]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/events/core.c
Merge tag 'driver-core-4.13-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / arch / x86 / events / core.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30
31 #include <asm/apic.h>
32 #include <asm/stacktrace.h>
33 #include <asm/nmi.h>
34 #include <asm/smp.h>
35 #include <asm/alternative.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
38 #include <asm/timer.h>
39 #include <asm/desc.h>
40 #include <asm/ldt.h>
41 #include <asm/unwind.h>
42
43 #include "perf_event.h"
44
45 struct x86_pmu x86_pmu __read_mostly;
46
47 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
48         .enabled = 1,
49 };
50
51 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
52
53 u64 __read_mostly hw_cache_event_ids
54                                 [PERF_COUNT_HW_CACHE_MAX]
55                                 [PERF_COUNT_HW_CACHE_OP_MAX]
56                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
57 u64 __read_mostly hw_cache_extra_regs
58                                 [PERF_COUNT_HW_CACHE_MAX]
59                                 [PERF_COUNT_HW_CACHE_OP_MAX]
60                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
61
62 /*
63  * Propagate event elapsed time into the generic event.
64  * Can only be executed on the CPU where the event is active.
65  * Returns the delta events processed.
66  */
67 u64 x86_perf_event_update(struct perf_event *event)
68 {
69         struct hw_perf_event *hwc = &event->hw;
70         int shift = 64 - x86_pmu.cntval_bits;
71         u64 prev_raw_count, new_raw_count;
72         int idx = hwc->idx;
73         u64 delta;
74
75         if (idx == INTEL_PMC_IDX_FIXED_BTS)
76                 return 0;
77
78         /*
79          * Careful: an NMI might modify the previous event value.
80          *
81          * Our tactic to handle this is to first atomically read and
82          * exchange a new raw count - then add that new-prev delta
83          * count to the generic event atomically:
84          */
85 again:
86         prev_raw_count = local64_read(&hwc->prev_count);
87         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
88
89         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
90                                         new_raw_count) != prev_raw_count)
91                 goto again;
92
93         /*
94          * Now we have the new raw value and have updated the prev
95          * timestamp already. We can now calculate the elapsed delta
96          * (event-)time and add that to the generic event.
97          *
98          * Careful, not all hw sign-extends above the physical width
99          * of the count.
100          */
101         delta = (new_raw_count << shift) - (prev_raw_count << shift);
102         delta >>= shift;
103
104         local64_add(delta, &event->count);
105         local64_sub(delta, &hwc->period_left);
106
107         return new_raw_count;
108 }
109
110 /*
111  * Find and validate any extra registers to set up.
112  */
113 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
114 {
115         struct hw_perf_event_extra *reg;
116         struct extra_reg *er;
117
118         reg = &event->hw.extra_reg;
119
120         if (!x86_pmu.extra_regs)
121                 return 0;
122
123         for (er = x86_pmu.extra_regs; er->msr; er++) {
124                 if (er->event != (config & er->config_mask))
125                         continue;
126                 if (event->attr.config1 & ~er->valid_mask)
127                         return -EINVAL;
128                 /* Check if the extra msrs can be safely accessed*/
129                 if (!er->extra_msr_access)
130                         return -ENXIO;
131
132                 reg->idx = er->idx;
133                 reg->config = event->attr.config1;
134                 reg->reg = er->msr;
135                 break;
136         }
137         return 0;
138 }
139
140 static atomic_t active_events;
141 static atomic_t pmc_refcount;
142 static DEFINE_MUTEX(pmc_reserve_mutex);
143
144 #ifdef CONFIG_X86_LOCAL_APIC
145
146 static bool reserve_pmc_hardware(void)
147 {
148         int i;
149
150         for (i = 0; i < x86_pmu.num_counters; i++) {
151                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
152                         goto perfctr_fail;
153         }
154
155         for (i = 0; i < x86_pmu.num_counters; i++) {
156                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
157                         goto eventsel_fail;
158         }
159
160         return true;
161
162 eventsel_fail:
163         for (i--; i >= 0; i--)
164                 release_evntsel_nmi(x86_pmu_config_addr(i));
165
166         i = x86_pmu.num_counters;
167
168 perfctr_fail:
169         for (i--; i >= 0; i--)
170                 release_perfctr_nmi(x86_pmu_event_addr(i));
171
172         return false;
173 }
174
175 static void release_pmc_hardware(void)
176 {
177         int i;
178
179         for (i = 0; i < x86_pmu.num_counters; i++) {
180                 release_perfctr_nmi(x86_pmu_event_addr(i));
181                 release_evntsel_nmi(x86_pmu_config_addr(i));
182         }
183 }
184
185 #else
186
187 static bool reserve_pmc_hardware(void) { return true; }
188 static void release_pmc_hardware(void) {}
189
190 #endif
191
192 static bool check_hw_exists(void)
193 {
194         u64 val, val_fail = -1, val_new= ~0;
195         int i, reg, reg_fail = -1, ret = 0;
196         int bios_fail = 0;
197         int reg_safe = -1;
198
199         /*
200          * Check to see if the BIOS enabled any of the counters, if so
201          * complain and bail.
202          */
203         for (i = 0; i < x86_pmu.num_counters; i++) {
204                 reg = x86_pmu_config_addr(i);
205                 ret = rdmsrl_safe(reg, &val);
206                 if (ret)
207                         goto msr_fail;
208                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
209                         bios_fail = 1;
210                         val_fail = val;
211                         reg_fail = reg;
212                 } else {
213                         reg_safe = i;
214                 }
215         }
216
217         if (x86_pmu.num_counters_fixed) {
218                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
219                 ret = rdmsrl_safe(reg, &val);
220                 if (ret)
221                         goto msr_fail;
222                 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
223                         if (val & (0x03 << i*4)) {
224                                 bios_fail = 1;
225                                 val_fail = val;
226                                 reg_fail = reg;
227                         }
228                 }
229         }
230
231         /*
232          * If all the counters are enabled, the below test will always
233          * fail.  The tools will also become useless in this scenario.
234          * Just fail and disable the hardware counters.
235          */
236
237         if (reg_safe == -1) {
238                 reg = reg_safe;
239                 goto msr_fail;
240         }
241
242         /*
243          * Read the current value, change it and read it back to see if it
244          * matches, this is needed to detect certain hardware emulators
245          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
246          */
247         reg = x86_pmu_event_addr(reg_safe);
248         if (rdmsrl_safe(reg, &val))
249                 goto msr_fail;
250         val ^= 0xffffUL;
251         ret = wrmsrl_safe(reg, val);
252         ret |= rdmsrl_safe(reg, &val_new);
253         if (ret || val != val_new)
254                 goto msr_fail;
255
256         /*
257          * We still allow the PMU driver to operate:
258          */
259         if (bios_fail) {
260                 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
261                 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
262                               reg_fail, val_fail);
263         }
264
265         return true;
266
267 msr_fail:
268         if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
269                 pr_cont("PMU not available due to virtualization, using software events only.\n");
270         } else {
271                 pr_cont("Broken PMU hardware detected, using software events only.\n");
272                 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
273                        reg, val_new);
274         }
275
276         return false;
277 }
278
279 static void hw_perf_event_destroy(struct perf_event *event)
280 {
281         x86_release_hardware();
282         atomic_dec(&active_events);
283 }
284
285 void hw_perf_lbr_event_destroy(struct perf_event *event)
286 {
287         hw_perf_event_destroy(event);
288
289         /* undo the lbr/bts event accounting */
290         x86_del_exclusive(x86_lbr_exclusive_lbr);
291 }
292
293 static inline int x86_pmu_initialized(void)
294 {
295         return x86_pmu.handle_irq != NULL;
296 }
297
298 static inline int
299 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
300 {
301         struct perf_event_attr *attr = &event->attr;
302         unsigned int cache_type, cache_op, cache_result;
303         u64 config, val;
304
305         config = attr->config;
306
307         cache_type = (config >>  0) & 0xff;
308         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
309                 return -EINVAL;
310
311         cache_op = (config >>  8) & 0xff;
312         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
313                 return -EINVAL;
314
315         cache_result = (config >> 16) & 0xff;
316         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
317                 return -EINVAL;
318
319         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
320
321         if (val == 0)
322                 return -ENOENT;
323
324         if (val == -1)
325                 return -EINVAL;
326
327         hwc->config |= val;
328         attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
329         return x86_pmu_extra_regs(val, event);
330 }
331
332 int x86_reserve_hardware(void)
333 {
334         int err = 0;
335
336         if (!atomic_inc_not_zero(&pmc_refcount)) {
337                 mutex_lock(&pmc_reserve_mutex);
338                 if (atomic_read(&pmc_refcount) == 0) {
339                         if (!reserve_pmc_hardware())
340                                 err = -EBUSY;
341                         else
342                                 reserve_ds_buffers();
343                 }
344                 if (!err)
345                         atomic_inc(&pmc_refcount);
346                 mutex_unlock(&pmc_reserve_mutex);
347         }
348
349         return err;
350 }
351
352 void x86_release_hardware(void)
353 {
354         if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
355                 release_pmc_hardware();
356                 release_ds_buffers();
357                 mutex_unlock(&pmc_reserve_mutex);
358         }
359 }
360
361 /*
362  * Check if we can create event of a certain type (that no conflicting events
363  * are present).
364  */
365 int x86_add_exclusive(unsigned int what)
366 {
367         int i;
368
369         /*
370          * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
371          * LBR and BTS are still mutually exclusive.
372          */
373         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
374                 return 0;
375
376         if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
377                 mutex_lock(&pmc_reserve_mutex);
378                 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
379                         if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
380                                 goto fail_unlock;
381                 }
382                 atomic_inc(&x86_pmu.lbr_exclusive[what]);
383                 mutex_unlock(&pmc_reserve_mutex);
384         }
385
386         atomic_inc(&active_events);
387         return 0;
388
389 fail_unlock:
390         mutex_unlock(&pmc_reserve_mutex);
391         return -EBUSY;
392 }
393
394 void x86_del_exclusive(unsigned int what)
395 {
396         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
397                 return;
398
399         atomic_dec(&x86_pmu.lbr_exclusive[what]);
400         atomic_dec(&active_events);
401 }
402
403 int x86_setup_perfctr(struct perf_event *event)
404 {
405         struct perf_event_attr *attr = &event->attr;
406         struct hw_perf_event *hwc = &event->hw;
407         u64 config;
408
409         if (!is_sampling_event(event)) {
410                 hwc->sample_period = x86_pmu.max_period;
411                 hwc->last_period = hwc->sample_period;
412                 local64_set(&hwc->period_left, hwc->sample_period);
413         }
414
415         if (attr->type == PERF_TYPE_RAW)
416                 return x86_pmu_extra_regs(event->attr.config, event);
417
418         if (attr->type == PERF_TYPE_HW_CACHE)
419                 return set_ext_hw_attr(hwc, event);
420
421         if (attr->config >= x86_pmu.max_events)
422                 return -EINVAL;
423
424         /*
425          * The generic map:
426          */
427         config = x86_pmu.event_map(attr->config);
428
429         if (config == 0)
430                 return -ENOENT;
431
432         if (config == -1LL)
433                 return -EINVAL;
434
435         /*
436          * Branch tracing:
437          */
438         if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
439             !attr->freq && hwc->sample_period == 1) {
440                 /* BTS is not supported by this architecture. */
441                 if (!x86_pmu.bts_active)
442                         return -EOPNOTSUPP;
443
444                 /* BTS is currently only allowed for user-mode. */
445                 if (!attr->exclude_kernel)
446                         return -EOPNOTSUPP;
447
448                 /* disallow bts if conflicting events are present */
449                 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
450                         return -EBUSY;
451
452                 event->destroy = hw_perf_lbr_event_destroy;
453         }
454
455         hwc->config |= config;
456
457         return 0;
458 }
459
460 /*
461  * check that branch_sample_type is compatible with
462  * settings needed for precise_ip > 1 which implies
463  * using the LBR to capture ALL taken branches at the
464  * priv levels of the measurement
465  */
466 static inline int precise_br_compat(struct perf_event *event)
467 {
468         u64 m = event->attr.branch_sample_type;
469         u64 b = 0;
470
471         /* must capture all branches */
472         if (!(m & PERF_SAMPLE_BRANCH_ANY))
473                 return 0;
474
475         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
476
477         if (!event->attr.exclude_user)
478                 b |= PERF_SAMPLE_BRANCH_USER;
479
480         if (!event->attr.exclude_kernel)
481                 b |= PERF_SAMPLE_BRANCH_KERNEL;
482
483         /*
484          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
485          */
486
487         return m == b;
488 }
489
490 int x86_pmu_hw_config(struct perf_event *event)
491 {
492         if (event->attr.precise_ip) {
493                 int precise = 0;
494
495                 /* Support for constant skid */
496                 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
497                         precise++;
498
499                         /* Support for IP fixup */
500                         if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
501                                 precise++;
502
503                         if (x86_pmu.pebs_prec_dist)
504                                 precise++;
505                 }
506
507                 if (event->attr.precise_ip > precise)
508                         return -EOPNOTSUPP;
509
510                 /* There's no sense in having PEBS for non sampling events: */
511                 if (!is_sampling_event(event))
512                         return -EINVAL;
513         }
514         /*
515          * check that PEBS LBR correction does not conflict with
516          * whatever the user is asking with attr->branch_sample_type
517          */
518         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
519                 u64 *br_type = &event->attr.branch_sample_type;
520
521                 if (has_branch_stack(event)) {
522                         if (!precise_br_compat(event))
523                                 return -EOPNOTSUPP;
524
525                         /* branch_sample_type is compatible */
526
527                 } else {
528                         /*
529                          * user did not specify  branch_sample_type
530                          *
531                          * For PEBS fixups, we capture all
532                          * the branches at the priv level of the
533                          * event.
534                          */
535                         *br_type = PERF_SAMPLE_BRANCH_ANY;
536
537                         if (!event->attr.exclude_user)
538                                 *br_type |= PERF_SAMPLE_BRANCH_USER;
539
540                         if (!event->attr.exclude_kernel)
541                                 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
542                 }
543         }
544
545         if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
546                 event->attach_state |= PERF_ATTACH_TASK_DATA;
547
548         /*
549          * Generate PMC IRQs:
550          * (keep 'enabled' bit clear for now)
551          */
552         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
553
554         /*
555          * Count user and OS events unless requested not to
556          */
557         if (!event->attr.exclude_user)
558                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
559         if (!event->attr.exclude_kernel)
560                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
561
562         if (event->attr.type == PERF_TYPE_RAW)
563                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
564
565         if (event->attr.sample_period && x86_pmu.limit_period) {
566                 if (x86_pmu.limit_period(event, event->attr.sample_period) >
567                                 event->attr.sample_period)
568                         return -EINVAL;
569         }
570
571         return x86_setup_perfctr(event);
572 }
573
574 /*
575  * Setup the hardware configuration for a given attr_type
576  */
577 static int __x86_pmu_event_init(struct perf_event *event)
578 {
579         int err;
580
581         if (!x86_pmu_initialized())
582                 return -ENODEV;
583
584         err = x86_reserve_hardware();
585         if (err)
586                 return err;
587
588         atomic_inc(&active_events);
589         event->destroy = hw_perf_event_destroy;
590
591         event->hw.idx = -1;
592         event->hw.last_cpu = -1;
593         event->hw.last_tag = ~0ULL;
594
595         /* mark unused */
596         event->hw.extra_reg.idx = EXTRA_REG_NONE;
597         event->hw.branch_reg.idx = EXTRA_REG_NONE;
598
599         return x86_pmu.hw_config(event);
600 }
601
602 void x86_pmu_disable_all(void)
603 {
604         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
605         int idx;
606
607         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
608                 u64 val;
609
610                 if (!test_bit(idx, cpuc->active_mask))
611                         continue;
612                 rdmsrl(x86_pmu_config_addr(idx), val);
613                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
614                         continue;
615                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
616                 wrmsrl(x86_pmu_config_addr(idx), val);
617         }
618 }
619
620 /*
621  * There may be PMI landing after enabled=0. The PMI hitting could be before or
622  * after disable_all.
623  *
624  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
625  * It will not be re-enabled in the NMI handler again, because enabled=0. After
626  * handling the NMI, disable_all will be called, which will not change the
627  * state either. If PMI hits after disable_all, the PMU is already disabled
628  * before entering NMI handler. The NMI handler will not change the state
629  * either.
630  *
631  * So either situation is harmless.
632  */
633 static void x86_pmu_disable(struct pmu *pmu)
634 {
635         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
636
637         if (!x86_pmu_initialized())
638                 return;
639
640         if (!cpuc->enabled)
641                 return;
642
643         cpuc->n_added = 0;
644         cpuc->enabled = 0;
645         barrier();
646
647         x86_pmu.disable_all();
648 }
649
650 void x86_pmu_enable_all(int added)
651 {
652         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
653         int idx;
654
655         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
656                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
657
658                 if (!test_bit(idx, cpuc->active_mask))
659                         continue;
660
661                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
662         }
663 }
664
665 static struct pmu pmu;
666
667 static inline int is_x86_event(struct perf_event *event)
668 {
669         return event->pmu == &pmu;
670 }
671
672 /*
673  * Event scheduler state:
674  *
675  * Assign events iterating over all events and counters, beginning
676  * with events with least weights first. Keep the current iterator
677  * state in struct sched_state.
678  */
679 struct sched_state {
680         int     weight;
681         int     event;          /* event index */
682         int     counter;        /* counter index */
683         int     unassigned;     /* number of events to be assigned left */
684         int     nr_gp;          /* number of GP counters used */
685         unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
686 };
687
688 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
689 #define SCHED_STATES_MAX        2
690
691 struct perf_sched {
692         int                     max_weight;
693         int                     max_events;
694         int                     max_gp;
695         int                     saved_states;
696         struct event_constraint **constraints;
697         struct sched_state      state;
698         struct sched_state      saved[SCHED_STATES_MAX];
699 };
700
701 /*
702  * Initialize interator that runs through all events and counters.
703  */
704 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
705                             int num, int wmin, int wmax, int gpmax)
706 {
707         int idx;
708
709         memset(sched, 0, sizeof(*sched));
710         sched->max_events       = num;
711         sched->max_weight       = wmax;
712         sched->max_gp           = gpmax;
713         sched->constraints      = constraints;
714
715         for (idx = 0; idx < num; idx++) {
716                 if (constraints[idx]->weight == wmin)
717                         break;
718         }
719
720         sched->state.event      = idx;          /* start with min weight */
721         sched->state.weight     = wmin;
722         sched->state.unassigned = num;
723 }
724
725 static void perf_sched_save_state(struct perf_sched *sched)
726 {
727         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
728                 return;
729
730         sched->saved[sched->saved_states] = sched->state;
731         sched->saved_states++;
732 }
733
734 static bool perf_sched_restore_state(struct perf_sched *sched)
735 {
736         if (!sched->saved_states)
737                 return false;
738
739         sched->saved_states--;
740         sched->state = sched->saved[sched->saved_states];
741
742         /* continue with next counter: */
743         clear_bit(sched->state.counter++, sched->state.used);
744
745         return true;
746 }
747
748 /*
749  * Select a counter for the current event to schedule. Return true on
750  * success.
751  */
752 static bool __perf_sched_find_counter(struct perf_sched *sched)
753 {
754         struct event_constraint *c;
755         int idx;
756
757         if (!sched->state.unassigned)
758                 return false;
759
760         if (sched->state.event >= sched->max_events)
761                 return false;
762
763         c = sched->constraints[sched->state.event];
764         /* Prefer fixed purpose counters */
765         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
766                 idx = INTEL_PMC_IDX_FIXED;
767                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
768                         if (!__test_and_set_bit(idx, sched->state.used))
769                                 goto done;
770                 }
771         }
772
773         /* Grab the first unused counter starting with idx */
774         idx = sched->state.counter;
775         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
776                 if (!__test_and_set_bit(idx, sched->state.used)) {
777                         if (sched->state.nr_gp++ >= sched->max_gp)
778                                 return false;
779
780                         goto done;
781                 }
782         }
783
784         return false;
785
786 done:
787         sched->state.counter = idx;
788
789         if (c->overlap)
790                 perf_sched_save_state(sched);
791
792         return true;
793 }
794
795 static bool perf_sched_find_counter(struct perf_sched *sched)
796 {
797         while (!__perf_sched_find_counter(sched)) {
798                 if (!perf_sched_restore_state(sched))
799                         return false;
800         }
801
802         return true;
803 }
804
805 /*
806  * Go through all unassigned events and find the next one to schedule.
807  * Take events with the least weight first. Return true on success.
808  */
809 static bool perf_sched_next_event(struct perf_sched *sched)
810 {
811         struct event_constraint *c;
812
813         if (!sched->state.unassigned || !--sched->state.unassigned)
814                 return false;
815
816         do {
817                 /* next event */
818                 sched->state.event++;
819                 if (sched->state.event >= sched->max_events) {
820                         /* next weight */
821                         sched->state.event = 0;
822                         sched->state.weight++;
823                         if (sched->state.weight > sched->max_weight)
824                                 return false;
825                 }
826                 c = sched->constraints[sched->state.event];
827         } while (c->weight != sched->state.weight);
828
829         sched->state.counter = 0;       /* start with first counter */
830
831         return true;
832 }
833
834 /*
835  * Assign a counter for each event.
836  */
837 int perf_assign_events(struct event_constraint **constraints, int n,
838                         int wmin, int wmax, int gpmax, int *assign)
839 {
840         struct perf_sched sched;
841
842         perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
843
844         do {
845                 if (!perf_sched_find_counter(&sched))
846                         break;  /* failed */
847                 if (assign)
848                         assign[sched.state.event] = sched.state.counter;
849         } while (perf_sched_next_event(&sched));
850
851         return sched.state.unassigned;
852 }
853 EXPORT_SYMBOL_GPL(perf_assign_events);
854
855 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
856 {
857         struct event_constraint *c;
858         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
859         struct perf_event *e;
860         int i, wmin, wmax, unsched = 0;
861         struct hw_perf_event *hwc;
862
863         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
864
865         if (x86_pmu.start_scheduling)
866                 x86_pmu.start_scheduling(cpuc);
867
868         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
869                 cpuc->event_constraint[i] = NULL;
870                 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
871                 cpuc->event_constraint[i] = c;
872
873                 wmin = min(wmin, c->weight);
874                 wmax = max(wmax, c->weight);
875         }
876
877         /*
878          * fastpath, try to reuse previous register
879          */
880         for (i = 0; i < n; i++) {
881                 hwc = &cpuc->event_list[i]->hw;
882                 c = cpuc->event_constraint[i];
883
884                 /* never assigned */
885                 if (hwc->idx == -1)
886                         break;
887
888                 /* constraint still honored */
889                 if (!test_bit(hwc->idx, c->idxmsk))
890                         break;
891
892                 /* not already used */
893                 if (test_bit(hwc->idx, used_mask))
894                         break;
895
896                 __set_bit(hwc->idx, used_mask);
897                 if (assign)
898                         assign[i] = hwc->idx;
899         }
900
901         /* slow path */
902         if (i != n) {
903                 int gpmax = x86_pmu.num_counters;
904
905                 /*
906                  * Do not allow scheduling of more than half the available
907                  * generic counters.
908                  *
909                  * This helps avoid counter starvation of sibling thread by
910                  * ensuring at most half the counters cannot be in exclusive
911                  * mode. There is no designated counters for the limits. Any
912                  * N/2 counters can be used. This helps with events with
913                  * specific counter constraints.
914                  */
915                 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
916                     READ_ONCE(cpuc->excl_cntrs->exclusive_present))
917                         gpmax /= 2;
918
919                 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
920                                              wmax, gpmax, assign);
921         }
922
923         /*
924          * In case of success (unsched = 0), mark events as committed,
925          * so we do not put_constraint() in case new events are added
926          * and fail to be scheduled
927          *
928          * We invoke the lower level commit callback to lock the resource
929          *
930          * We do not need to do all of this in case we are called to
931          * validate an event group (assign == NULL)
932          */
933         if (!unsched && assign) {
934                 for (i = 0; i < n; i++) {
935                         e = cpuc->event_list[i];
936                         e->hw.flags |= PERF_X86_EVENT_COMMITTED;
937                         if (x86_pmu.commit_scheduling)
938                                 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
939                 }
940         } else {
941                 for (i = 0; i < n; i++) {
942                         e = cpuc->event_list[i];
943                         /*
944                          * do not put_constraint() on comitted events,
945                          * because they are good to go
946                          */
947                         if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
948                                 continue;
949
950                         /*
951                          * release events that failed scheduling
952                          */
953                         if (x86_pmu.put_event_constraints)
954                                 x86_pmu.put_event_constraints(cpuc, e);
955                 }
956         }
957
958         if (x86_pmu.stop_scheduling)
959                 x86_pmu.stop_scheduling(cpuc);
960
961         return unsched ? -EINVAL : 0;
962 }
963
964 /*
965  * dogrp: true if must collect siblings events (group)
966  * returns total number of events and error code
967  */
968 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
969 {
970         struct perf_event *event;
971         int n, max_count;
972
973         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
974
975         /* current number of events already accepted */
976         n = cpuc->n_events;
977
978         if (is_x86_event(leader)) {
979                 if (n >= max_count)
980                         return -EINVAL;
981                 cpuc->event_list[n] = leader;
982                 n++;
983         }
984         if (!dogrp)
985                 return n;
986
987         list_for_each_entry(event, &leader->sibling_list, group_entry) {
988                 if (!is_x86_event(event) ||
989                     event->state <= PERF_EVENT_STATE_OFF)
990                         continue;
991
992                 if (n >= max_count)
993                         return -EINVAL;
994
995                 cpuc->event_list[n] = event;
996                 n++;
997         }
998         return n;
999 }
1000
1001 static inline void x86_assign_hw_event(struct perf_event *event,
1002                                 struct cpu_hw_events *cpuc, int i)
1003 {
1004         struct hw_perf_event *hwc = &event->hw;
1005
1006         hwc->idx = cpuc->assign[i];
1007         hwc->last_cpu = smp_processor_id();
1008         hwc->last_tag = ++cpuc->tags[i];
1009
1010         if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1011                 hwc->config_base = 0;
1012                 hwc->event_base = 0;
1013         } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1014                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1015                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1016                 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1017         } else {
1018                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1019                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1020                 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1021         }
1022 }
1023
1024 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1025                                         struct cpu_hw_events *cpuc,
1026                                         int i)
1027 {
1028         return hwc->idx == cpuc->assign[i] &&
1029                 hwc->last_cpu == smp_processor_id() &&
1030                 hwc->last_tag == cpuc->tags[i];
1031 }
1032
1033 static void x86_pmu_start(struct perf_event *event, int flags);
1034
1035 static void x86_pmu_enable(struct pmu *pmu)
1036 {
1037         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1038         struct perf_event *event;
1039         struct hw_perf_event *hwc;
1040         int i, added = cpuc->n_added;
1041
1042         if (!x86_pmu_initialized())
1043                 return;
1044
1045         if (cpuc->enabled)
1046                 return;
1047
1048         if (cpuc->n_added) {
1049                 int n_running = cpuc->n_events - cpuc->n_added;
1050                 /*
1051                  * apply assignment obtained either from
1052                  * hw_perf_group_sched_in() or x86_pmu_enable()
1053                  *
1054                  * step1: save events moving to new counters
1055                  */
1056                 for (i = 0; i < n_running; i++) {
1057                         event = cpuc->event_list[i];
1058                         hwc = &event->hw;
1059
1060                         /*
1061                          * we can avoid reprogramming counter if:
1062                          * - assigned same counter as last time
1063                          * - running on same CPU as last time
1064                          * - no other event has used the counter since
1065                          */
1066                         if (hwc->idx == -1 ||
1067                             match_prev_assignment(hwc, cpuc, i))
1068                                 continue;
1069
1070                         /*
1071                          * Ensure we don't accidentally enable a stopped
1072                          * counter simply because we rescheduled.
1073                          */
1074                         if (hwc->state & PERF_HES_STOPPED)
1075                                 hwc->state |= PERF_HES_ARCH;
1076
1077                         x86_pmu_stop(event, PERF_EF_UPDATE);
1078                 }
1079
1080                 /*
1081                  * step2: reprogram moved events into new counters
1082                  */
1083                 for (i = 0; i < cpuc->n_events; i++) {
1084                         event = cpuc->event_list[i];
1085                         hwc = &event->hw;
1086
1087                         if (!match_prev_assignment(hwc, cpuc, i))
1088                                 x86_assign_hw_event(event, cpuc, i);
1089                         else if (i < n_running)
1090                                 continue;
1091
1092                         if (hwc->state & PERF_HES_ARCH)
1093                                 continue;
1094
1095                         x86_pmu_start(event, PERF_EF_RELOAD);
1096                 }
1097                 cpuc->n_added = 0;
1098                 perf_events_lapic_init();
1099         }
1100
1101         cpuc->enabled = 1;
1102         barrier();
1103
1104         x86_pmu.enable_all(added);
1105 }
1106
1107 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1108
1109 /*
1110  * Set the next IRQ period, based on the hwc->period_left value.
1111  * To be called with the event disabled in hw:
1112  */
1113 int x86_perf_event_set_period(struct perf_event *event)
1114 {
1115         struct hw_perf_event *hwc = &event->hw;
1116         s64 left = local64_read(&hwc->period_left);
1117         s64 period = hwc->sample_period;
1118         int ret = 0, idx = hwc->idx;
1119
1120         if (idx == INTEL_PMC_IDX_FIXED_BTS)
1121                 return 0;
1122
1123         /*
1124          * If we are way outside a reasonable range then just skip forward:
1125          */
1126         if (unlikely(left <= -period)) {
1127                 left = period;
1128                 local64_set(&hwc->period_left, left);
1129                 hwc->last_period = period;
1130                 ret = 1;
1131         }
1132
1133         if (unlikely(left <= 0)) {
1134                 left += period;
1135                 local64_set(&hwc->period_left, left);
1136                 hwc->last_period = period;
1137                 ret = 1;
1138         }
1139         /*
1140          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1141          */
1142         if (unlikely(left < 2))
1143                 left = 2;
1144
1145         if (left > x86_pmu.max_period)
1146                 left = x86_pmu.max_period;
1147
1148         if (x86_pmu.limit_period)
1149                 left = x86_pmu.limit_period(event, left);
1150
1151         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1152
1153         if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1154             local64_read(&hwc->prev_count) != (u64)-left) {
1155                 /*
1156                  * The hw event starts counting from this event offset,
1157                  * mark it to be able to extra future deltas:
1158                  */
1159                 local64_set(&hwc->prev_count, (u64)-left);
1160
1161                 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1162         }
1163
1164         /*
1165          * Due to erratum on certan cpu we need
1166          * a second write to be sure the register
1167          * is updated properly
1168          */
1169         if (x86_pmu.perfctr_second_write) {
1170                 wrmsrl(hwc->event_base,
1171                         (u64)(-left) & x86_pmu.cntval_mask);
1172         }
1173
1174         perf_event_update_userpage(event);
1175
1176         return ret;
1177 }
1178
1179 void x86_pmu_enable_event(struct perf_event *event)
1180 {
1181         if (__this_cpu_read(cpu_hw_events.enabled))
1182                 __x86_pmu_enable_event(&event->hw,
1183                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1184 }
1185
1186 /*
1187  * Add a single event to the PMU.
1188  *
1189  * The event is added to the group of enabled events
1190  * but only if it can be scehduled with existing events.
1191  */
1192 static int x86_pmu_add(struct perf_event *event, int flags)
1193 {
1194         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1195         struct hw_perf_event *hwc;
1196         int assign[X86_PMC_IDX_MAX];
1197         int n, n0, ret;
1198
1199         hwc = &event->hw;
1200
1201         n0 = cpuc->n_events;
1202         ret = n = collect_events(cpuc, event, false);
1203         if (ret < 0)
1204                 goto out;
1205
1206         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1207         if (!(flags & PERF_EF_START))
1208                 hwc->state |= PERF_HES_ARCH;
1209
1210         /*
1211          * If group events scheduling transaction was started,
1212          * skip the schedulability test here, it will be performed
1213          * at commit time (->commit_txn) as a whole.
1214          *
1215          * If commit fails, we'll call ->del() on all events
1216          * for which ->add() was called.
1217          */
1218         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1219                 goto done_collect;
1220
1221         ret = x86_pmu.schedule_events(cpuc, n, assign);
1222         if (ret)
1223                 goto out;
1224         /*
1225          * copy new assignment, now we know it is possible
1226          * will be used by hw_perf_enable()
1227          */
1228         memcpy(cpuc->assign, assign, n*sizeof(int));
1229
1230 done_collect:
1231         /*
1232          * Commit the collect_events() state. See x86_pmu_del() and
1233          * x86_pmu_*_txn().
1234          */
1235         cpuc->n_events = n;
1236         cpuc->n_added += n - n0;
1237         cpuc->n_txn += n - n0;
1238
1239         if (x86_pmu.add) {
1240                 /*
1241                  * This is before x86_pmu_enable() will call x86_pmu_start(),
1242                  * so we enable LBRs before an event needs them etc..
1243                  */
1244                 x86_pmu.add(event);
1245         }
1246
1247         ret = 0;
1248 out:
1249         return ret;
1250 }
1251
1252 static void x86_pmu_start(struct perf_event *event, int flags)
1253 {
1254         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1255         int idx = event->hw.idx;
1256
1257         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1258                 return;
1259
1260         if (WARN_ON_ONCE(idx == -1))
1261                 return;
1262
1263         if (flags & PERF_EF_RELOAD) {
1264                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1265                 x86_perf_event_set_period(event);
1266         }
1267
1268         event->hw.state = 0;
1269
1270         cpuc->events[idx] = event;
1271         __set_bit(idx, cpuc->active_mask);
1272         __set_bit(idx, cpuc->running);
1273         x86_pmu.enable(event);
1274         perf_event_update_userpage(event);
1275 }
1276
1277 void perf_event_print_debug(void)
1278 {
1279         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1280         u64 pebs, debugctl;
1281         struct cpu_hw_events *cpuc;
1282         unsigned long flags;
1283         int cpu, idx;
1284
1285         if (!x86_pmu.num_counters)
1286                 return;
1287
1288         local_irq_save(flags);
1289
1290         cpu = smp_processor_id();
1291         cpuc = &per_cpu(cpu_hw_events, cpu);
1292
1293         if (x86_pmu.version >= 2) {
1294                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1295                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1296                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1297                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1298
1299                 pr_info("\n");
1300                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1301                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1302                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1303                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1304                 if (x86_pmu.pebs_constraints) {
1305                         rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1306                         pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1307                 }
1308                 if (x86_pmu.lbr_nr) {
1309                         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1310                         pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1311                 }
1312         }
1313         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1314
1315         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1316                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1317                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1318
1319                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1320
1321                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1322                         cpu, idx, pmc_ctrl);
1323                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1324                         cpu, idx, pmc_count);
1325                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1326                         cpu, idx, prev_left);
1327         }
1328         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1329                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1330
1331                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1332                         cpu, idx, pmc_count);
1333         }
1334         local_irq_restore(flags);
1335 }
1336
1337 void x86_pmu_stop(struct perf_event *event, int flags)
1338 {
1339         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1340         struct hw_perf_event *hwc = &event->hw;
1341
1342         if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1343                 x86_pmu.disable(event);
1344                 cpuc->events[hwc->idx] = NULL;
1345                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1346                 hwc->state |= PERF_HES_STOPPED;
1347         }
1348
1349         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1350                 /*
1351                  * Drain the remaining delta count out of a event
1352                  * that we are disabling:
1353                  */
1354                 x86_perf_event_update(event);
1355                 hwc->state |= PERF_HES_UPTODATE;
1356         }
1357 }
1358
1359 static void x86_pmu_del(struct perf_event *event, int flags)
1360 {
1361         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1362         int i;
1363
1364         /*
1365          * event is descheduled
1366          */
1367         event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1368
1369         /*
1370          * If we're called during a txn, we only need to undo x86_pmu.add.
1371          * The events never got scheduled and ->cancel_txn will truncate
1372          * the event_list.
1373          *
1374          * XXX assumes any ->del() called during a TXN will only be on
1375          * an event added during that same TXN.
1376          */
1377         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1378                 goto do_del;
1379
1380         /*
1381          * Not a TXN, therefore cleanup properly.
1382          */
1383         x86_pmu_stop(event, PERF_EF_UPDATE);
1384
1385         for (i = 0; i < cpuc->n_events; i++) {
1386                 if (event == cpuc->event_list[i])
1387                         break;
1388         }
1389
1390         if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1391                 return;
1392
1393         /* If we have a newly added event; make sure to decrease n_added. */
1394         if (i >= cpuc->n_events - cpuc->n_added)
1395                 --cpuc->n_added;
1396
1397         if (x86_pmu.put_event_constraints)
1398                 x86_pmu.put_event_constraints(cpuc, event);
1399
1400         /* Delete the array entry. */
1401         while (++i < cpuc->n_events) {
1402                 cpuc->event_list[i-1] = cpuc->event_list[i];
1403                 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1404         }
1405         --cpuc->n_events;
1406
1407         perf_event_update_userpage(event);
1408
1409 do_del:
1410         if (x86_pmu.del) {
1411                 /*
1412                  * This is after x86_pmu_stop(); so we disable LBRs after any
1413                  * event can need them etc..
1414                  */
1415                 x86_pmu.del(event);
1416         }
1417 }
1418
1419 int x86_pmu_handle_irq(struct pt_regs *regs)
1420 {
1421         struct perf_sample_data data;
1422         struct cpu_hw_events *cpuc;
1423         struct perf_event *event;
1424         int idx, handled = 0;
1425         u64 val;
1426
1427         cpuc = this_cpu_ptr(&cpu_hw_events);
1428
1429         /*
1430          * Some chipsets need to unmask the LVTPC in a particular spot
1431          * inside the nmi handler.  As a result, the unmasking was pushed
1432          * into all the nmi handlers.
1433          *
1434          * This generic handler doesn't seem to have any issues where the
1435          * unmasking occurs so it was left at the top.
1436          */
1437         apic_write(APIC_LVTPC, APIC_DM_NMI);
1438
1439         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1440                 if (!test_bit(idx, cpuc->active_mask)) {
1441                         /*
1442                          * Though we deactivated the counter some cpus
1443                          * might still deliver spurious interrupts still
1444                          * in flight. Catch them:
1445                          */
1446                         if (__test_and_clear_bit(idx, cpuc->running))
1447                                 handled++;
1448                         continue;
1449                 }
1450
1451                 event = cpuc->events[idx];
1452
1453                 val = x86_perf_event_update(event);
1454                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1455                         continue;
1456
1457                 /*
1458                  * event overflow
1459                  */
1460                 handled++;
1461                 perf_sample_data_init(&data, 0, event->hw.last_period);
1462
1463                 if (!x86_perf_event_set_period(event))
1464                         continue;
1465
1466                 if (perf_event_overflow(event, &data, regs))
1467                         x86_pmu_stop(event, 0);
1468         }
1469
1470         if (handled)
1471                 inc_irq_stat(apic_perf_irqs);
1472
1473         return handled;
1474 }
1475
1476 void perf_events_lapic_init(void)
1477 {
1478         if (!x86_pmu.apic || !x86_pmu_initialized())
1479                 return;
1480
1481         /*
1482          * Always use NMI for PMU
1483          */
1484         apic_write(APIC_LVTPC, APIC_DM_NMI);
1485 }
1486
1487 static int
1488 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1489 {
1490         u64 start_clock;
1491         u64 finish_clock;
1492         int ret;
1493
1494         /*
1495          * All PMUs/events that share this PMI handler should make sure to
1496          * increment active_events for their events.
1497          */
1498         if (!atomic_read(&active_events))
1499                 return NMI_DONE;
1500
1501         start_clock = sched_clock();
1502         ret = x86_pmu.handle_irq(regs);
1503         finish_clock = sched_clock();
1504
1505         perf_sample_event_took(finish_clock - start_clock);
1506
1507         return ret;
1508 }
1509 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1510
1511 struct event_constraint emptyconstraint;
1512 struct event_constraint unconstrained;
1513
1514 static int x86_pmu_prepare_cpu(unsigned int cpu)
1515 {
1516         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1517         int i;
1518
1519         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1520                 cpuc->kfree_on_online[i] = NULL;
1521         if (x86_pmu.cpu_prepare)
1522                 return x86_pmu.cpu_prepare(cpu);
1523         return 0;
1524 }
1525
1526 static int x86_pmu_dead_cpu(unsigned int cpu)
1527 {
1528         if (x86_pmu.cpu_dead)
1529                 x86_pmu.cpu_dead(cpu);
1530         return 0;
1531 }
1532
1533 static int x86_pmu_online_cpu(unsigned int cpu)
1534 {
1535         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1536         int i;
1537
1538         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1539                 kfree(cpuc->kfree_on_online[i]);
1540                 cpuc->kfree_on_online[i] = NULL;
1541         }
1542         return 0;
1543 }
1544
1545 static int x86_pmu_starting_cpu(unsigned int cpu)
1546 {
1547         if (x86_pmu.cpu_starting)
1548                 x86_pmu.cpu_starting(cpu);
1549         return 0;
1550 }
1551
1552 static int x86_pmu_dying_cpu(unsigned int cpu)
1553 {
1554         if (x86_pmu.cpu_dying)
1555                 x86_pmu.cpu_dying(cpu);
1556         return 0;
1557 }
1558
1559 static void __init pmu_check_apic(void)
1560 {
1561         if (boot_cpu_has(X86_FEATURE_APIC))
1562                 return;
1563
1564         x86_pmu.apic = 0;
1565         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1566         pr_info("no hardware sampling interrupt available.\n");
1567
1568         /*
1569          * If we have a PMU initialized but no APIC
1570          * interrupts, we cannot sample hardware
1571          * events (user-space has to fall back and
1572          * sample via a hrtimer based software event):
1573          */
1574         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1575
1576 }
1577
1578 static struct attribute_group x86_pmu_format_group = {
1579         .name = "format",
1580         .attrs = NULL,
1581 };
1582
1583 /*
1584  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1585  * out of events_attr attributes.
1586  */
1587 static void __init filter_events(struct attribute **attrs)
1588 {
1589         struct device_attribute *d;
1590         struct perf_pmu_events_attr *pmu_attr;
1591         int offset = 0;
1592         int i, j;
1593
1594         for (i = 0; attrs[i]; i++) {
1595                 d = (struct device_attribute *)attrs[i];
1596                 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1597                 /* str trumps id */
1598                 if (pmu_attr->event_str)
1599                         continue;
1600                 if (x86_pmu.event_map(i + offset))
1601                         continue;
1602
1603                 for (j = i; attrs[j]; j++)
1604                         attrs[j] = attrs[j + 1];
1605
1606                 /* Check the shifted attr. */
1607                 i--;
1608
1609                 /*
1610                  * event_map() is index based, the attrs array is organized
1611                  * by increasing event index. If we shift the events, then
1612                  * we need to compensate for the event_map(), otherwise
1613                  * we are looking up the wrong event in the map
1614                  */
1615                 offset++;
1616         }
1617 }
1618
1619 /* Merge two pointer arrays */
1620 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1621 {
1622         struct attribute **new;
1623         int j, i;
1624
1625         for (j = 0; a[j]; j++)
1626                 ;
1627         for (i = 0; b[i]; i++)
1628                 j++;
1629         j++;
1630
1631         new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1632         if (!new)
1633                 return NULL;
1634
1635         j = 0;
1636         for (i = 0; a[i]; i++)
1637                 new[j++] = a[i];
1638         for (i = 0; b[i]; i++)
1639                 new[j++] = b[i];
1640         new[j] = NULL;
1641
1642         return new;
1643 }
1644
1645 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1646 {
1647         struct perf_pmu_events_attr *pmu_attr = \
1648                 container_of(attr, struct perf_pmu_events_attr, attr);
1649         u64 config = x86_pmu.event_map(pmu_attr->id);
1650
1651         /* string trumps id */
1652         if (pmu_attr->event_str)
1653                 return sprintf(page, "%s", pmu_attr->event_str);
1654
1655         return x86_pmu.events_sysfs_show(page, config);
1656 }
1657 EXPORT_SYMBOL_GPL(events_sysfs_show);
1658
1659 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1660                           char *page)
1661 {
1662         struct perf_pmu_events_ht_attr *pmu_attr =
1663                 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1664
1665         /*
1666          * Report conditional events depending on Hyper-Threading.
1667          *
1668          * This is overly conservative as usually the HT special
1669          * handling is not needed if the other CPU thread is idle.
1670          *
1671          * Note this does not (and cannot) handle the case when thread
1672          * siblings are invisible, for example with virtualization
1673          * if they are owned by some other guest.  The user tool
1674          * has to re-read when a thread sibling gets onlined later.
1675          */
1676         return sprintf(page, "%s",
1677                         topology_max_smt_threads() > 1 ?
1678                         pmu_attr->event_str_ht :
1679                         pmu_attr->event_str_noht);
1680 }
1681
1682 EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1683 EVENT_ATTR(instructions,                INSTRUCTIONS            );
1684 EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1685 EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1686 EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1687 EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1688 EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1689 EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1690 EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1691 EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1692
1693 static struct attribute *empty_attrs;
1694
1695 static struct attribute *events_attr[] = {
1696         EVENT_PTR(CPU_CYCLES),
1697         EVENT_PTR(INSTRUCTIONS),
1698         EVENT_PTR(CACHE_REFERENCES),
1699         EVENT_PTR(CACHE_MISSES),
1700         EVENT_PTR(BRANCH_INSTRUCTIONS),
1701         EVENT_PTR(BRANCH_MISSES),
1702         EVENT_PTR(BUS_CYCLES),
1703         EVENT_PTR(STALLED_CYCLES_FRONTEND),
1704         EVENT_PTR(STALLED_CYCLES_BACKEND),
1705         EVENT_PTR(REF_CPU_CYCLES),
1706         NULL,
1707 };
1708
1709 static struct attribute_group x86_pmu_events_group = {
1710         .name = "events",
1711         .attrs = events_attr,
1712 };
1713
1714 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1715 {
1716         u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1717         u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1718         bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1719         bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1720         bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1721         bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1722         ssize_t ret;
1723
1724         /*
1725         * We have whole page size to spend and just little data
1726         * to write, so we can safely use sprintf.
1727         */
1728         ret = sprintf(page, "event=0x%02llx", event);
1729
1730         if (umask)
1731                 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1732
1733         if (edge)
1734                 ret += sprintf(page + ret, ",edge");
1735
1736         if (pc)
1737                 ret += sprintf(page + ret, ",pc");
1738
1739         if (any)
1740                 ret += sprintf(page + ret, ",any");
1741
1742         if (inv)
1743                 ret += sprintf(page + ret, ",inv");
1744
1745         if (cmask)
1746                 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1747
1748         ret += sprintf(page + ret, "\n");
1749
1750         return ret;
1751 }
1752
1753 static struct attribute_group x86_pmu_attr_group;
1754
1755 static int __init init_hw_perf_events(void)
1756 {
1757         struct x86_pmu_quirk *quirk;
1758         int err;
1759
1760         pr_info("Performance Events: ");
1761
1762         switch (boot_cpu_data.x86_vendor) {
1763         case X86_VENDOR_INTEL:
1764                 err = intel_pmu_init();
1765                 break;
1766         case X86_VENDOR_AMD:
1767                 err = amd_pmu_init();
1768                 break;
1769         default:
1770                 err = -ENOTSUPP;
1771         }
1772         if (err != 0) {
1773                 pr_cont("no PMU driver, software events only.\n");
1774                 return 0;
1775         }
1776
1777         pmu_check_apic();
1778
1779         /* sanity check that the hardware exists or is emulated */
1780         if (!check_hw_exists())
1781                 return 0;
1782
1783         pr_cont("%s PMU driver.\n", x86_pmu.name);
1784
1785         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1786
1787         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1788                 quirk->func();
1789
1790         if (!x86_pmu.intel_ctrl)
1791                 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1792
1793         perf_events_lapic_init();
1794         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1795
1796         unconstrained = (struct event_constraint)
1797                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1798                                    0, x86_pmu.num_counters, 0, 0);
1799
1800         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1801
1802         if (x86_pmu.event_attrs)
1803                 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1804
1805         if (!x86_pmu.events_sysfs_show)
1806                 x86_pmu_events_group.attrs = &empty_attrs;
1807         else
1808                 filter_events(x86_pmu_events_group.attrs);
1809
1810         if (x86_pmu.cpu_events) {
1811                 struct attribute **tmp;
1812
1813                 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1814                 if (!WARN_ON(!tmp))
1815                         x86_pmu_events_group.attrs = tmp;
1816         }
1817
1818         if (x86_pmu.attrs) {
1819                 struct attribute **tmp;
1820
1821                 tmp = merge_attr(x86_pmu_attr_group.attrs, x86_pmu.attrs);
1822                 if (!WARN_ON(!tmp))
1823                         x86_pmu_attr_group.attrs = tmp;
1824         }
1825
1826         pr_info("... version:                %d\n",     x86_pmu.version);
1827         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1828         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1829         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1830         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1831         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1832         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1833
1834         /*
1835          * Install callbacks. Core will call them for each online
1836          * cpu.
1837          */
1838         err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1839                                 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1840         if (err)
1841                 return err;
1842
1843         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1844                                 "perf/x86:starting", x86_pmu_starting_cpu,
1845                                 x86_pmu_dying_cpu);
1846         if (err)
1847                 goto out;
1848
1849         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1850                                 x86_pmu_online_cpu, NULL);
1851         if (err)
1852                 goto out1;
1853
1854         err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1855         if (err)
1856                 goto out2;
1857
1858         return 0;
1859
1860 out2:
1861         cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1862 out1:
1863         cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1864 out:
1865         cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1866         return err;
1867 }
1868 early_initcall(init_hw_perf_events);
1869
1870 static inline void x86_pmu_read(struct perf_event *event)
1871 {
1872         x86_perf_event_update(event);
1873 }
1874
1875 /*
1876  * Start group events scheduling transaction
1877  * Set the flag to make pmu::enable() not perform the
1878  * schedulability test, it will be performed at commit time
1879  *
1880  * We only support PERF_PMU_TXN_ADD transactions. Save the
1881  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1882  * transactions.
1883  */
1884 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1885 {
1886         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1887
1888         WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
1889
1890         cpuc->txn_flags = txn_flags;
1891         if (txn_flags & ~PERF_PMU_TXN_ADD)
1892                 return;
1893
1894         perf_pmu_disable(pmu);
1895         __this_cpu_write(cpu_hw_events.n_txn, 0);
1896 }
1897
1898 /*
1899  * Stop group events scheduling transaction
1900  * Clear the flag and pmu::enable() will perform the
1901  * schedulability test.
1902  */
1903 static void x86_pmu_cancel_txn(struct pmu *pmu)
1904 {
1905         unsigned int txn_flags;
1906         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1907
1908         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1909
1910         txn_flags = cpuc->txn_flags;
1911         cpuc->txn_flags = 0;
1912         if (txn_flags & ~PERF_PMU_TXN_ADD)
1913                 return;
1914
1915         /*
1916          * Truncate collected array by the number of events added in this
1917          * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1918          */
1919         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1920         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1921         perf_pmu_enable(pmu);
1922 }
1923
1924 /*
1925  * Commit group events scheduling transaction
1926  * Perform the group schedulability test as a whole
1927  * Return 0 if success
1928  *
1929  * Does not cancel the transaction on failure; expects the caller to do this.
1930  */
1931 static int x86_pmu_commit_txn(struct pmu *pmu)
1932 {
1933         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1934         int assign[X86_PMC_IDX_MAX];
1935         int n, ret;
1936
1937         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1938
1939         if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1940                 cpuc->txn_flags = 0;
1941                 return 0;
1942         }
1943
1944         n = cpuc->n_events;
1945
1946         if (!x86_pmu_initialized())
1947                 return -EAGAIN;
1948
1949         ret = x86_pmu.schedule_events(cpuc, n, assign);
1950         if (ret)
1951                 return ret;
1952
1953         /*
1954          * copy new assignment, now we know it is possible
1955          * will be used by hw_perf_enable()
1956          */
1957         memcpy(cpuc->assign, assign, n*sizeof(int));
1958
1959         cpuc->txn_flags = 0;
1960         perf_pmu_enable(pmu);
1961         return 0;
1962 }
1963 /*
1964  * a fake_cpuc is used to validate event groups. Due to
1965  * the extra reg logic, we need to also allocate a fake
1966  * per_core and per_cpu structure. Otherwise, group events
1967  * using extra reg may conflict without the kernel being
1968  * able to catch this when the last event gets added to
1969  * the group.
1970  */
1971 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1972 {
1973         kfree(cpuc->shared_regs);
1974         kfree(cpuc);
1975 }
1976
1977 static struct cpu_hw_events *allocate_fake_cpuc(void)
1978 {
1979         struct cpu_hw_events *cpuc;
1980         int cpu = raw_smp_processor_id();
1981
1982         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1983         if (!cpuc)
1984                 return ERR_PTR(-ENOMEM);
1985
1986         /* only needed, if we have extra_regs */
1987         if (x86_pmu.extra_regs) {
1988                 cpuc->shared_regs = allocate_shared_regs(cpu);
1989                 if (!cpuc->shared_regs)
1990                         goto error;
1991         }
1992         cpuc->is_fake = 1;
1993         return cpuc;
1994 error:
1995         free_fake_cpuc(cpuc);
1996         return ERR_PTR(-ENOMEM);
1997 }
1998
1999 /*
2000  * validate that we can schedule this event
2001  */
2002 static int validate_event(struct perf_event *event)
2003 {
2004         struct cpu_hw_events *fake_cpuc;
2005         struct event_constraint *c;
2006         int ret = 0;
2007
2008         fake_cpuc = allocate_fake_cpuc();
2009         if (IS_ERR(fake_cpuc))
2010                 return PTR_ERR(fake_cpuc);
2011
2012         c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
2013
2014         if (!c || !c->weight)
2015                 ret = -EINVAL;
2016
2017         if (x86_pmu.put_event_constraints)
2018                 x86_pmu.put_event_constraints(fake_cpuc, event);
2019
2020         free_fake_cpuc(fake_cpuc);
2021
2022         return ret;
2023 }
2024
2025 /*
2026  * validate a single event group
2027  *
2028  * validation include:
2029  *      - check events are compatible which each other
2030  *      - events do not compete for the same counter
2031  *      - number of events <= number of counters
2032  *
2033  * validation ensures the group can be loaded onto the
2034  * PMU if it was the only group available.
2035  */
2036 static int validate_group(struct perf_event *event)
2037 {
2038         struct perf_event *leader = event->group_leader;
2039         struct cpu_hw_events *fake_cpuc;
2040         int ret = -EINVAL, n;
2041
2042         fake_cpuc = allocate_fake_cpuc();
2043         if (IS_ERR(fake_cpuc))
2044                 return PTR_ERR(fake_cpuc);
2045         /*
2046          * the event is not yet connected with its
2047          * siblings therefore we must first collect
2048          * existing siblings, then add the new event
2049          * before we can simulate the scheduling
2050          */
2051         n = collect_events(fake_cpuc, leader, true);
2052         if (n < 0)
2053                 goto out;
2054
2055         fake_cpuc->n_events = n;
2056         n = collect_events(fake_cpuc, event, false);
2057         if (n < 0)
2058                 goto out;
2059
2060         fake_cpuc->n_events = n;
2061
2062         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2063
2064 out:
2065         free_fake_cpuc(fake_cpuc);
2066         return ret;
2067 }
2068
2069 static int x86_pmu_event_init(struct perf_event *event)
2070 {
2071         struct pmu *tmp;
2072         int err;
2073
2074         switch (event->attr.type) {
2075         case PERF_TYPE_RAW:
2076         case PERF_TYPE_HARDWARE:
2077         case PERF_TYPE_HW_CACHE:
2078                 break;
2079
2080         default:
2081                 return -ENOENT;
2082         }
2083
2084         err = __x86_pmu_event_init(event);
2085         if (!err) {
2086                 /*
2087                  * we temporarily connect event to its pmu
2088                  * such that validate_group() can classify
2089                  * it as an x86 event using is_x86_event()
2090                  */
2091                 tmp = event->pmu;
2092                 event->pmu = &pmu;
2093
2094                 if (event->group_leader != event)
2095                         err = validate_group(event);
2096                 else
2097                         err = validate_event(event);
2098
2099                 event->pmu = tmp;
2100         }
2101         if (err) {
2102                 if (event->destroy)
2103                         event->destroy(event);
2104         }
2105
2106         if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
2107                 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2108
2109         return err;
2110 }
2111
2112 static void refresh_pce(void *ignored)
2113 {
2114         load_mm_cr4(this_cpu_read(cpu_tlbstate.loaded_mm));
2115 }
2116
2117 static void x86_pmu_event_mapped(struct perf_event *event)
2118 {
2119         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2120                 return;
2121
2122         /*
2123          * This function relies on not being called concurrently in two
2124          * tasks in the same mm.  Otherwise one task could observe
2125          * perf_rdpmc_allowed > 1 and return all the way back to
2126          * userspace with CR4.PCE clear while another task is still
2127          * doing on_each_cpu_mask() to propagate CR4.PCE.
2128          *
2129          * For now, this can't happen because all callers hold mmap_sem
2130          * for write.  If this changes, we'll need a different solution.
2131          */
2132         lockdep_assert_held_exclusive(&current->mm->mmap_sem);
2133
2134         if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
2135                 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2136 }
2137
2138 static void x86_pmu_event_unmapped(struct perf_event *event)
2139 {
2140         if (!current->mm)
2141                 return;
2142
2143         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2144                 return;
2145
2146         if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
2147                 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2148 }
2149
2150 static int x86_pmu_event_idx(struct perf_event *event)
2151 {
2152         int idx = event->hw.idx;
2153
2154         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2155                 return 0;
2156
2157         if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2158                 idx -= INTEL_PMC_IDX_FIXED;
2159                 idx |= 1 << 30;
2160         }
2161
2162         return idx + 1;
2163 }
2164
2165 static ssize_t get_attr_rdpmc(struct device *cdev,
2166                               struct device_attribute *attr,
2167                               char *buf)
2168 {
2169         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2170 }
2171
2172 static ssize_t set_attr_rdpmc(struct device *cdev,
2173                               struct device_attribute *attr,
2174                               const char *buf, size_t count)
2175 {
2176         unsigned long val;
2177         ssize_t ret;
2178
2179         ret = kstrtoul(buf, 0, &val);
2180         if (ret)
2181                 return ret;
2182
2183         if (val > 2)
2184                 return -EINVAL;
2185
2186         if (x86_pmu.attr_rdpmc_broken)
2187                 return -ENOTSUPP;
2188
2189         if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2190                 /*
2191                  * Changing into or out of always available, aka
2192                  * perf-event-bypassing mode.  This path is extremely slow,
2193                  * but only root can trigger it, so it's okay.
2194                  */
2195                 if (val == 2)
2196                         static_key_slow_inc(&rdpmc_always_available);
2197                 else
2198                         static_key_slow_dec(&rdpmc_always_available);
2199                 on_each_cpu(refresh_pce, NULL, 1);
2200         }
2201
2202         x86_pmu.attr_rdpmc = val;
2203
2204         return count;
2205 }
2206
2207 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2208
2209 static struct attribute *x86_pmu_attrs[] = {
2210         &dev_attr_rdpmc.attr,
2211         NULL,
2212 };
2213
2214 static struct attribute_group x86_pmu_attr_group = {
2215         .attrs = x86_pmu_attrs,
2216 };
2217
2218 static const struct attribute_group *x86_pmu_attr_groups[] = {
2219         &x86_pmu_attr_group,
2220         &x86_pmu_format_group,
2221         &x86_pmu_events_group,
2222         NULL,
2223 };
2224
2225 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2226 {
2227         if (x86_pmu.sched_task)
2228                 x86_pmu.sched_task(ctx, sched_in);
2229 }
2230
2231 void perf_check_microcode(void)
2232 {
2233         if (x86_pmu.check_microcode)
2234                 x86_pmu.check_microcode();
2235 }
2236
2237 static struct pmu pmu = {
2238         .pmu_enable             = x86_pmu_enable,
2239         .pmu_disable            = x86_pmu_disable,
2240
2241         .attr_groups            = x86_pmu_attr_groups,
2242
2243         .event_init             = x86_pmu_event_init,
2244
2245         .event_mapped           = x86_pmu_event_mapped,
2246         .event_unmapped         = x86_pmu_event_unmapped,
2247
2248         .add                    = x86_pmu_add,
2249         .del                    = x86_pmu_del,
2250         .start                  = x86_pmu_start,
2251         .stop                   = x86_pmu_stop,
2252         .read                   = x86_pmu_read,
2253
2254         .start_txn              = x86_pmu_start_txn,
2255         .cancel_txn             = x86_pmu_cancel_txn,
2256         .commit_txn             = x86_pmu_commit_txn,
2257
2258         .event_idx              = x86_pmu_event_idx,
2259         .sched_task             = x86_pmu_sched_task,
2260         .task_ctx_size          = sizeof(struct x86_perf_task_context),
2261 };
2262
2263 void arch_perf_update_userpage(struct perf_event *event,
2264                                struct perf_event_mmap_page *userpg, u64 now)
2265 {
2266         struct cyc2ns_data data;
2267         u64 offset;
2268
2269         userpg->cap_user_time = 0;
2270         userpg->cap_user_time_zero = 0;
2271         userpg->cap_user_rdpmc =
2272                 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2273         userpg->pmc_width = x86_pmu.cntval_bits;
2274
2275         if (!using_native_sched_clock() || !sched_clock_stable())
2276                 return;
2277
2278         cyc2ns_read_begin(&data);
2279
2280         offset = data.cyc2ns_offset + __sched_clock_offset;
2281
2282         /*
2283          * Internal timekeeping for enabled/running/stopped times
2284          * is always in the local_clock domain.
2285          */
2286         userpg->cap_user_time = 1;
2287         userpg->time_mult = data.cyc2ns_mul;
2288         userpg->time_shift = data.cyc2ns_shift;
2289         userpg->time_offset = offset - now;
2290
2291         /*
2292          * cap_user_time_zero doesn't make sense when we're using a different
2293          * time base for the records.
2294          */
2295         if (!event->attr.use_clockid) {
2296                 userpg->cap_user_time_zero = 1;
2297                 userpg->time_zero = offset;
2298         }
2299
2300         cyc2ns_read_end();
2301 }
2302
2303 void
2304 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2305 {
2306         struct unwind_state state;
2307         unsigned long addr;
2308
2309         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2310                 /* TODO: We don't support guest os callchain now */
2311                 return;
2312         }
2313
2314         if (perf_callchain_store(entry, regs->ip))
2315                 return;
2316
2317         for (unwind_start(&state, current, regs, NULL); !unwind_done(&state);
2318              unwind_next_frame(&state)) {
2319                 addr = unwind_get_return_address(&state);
2320                 if (!addr || perf_callchain_store(entry, addr))
2321                         return;
2322         }
2323 }
2324
2325 static inline int
2326 valid_user_frame(const void __user *fp, unsigned long size)
2327 {
2328         return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2329 }
2330
2331 static unsigned long get_segment_base(unsigned int segment)
2332 {
2333         struct desc_struct *desc;
2334         unsigned int idx = segment >> 3;
2335
2336         if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2337 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2338                 struct ldt_struct *ldt;
2339
2340                 if (idx > LDT_ENTRIES)
2341                         return 0;
2342
2343                 /* IRQs are off, so this synchronizes with smp_store_release */
2344                 ldt = lockless_dereference(current->active_mm->context.ldt);
2345                 if (!ldt || idx > ldt->nr_entries)
2346                         return 0;
2347
2348                 desc = &ldt->entries[idx];
2349 #else
2350                 return 0;
2351 #endif
2352         } else {
2353                 if (idx > GDT_ENTRIES)
2354                         return 0;
2355
2356                 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2357         }
2358
2359         return get_desc_base(desc);
2360 }
2361
2362 #ifdef CONFIG_IA32_EMULATION
2363
2364 #include <asm/compat.h>
2365
2366 static inline int
2367 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2368 {
2369         /* 32-bit process in 64-bit kernel. */
2370         unsigned long ss_base, cs_base;
2371         struct stack_frame_ia32 frame;
2372         const void __user *fp;
2373
2374         if (!test_thread_flag(TIF_IA32))
2375                 return 0;
2376
2377         cs_base = get_segment_base(regs->cs);
2378         ss_base = get_segment_base(regs->ss);
2379
2380         fp = compat_ptr(ss_base + regs->bp);
2381         pagefault_disable();
2382         while (entry->nr < entry->max_stack) {
2383                 unsigned long bytes;
2384                 frame.next_frame     = 0;
2385                 frame.return_address = 0;
2386
2387                 if (!valid_user_frame(fp, sizeof(frame)))
2388                         break;
2389
2390                 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2391                 if (bytes != 0)
2392                         break;
2393                 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2394                 if (bytes != 0)
2395                         break;
2396
2397                 perf_callchain_store(entry, cs_base + frame.return_address);
2398                 fp = compat_ptr(ss_base + frame.next_frame);
2399         }
2400         pagefault_enable();
2401         return 1;
2402 }
2403 #else
2404 static inline int
2405 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2406 {
2407     return 0;
2408 }
2409 #endif
2410
2411 void
2412 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2413 {
2414         struct stack_frame frame;
2415         const unsigned long __user *fp;
2416
2417         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2418                 /* TODO: We don't support guest os callchain now */
2419                 return;
2420         }
2421
2422         /*
2423          * We don't know what to do with VM86 stacks.. ignore them for now.
2424          */
2425         if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2426                 return;
2427
2428         fp = (unsigned long __user *)regs->bp;
2429
2430         perf_callchain_store(entry, regs->ip);
2431
2432         if (!current->mm)
2433                 return;
2434
2435         if (perf_callchain_user32(regs, entry))
2436                 return;
2437
2438         pagefault_disable();
2439         while (entry->nr < entry->max_stack) {
2440                 unsigned long bytes;
2441
2442                 frame.next_frame             = NULL;
2443                 frame.return_address = 0;
2444
2445                 if (!valid_user_frame(fp, sizeof(frame)))
2446                         break;
2447
2448                 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2449                 if (bytes != 0)
2450                         break;
2451                 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2452                 if (bytes != 0)
2453                         break;
2454
2455                 perf_callchain_store(entry, frame.return_address);
2456                 fp = (void __user *)frame.next_frame;
2457         }
2458         pagefault_enable();
2459 }
2460
2461 /*
2462  * Deal with code segment offsets for the various execution modes:
2463  *
2464  *   VM86 - the good olde 16 bit days, where the linear address is
2465  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2466  *
2467  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2468  *          to figure out what the 32bit base address is.
2469  *
2470  *    X32 - has TIF_X32 set, but is running in x86_64
2471  *
2472  * X86_64 - CS,DS,SS,ES are all zero based.
2473  */
2474 static unsigned long code_segment_base(struct pt_regs *regs)
2475 {
2476         /*
2477          * For IA32 we look at the GDT/LDT segment base to convert the
2478          * effective IP to a linear address.
2479          */
2480
2481 #ifdef CONFIG_X86_32
2482         /*
2483          * If we are in VM86 mode, add the segment offset to convert to a
2484          * linear address.
2485          */
2486         if (regs->flags & X86_VM_MASK)
2487                 return 0x10 * regs->cs;
2488
2489         if (user_mode(regs) && regs->cs != __USER_CS)
2490                 return get_segment_base(regs->cs);
2491 #else
2492         if (user_mode(regs) && !user_64bit_mode(regs) &&
2493             regs->cs != __USER32_CS)
2494                 return get_segment_base(regs->cs);
2495 #endif
2496         return 0;
2497 }
2498
2499 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2500 {
2501         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2502                 return perf_guest_cbs->get_guest_ip();
2503
2504         return regs->ip + code_segment_base(regs);
2505 }
2506
2507 unsigned long perf_misc_flags(struct pt_regs *regs)
2508 {
2509         int misc = 0;
2510
2511         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2512                 if (perf_guest_cbs->is_user_mode())
2513                         misc |= PERF_RECORD_MISC_GUEST_USER;
2514                 else
2515                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2516         } else {
2517                 if (user_mode(regs))
2518                         misc |= PERF_RECORD_MISC_USER;
2519                 else
2520                         misc |= PERF_RECORD_MISC_KERNEL;
2521         }
2522
2523         if (regs->flags & PERF_EFLAGS_EXACT)
2524                 misc |= PERF_RECORD_MISC_EXACT_IP;
2525
2526         return misc;
2527 }
2528
2529 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2530 {
2531         cap->version            = x86_pmu.version;
2532         cap->num_counters_gp    = x86_pmu.num_counters;
2533         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2534         cap->bit_width_gp       = x86_pmu.cntval_bits;
2535         cap->bit_width_fixed    = x86_pmu.cntval_bits;
2536         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2537         cap->events_mask_len    = x86_pmu.events_mask_len;
2538 }
2539 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);