]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/s390/kernel/smp.c
Merge tag 'imx-drm-fixes-2016-05-24' of git://git.pengutronix.de/git/pza/linux into...
[karo-tx-linux.git] / arch / s390 / kernel / smp.c
1 /*
2  *  SMP related functions
3  *
4  *    Copyright IBM Corp. 1999, 2012
5  *    Author(s): Denis Joseph Barrow,
6  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
7  *               Heiko Carstens <heiko.carstens@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/workqueue.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/mm.h>
25 #include <linux/err.h>
26 #include <linux/spinlock.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/irqflags.h>
31 #include <linux/cpu.h>
32 #include <linux/slab.h>
33 #include <linux/crash_dump.h>
34 #include <linux/memblock.h>
35 #include <asm/asm-offsets.h>
36 #include <asm/diag.h>
37 #include <asm/switch_to.h>
38 #include <asm/facility.h>
39 #include <asm/ipl.h>
40 #include <asm/setup.h>
41 #include <asm/irq.h>
42 #include <asm/tlbflush.h>
43 #include <asm/vtimer.h>
44 #include <asm/lowcore.h>
45 #include <asm/sclp.h>
46 #include <asm/vdso.h>
47 #include <asm/debug.h>
48 #include <asm/os_info.h>
49 #include <asm/sigp.h>
50 #include <asm/idle.h>
51 #include "entry.h"
52
53 enum {
54         ec_schedule = 0,
55         ec_call_function_single,
56         ec_stop_cpu,
57 };
58
59 enum {
60         CPU_STATE_STANDBY,
61         CPU_STATE_CONFIGURED,
62 };
63
64 static DEFINE_PER_CPU(struct cpu *, cpu_device);
65
66 struct pcpu {
67         struct lowcore *lowcore;        /* lowcore page(s) for the cpu */
68         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
69         unsigned long ec_clk;           /* sigp timestamp for ec_xxx */
70         signed char state;              /* physical cpu state */
71         signed char polarization;       /* physical polarization */
72         u16 address;                    /* physical cpu address */
73 };
74
75 static u8 boot_core_type;
76 static struct pcpu pcpu_devices[NR_CPUS];
77
78 unsigned int smp_cpu_mt_shift;
79 EXPORT_SYMBOL(smp_cpu_mt_shift);
80
81 unsigned int smp_cpu_mtid;
82 EXPORT_SYMBOL(smp_cpu_mtid);
83
84 #ifdef CONFIG_CRASH_DUMP
85 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
86 #endif
87
88 static unsigned int smp_max_threads __initdata = -1U;
89
90 static int __init early_nosmt(char *s)
91 {
92         smp_max_threads = 1;
93         return 0;
94 }
95 early_param("nosmt", early_nosmt);
96
97 static int __init early_smt(char *s)
98 {
99         get_option(&s, &smp_max_threads);
100         return 0;
101 }
102 early_param("smt", early_smt);
103
104 /*
105  * The smp_cpu_state_mutex must be held when changing the state or polarization
106  * member of a pcpu data structure within the pcpu_devices arreay.
107  */
108 DEFINE_MUTEX(smp_cpu_state_mutex);
109
110 /*
111  * Signal processor helper functions.
112  */
113 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
114 {
115         int cc;
116
117         while (1) {
118                 cc = __pcpu_sigp(addr, order, parm, NULL);
119                 if (cc != SIGP_CC_BUSY)
120                         return cc;
121                 cpu_relax();
122         }
123 }
124
125 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
126 {
127         int cc, retry;
128
129         for (retry = 0; ; retry++) {
130                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
131                 if (cc != SIGP_CC_BUSY)
132                         break;
133                 if (retry >= 3)
134                         udelay(10);
135         }
136         return cc;
137 }
138
139 static inline int pcpu_stopped(struct pcpu *pcpu)
140 {
141         u32 uninitialized_var(status);
142
143         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
144                         0, &status) != SIGP_CC_STATUS_STORED)
145                 return 0;
146         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
147 }
148
149 static inline int pcpu_running(struct pcpu *pcpu)
150 {
151         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
152                         0, NULL) != SIGP_CC_STATUS_STORED)
153                 return 1;
154         /* Status stored condition code is equivalent to cpu not running. */
155         return 0;
156 }
157
158 /*
159  * Find struct pcpu by cpu address.
160  */
161 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
162 {
163         int cpu;
164
165         for_each_cpu(cpu, mask)
166                 if (pcpu_devices[cpu].address == address)
167                         return pcpu_devices + cpu;
168         return NULL;
169 }
170
171 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
172 {
173         int order;
174
175         if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
176                 return;
177         order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
178         pcpu->ec_clk = get_tod_clock_fast();
179         pcpu_sigp_retry(pcpu, order, 0);
180 }
181
182 #define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
183 #define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
184
185 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
186 {
187         unsigned long async_stack, panic_stack;
188         struct lowcore *lc;
189
190         if (pcpu != &pcpu_devices[0]) {
191                 pcpu->lowcore = (struct lowcore *)
192                         __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
193                 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
194                 panic_stack = __get_free_page(GFP_KERNEL);
195                 if (!pcpu->lowcore || !panic_stack || !async_stack)
196                         goto out;
197         } else {
198                 async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
199                 panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
200         }
201         lc = pcpu->lowcore;
202         memcpy(lc, &S390_lowcore, 512);
203         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
204         lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
205         lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
206         lc->cpu_nr = cpu;
207         lc->spinlock_lockval = arch_spin_lockval(cpu);
208         if (MACHINE_HAS_VX)
209                 lc->vector_save_area_addr =
210                         (unsigned long) &lc->vector_save_area;
211         if (vdso_alloc_per_cpu(lc))
212                 goto out;
213         lowcore_ptr[cpu] = lc;
214         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
215         return 0;
216 out:
217         if (pcpu != &pcpu_devices[0]) {
218                 free_page(panic_stack);
219                 free_pages(async_stack, ASYNC_ORDER);
220                 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
221         }
222         return -ENOMEM;
223 }
224
225 #ifdef CONFIG_HOTPLUG_CPU
226
227 static void pcpu_free_lowcore(struct pcpu *pcpu)
228 {
229         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
230         lowcore_ptr[pcpu - pcpu_devices] = NULL;
231         vdso_free_per_cpu(pcpu->lowcore);
232         if (pcpu == &pcpu_devices[0])
233                 return;
234         free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
235         free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
236         free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
237 }
238
239 #endif /* CONFIG_HOTPLUG_CPU */
240
241 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
242 {
243         struct lowcore *lc = pcpu->lowcore;
244
245         if (MACHINE_HAS_TLB_LC)
246                 cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
247         cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
248         atomic_inc(&init_mm.context.attach_count);
249         lc->cpu_nr = cpu;
250         lc->spinlock_lockval = arch_spin_lockval(cpu);
251         lc->percpu_offset = __per_cpu_offset[cpu];
252         lc->kernel_asce = S390_lowcore.kernel_asce;
253         lc->machine_flags = S390_lowcore.machine_flags;
254         lc->user_timer = lc->system_timer = lc->steal_timer = 0;
255         __ctl_store(lc->cregs_save_area, 0, 15);
256         save_access_regs((unsigned int *) lc->access_regs_save_area);
257         memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
258                MAX_FACILITY_BIT/8);
259 }
260
261 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
262 {
263         struct lowcore *lc = pcpu->lowcore;
264         struct thread_info *ti = task_thread_info(tsk);
265
266         lc->kernel_stack = (unsigned long) task_stack_page(tsk)
267                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
268         lc->thread_info = (unsigned long) task_thread_info(tsk);
269         lc->current_task = (unsigned long) tsk;
270         lc->lpp = LPP_MAGIC;
271         lc->current_pid = tsk->pid;
272         lc->user_timer = ti->user_timer;
273         lc->system_timer = ti->system_timer;
274         lc->steal_timer = 0;
275 }
276
277 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
278 {
279         struct lowcore *lc = pcpu->lowcore;
280
281         lc->restart_stack = lc->kernel_stack;
282         lc->restart_fn = (unsigned long) func;
283         lc->restart_data = (unsigned long) data;
284         lc->restart_source = -1UL;
285         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
286 }
287
288 /*
289  * Call function via PSW restart on pcpu and stop the current cpu.
290  */
291 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
292                           void *data, unsigned long stack)
293 {
294         struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
295         unsigned long source_cpu = stap();
296
297         __load_psw_mask(PSW_KERNEL_BITS);
298         if (pcpu->address == source_cpu)
299                 func(data);     /* should not return */
300         /* Stop target cpu (if func returns this stops the current cpu). */
301         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
302         /* Restart func on the target cpu and stop the current cpu. */
303         mem_assign_absolute(lc->restart_stack, stack);
304         mem_assign_absolute(lc->restart_fn, (unsigned long) func);
305         mem_assign_absolute(lc->restart_data, (unsigned long) data);
306         mem_assign_absolute(lc->restart_source, source_cpu);
307         asm volatile(
308                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
309                 "       brc     2,0b    # busy, try again\n"
310                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
311                 "       brc     2,1b    # busy, try again\n"
312                 : : "d" (pcpu->address), "d" (source_cpu),
313                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
314                 : "0", "1", "cc");
315         for (;;) ;
316 }
317
318 /*
319  * Enable additional logical cpus for multi-threading.
320  */
321 static int pcpu_set_smt(unsigned int mtid)
322 {
323         register unsigned long reg1 asm ("1") = (unsigned long) mtid;
324         int cc;
325
326         if (smp_cpu_mtid == mtid)
327                 return 0;
328         asm volatile(
329                 "       sigp    %1,0,%2 # sigp set multi-threading\n"
330                 "       ipm     %0\n"
331                 "       srl     %0,28\n"
332                 : "=d" (cc) : "d" (reg1), "K" (SIGP_SET_MULTI_THREADING)
333                 : "cc");
334         if (cc == 0) {
335                 smp_cpu_mtid = mtid;
336                 smp_cpu_mt_shift = 0;
337                 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
338                         smp_cpu_mt_shift++;
339                 pcpu_devices[0].address = stap();
340         }
341         return cc;
342 }
343
344 /*
345  * Call function on an online CPU.
346  */
347 void smp_call_online_cpu(void (*func)(void *), void *data)
348 {
349         struct pcpu *pcpu;
350
351         /* Use the current cpu if it is online. */
352         pcpu = pcpu_find_address(cpu_online_mask, stap());
353         if (!pcpu)
354                 /* Use the first online cpu. */
355                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
356         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
357 }
358
359 /*
360  * Call function on the ipl CPU.
361  */
362 void smp_call_ipl_cpu(void (*func)(void *), void *data)
363 {
364         pcpu_delegate(&pcpu_devices[0], func, data,
365                       pcpu_devices->lowcore->panic_stack -
366                       PANIC_FRAME_OFFSET + PAGE_SIZE);
367 }
368
369 int smp_find_processor_id(u16 address)
370 {
371         int cpu;
372
373         for_each_present_cpu(cpu)
374                 if (pcpu_devices[cpu].address == address)
375                         return cpu;
376         return -1;
377 }
378
379 int smp_vcpu_scheduled(int cpu)
380 {
381         return pcpu_running(pcpu_devices + cpu);
382 }
383
384 void smp_yield_cpu(int cpu)
385 {
386         if (MACHINE_HAS_DIAG9C) {
387                 diag_stat_inc_norecursion(DIAG_STAT_X09C);
388                 asm volatile("diag %0,0,0x9c"
389                              : : "d" (pcpu_devices[cpu].address));
390         } else if (MACHINE_HAS_DIAG44) {
391                 diag_stat_inc_norecursion(DIAG_STAT_X044);
392                 asm volatile("diag 0,0,0x44");
393         }
394 }
395
396 /*
397  * Send cpus emergency shutdown signal. This gives the cpus the
398  * opportunity to complete outstanding interrupts.
399  */
400 static void smp_emergency_stop(cpumask_t *cpumask)
401 {
402         u64 end;
403         int cpu;
404
405         end = get_tod_clock() + (1000000UL << 12);
406         for_each_cpu(cpu, cpumask) {
407                 struct pcpu *pcpu = pcpu_devices + cpu;
408                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
409                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
410                                    0, NULL) == SIGP_CC_BUSY &&
411                        get_tod_clock() < end)
412                         cpu_relax();
413         }
414         while (get_tod_clock() < end) {
415                 for_each_cpu(cpu, cpumask)
416                         if (pcpu_stopped(pcpu_devices + cpu))
417                                 cpumask_clear_cpu(cpu, cpumask);
418                 if (cpumask_empty(cpumask))
419                         break;
420                 cpu_relax();
421         }
422 }
423
424 /*
425  * Stop all cpus but the current one.
426  */
427 void smp_send_stop(void)
428 {
429         cpumask_t cpumask;
430         int cpu;
431
432         /* Disable all interrupts/machine checks */
433         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
434         trace_hardirqs_off();
435
436         debug_set_critical();
437         cpumask_copy(&cpumask, cpu_online_mask);
438         cpumask_clear_cpu(smp_processor_id(), &cpumask);
439
440         if (oops_in_progress)
441                 smp_emergency_stop(&cpumask);
442
443         /* stop all processors */
444         for_each_cpu(cpu, &cpumask) {
445                 struct pcpu *pcpu = pcpu_devices + cpu;
446                 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
447                 while (!pcpu_stopped(pcpu))
448                         cpu_relax();
449         }
450 }
451
452 /*
453  * This is the main routine where commands issued by other
454  * cpus are handled.
455  */
456 static void smp_handle_ext_call(void)
457 {
458         unsigned long bits;
459
460         /* handle bit signal external calls */
461         bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
462         if (test_bit(ec_stop_cpu, &bits))
463                 smp_stop_cpu();
464         if (test_bit(ec_schedule, &bits))
465                 scheduler_ipi();
466         if (test_bit(ec_call_function_single, &bits))
467                 generic_smp_call_function_single_interrupt();
468 }
469
470 static void do_ext_call_interrupt(struct ext_code ext_code,
471                                   unsigned int param32, unsigned long param64)
472 {
473         inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
474         smp_handle_ext_call();
475 }
476
477 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
478 {
479         int cpu;
480
481         for_each_cpu(cpu, mask)
482                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
483 }
484
485 void arch_send_call_function_single_ipi(int cpu)
486 {
487         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
488 }
489
490 /*
491  * this function sends a 'reschedule' IPI to another CPU.
492  * it goes straight through and wastes no time serializing
493  * anything. Worst case is that we lose a reschedule ...
494  */
495 void smp_send_reschedule(int cpu)
496 {
497         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
498 }
499
500 /*
501  * parameter area for the set/clear control bit callbacks
502  */
503 struct ec_creg_mask_parms {
504         unsigned long orval;
505         unsigned long andval;
506         int cr;
507 };
508
509 /*
510  * callback for setting/clearing control bits
511  */
512 static void smp_ctl_bit_callback(void *info)
513 {
514         struct ec_creg_mask_parms *pp = info;
515         unsigned long cregs[16];
516
517         __ctl_store(cregs, 0, 15);
518         cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
519         __ctl_load(cregs, 0, 15);
520 }
521
522 /*
523  * Set a bit in a control register of all cpus
524  */
525 void smp_ctl_set_bit(int cr, int bit)
526 {
527         struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
528
529         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
530 }
531 EXPORT_SYMBOL(smp_ctl_set_bit);
532
533 /*
534  * Clear a bit in a control register of all cpus
535  */
536 void smp_ctl_clear_bit(int cr, int bit)
537 {
538         struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
539
540         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
541 }
542 EXPORT_SYMBOL(smp_ctl_clear_bit);
543
544 #ifdef CONFIG_CRASH_DUMP
545
546 int smp_store_status(int cpu)
547 {
548         struct pcpu *pcpu = pcpu_devices + cpu;
549         unsigned long pa;
550
551         pa = __pa(&pcpu->lowcore->floating_pt_save_area);
552         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
553                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
554                 return -EIO;
555         if (!MACHINE_HAS_VX)
556                 return 0;
557         pa = __pa(pcpu->lowcore->vector_save_area_addr);
558         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
559                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
560                 return -EIO;
561         return 0;
562 }
563
564 /*
565  * Collect CPU state of the previous, crashed system.
566  * There are four cases:
567  * 1) standard zfcp dump
568  *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
569  *    The state for all CPUs except the boot CPU needs to be collected
570  *    with sigp stop-and-store-status. The boot CPU state is located in
571  *    the absolute lowcore of the memory stored in the HSA. The zcore code
572  *    will copy the boot CPU state from the HSA.
573  * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
574  *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
575  *    The state for all CPUs except the boot CPU needs to be collected
576  *    with sigp stop-and-store-status. The firmware or the boot-loader
577  *    stored the registers of the boot CPU in the absolute lowcore in the
578  *    memory of the old system.
579  * 3) kdump and the old kernel did not store the CPU state,
580  *    or stand-alone kdump for DASD
581  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
582  *    The state for all CPUs except the boot CPU needs to be collected
583  *    with sigp stop-and-store-status. The kexec code or the boot-loader
584  *    stored the registers of the boot CPU in the memory of the old system.
585  * 4) kdump and the old kernel stored the CPU state
586  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
587  *    This case does not exist for s390 anymore, setup_arch explicitly
588  *    deactivates the elfcorehdr= kernel parameter
589  */
590 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
591                                      bool is_boot_cpu, unsigned long page)
592 {
593         __vector128 *vxrs = (__vector128 *) page;
594
595         if (is_boot_cpu)
596                 vxrs = boot_cpu_vector_save_area;
597         else
598                 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
599         save_area_add_vxrs(sa, vxrs);
600 }
601
602 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
603                                      bool is_boot_cpu, unsigned long page)
604 {
605         void *regs = (void *) page;
606
607         if (is_boot_cpu)
608                 copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
609         else
610                 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
611         save_area_add_regs(sa, regs);
612 }
613
614 void __init smp_save_dump_cpus(void)
615 {
616         int addr, boot_cpu_addr, max_cpu_addr;
617         struct save_area *sa;
618         unsigned long page;
619         bool is_boot_cpu;
620
621         if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
622                 /* No previous system present, normal boot. */
623                 return;
624         /* Allocate a page as dumping area for the store status sigps */
625         page = memblock_alloc_base(PAGE_SIZE, PAGE_SIZE, 1UL << 31);
626         /* Set multi-threading state to the previous system. */
627         pcpu_set_smt(sclp.mtid_prev);
628         boot_cpu_addr = stap();
629         max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
630         for (addr = 0; addr <= max_cpu_addr; addr++) {
631                 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
632                     SIGP_CC_NOT_OPERATIONAL)
633                         continue;
634                 is_boot_cpu = (addr == boot_cpu_addr);
635                 /* Allocate save area */
636                 sa = save_area_alloc(is_boot_cpu);
637                 if (!sa)
638                         panic("could not allocate memory for save area\n");
639                 if (MACHINE_HAS_VX)
640                         /* Get the vector registers */
641                         smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
642                 /*
643                  * For a zfcp dump OLDMEM_BASE == NULL and the registers
644                  * of the boot CPU are stored in the HSA. To retrieve
645                  * these registers an SCLP request is required which is
646                  * done by drivers/s390/char/zcore.c:init_cpu_info()
647                  */
648                 if (!is_boot_cpu || OLDMEM_BASE)
649                         /* Get the CPU registers */
650                         smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
651         }
652         memblock_free(page, PAGE_SIZE);
653         diag308_reset();
654         pcpu_set_smt(0);
655 }
656 #endif /* CONFIG_CRASH_DUMP */
657
658 void smp_cpu_set_polarization(int cpu, int val)
659 {
660         pcpu_devices[cpu].polarization = val;
661 }
662
663 int smp_cpu_get_polarization(int cpu)
664 {
665         return pcpu_devices[cpu].polarization;
666 }
667
668 static struct sclp_core_info *smp_get_core_info(void)
669 {
670         static int use_sigp_detection;
671         struct sclp_core_info *info;
672         int address;
673
674         info = kzalloc(sizeof(*info), GFP_KERNEL);
675         if (info && (use_sigp_detection || sclp_get_core_info(info))) {
676                 use_sigp_detection = 1;
677                 for (address = 0;
678                      address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
679                      address += (1U << smp_cpu_mt_shift)) {
680                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
681                             SIGP_CC_NOT_OPERATIONAL)
682                                 continue;
683                         info->core[info->configured].core_id =
684                                 address >> smp_cpu_mt_shift;
685                         info->configured++;
686                 }
687                 info->combined = info->configured;
688         }
689         return info;
690 }
691
692 static int smp_add_present_cpu(int cpu);
693
694 static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
695 {
696         struct pcpu *pcpu;
697         cpumask_t avail;
698         int cpu, nr, i, j;
699         u16 address;
700
701         nr = 0;
702         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
703         cpu = cpumask_first(&avail);
704         for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
705                 if (sclp.has_core_type && info->core[i].type != boot_core_type)
706                         continue;
707                 address = info->core[i].core_id << smp_cpu_mt_shift;
708                 for (j = 0; j <= smp_cpu_mtid; j++) {
709                         if (pcpu_find_address(cpu_present_mask, address + j))
710                                 continue;
711                         pcpu = pcpu_devices + cpu;
712                         pcpu->address = address + j;
713                         pcpu->state =
714                                 (cpu >= info->configured*(smp_cpu_mtid + 1)) ?
715                                 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
716                         smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
717                         set_cpu_present(cpu, true);
718                         if (sysfs_add && smp_add_present_cpu(cpu) != 0)
719                                 set_cpu_present(cpu, false);
720                         else
721                                 nr++;
722                         cpu = cpumask_next(cpu, &avail);
723                         if (cpu >= nr_cpu_ids)
724                                 break;
725                 }
726         }
727         return nr;
728 }
729
730 static void __init smp_detect_cpus(void)
731 {
732         unsigned int cpu, mtid, c_cpus, s_cpus;
733         struct sclp_core_info *info;
734         u16 address;
735
736         /* Get CPU information */
737         info = smp_get_core_info();
738         if (!info)
739                 panic("smp_detect_cpus failed to allocate memory\n");
740
741         /* Find boot CPU type */
742         if (sclp.has_core_type) {
743                 address = stap();
744                 for (cpu = 0; cpu < info->combined; cpu++)
745                         if (info->core[cpu].core_id == address) {
746                                 /* The boot cpu dictates the cpu type. */
747                                 boot_core_type = info->core[cpu].type;
748                                 break;
749                         }
750                 if (cpu >= info->combined)
751                         panic("Could not find boot CPU type");
752         }
753
754         /* Set multi-threading state for the current system */
755         mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
756         mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
757         pcpu_set_smt(mtid);
758
759         /* Print number of CPUs */
760         c_cpus = s_cpus = 0;
761         for (cpu = 0; cpu < info->combined; cpu++) {
762                 if (sclp.has_core_type &&
763                     info->core[cpu].type != boot_core_type)
764                         continue;
765                 if (cpu < info->configured)
766                         c_cpus += smp_cpu_mtid + 1;
767                 else
768                         s_cpus += smp_cpu_mtid + 1;
769         }
770         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
771
772         /* Add CPUs present at boot */
773         get_online_cpus();
774         __smp_rescan_cpus(info, 0);
775         put_online_cpus();
776         kfree(info);
777 }
778
779 /*
780  *      Activate a secondary processor.
781  */
782 static void smp_start_secondary(void *cpuvoid)
783 {
784         S390_lowcore.last_update_clock = get_tod_clock();
785         S390_lowcore.restart_stack = (unsigned long) restart_stack;
786         S390_lowcore.restart_fn = (unsigned long) do_restart;
787         S390_lowcore.restart_data = 0;
788         S390_lowcore.restart_source = -1UL;
789         restore_access_regs(S390_lowcore.access_regs_save_area);
790         __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
791         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
792         cpu_init();
793         preempt_disable();
794         init_cpu_timer();
795         vtime_init();
796         pfault_init();
797         notify_cpu_starting(smp_processor_id());
798         set_cpu_online(smp_processor_id(), true);
799         inc_irq_stat(CPU_RST);
800         local_irq_enable();
801         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
802 }
803
804 /* Upping and downing of CPUs */
805 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
806 {
807         struct pcpu *pcpu;
808         int base, i, rc;
809
810         pcpu = pcpu_devices + cpu;
811         if (pcpu->state != CPU_STATE_CONFIGURED)
812                 return -EIO;
813         base = cpu - (cpu % (smp_cpu_mtid + 1));
814         for (i = 0; i <= smp_cpu_mtid; i++) {
815                 if (base + i < nr_cpu_ids)
816                         if (cpu_online(base + i))
817                                 break;
818         }
819         /*
820          * If this is the first CPU of the core to get online
821          * do an initial CPU reset.
822          */
823         if (i > smp_cpu_mtid &&
824             pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
825             SIGP_CC_ORDER_CODE_ACCEPTED)
826                 return -EIO;
827
828         rc = pcpu_alloc_lowcore(pcpu, cpu);
829         if (rc)
830                 return rc;
831         pcpu_prepare_secondary(pcpu, cpu);
832         pcpu_attach_task(pcpu, tidle);
833         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
834         /* Wait until cpu puts itself in the online & active maps */
835         while (!cpu_online(cpu))
836                 cpu_relax();
837         return 0;
838 }
839
840 static unsigned int setup_possible_cpus __initdata;
841
842 static int __init _setup_possible_cpus(char *s)
843 {
844         get_option(&s, &setup_possible_cpus);
845         return 0;
846 }
847 early_param("possible_cpus", _setup_possible_cpus);
848
849 #ifdef CONFIG_HOTPLUG_CPU
850
851 int __cpu_disable(void)
852 {
853         unsigned long cregs[16];
854
855         /* Handle possible pending IPIs */
856         smp_handle_ext_call();
857         set_cpu_online(smp_processor_id(), false);
858         /* Disable pseudo page faults on this cpu. */
859         pfault_fini();
860         /* Disable interrupt sources via control register. */
861         __ctl_store(cregs, 0, 15);
862         cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
863         cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
864         cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
865         __ctl_load(cregs, 0, 15);
866         clear_cpu_flag(CIF_NOHZ_DELAY);
867         return 0;
868 }
869
870 void __cpu_die(unsigned int cpu)
871 {
872         struct pcpu *pcpu;
873
874         /* Wait until target cpu is down */
875         pcpu = pcpu_devices + cpu;
876         while (!pcpu_stopped(pcpu))
877                 cpu_relax();
878         pcpu_free_lowcore(pcpu);
879         atomic_dec(&init_mm.context.attach_count);
880         cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
881         if (MACHINE_HAS_TLB_LC)
882                 cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
883 }
884
885 void __noreturn cpu_die(void)
886 {
887         idle_task_exit();
888         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
889         for (;;) ;
890 }
891
892 #endif /* CONFIG_HOTPLUG_CPU */
893
894 void __init smp_fill_possible_mask(void)
895 {
896         unsigned int possible, sclp_max, cpu;
897
898         sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
899         sclp_max = min(smp_max_threads, sclp_max);
900         sclp_max = sclp.max_cores * sclp_max ?: nr_cpu_ids;
901         possible = setup_possible_cpus ?: nr_cpu_ids;
902         possible = min(possible, sclp_max);
903         for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
904                 set_cpu_possible(cpu, true);
905 }
906
907 void __init smp_prepare_cpus(unsigned int max_cpus)
908 {
909         /* request the 0x1201 emergency signal external interrupt */
910         if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
911                 panic("Couldn't request external interrupt 0x1201");
912         /* request the 0x1202 external call external interrupt */
913         if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
914                 panic("Couldn't request external interrupt 0x1202");
915         smp_detect_cpus();
916 }
917
918 void __init smp_prepare_boot_cpu(void)
919 {
920         struct pcpu *pcpu = pcpu_devices;
921
922         pcpu->state = CPU_STATE_CONFIGURED;
923         pcpu->address = stap();
924         pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
925         S390_lowcore.percpu_offset = __per_cpu_offset[0];
926         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
927         set_cpu_present(0, true);
928         set_cpu_online(0, true);
929 }
930
931 void __init smp_cpus_done(unsigned int max_cpus)
932 {
933 }
934
935 void __init smp_setup_processor_id(void)
936 {
937         S390_lowcore.cpu_nr = 0;
938         S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
939 }
940
941 /*
942  * the frequency of the profiling timer can be changed
943  * by writing a multiplier value into /proc/profile.
944  *
945  * usually you want to run this on all CPUs ;)
946  */
947 int setup_profiling_timer(unsigned int multiplier)
948 {
949         return 0;
950 }
951
952 #ifdef CONFIG_HOTPLUG_CPU
953 static ssize_t cpu_configure_show(struct device *dev,
954                                   struct device_attribute *attr, char *buf)
955 {
956         ssize_t count;
957
958         mutex_lock(&smp_cpu_state_mutex);
959         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
960         mutex_unlock(&smp_cpu_state_mutex);
961         return count;
962 }
963
964 static ssize_t cpu_configure_store(struct device *dev,
965                                    struct device_attribute *attr,
966                                    const char *buf, size_t count)
967 {
968         struct pcpu *pcpu;
969         int cpu, val, rc, i;
970         char delim;
971
972         if (sscanf(buf, "%d %c", &val, &delim) != 1)
973                 return -EINVAL;
974         if (val != 0 && val != 1)
975                 return -EINVAL;
976         get_online_cpus();
977         mutex_lock(&smp_cpu_state_mutex);
978         rc = -EBUSY;
979         /* disallow configuration changes of online cpus and cpu 0 */
980         cpu = dev->id;
981         cpu -= cpu % (smp_cpu_mtid + 1);
982         if (cpu == 0)
983                 goto out;
984         for (i = 0; i <= smp_cpu_mtid; i++)
985                 if (cpu_online(cpu + i))
986                         goto out;
987         pcpu = pcpu_devices + cpu;
988         rc = 0;
989         switch (val) {
990         case 0:
991                 if (pcpu->state != CPU_STATE_CONFIGURED)
992                         break;
993                 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
994                 if (rc)
995                         break;
996                 for (i = 0; i <= smp_cpu_mtid; i++) {
997                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
998                                 continue;
999                         pcpu[i].state = CPU_STATE_STANDBY;
1000                         smp_cpu_set_polarization(cpu + i,
1001                                                  POLARIZATION_UNKNOWN);
1002                 }
1003                 topology_expect_change();
1004                 break;
1005         case 1:
1006                 if (pcpu->state != CPU_STATE_STANDBY)
1007                         break;
1008                 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1009                 if (rc)
1010                         break;
1011                 for (i = 0; i <= smp_cpu_mtid; i++) {
1012                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1013                                 continue;
1014                         pcpu[i].state = CPU_STATE_CONFIGURED;
1015                         smp_cpu_set_polarization(cpu + i,
1016                                                  POLARIZATION_UNKNOWN);
1017                 }
1018                 topology_expect_change();
1019                 break;
1020         default:
1021                 break;
1022         }
1023 out:
1024         mutex_unlock(&smp_cpu_state_mutex);
1025         put_online_cpus();
1026         return rc ? rc : count;
1027 }
1028 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1029 #endif /* CONFIG_HOTPLUG_CPU */
1030
1031 static ssize_t show_cpu_address(struct device *dev,
1032                                 struct device_attribute *attr, char *buf)
1033 {
1034         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1035 }
1036 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1037
1038 static struct attribute *cpu_common_attrs[] = {
1039 #ifdef CONFIG_HOTPLUG_CPU
1040         &dev_attr_configure.attr,
1041 #endif
1042         &dev_attr_address.attr,
1043         NULL,
1044 };
1045
1046 static struct attribute_group cpu_common_attr_group = {
1047         .attrs = cpu_common_attrs,
1048 };
1049
1050 static struct attribute *cpu_online_attrs[] = {
1051         &dev_attr_idle_count.attr,
1052         &dev_attr_idle_time_us.attr,
1053         NULL,
1054 };
1055
1056 static struct attribute_group cpu_online_attr_group = {
1057         .attrs = cpu_online_attrs,
1058 };
1059
1060 static int smp_cpu_notify(struct notifier_block *self, unsigned long action,
1061                           void *hcpu)
1062 {
1063         unsigned int cpu = (unsigned int)(long)hcpu;
1064         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1065         int err = 0;
1066
1067         switch (action & ~CPU_TASKS_FROZEN) {
1068         case CPU_ONLINE:
1069                 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1070                 break;
1071         case CPU_DEAD:
1072                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1073                 break;
1074         }
1075         return notifier_from_errno(err);
1076 }
1077
1078 static int smp_add_present_cpu(int cpu)
1079 {
1080         struct device *s;
1081         struct cpu *c;
1082         int rc;
1083
1084         c = kzalloc(sizeof(*c), GFP_KERNEL);
1085         if (!c)
1086                 return -ENOMEM;
1087         per_cpu(cpu_device, cpu) = c;
1088         s = &c->dev;
1089         c->hotpluggable = 1;
1090         rc = register_cpu(c, cpu);
1091         if (rc)
1092                 goto out;
1093         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1094         if (rc)
1095                 goto out_cpu;
1096         if (cpu_online(cpu)) {
1097                 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1098                 if (rc)
1099                         goto out_online;
1100         }
1101         rc = topology_cpu_init(c);
1102         if (rc)
1103                 goto out_topology;
1104         return 0;
1105
1106 out_topology:
1107         if (cpu_online(cpu))
1108                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1109 out_online:
1110         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1111 out_cpu:
1112 #ifdef CONFIG_HOTPLUG_CPU
1113         unregister_cpu(c);
1114 #endif
1115 out:
1116         return rc;
1117 }
1118
1119 #ifdef CONFIG_HOTPLUG_CPU
1120
1121 int __ref smp_rescan_cpus(void)
1122 {
1123         struct sclp_core_info *info;
1124         int nr;
1125
1126         info = smp_get_core_info();
1127         if (!info)
1128                 return -ENOMEM;
1129         get_online_cpus();
1130         mutex_lock(&smp_cpu_state_mutex);
1131         nr = __smp_rescan_cpus(info, 1);
1132         mutex_unlock(&smp_cpu_state_mutex);
1133         put_online_cpus();
1134         kfree(info);
1135         if (nr)
1136                 topology_schedule_update();
1137         return 0;
1138 }
1139
1140 static ssize_t __ref rescan_store(struct device *dev,
1141                                   struct device_attribute *attr,
1142                                   const char *buf,
1143                                   size_t count)
1144 {
1145         int rc;
1146
1147         rc = smp_rescan_cpus();
1148         return rc ? rc : count;
1149 }
1150 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1151 #endif /* CONFIG_HOTPLUG_CPU */
1152
1153 static int __init s390_smp_init(void)
1154 {
1155         int cpu, rc = 0;
1156
1157 #ifdef CONFIG_HOTPLUG_CPU
1158         rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1159         if (rc)
1160                 return rc;
1161 #endif
1162         cpu_notifier_register_begin();
1163         for_each_present_cpu(cpu) {
1164                 rc = smp_add_present_cpu(cpu);
1165                 if (rc)
1166                         goto out;
1167         }
1168
1169         __hotcpu_notifier(smp_cpu_notify, 0);
1170
1171 out:
1172         cpu_notifier_register_done();
1173         return rc;
1174 }
1175 subsys_initcall(s390_smp_init);