]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/sparc/kernel/time_32.c
Merge tag 'drm-misc-fixes-2017-08-08' of git://anongit.freedesktop.org/git/drm-misc...
[karo-tx-linux.git] / arch / sparc / kernel / time_32.c
1 /* linux/arch/sparc/kernel/time.c
2  *
3  * Copyright (C) 1995 David S. Miller (davem@davemloft.net)
4  * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
5  *
6  * Chris Davis (cdavis@cois.on.ca) 03/27/1998
7  * Added support for the intersil on the sun4/4200
8  *
9  * Gleb Raiko (rajko@mech.math.msu.su) 08/18/1998
10  * Support for MicroSPARC-IIep, PCI CPU.
11  *
12  * This file handles the Sparc specific time handling details.
13  *
14  * 1997-09-10   Updated NTP code according to technical memorandum Jan '96
15  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
16  */
17 #include <linux/errno.h>
18 #include <linux/module.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/param.h>
22 #include <linux/string.h>
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/time.h>
26 #include <linux/rtc/m48t59.h>
27 #include <linux/timex.h>
28 #include <linux/clocksource.h>
29 #include <linux/clockchips.h>
30 #include <linux/init.h>
31 #include <linux/pci.h>
32 #include <linux/ioport.h>
33 #include <linux/profile.h>
34 #include <linux/of.h>
35 #include <linux/of_device.h>
36 #include <linux/platform_device.h>
37
38 #include <asm/mc146818rtc.h>
39 #include <asm/oplib.h>
40 #include <asm/timex.h>
41 #include <asm/timer.h>
42 #include <asm/irq.h>
43 #include <asm/io.h>
44 #include <asm/idprom.h>
45 #include <asm/page.h>
46 #include <asm/pcic.h>
47 #include <asm/irq_regs.h>
48 #include <asm/setup.h>
49
50 #include "kernel.h"
51 #include "irq.h"
52
53 static __cacheline_aligned_in_smp DEFINE_SEQLOCK(timer_cs_lock);
54 static __volatile__ u64 timer_cs_internal_counter = 0;
55 static char timer_cs_enabled = 0;
56
57 static struct clock_event_device timer_ce;
58 static char timer_ce_enabled = 0;
59
60 #ifdef CONFIG_SMP
61 DEFINE_PER_CPU(struct clock_event_device, sparc32_clockevent);
62 #endif
63
64 DEFINE_SPINLOCK(rtc_lock);
65 EXPORT_SYMBOL(rtc_lock);
66
67 unsigned long profile_pc(struct pt_regs *regs)
68 {
69         extern char __copy_user_begin[], __copy_user_end[];
70         extern char __bzero_begin[], __bzero_end[];
71
72         unsigned long pc = regs->pc;
73
74         if (in_lock_functions(pc) ||
75             (pc >= (unsigned long) __copy_user_begin &&
76              pc < (unsigned long) __copy_user_end) ||
77             (pc >= (unsigned long) __bzero_begin &&
78              pc < (unsigned long) __bzero_end))
79                 pc = regs->u_regs[UREG_RETPC];
80         return pc;
81 }
82
83 EXPORT_SYMBOL(profile_pc);
84
85 volatile u32 __iomem *master_l10_counter;
86
87 irqreturn_t notrace timer_interrupt(int dummy, void *dev_id)
88 {
89         if (timer_cs_enabled) {
90                 write_seqlock(&timer_cs_lock);
91                 timer_cs_internal_counter++;
92                 sparc_config.clear_clock_irq();
93                 write_sequnlock(&timer_cs_lock);
94         } else {
95                 sparc_config.clear_clock_irq();
96         }
97
98         if (timer_ce_enabled)
99                 timer_ce.event_handler(&timer_ce);
100
101         return IRQ_HANDLED;
102 }
103
104 static int timer_ce_shutdown(struct clock_event_device *evt)
105 {
106         timer_ce_enabled = 0;
107         smp_mb();
108         return 0;
109 }
110
111 static int timer_ce_set_periodic(struct clock_event_device *evt)
112 {
113         timer_ce_enabled = 1;
114         smp_mb();
115         return 0;
116 }
117
118 static __init void setup_timer_ce(void)
119 {
120         struct clock_event_device *ce = &timer_ce;
121
122         BUG_ON(smp_processor_id() != boot_cpu_id);
123
124         ce->name     = "timer_ce";
125         ce->rating   = 100;
126         ce->features = CLOCK_EVT_FEAT_PERIODIC;
127         ce->set_state_shutdown = timer_ce_shutdown;
128         ce->set_state_periodic = timer_ce_set_periodic;
129         ce->tick_resume = timer_ce_set_periodic;
130         ce->cpumask  = cpu_possible_mask;
131         ce->shift    = 32;
132         ce->mult     = div_sc(sparc_config.clock_rate, NSEC_PER_SEC,
133                               ce->shift);
134         clockevents_register_device(ce);
135 }
136
137 static unsigned int sbus_cycles_offset(void)
138 {
139         u32 val, offset;
140
141         val = sbus_readl(master_l10_counter);
142         offset = (val >> TIMER_VALUE_SHIFT) & TIMER_VALUE_MASK;
143
144         /* Limit hit? */
145         if (val & TIMER_LIMIT_BIT)
146                 offset += sparc_config.cs_period;
147
148         return offset;
149 }
150
151 static u64 timer_cs_read(struct clocksource *cs)
152 {
153         unsigned int seq, offset;
154         u64 cycles;
155
156         do {
157                 seq = read_seqbegin(&timer_cs_lock);
158
159                 cycles = timer_cs_internal_counter;
160                 offset = sparc_config.get_cycles_offset();
161         } while (read_seqretry(&timer_cs_lock, seq));
162
163         /* Count absolute cycles */
164         cycles *= sparc_config.cs_period;
165         cycles += offset;
166
167         return cycles;
168 }
169
170 static struct clocksource timer_cs = {
171         .name   = "timer_cs",
172         .rating = 100,
173         .read   = timer_cs_read,
174         .mask   = CLOCKSOURCE_MASK(64),
175         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
176 };
177
178 static __init int setup_timer_cs(void)
179 {
180         timer_cs_enabled = 1;
181         return clocksource_register_hz(&timer_cs, sparc_config.clock_rate);
182 }
183
184 #ifdef CONFIG_SMP
185 static int percpu_ce_shutdown(struct clock_event_device *evt)
186 {
187         int cpu = cpumask_first(evt->cpumask);
188
189         sparc_config.load_profile_irq(cpu, 0);
190         return 0;
191 }
192
193 static int percpu_ce_set_periodic(struct clock_event_device *evt)
194 {
195         int cpu = cpumask_first(evt->cpumask);
196
197         sparc_config.load_profile_irq(cpu, SBUS_CLOCK_RATE / HZ);
198         return 0;
199 }
200
201 static int percpu_ce_set_next_event(unsigned long delta,
202                                     struct clock_event_device *evt)
203 {
204         int cpu = cpumask_first(evt->cpumask);
205         unsigned int next = (unsigned int)delta;
206
207         sparc_config.load_profile_irq(cpu, next);
208         return 0;
209 }
210
211 void register_percpu_ce(int cpu)
212 {
213         struct clock_event_device *ce = &per_cpu(sparc32_clockevent, cpu);
214         unsigned int features = CLOCK_EVT_FEAT_PERIODIC;
215
216         if (sparc_config.features & FEAT_L14_ONESHOT)
217                 features |= CLOCK_EVT_FEAT_ONESHOT;
218
219         ce->name           = "percpu_ce";
220         ce->rating         = 200;
221         ce->features       = features;
222         ce->set_state_shutdown = percpu_ce_shutdown;
223         ce->set_state_periodic = percpu_ce_set_periodic;
224         ce->set_state_oneshot = percpu_ce_shutdown;
225         ce->set_next_event = percpu_ce_set_next_event;
226         ce->cpumask        = cpumask_of(cpu);
227         ce->shift          = 32;
228         ce->mult           = div_sc(sparc_config.clock_rate, NSEC_PER_SEC,
229                                     ce->shift);
230         ce->max_delta_ns   = clockevent_delta2ns(sparc_config.clock_rate, ce);
231         ce->max_delta_ticks = (unsigned long)sparc_config.clock_rate;
232         ce->min_delta_ns   = clockevent_delta2ns(100, ce);
233         ce->min_delta_ticks = 100;
234
235         clockevents_register_device(ce);
236 }
237 #endif
238
239 static unsigned char mostek_read_byte(struct device *dev, u32 ofs)
240 {
241         struct platform_device *pdev = to_platform_device(dev);
242         struct m48t59_plat_data *pdata = pdev->dev.platform_data;
243
244         return readb(pdata->ioaddr + ofs);
245 }
246
247 static void mostek_write_byte(struct device *dev, u32 ofs, u8 val)
248 {
249         struct platform_device *pdev = to_platform_device(dev);
250         struct m48t59_plat_data *pdata = pdev->dev.platform_data;
251
252         writeb(val, pdata->ioaddr + ofs);
253 }
254
255 static struct m48t59_plat_data m48t59_data = {
256         .read_byte = mostek_read_byte,
257         .write_byte = mostek_write_byte,
258 };
259
260 /* resource is set at runtime */
261 static struct platform_device m48t59_rtc = {
262         .name           = "rtc-m48t59",
263         .id             = 0,
264         .num_resources  = 1,
265         .dev    = {
266                 .platform_data = &m48t59_data,
267         },
268 };
269
270 static int clock_probe(struct platform_device *op)
271 {
272         struct device_node *dp = op->dev.of_node;
273         const char *model = of_get_property(dp, "model", NULL);
274
275         if (!model)
276                 return -ENODEV;
277
278         /* Only the primary RTC has an address property */
279         if (!of_find_property(dp, "address", NULL))
280                 return -ENODEV;
281
282         m48t59_rtc.resource = &op->resource[0];
283         if (!strcmp(model, "mk48t02")) {
284                 /* Map the clock register io area read-only */
285                 m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0,
286                                                 2048, "rtc-m48t59");
287                 m48t59_data.type = M48T59RTC_TYPE_M48T02;
288         } else if (!strcmp(model, "mk48t08")) {
289                 m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0,
290                                                 8192, "rtc-m48t59");
291                 m48t59_data.type = M48T59RTC_TYPE_M48T08;
292         } else
293                 return -ENODEV;
294
295         if (platform_device_register(&m48t59_rtc) < 0)
296                 printk(KERN_ERR "Registering RTC device failed\n");
297
298         return 0;
299 }
300
301 static const struct of_device_id clock_match[] = {
302         {
303                 .name = "eeprom",
304         },
305         {},
306 };
307
308 static struct platform_driver clock_driver = {
309         .probe          = clock_probe,
310         .driver = {
311                 .name = "rtc",
312                 .of_match_table = clock_match,
313         },
314 };
315
316
317 /* Probe for the mostek real time clock chip. */
318 static int __init clock_init(void)
319 {
320         return platform_driver_register(&clock_driver);
321 }
322 /* Must be after subsys_initcall() so that busses are probed.  Must
323  * be before device_initcall() because things like the RTC driver
324  * need to see the clock registers.
325  */
326 fs_initcall(clock_init);
327
328 static void __init sparc32_late_time_init(void)
329 {
330         if (sparc_config.features & FEAT_L10_CLOCKEVENT)
331                 setup_timer_ce();
332         if (sparc_config.features & FEAT_L10_CLOCKSOURCE)
333                 setup_timer_cs();
334 #ifdef CONFIG_SMP
335         register_percpu_ce(smp_processor_id());
336 #endif
337 }
338
339 static void __init sbus_time_init(void)
340 {
341         sparc_config.get_cycles_offset = sbus_cycles_offset;
342         sparc_config.init_timers();
343 }
344
345 void __init time_init(void)
346 {
347         sparc_config.features = 0;
348         late_time_init = sparc32_late_time_init;
349
350         if (pcic_present())
351                 pci_time_init();
352         else
353                 sbus_time_init();
354 }
355