED;
1005                         smp_cpu_set_polarization(cpu + i,
1006                                                  POLARIZATION_UNKNOWN);
1007                 }
1008                 topology_expect_change();
1009                 break;
1010         default:
1011                 break;
1012         }
1013 out:
1014         mutex_unlock(&smp_cpu_state_mutex);
1015         put_online_cpus();
1016         return rc ? rc : count;
1017 }
1018 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1019 #endif /* CONFIG_HOTPLUG_CPU */
1020
1021 static ssize_t show_cpu_address(struct device *dev,
1022                                 struct device_attribute *attr, char *buf)
1023 {
1024         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1025 }
1026 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1027
1028 static struct attribute *cpu_common_attrs[] = {
1029 #ifdef CONFIG_HOTPLUG_CPU
1030         &dev_attr_configure.attr,
1031 #endif
1032         &dev_attr_address.attr,
1033         NULL,
1034 };
1035
1036 static struct attribute_group cpu_common_attr_group = {
1037         .attrs = cpu_common_attrs,
1038 };
1039
1040 static struct attribute *cpu_online_attrs[] = {
1041         &dev_attr_idle_count.attr,
1042         &dev_attr_idle_time_us.attr,
1043         NULL,
1044 };
1045
1046 static struct attribute_group cpu_online_attr_group = {
1047         .attrs = cpu_online_attrs,
1048 };
1049
1050 static int smp_cpu_notify(struct notifier_block *self, unsigned long action,
1051                           void *hcpu)
1052 {
1053         unsigned int cpu = (unsigned int)(long)hcpu;
1054         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1055         int err = 0;
1056
1057         switch (action & ~CPU_TASKS_FROZEN) {
1058         case CPU_ONLINE:
1059                 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1060                 break;
1061         case CPU_DEAD:
1062                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1063                 break;
1064         }
1065         return notifier_from_errno(err);
1066 }
1067
1068 static int smp_add_present_cpu(int cpu)
1069 {
1070         struct device *s;
1071         struct cpu *c;
1072         int rc;
1073
1074         c = kzalloc(sizeof(*c), GFP_KERNEL);
1075         if (!c)
1076                 return -ENOMEM;
1077         per_cpu(cpu_device, cpu) = c;
1078         s = &c->dev;
1079         c->hotpluggable = 1;
1080         rc = register_cpu(c, cpu);
1081         if (rc)
1082                 goto out;
1083         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1084         if (rc)
1085                 goto out_cpu;
1086         if (cpu_online(cpu)) {
1087                 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1088                 if (rc)
1089                         goto out_online;
1090         }
1091         rc = topology_cpu_init(c);
1092         if (rc)
1093                 goto out_topology;
1094         return 0;
1095
1096 out_topology:
1097         if (cpu_online(cpu))
1098                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1099 out_online:
1100         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1101 out_cpu:
1102 #ifdef CONFIG_HOTPLUG_CPU
1103         unregister_cpu(c);
1104 #endif
1105 out:
1106         return rc;
1107 }
1108
1109 #ifdef CONFIG_HOTPLUG_CPU
1110
1111 int __ref smp_rescan_cpus(void)
1112 {
1113         struct sclp_core_info *info;
1114         int nr;
1115
1116         info = smp_get_core_info();
1117         if (!info)
1118                 return -ENOMEM;
1119         get_online_cpus();
1120         mutex_lock(&smp_cpu_state_mutex);
1121         nr = __smp_rescan_cpus(info, 1);
1122         mutex_unlock(&smp_cpu_state_mutex);
1123         put_online_cpus();
1124         kfree(info);
1125         if (nr)
1126                 topology_schedule_update();
1127         return 0;
1128 }
1129
1130 static ssize_t __ref rescan_store(struct device *dev,
1131                                   struct device_attribute *attr,
1132                                   const char *buf,
1133                                   size_t count)
1134 {
1135         int rc;
1136
1137         rc = smp_rescan_cpus();
1138         return rc ? rc : count;
1139 }
1140 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1141 #endif /* CONFIG_HOTPLUG_CPU */
1142
1143 static int __init s390_smp_init(void)
1144 {
1145         int cpu, rc = 0;
1146
1147 #ifdef CONFIG_HOTPLUG_CPU
1148         rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1149         if (rc)
1150                 return rc;
1151 #endif
1152         cpu_notifier_register_begin();
1153         for_each_present_cpu(cpu) {
1154                 rc = smp_add_present_cpu(cpu);
1155                 if (rc)
1156                         goto out;
1157         }
1158
1159         __hotcpu_notifier(smp_cpu_notify, 0);
1160
1161 out:
1162         cpu_notifier_register_done();
1163         return rc;
1164 }
1165 subsys_initcall(s390_smp_init);