]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/sparc/mm/tsb.c
Merge remote-tracking branch 'regulator/topic/core' into regulator-next
[karo-tx-linux.git] / arch / sparc / mm / tsb.c
1 /* arch/sparc64/mm/tsb.c
2  *
3  * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
4  */
5
6 #include <linux/kernel.h>
7 #include <linux/preempt.h>
8 #include <linux/slab.h>
9 #include <asm/page.h>
10 #include <asm/pgtable.h>
11 #include <asm/mmu_context.h>
12 #include <asm/tsb.h>
13 #include <asm/tlb.h>
14 #include <asm/oplib.h>
15
16 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
17
18 static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
19 {
20         vaddr >>= hash_shift;
21         return vaddr & (nentries - 1);
22 }
23
24 static inline int tag_compare(unsigned long tag, unsigned long vaddr)
25 {
26         return (tag == (vaddr >> 22));
27 }
28
29 /* TSB flushes need only occur on the processor initiating the address
30  * space modification, not on each cpu the address space has run on.
31  * Only the TLB flush needs that treatment.
32  */
33
34 void flush_tsb_kernel_range(unsigned long start, unsigned long end)
35 {
36         unsigned long v;
37
38         for (v = start; v < end; v += PAGE_SIZE) {
39                 unsigned long hash = tsb_hash(v, PAGE_SHIFT,
40                                               KERNEL_TSB_NENTRIES);
41                 struct tsb *ent = &swapper_tsb[hash];
42
43                 if (tag_compare(ent->tag, v))
44                         ent->tag = (1UL << TSB_TAG_INVALID_BIT);
45         }
46 }
47
48 static void __flush_tsb_one_entry(unsigned long tsb, unsigned long v,
49                                   unsigned long hash_shift,
50                                   unsigned long nentries)
51 {
52         unsigned long tag, ent, hash;
53
54         v &= ~0x1UL;
55         hash = tsb_hash(v, hash_shift, nentries);
56         ent = tsb + (hash * sizeof(struct tsb));
57         tag = (v >> 22UL);
58
59         tsb_flush(ent, tag);
60 }
61
62 static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
63                             unsigned long tsb, unsigned long nentries)
64 {
65         unsigned long i;
66
67         for (i = 0; i < tb->tlb_nr; i++)
68                 __flush_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift, nentries);
69 }
70
71 void flush_tsb_user(struct tlb_batch *tb)
72 {
73         struct mm_struct *mm = tb->mm;
74         unsigned long nentries, base, flags;
75
76         spin_lock_irqsave(&mm->context.lock, flags);
77
78         base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
79         nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
80         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
81                 base = __pa(base);
82         __flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
83
84 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
85         if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
86                 base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
87                 nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
88                 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
89                         base = __pa(base);
90                 __flush_tsb_one(tb, REAL_HPAGE_SHIFT, base, nentries);
91         }
92 #endif
93         spin_unlock_irqrestore(&mm->context.lock, flags);
94 }
95
96 void flush_tsb_user_page(struct mm_struct *mm, unsigned long vaddr)
97 {
98         unsigned long nentries, base, flags;
99
100         spin_lock_irqsave(&mm->context.lock, flags);
101
102         base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
103         nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
104         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
105                 base = __pa(base);
106         __flush_tsb_one_entry(base, vaddr, PAGE_SHIFT, nentries);
107
108 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
109         if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
110                 base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
111                 nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
112                 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
113                         base = __pa(base);
114                 __flush_tsb_one_entry(base, vaddr, REAL_HPAGE_SHIFT, nentries);
115         }
116 #endif
117         spin_unlock_irqrestore(&mm->context.lock, flags);
118 }
119
120 #define HV_PGSZ_IDX_BASE        HV_PGSZ_IDX_8K
121 #define HV_PGSZ_MASK_BASE       HV_PGSZ_MASK_8K
122
123 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
124 #define HV_PGSZ_IDX_HUGE        HV_PGSZ_IDX_4MB
125 #define HV_PGSZ_MASK_HUGE       HV_PGSZ_MASK_4MB
126 #endif
127
128 static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
129 {
130         unsigned long tsb_reg, base, tsb_paddr;
131         unsigned long page_sz, tte;
132
133         mm->context.tsb_block[tsb_idx].tsb_nentries =
134                 tsb_bytes / sizeof(struct tsb);
135
136         switch (tsb_idx) {
137         case MM_TSB_BASE:
138                 base = TSBMAP_8K_BASE;
139                 break;
140 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
141         case MM_TSB_HUGE:
142                 base = TSBMAP_4M_BASE;
143                 break;
144 #endif
145         default:
146                 BUG();
147         }
148
149         tte = pgprot_val(PAGE_KERNEL_LOCKED);
150         tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
151         BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
152
153         /* Use the smallest page size that can map the whole TSB
154          * in one TLB entry.
155          */
156         switch (tsb_bytes) {
157         case 8192 << 0:
158                 tsb_reg = 0x0UL;
159 #ifdef DCACHE_ALIASING_POSSIBLE
160                 base += (tsb_paddr & 8192);
161 #endif
162                 page_sz = 8192;
163                 break;
164
165         case 8192 << 1:
166                 tsb_reg = 0x1UL;
167                 page_sz = 64 * 1024;
168                 break;
169
170         case 8192 << 2:
171                 tsb_reg = 0x2UL;
172                 page_sz = 64 * 1024;
173                 break;
174
175         case 8192 << 3:
176                 tsb_reg = 0x3UL;
177                 page_sz = 64 * 1024;
178                 break;
179
180         case 8192 << 4:
181                 tsb_reg = 0x4UL;
182                 page_sz = 512 * 1024;
183                 break;
184
185         case 8192 << 5:
186                 tsb_reg = 0x5UL;
187                 page_sz = 512 * 1024;
188                 break;
189
190         case 8192 << 6:
191                 tsb_reg = 0x6UL;
192                 page_sz = 512 * 1024;
193                 break;
194
195         case 8192 << 7:
196                 tsb_reg = 0x7UL;
197                 page_sz = 4 * 1024 * 1024;
198                 break;
199
200         default:
201                 printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
202                        current->comm, current->pid, tsb_bytes);
203                 do_exit(SIGSEGV);
204         }
205         tte |= pte_sz_bits(page_sz);
206
207         if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
208                 /* Physical mapping, no locked TLB entry for TSB.  */
209                 tsb_reg |= tsb_paddr;
210
211                 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
212                 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
213                 mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
214         } else {
215                 tsb_reg |= base;
216                 tsb_reg |= (tsb_paddr & (page_sz - 1UL));
217                 tte |= (tsb_paddr & ~(page_sz - 1UL));
218
219                 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
220                 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
221                 mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
222         }
223
224         /* Setup the Hypervisor TSB descriptor.  */
225         if (tlb_type == hypervisor) {
226                 struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
227
228                 switch (tsb_idx) {
229                 case MM_TSB_BASE:
230                         hp->pgsz_idx = HV_PGSZ_IDX_BASE;
231                         break;
232 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
233                 case MM_TSB_HUGE:
234                         hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
235                         break;
236 #endif
237                 default:
238                         BUG();
239                 }
240                 hp->assoc = 1;
241                 hp->num_ttes = tsb_bytes / 16;
242                 hp->ctx_idx = 0;
243                 switch (tsb_idx) {
244                 case MM_TSB_BASE:
245                         hp->pgsz_mask = HV_PGSZ_MASK_BASE;
246                         break;
247 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
248                 case MM_TSB_HUGE:
249                         hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
250                         break;
251 #endif
252                 default:
253                         BUG();
254                 }
255                 hp->tsb_base = tsb_paddr;
256                 hp->resv = 0;
257         }
258 }
259
260 struct kmem_cache *pgtable_cache __read_mostly;
261
262 static struct kmem_cache *tsb_caches[8] __read_mostly;
263
264 static const char *tsb_cache_names[8] = {
265         "tsb_8KB",
266         "tsb_16KB",
267         "tsb_32KB",
268         "tsb_64KB",
269         "tsb_128KB",
270         "tsb_256KB",
271         "tsb_512KB",
272         "tsb_1MB",
273 };
274
275 void __init pgtable_cache_init(void)
276 {
277         unsigned long i;
278
279         pgtable_cache = kmem_cache_create("pgtable_cache",
280                                           PAGE_SIZE, PAGE_SIZE,
281                                           0,
282                                           _clear_page);
283         if (!pgtable_cache) {
284                 prom_printf("pgtable_cache_init(): Could not create!\n");
285                 prom_halt();
286         }
287
288         for (i = 0; i < ARRAY_SIZE(tsb_cache_names); i++) {
289                 unsigned long size = 8192 << i;
290                 const char *name = tsb_cache_names[i];
291
292                 tsb_caches[i] = kmem_cache_create(name,
293                                                   size, size,
294                                                   0, NULL);
295                 if (!tsb_caches[i]) {
296                         prom_printf("Could not create %s cache\n", name);
297                         prom_halt();
298                 }
299         }
300 }
301
302 int sysctl_tsb_ratio = -2;
303
304 static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
305 {
306         unsigned long num_ents = (new_size / sizeof(struct tsb));
307
308         if (sysctl_tsb_ratio < 0)
309                 return num_ents - (num_ents >> -sysctl_tsb_ratio);
310         else
311                 return num_ents + (num_ents >> sysctl_tsb_ratio);
312 }
313
314 /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
315  * do_sparc64_fault() invokes this routine to try and grow it.
316  *
317  * When we reach the maximum TSB size supported, we stick ~0UL into
318  * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
319  * will not trigger any longer.
320  *
321  * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
322  * of two.  The TSB must be aligned to it's size, so f.e. a 512K TSB
323  * must be 512K aligned.  It also must be physically contiguous, so we
324  * cannot use vmalloc().
325  *
326  * The idea here is to grow the TSB when the RSS of the process approaches
327  * the number of entries that the current TSB can hold at once.  Currently,
328  * we trigger when the RSS hits 3/4 of the TSB capacity.
329  */
330 void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
331 {
332         unsigned long max_tsb_size = 1 * 1024 * 1024;
333         unsigned long new_size, old_size, flags;
334         struct tsb *old_tsb, *new_tsb;
335         unsigned long new_cache_index, old_cache_index;
336         unsigned long new_rss_limit;
337         gfp_t gfp_flags;
338
339         if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
340                 max_tsb_size = (PAGE_SIZE << MAX_ORDER);
341
342         new_cache_index = 0;
343         for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
344                 new_rss_limit = tsb_size_to_rss_limit(new_size);
345                 if (new_rss_limit > rss)
346                         break;
347                 new_cache_index++;
348         }
349
350         if (new_size == max_tsb_size)
351                 new_rss_limit = ~0UL;
352
353 retry_tsb_alloc:
354         gfp_flags = GFP_KERNEL;
355         if (new_size > (PAGE_SIZE * 2))
356                 gfp_flags |= __GFP_NOWARN | __GFP_NORETRY;
357
358         new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
359                                         gfp_flags, numa_node_id());
360         if (unlikely(!new_tsb)) {
361                 /* Not being able to fork due to a high-order TSB
362                  * allocation failure is very bad behavior.  Just back
363                  * down to a 0-order allocation and force no TSB
364                  * growing for this address space.
365                  */
366                 if (mm->context.tsb_block[tsb_index].tsb == NULL &&
367                     new_cache_index > 0) {
368                         new_cache_index = 0;
369                         new_size = 8192;
370                         new_rss_limit = ~0UL;
371                         goto retry_tsb_alloc;
372                 }
373
374                 /* If we failed on a TSB grow, we are under serious
375                  * memory pressure so don't try to grow any more.
376                  */
377                 if (mm->context.tsb_block[tsb_index].tsb != NULL)
378                         mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
379                 return;
380         }
381
382         /* Mark all tags as invalid.  */
383         tsb_init(new_tsb, new_size);
384
385         /* Ok, we are about to commit the changes.  If we are
386          * growing an existing TSB the locking is very tricky,
387          * so WATCH OUT!
388          *
389          * We have to hold mm->context.lock while committing to the
390          * new TSB, this synchronizes us with processors in
391          * flush_tsb_user() and switch_mm() for this address space.
392          *
393          * But even with that lock held, processors run asynchronously
394          * accessing the old TSB via TLB miss handling.  This is OK
395          * because those actions are just propagating state from the
396          * Linux page tables into the TSB, page table mappings are not
397          * being changed.  If a real fault occurs, the processor will
398          * synchronize with us when it hits flush_tsb_user(), this is
399          * also true for the case where vmscan is modifying the page
400          * tables.  The only thing we need to be careful with is to
401          * skip any locked TSB entries during copy_tsb().
402          *
403          * When we finish committing to the new TSB, we have to drop
404          * the lock and ask all other cpus running this address space
405          * to run tsb_context_switch() to see the new TSB table.
406          */
407         spin_lock_irqsave(&mm->context.lock, flags);
408
409         old_tsb = mm->context.tsb_block[tsb_index].tsb;
410         old_cache_index =
411                 (mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
412         old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
413                     sizeof(struct tsb));
414
415
416         /* Handle multiple threads trying to grow the TSB at the same time.
417          * One will get in here first, and bump the size and the RSS limit.
418          * The others will get in here next and hit this check.
419          */
420         if (unlikely(old_tsb &&
421                      (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
422                 spin_unlock_irqrestore(&mm->context.lock, flags);
423
424                 kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
425                 return;
426         }
427
428         mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
429
430         if (old_tsb) {
431                 extern void copy_tsb(unsigned long old_tsb_base,
432                                      unsigned long old_tsb_size,
433                                      unsigned long new_tsb_base,
434                                      unsigned long new_tsb_size);
435                 unsigned long old_tsb_base = (unsigned long) old_tsb;
436                 unsigned long new_tsb_base = (unsigned long) new_tsb;
437
438                 if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
439                         old_tsb_base = __pa(old_tsb_base);
440                         new_tsb_base = __pa(new_tsb_base);
441                 }
442                 copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
443         }
444
445         mm->context.tsb_block[tsb_index].tsb = new_tsb;
446         setup_tsb_params(mm, tsb_index, new_size);
447
448         spin_unlock_irqrestore(&mm->context.lock, flags);
449
450         /* If old_tsb is NULL, we're being invoked for the first time
451          * from init_new_context().
452          */
453         if (old_tsb) {
454                 /* Reload it on the local cpu.  */
455                 tsb_context_switch(mm);
456
457                 /* Now force other processors to do the same.  */
458                 preempt_disable();
459                 smp_tsb_sync(mm);
460                 preempt_enable();
461
462                 /* Now it is safe to free the old tsb.  */
463                 kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
464         }
465 }
466
467 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
468 {
469 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
470         unsigned long huge_pte_count;
471 #endif
472         unsigned int i;
473
474         spin_lock_init(&mm->context.lock);
475
476         mm->context.sparc64_ctx_val = 0UL;
477
478 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
479         /* We reset it to zero because the fork() page copying
480          * will re-increment the counters as the parent PTEs are
481          * copied into the child address space.
482          */
483         huge_pte_count = mm->context.huge_pte_count;
484         mm->context.huge_pte_count = 0;
485 #endif
486
487         /* copy_mm() copies over the parent's mm_struct before calling
488          * us, so we need to zero out the TSB pointer or else tsb_grow()
489          * will be confused and think there is an older TSB to free up.
490          */
491         for (i = 0; i < MM_NUM_TSBS; i++)
492                 mm->context.tsb_block[i].tsb = NULL;
493
494         /* If this is fork, inherit the parent's TSB size.  We would
495          * grow it to that size on the first page fault anyways.
496          */
497         tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
498
499 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
500         if (unlikely(huge_pte_count))
501                 tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
502 #endif
503
504         if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
505                 return -ENOMEM;
506
507         return 0;
508 }
509
510 static void tsb_destroy_one(struct tsb_config *tp)
511 {
512         unsigned long cache_index;
513
514         if (!tp->tsb)
515                 return;
516         cache_index = tp->tsb_reg_val & 0x7UL;
517         kmem_cache_free(tsb_caches[cache_index], tp->tsb);
518         tp->tsb = NULL;
519         tp->tsb_reg_val = 0UL;
520 }
521
522 void destroy_context(struct mm_struct *mm)
523 {
524         unsigned long flags, i;
525
526         for (i = 0; i < MM_NUM_TSBS; i++)
527                 tsb_destroy_one(&mm->context.tsb_block[i]);
528
529         spin_lock_irqsave(&ctx_alloc_lock, flags);
530
531         if (CTX_VALID(mm->context)) {
532                 unsigned long nr = CTX_NRBITS(mm->context);
533                 mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
534         }
535
536         spin_unlock_irqrestore(&ctx_alloc_lock, flags);
537 }