]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kvm/x86.c
KVM: x86: fix OOPS after invalid KVM_SET_DEBUGREGS
[karo-tx-linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <trace/events/kvm.h>
57
58 #define CREATE_TRACE_POINTS
59 #include "trace.h"
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70
71 #define MAX_IO_MSRS 256
72 #define KVM_MAX_MCE_BANKS 32
73 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
74
75 #define emul_to_vcpu(ctxt) \
76         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
77
78 /* EFER defaults:
79  * - enable syscall per default because its emulated by KVM
80  * - enable LME and LMA per default on 64 bit KVM
81  */
82 #ifdef CONFIG_X86_64
83 static
84 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
85 #else
86 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
87 #endif
88
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static void process_nmi(struct kvm_vcpu *vcpu);
94 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
95
96 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98
99 static bool __read_mostly ignore_msrs = 0;
100 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
101
102 unsigned int min_timer_period_us = 500;
103 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
104
105 static bool __read_mostly kvmclock_periodic_sync = true;
106 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
107
108 bool __read_mostly kvm_has_tsc_control;
109 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
110 u32  __read_mostly kvm_max_guest_tsc_khz;
111 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
112 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
113 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
114 u64  __read_mostly kvm_max_tsc_scaling_ratio;
115 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
116 static u64 __read_mostly kvm_default_tsc_scaling_ratio;
117
118 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
119 static u32 __read_mostly tsc_tolerance_ppm = 250;
120 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
121
122 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
123 unsigned int __read_mostly lapic_timer_advance_ns = 0;
124 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
125
126 static bool __read_mostly backwards_tsc_observed = false;
127
128 #define KVM_NR_SHARED_MSRS 16
129
130 struct kvm_shared_msrs_global {
131         int nr;
132         u32 msrs[KVM_NR_SHARED_MSRS];
133 };
134
135 struct kvm_shared_msrs {
136         struct user_return_notifier urn;
137         bool registered;
138         struct kvm_shared_msr_values {
139                 u64 host;
140                 u64 curr;
141         } values[KVM_NR_SHARED_MSRS];
142 };
143
144 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
145 static struct kvm_shared_msrs __percpu *shared_msrs;
146
147 struct kvm_stats_debugfs_item debugfs_entries[] = {
148         { "pf_fixed", VCPU_STAT(pf_fixed) },
149         { "pf_guest", VCPU_STAT(pf_guest) },
150         { "tlb_flush", VCPU_STAT(tlb_flush) },
151         { "invlpg", VCPU_STAT(invlpg) },
152         { "exits", VCPU_STAT(exits) },
153         { "io_exits", VCPU_STAT(io_exits) },
154         { "mmio_exits", VCPU_STAT(mmio_exits) },
155         { "signal_exits", VCPU_STAT(signal_exits) },
156         { "irq_window", VCPU_STAT(irq_window_exits) },
157         { "nmi_window", VCPU_STAT(nmi_window_exits) },
158         { "halt_exits", VCPU_STAT(halt_exits) },
159         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
160         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
161         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
162         { "hypercalls", VCPU_STAT(hypercalls) },
163         { "request_irq", VCPU_STAT(request_irq_exits) },
164         { "irq_exits", VCPU_STAT(irq_exits) },
165         { "host_state_reload", VCPU_STAT(host_state_reload) },
166         { "efer_reload", VCPU_STAT(efer_reload) },
167         { "fpu_reload", VCPU_STAT(fpu_reload) },
168         { "insn_emulation", VCPU_STAT(insn_emulation) },
169         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
170         { "irq_injections", VCPU_STAT(irq_injections) },
171         { "nmi_injections", VCPU_STAT(nmi_injections) },
172         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
173         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
174         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
175         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
176         { "mmu_flooded", VM_STAT(mmu_flooded) },
177         { "mmu_recycled", VM_STAT(mmu_recycled) },
178         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
179         { "mmu_unsync", VM_STAT(mmu_unsync) },
180         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
181         { "largepages", VM_STAT(lpages) },
182         { NULL }
183 };
184
185 u64 __read_mostly host_xcr0;
186
187 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
188
189 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
190 {
191         int i;
192         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
193                 vcpu->arch.apf.gfns[i] = ~0;
194 }
195
196 static void kvm_on_user_return(struct user_return_notifier *urn)
197 {
198         unsigned slot;
199         struct kvm_shared_msrs *locals
200                 = container_of(urn, struct kvm_shared_msrs, urn);
201         struct kvm_shared_msr_values *values;
202
203         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
204                 values = &locals->values[slot];
205                 if (values->host != values->curr) {
206                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
207                         values->curr = values->host;
208                 }
209         }
210         locals->registered = false;
211         user_return_notifier_unregister(urn);
212 }
213
214 static void shared_msr_update(unsigned slot, u32 msr)
215 {
216         u64 value;
217         unsigned int cpu = smp_processor_id();
218         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
219
220         /* only read, and nobody should modify it at this time,
221          * so don't need lock */
222         if (slot >= shared_msrs_global.nr) {
223                 printk(KERN_ERR "kvm: invalid MSR slot!");
224                 return;
225         }
226         rdmsrl_safe(msr, &value);
227         smsr->values[slot].host = value;
228         smsr->values[slot].curr = value;
229 }
230
231 void kvm_define_shared_msr(unsigned slot, u32 msr)
232 {
233         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
234         shared_msrs_global.msrs[slot] = msr;
235         if (slot >= shared_msrs_global.nr)
236                 shared_msrs_global.nr = slot + 1;
237 }
238 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
239
240 static void kvm_shared_msr_cpu_online(void)
241 {
242         unsigned i;
243
244         for (i = 0; i < shared_msrs_global.nr; ++i)
245                 shared_msr_update(i, shared_msrs_global.msrs[i]);
246 }
247
248 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
249 {
250         unsigned int cpu = smp_processor_id();
251         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
252         int err;
253
254         if (((value ^ smsr->values[slot].curr) & mask) == 0)
255                 return 0;
256         smsr->values[slot].curr = value;
257         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
258         if (err)
259                 return 1;
260
261         if (!smsr->registered) {
262                 smsr->urn.on_user_return = kvm_on_user_return;
263                 user_return_notifier_register(&smsr->urn);
264                 smsr->registered = true;
265         }
266         return 0;
267 }
268 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
269
270 static void drop_user_return_notifiers(void)
271 {
272         unsigned int cpu = smp_processor_id();
273         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
274
275         if (smsr->registered)
276                 kvm_on_user_return(&smsr->urn);
277 }
278
279 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
280 {
281         return vcpu->arch.apic_base;
282 }
283 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
284
285 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
286 {
287         u64 old_state = vcpu->arch.apic_base &
288                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
289         u64 new_state = msr_info->data &
290                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
291         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
292                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
293
294         if (!msr_info->host_initiated &&
295             ((msr_info->data & reserved_bits) != 0 ||
296              new_state == X2APIC_ENABLE ||
297              (new_state == MSR_IA32_APICBASE_ENABLE &&
298               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
299              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
300               old_state == 0)))
301                 return 1;
302
303         kvm_lapic_set_base(vcpu, msr_info->data);
304         return 0;
305 }
306 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
307
308 asmlinkage __visible void kvm_spurious_fault(void)
309 {
310         /* Fault while not rebooting.  We want the trace. */
311         BUG();
312 }
313 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
314
315 #define EXCPT_BENIGN            0
316 #define EXCPT_CONTRIBUTORY      1
317 #define EXCPT_PF                2
318
319 static int exception_class(int vector)
320 {
321         switch (vector) {
322         case PF_VECTOR:
323                 return EXCPT_PF;
324         case DE_VECTOR:
325         case TS_VECTOR:
326         case NP_VECTOR:
327         case SS_VECTOR:
328         case GP_VECTOR:
329                 return EXCPT_CONTRIBUTORY;
330         default:
331                 break;
332         }
333         return EXCPT_BENIGN;
334 }
335
336 #define EXCPT_FAULT             0
337 #define EXCPT_TRAP              1
338 #define EXCPT_ABORT             2
339 #define EXCPT_INTERRUPT         3
340
341 static int exception_type(int vector)
342 {
343         unsigned int mask;
344
345         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
346                 return EXCPT_INTERRUPT;
347
348         mask = 1 << vector;
349
350         /* #DB is trap, as instruction watchpoints are handled elsewhere */
351         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
352                 return EXCPT_TRAP;
353
354         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
355                 return EXCPT_ABORT;
356
357         /* Reserved exceptions will result in fault */
358         return EXCPT_FAULT;
359 }
360
361 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
362                 unsigned nr, bool has_error, u32 error_code,
363                 bool reinject)
364 {
365         u32 prev_nr;
366         int class1, class2;
367
368         kvm_make_request(KVM_REQ_EVENT, vcpu);
369
370         if (!vcpu->arch.exception.pending) {
371         queue:
372                 if (has_error && !is_protmode(vcpu))
373                         has_error = false;
374                 vcpu->arch.exception.pending = true;
375                 vcpu->arch.exception.has_error_code = has_error;
376                 vcpu->arch.exception.nr = nr;
377                 vcpu->arch.exception.error_code = error_code;
378                 vcpu->arch.exception.reinject = reinject;
379                 return;
380         }
381
382         /* to check exception */
383         prev_nr = vcpu->arch.exception.nr;
384         if (prev_nr == DF_VECTOR) {
385                 /* triple fault -> shutdown */
386                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
387                 return;
388         }
389         class1 = exception_class(prev_nr);
390         class2 = exception_class(nr);
391         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
392                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
393                 /* generate double fault per SDM Table 5-5 */
394                 vcpu->arch.exception.pending = true;
395                 vcpu->arch.exception.has_error_code = true;
396                 vcpu->arch.exception.nr = DF_VECTOR;
397                 vcpu->arch.exception.error_code = 0;
398         } else
399                 /* replace previous exception with a new one in a hope
400                    that instruction re-execution will regenerate lost
401                    exception */
402                 goto queue;
403 }
404
405 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
406 {
407         kvm_multiple_exception(vcpu, nr, false, 0, false);
408 }
409 EXPORT_SYMBOL_GPL(kvm_queue_exception);
410
411 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
412 {
413         kvm_multiple_exception(vcpu, nr, false, 0, true);
414 }
415 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
416
417 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
418 {
419         if (err)
420                 kvm_inject_gp(vcpu, 0);
421         else
422                 kvm_x86_ops->skip_emulated_instruction(vcpu);
423 }
424 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
425
426 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
427 {
428         ++vcpu->stat.pf_guest;
429         vcpu->arch.cr2 = fault->address;
430         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
431 }
432 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
433
434 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
435 {
436         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
437                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
438         else
439                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
440
441         return fault->nested_page_fault;
442 }
443
444 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
445 {
446         atomic_inc(&vcpu->arch.nmi_queued);
447         kvm_make_request(KVM_REQ_NMI, vcpu);
448 }
449 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
450
451 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
452 {
453         kvm_multiple_exception(vcpu, nr, true, error_code, false);
454 }
455 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
456
457 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
458 {
459         kvm_multiple_exception(vcpu, nr, true, error_code, true);
460 }
461 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
462
463 /*
464  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
465  * a #GP and return false.
466  */
467 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
468 {
469         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
470                 return true;
471         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
472         return false;
473 }
474 EXPORT_SYMBOL_GPL(kvm_require_cpl);
475
476 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
477 {
478         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
479                 return true;
480
481         kvm_queue_exception(vcpu, UD_VECTOR);
482         return false;
483 }
484 EXPORT_SYMBOL_GPL(kvm_require_dr);
485
486 /*
487  * This function will be used to read from the physical memory of the currently
488  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
489  * can read from guest physical or from the guest's guest physical memory.
490  */
491 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
492                             gfn_t ngfn, void *data, int offset, int len,
493                             u32 access)
494 {
495         struct x86_exception exception;
496         gfn_t real_gfn;
497         gpa_t ngpa;
498
499         ngpa     = gfn_to_gpa(ngfn);
500         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
501         if (real_gfn == UNMAPPED_GVA)
502                 return -EFAULT;
503
504         real_gfn = gpa_to_gfn(real_gfn);
505
506         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
507 }
508 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
509
510 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
511                                void *data, int offset, int len, u32 access)
512 {
513         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
514                                        data, offset, len, access);
515 }
516
517 /*
518  * Load the pae pdptrs.  Return true is they are all valid.
519  */
520 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
521 {
522         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
523         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
524         int i;
525         int ret;
526         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
527
528         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
529                                       offset * sizeof(u64), sizeof(pdpte),
530                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
531         if (ret < 0) {
532                 ret = 0;
533                 goto out;
534         }
535         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
536                 if (is_present_gpte(pdpte[i]) &&
537                     (pdpte[i] &
538                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
539                         ret = 0;
540                         goto out;
541                 }
542         }
543         ret = 1;
544
545         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
546         __set_bit(VCPU_EXREG_PDPTR,
547                   (unsigned long *)&vcpu->arch.regs_avail);
548         __set_bit(VCPU_EXREG_PDPTR,
549                   (unsigned long *)&vcpu->arch.regs_dirty);
550 out:
551
552         return ret;
553 }
554 EXPORT_SYMBOL_GPL(load_pdptrs);
555
556 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
557 {
558         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
559         bool changed = true;
560         int offset;
561         gfn_t gfn;
562         int r;
563
564         if (is_long_mode(vcpu) || !is_pae(vcpu))
565                 return false;
566
567         if (!test_bit(VCPU_EXREG_PDPTR,
568                       (unsigned long *)&vcpu->arch.regs_avail))
569                 return true;
570
571         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
572         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
573         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
574                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
575         if (r < 0)
576                 goto out;
577         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
578 out:
579
580         return changed;
581 }
582
583 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
584 {
585         unsigned long old_cr0 = kvm_read_cr0(vcpu);
586         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
587
588         cr0 |= X86_CR0_ET;
589
590 #ifdef CONFIG_X86_64
591         if (cr0 & 0xffffffff00000000UL)
592                 return 1;
593 #endif
594
595         cr0 &= ~CR0_RESERVED_BITS;
596
597         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
598                 return 1;
599
600         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
601                 return 1;
602
603         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
604 #ifdef CONFIG_X86_64
605                 if ((vcpu->arch.efer & EFER_LME)) {
606                         int cs_db, cs_l;
607
608                         if (!is_pae(vcpu))
609                                 return 1;
610                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
611                         if (cs_l)
612                                 return 1;
613                 } else
614 #endif
615                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
616                                                  kvm_read_cr3(vcpu)))
617                         return 1;
618         }
619
620         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
621                 return 1;
622
623         kvm_x86_ops->set_cr0(vcpu, cr0);
624
625         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
626                 kvm_clear_async_pf_completion_queue(vcpu);
627                 kvm_async_pf_hash_reset(vcpu);
628         }
629
630         if ((cr0 ^ old_cr0) & update_bits)
631                 kvm_mmu_reset_context(vcpu);
632
633         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
634             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
635             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
636                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
637
638         return 0;
639 }
640 EXPORT_SYMBOL_GPL(kvm_set_cr0);
641
642 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
643 {
644         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
645 }
646 EXPORT_SYMBOL_GPL(kvm_lmsw);
647
648 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
649 {
650         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
651                         !vcpu->guest_xcr0_loaded) {
652                 /* kvm_set_xcr() also depends on this */
653                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
654                 vcpu->guest_xcr0_loaded = 1;
655         }
656 }
657
658 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
659 {
660         if (vcpu->guest_xcr0_loaded) {
661                 if (vcpu->arch.xcr0 != host_xcr0)
662                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
663                 vcpu->guest_xcr0_loaded = 0;
664         }
665 }
666
667 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
668 {
669         u64 xcr0 = xcr;
670         u64 old_xcr0 = vcpu->arch.xcr0;
671         u64 valid_bits;
672
673         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
674         if (index != XCR_XFEATURE_ENABLED_MASK)
675                 return 1;
676         if (!(xcr0 & XFEATURE_MASK_FP))
677                 return 1;
678         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
679                 return 1;
680
681         /*
682          * Do not allow the guest to set bits that we do not support
683          * saving.  However, xcr0 bit 0 is always set, even if the
684          * emulated CPU does not support XSAVE (see fx_init).
685          */
686         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
687         if (xcr0 & ~valid_bits)
688                 return 1;
689
690         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
691             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
692                 return 1;
693
694         if (xcr0 & XFEATURE_MASK_AVX512) {
695                 if (!(xcr0 & XFEATURE_MASK_YMM))
696                         return 1;
697                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
698                         return 1;
699         }
700         vcpu->arch.xcr0 = xcr0;
701
702         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
703                 kvm_update_cpuid(vcpu);
704         return 0;
705 }
706
707 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
708 {
709         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
710             __kvm_set_xcr(vcpu, index, xcr)) {
711                 kvm_inject_gp(vcpu, 0);
712                 return 1;
713         }
714         return 0;
715 }
716 EXPORT_SYMBOL_GPL(kvm_set_xcr);
717
718 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
719 {
720         unsigned long old_cr4 = kvm_read_cr4(vcpu);
721         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
722                                    X86_CR4_SMEP | X86_CR4_SMAP;
723
724         if (cr4 & CR4_RESERVED_BITS)
725                 return 1;
726
727         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
728                 return 1;
729
730         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
731                 return 1;
732
733         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
734                 return 1;
735
736         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
737                 return 1;
738
739         if (is_long_mode(vcpu)) {
740                 if (!(cr4 & X86_CR4_PAE))
741                         return 1;
742         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
743                    && ((cr4 ^ old_cr4) & pdptr_bits)
744                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
745                                    kvm_read_cr3(vcpu)))
746                 return 1;
747
748         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
749                 if (!guest_cpuid_has_pcid(vcpu))
750                         return 1;
751
752                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
753                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
754                         return 1;
755         }
756
757         if (kvm_x86_ops->set_cr4(vcpu, cr4))
758                 return 1;
759
760         if (((cr4 ^ old_cr4) & pdptr_bits) ||
761             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
762                 kvm_mmu_reset_context(vcpu);
763
764         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
765                 kvm_update_cpuid(vcpu);
766
767         return 0;
768 }
769 EXPORT_SYMBOL_GPL(kvm_set_cr4);
770
771 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
772 {
773 #ifdef CONFIG_X86_64
774         cr3 &= ~CR3_PCID_INVD;
775 #endif
776
777         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
778                 kvm_mmu_sync_roots(vcpu);
779                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
780                 return 0;
781         }
782
783         if (is_long_mode(vcpu)) {
784                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
785                         return 1;
786         } else if (is_pae(vcpu) && is_paging(vcpu) &&
787                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
788                 return 1;
789
790         vcpu->arch.cr3 = cr3;
791         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
792         kvm_mmu_new_cr3(vcpu);
793         return 0;
794 }
795 EXPORT_SYMBOL_GPL(kvm_set_cr3);
796
797 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
798 {
799         if (cr8 & CR8_RESERVED_BITS)
800                 return 1;
801         if (lapic_in_kernel(vcpu))
802                 kvm_lapic_set_tpr(vcpu, cr8);
803         else
804                 vcpu->arch.cr8 = cr8;
805         return 0;
806 }
807 EXPORT_SYMBOL_GPL(kvm_set_cr8);
808
809 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
810 {
811         if (lapic_in_kernel(vcpu))
812                 return kvm_lapic_get_cr8(vcpu);
813         else
814                 return vcpu->arch.cr8;
815 }
816 EXPORT_SYMBOL_GPL(kvm_get_cr8);
817
818 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
819 {
820         int i;
821
822         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
823                 for (i = 0; i < KVM_NR_DB_REGS; i++)
824                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
825                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
826         }
827 }
828
829 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
830 {
831         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
832                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
833 }
834
835 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
836 {
837         unsigned long dr7;
838
839         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
840                 dr7 = vcpu->arch.guest_debug_dr7;
841         else
842                 dr7 = vcpu->arch.dr7;
843         kvm_x86_ops->set_dr7(vcpu, dr7);
844         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
845         if (dr7 & DR7_BP_EN_MASK)
846                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
847 }
848
849 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
850 {
851         u64 fixed = DR6_FIXED_1;
852
853         if (!guest_cpuid_has_rtm(vcpu))
854                 fixed |= DR6_RTM;
855         return fixed;
856 }
857
858 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
859 {
860         switch (dr) {
861         case 0 ... 3:
862                 vcpu->arch.db[dr] = val;
863                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
864                         vcpu->arch.eff_db[dr] = val;
865                 break;
866         case 4:
867                 /* fall through */
868         case 6:
869                 if (val & 0xffffffff00000000ULL)
870                         return -1; /* #GP */
871                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
872                 kvm_update_dr6(vcpu);
873                 break;
874         case 5:
875                 /* fall through */
876         default: /* 7 */
877                 if (val & 0xffffffff00000000ULL)
878                         return -1; /* #GP */
879                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
880                 kvm_update_dr7(vcpu);
881                 break;
882         }
883
884         return 0;
885 }
886
887 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
888 {
889         if (__kvm_set_dr(vcpu, dr, val)) {
890                 kvm_inject_gp(vcpu, 0);
891                 return 1;
892         }
893         return 0;
894 }
895 EXPORT_SYMBOL_GPL(kvm_set_dr);
896
897 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
898 {
899         switch (dr) {
900         case 0 ... 3:
901                 *val = vcpu->arch.db[dr];
902                 break;
903         case 4:
904                 /* fall through */
905         case 6:
906                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
907                         *val = vcpu->arch.dr6;
908                 else
909                         *val = kvm_x86_ops->get_dr6(vcpu);
910                 break;
911         case 5:
912                 /* fall through */
913         default: /* 7 */
914                 *val = vcpu->arch.dr7;
915                 break;
916         }
917         return 0;
918 }
919 EXPORT_SYMBOL_GPL(kvm_get_dr);
920
921 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
922 {
923         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
924         u64 data;
925         int err;
926
927         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
928         if (err)
929                 return err;
930         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
931         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
932         return err;
933 }
934 EXPORT_SYMBOL_GPL(kvm_rdpmc);
935
936 /*
937  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
938  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
939  *
940  * This list is modified at module load time to reflect the
941  * capabilities of the host cpu. This capabilities test skips MSRs that are
942  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
943  * may depend on host virtualization features rather than host cpu features.
944  */
945
946 static u32 msrs_to_save[] = {
947         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
948         MSR_STAR,
949 #ifdef CONFIG_X86_64
950         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
951 #endif
952         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
953         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
954 };
955
956 static unsigned num_msrs_to_save;
957
958 static u32 emulated_msrs[] = {
959         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
960         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
961         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
962         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
963         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
964         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
965         HV_X64_MSR_RESET,
966         HV_X64_MSR_VP_INDEX,
967         HV_X64_MSR_VP_RUNTIME,
968         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
969         MSR_KVM_PV_EOI_EN,
970
971         MSR_IA32_TSC_ADJUST,
972         MSR_IA32_TSCDEADLINE,
973         MSR_IA32_MISC_ENABLE,
974         MSR_IA32_MCG_STATUS,
975         MSR_IA32_MCG_CTL,
976         MSR_IA32_SMBASE,
977 };
978
979 static unsigned num_emulated_msrs;
980
981 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
982 {
983         if (efer & efer_reserved_bits)
984                 return false;
985
986         if (efer & EFER_FFXSR) {
987                 struct kvm_cpuid_entry2 *feat;
988
989                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
990                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
991                         return false;
992         }
993
994         if (efer & EFER_SVME) {
995                 struct kvm_cpuid_entry2 *feat;
996
997                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
998                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
999                         return false;
1000         }
1001
1002         return true;
1003 }
1004 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1005
1006 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1007 {
1008         u64 old_efer = vcpu->arch.efer;
1009
1010         if (!kvm_valid_efer(vcpu, efer))
1011                 return 1;
1012
1013         if (is_paging(vcpu)
1014             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1015                 return 1;
1016
1017         efer &= ~EFER_LMA;
1018         efer |= vcpu->arch.efer & EFER_LMA;
1019
1020         kvm_x86_ops->set_efer(vcpu, efer);
1021
1022         /* Update reserved bits */
1023         if ((efer ^ old_efer) & EFER_NX)
1024                 kvm_mmu_reset_context(vcpu);
1025
1026         return 0;
1027 }
1028
1029 void kvm_enable_efer_bits(u64 mask)
1030 {
1031        efer_reserved_bits &= ~mask;
1032 }
1033 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1034
1035 /*
1036  * Writes msr value into into the appropriate "register".
1037  * Returns 0 on success, non-0 otherwise.
1038  * Assumes vcpu_load() was already called.
1039  */
1040 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1041 {
1042         switch (msr->index) {
1043         case MSR_FS_BASE:
1044         case MSR_GS_BASE:
1045         case MSR_KERNEL_GS_BASE:
1046         case MSR_CSTAR:
1047         case MSR_LSTAR:
1048                 if (is_noncanonical_address(msr->data))
1049                         return 1;
1050                 break;
1051         case MSR_IA32_SYSENTER_EIP:
1052         case MSR_IA32_SYSENTER_ESP:
1053                 /*
1054                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1055                  * non-canonical address is written on Intel but not on
1056                  * AMD (which ignores the top 32-bits, because it does
1057                  * not implement 64-bit SYSENTER).
1058                  *
1059                  * 64-bit code should hence be able to write a non-canonical
1060                  * value on AMD.  Making the address canonical ensures that
1061                  * vmentry does not fail on Intel after writing a non-canonical
1062                  * value, and that something deterministic happens if the guest
1063                  * invokes 64-bit SYSENTER.
1064                  */
1065                 msr->data = get_canonical(msr->data);
1066         }
1067         return kvm_x86_ops->set_msr(vcpu, msr);
1068 }
1069 EXPORT_SYMBOL_GPL(kvm_set_msr);
1070
1071 /*
1072  * Adapt set_msr() to msr_io()'s calling convention
1073  */
1074 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1075 {
1076         struct msr_data msr;
1077         int r;
1078
1079         msr.index = index;
1080         msr.host_initiated = true;
1081         r = kvm_get_msr(vcpu, &msr);
1082         if (r)
1083                 return r;
1084
1085         *data = msr.data;
1086         return 0;
1087 }
1088
1089 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1090 {
1091         struct msr_data msr;
1092
1093         msr.data = *data;
1094         msr.index = index;
1095         msr.host_initiated = true;
1096         return kvm_set_msr(vcpu, &msr);
1097 }
1098
1099 #ifdef CONFIG_X86_64
1100 struct pvclock_gtod_data {
1101         seqcount_t      seq;
1102
1103         struct { /* extract of a clocksource struct */
1104                 int vclock_mode;
1105                 cycle_t cycle_last;
1106                 cycle_t mask;
1107                 u32     mult;
1108                 u32     shift;
1109         } clock;
1110
1111         u64             boot_ns;
1112         u64             nsec_base;
1113 };
1114
1115 static struct pvclock_gtod_data pvclock_gtod_data;
1116
1117 static void update_pvclock_gtod(struct timekeeper *tk)
1118 {
1119         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1120         u64 boot_ns;
1121
1122         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1123
1124         write_seqcount_begin(&vdata->seq);
1125
1126         /* copy pvclock gtod data */
1127         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1128         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1129         vdata->clock.mask               = tk->tkr_mono.mask;
1130         vdata->clock.mult               = tk->tkr_mono.mult;
1131         vdata->clock.shift              = tk->tkr_mono.shift;
1132
1133         vdata->boot_ns                  = boot_ns;
1134         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1135
1136         write_seqcount_end(&vdata->seq);
1137 }
1138 #endif
1139
1140 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1141 {
1142         /*
1143          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1144          * vcpu_enter_guest.  This function is only called from
1145          * the physical CPU that is running vcpu.
1146          */
1147         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1148 }
1149
1150 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1151 {
1152         int version;
1153         int r;
1154         struct pvclock_wall_clock wc;
1155         struct timespec boot;
1156
1157         if (!wall_clock)
1158                 return;
1159
1160         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1161         if (r)
1162                 return;
1163
1164         if (version & 1)
1165                 ++version;  /* first time write, random junk */
1166
1167         ++version;
1168
1169         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1170
1171         /*
1172          * The guest calculates current wall clock time by adding
1173          * system time (updated by kvm_guest_time_update below) to the
1174          * wall clock specified here.  guest system time equals host
1175          * system time for us, thus we must fill in host boot time here.
1176          */
1177         getboottime(&boot);
1178
1179         if (kvm->arch.kvmclock_offset) {
1180                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1181                 boot = timespec_sub(boot, ts);
1182         }
1183         wc.sec = boot.tv_sec;
1184         wc.nsec = boot.tv_nsec;
1185         wc.version = version;
1186
1187         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1188
1189         version++;
1190         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1191 }
1192
1193 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1194 {
1195         uint32_t quotient, remainder;
1196
1197         /* Don't try to replace with do_div(), this one calculates
1198          * "(dividend << 32) / divisor" */
1199         __asm__ ( "divl %4"
1200                   : "=a" (quotient), "=d" (remainder)
1201                   : "0" (0), "1" (dividend), "r" (divisor) );
1202         return quotient;
1203 }
1204
1205 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1206                                s8 *pshift, u32 *pmultiplier)
1207 {
1208         uint64_t scaled64;
1209         int32_t  shift = 0;
1210         uint64_t tps64;
1211         uint32_t tps32;
1212
1213         tps64 = base_khz * 1000LL;
1214         scaled64 = scaled_khz * 1000LL;
1215         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1216                 tps64 >>= 1;
1217                 shift--;
1218         }
1219
1220         tps32 = (uint32_t)tps64;
1221         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1222                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1223                         scaled64 >>= 1;
1224                 else
1225                         tps32 <<= 1;
1226                 shift++;
1227         }
1228
1229         *pshift = shift;
1230         *pmultiplier = div_frac(scaled64, tps32);
1231
1232         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1233                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1234 }
1235
1236 #ifdef CONFIG_X86_64
1237 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1238 #endif
1239
1240 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1241 static unsigned long max_tsc_khz;
1242
1243 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1244 {
1245         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1246                                    vcpu->arch.virtual_tsc_shift);
1247 }
1248
1249 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1250 {
1251         u64 v = (u64)khz * (1000000 + ppm);
1252         do_div(v, 1000000);
1253         return v;
1254 }
1255
1256 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1257 {
1258         u64 ratio;
1259
1260         /* Guest TSC same frequency as host TSC? */
1261         if (!scale) {
1262                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1263                 return 0;
1264         }
1265
1266         /* TSC scaling supported? */
1267         if (!kvm_has_tsc_control) {
1268                 if (user_tsc_khz > tsc_khz) {
1269                         vcpu->arch.tsc_catchup = 1;
1270                         vcpu->arch.tsc_always_catchup = 1;
1271                         return 0;
1272                 } else {
1273                         WARN(1, "user requested TSC rate below hardware speed\n");
1274                         return -1;
1275                 }
1276         }
1277
1278         /* TSC scaling required  - calculate ratio */
1279         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1280                                 user_tsc_khz, tsc_khz);
1281
1282         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1283                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1284                           user_tsc_khz);
1285                 return -1;
1286         }
1287
1288         vcpu->arch.tsc_scaling_ratio = ratio;
1289         return 0;
1290 }
1291
1292 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1293 {
1294         u32 thresh_lo, thresh_hi;
1295         int use_scaling = 0;
1296
1297         /* tsc_khz can be zero if TSC calibration fails */
1298         if (this_tsc_khz == 0) {
1299                 /* set tsc_scaling_ratio to a safe value */
1300                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1301                 return -1;
1302         }
1303
1304         /* Compute a scale to convert nanoseconds in TSC cycles */
1305         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1306                            &vcpu->arch.virtual_tsc_shift,
1307                            &vcpu->arch.virtual_tsc_mult);
1308         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1309
1310         /*
1311          * Compute the variation in TSC rate which is acceptable
1312          * within the range of tolerance and decide if the
1313          * rate being applied is within that bounds of the hardware
1314          * rate.  If so, no scaling or compensation need be done.
1315          */
1316         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1317         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1318         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1319                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1320                 use_scaling = 1;
1321         }
1322         return set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1323 }
1324
1325 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1326 {
1327         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1328                                       vcpu->arch.virtual_tsc_mult,
1329                                       vcpu->arch.virtual_tsc_shift);
1330         tsc += vcpu->arch.this_tsc_write;
1331         return tsc;
1332 }
1333
1334 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1335 {
1336 #ifdef CONFIG_X86_64
1337         bool vcpus_matched;
1338         struct kvm_arch *ka = &vcpu->kvm->arch;
1339         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1340
1341         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1342                          atomic_read(&vcpu->kvm->online_vcpus));
1343
1344         /*
1345          * Once the masterclock is enabled, always perform request in
1346          * order to update it.
1347          *
1348          * In order to enable masterclock, the host clocksource must be TSC
1349          * and the vcpus need to have matched TSCs.  When that happens,
1350          * perform request to enable masterclock.
1351          */
1352         if (ka->use_master_clock ||
1353             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1354                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1355
1356         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1357                             atomic_read(&vcpu->kvm->online_vcpus),
1358                             ka->use_master_clock, gtod->clock.vclock_mode);
1359 #endif
1360 }
1361
1362 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1363 {
1364         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1365         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1366 }
1367
1368 /*
1369  * Multiply tsc by a fixed point number represented by ratio.
1370  *
1371  * The most significant 64-N bits (mult) of ratio represent the
1372  * integral part of the fixed point number; the remaining N bits
1373  * (frac) represent the fractional part, ie. ratio represents a fixed
1374  * point number (mult + frac * 2^(-N)).
1375  *
1376  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1377  */
1378 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1379 {
1380         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1381 }
1382
1383 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1384 {
1385         u64 _tsc = tsc;
1386         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1387
1388         if (ratio != kvm_default_tsc_scaling_ratio)
1389                 _tsc = __scale_tsc(ratio, tsc);
1390
1391         return _tsc;
1392 }
1393 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1394
1395 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1396 {
1397         u64 tsc;
1398
1399         tsc = kvm_scale_tsc(vcpu, rdtsc());
1400
1401         return target_tsc - tsc;
1402 }
1403
1404 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1405 {
1406         return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1407 }
1408 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1409
1410 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1411 {
1412         struct kvm *kvm = vcpu->kvm;
1413         u64 offset, ns, elapsed;
1414         unsigned long flags;
1415         s64 usdiff;
1416         bool matched;
1417         bool already_matched;
1418         u64 data = msr->data;
1419
1420         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1421         offset = kvm_compute_tsc_offset(vcpu, data);
1422         ns = get_kernel_ns();
1423         elapsed = ns - kvm->arch.last_tsc_nsec;
1424
1425         if (vcpu->arch.virtual_tsc_khz) {
1426                 int faulted = 0;
1427
1428                 /* n.b - signed multiplication and division required */
1429                 usdiff = data - kvm->arch.last_tsc_write;
1430 #ifdef CONFIG_X86_64
1431                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1432 #else
1433                 /* do_div() only does unsigned */
1434                 asm("1: idivl %[divisor]\n"
1435                     "2: xor %%edx, %%edx\n"
1436                     "   movl $0, %[faulted]\n"
1437                     "3:\n"
1438                     ".section .fixup,\"ax\"\n"
1439                     "4: movl $1, %[faulted]\n"
1440                     "   jmp  3b\n"
1441                     ".previous\n"
1442
1443                 _ASM_EXTABLE(1b, 4b)
1444
1445                 : "=A"(usdiff), [faulted] "=r" (faulted)
1446                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1447
1448 #endif
1449                 do_div(elapsed, 1000);
1450                 usdiff -= elapsed;
1451                 if (usdiff < 0)
1452                         usdiff = -usdiff;
1453
1454                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1455                 if (faulted)
1456                         usdiff = USEC_PER_SEC;
1457         } else
1458                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1459
1460         /*
1461          * Special case: TSC write with a small delta (1 second) of virtual
1462          * cycle time against real time is interpreted as an attempt to
1463          * synchronize the CPU.
1464          *
1465          * For a reliable TSC, we can match TSC offsets, and for an unstable
1466          * TSC, we add elapsed time in this computation.  We could let the
1467          * compensation code attempt to catch up if we fall behind, but
1468          * it's better to try to match offsets from the beginning.
1469          */
1470         if (usdiff < USEC_PER_SEC &&
1471             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1472                 if (!check_tsc_unstable()) {
1473                         offset = kvm->arch.cur_tsc_offset;
1474                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1475                 } else {
1476                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1477                         data += delta;
1478                         offset = kvm_compute_tsc_offset(vcpu, data);
1479                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1480                 }
1481                 matched = true;
1482                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1483         } else {
1484                 /*
1485                  * We split periods of matched TSC writes into generations.
1486                  * For each generation, we track the original measured
1487                  * nanosecond time, offset, and write, so if TSCs are in
1488                  * sync, we can match exact offset, and if not, we can match
1489                  * exact software computation in compute_guest_tsc()
1490                  *
1491                  * These values are tracked in kvm->arch.cur_xxx variables.
1492                  */
1493                 kvm->arch.cur_tsc_generation++;
1494                 kvm->arch.cur_tsc_nsec = ns;
1495                 kvm->arch.cur_tsc_write = data;
1496                 kvm->arch.cur_tsc_offset = offset;
1497                 matched = false;
1498                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1499                          kvm->arch.cur_tsc_generation, data);
1500         }
1501
1502         /*
1503          * We also track th most recent recorded KHZ, write and time to
1504          * allow the matching interval to be extended at each write.
1505          */
1506         kvm->arch.last_tsc_nsec = ns;
1507         kvm->arch.last_tsc_write = data;
1508         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1509
1510         vcpu->arch.last_guest_tsc = data;
1511
1512         /* Keep track of which generation this VCPU has synchronized to */
1513         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1514         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1515         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1516
1517         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1518                 update_ia32_tsc_adjust_msr(vcpu, offset);
1519         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1520         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1521
1522         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1523         if (!matched) {
1524                 kvm->arch.nr_vcpus_matched_tsc = 0;
1525         } else if (!already_matched) {
1526                 kvm->arch.nr_vcpus_matched_tsc++;
1527         }
1528
1529         kvm_track_tsc_matching(vcpu);
1530         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1531 }
1532
1533 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1534
1535 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1536                                            s64 adjustment)
1537 {
1538         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1539 }
1540
1541 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1542 {
1543         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1544                 WARN_ON(adjustment < 0);
1545         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1546         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1547 }
1548
1549 #ifdef CONFIG_X86_64
1550
1551 static cycle_t read_tsc(void)
1552 {
1553         cycle_t ret = (cycle_t)rdtsc_ordered();
1554         u64 last = pvclock_gtod_data.clock.cycle_last;
1555
1556         if (likely(ret >= last))
1557                 return ret;
1558
1559         /*
1560          * GCC likes to generate cmov here, but this branch is extremely
1561          * predictable (it's just a funciton of time and the likely is
1562          * very likely) and there's a data dependence, so force GCC
1563          * to generate a branch instead.  I don't barrier() because
1564          * we don't actually need a barrier, and if this function
1565          * ever gets inlined it will generate worse code.
1566          */
1567         asm volatile ("");
1568         return last;
1569 }
1570
1571 static inline u64 vgettsc(cycle_t *cycle_now)
1572 {
1573         long v;
1574         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1575
1576         *cycle_now = read_tsc();
1577
1578         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1579         return v * gtod->clock.mult;
1580 }
1581
1582 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1583 {
1584         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1585         unsigned long seq;
1586         int mode;
1587         u64 ns;
1588
1589         do {
1590                 seq = read_seqcount_begin(&gtod->seq);
1591                 mode = gtod->clock.vclock_mode;
1592                 ns = gtod->nsec_base;
1593                 ns += vgettsc(cycle_now);
1594                 ns >>= gtod->clock.shift;
1595                 ns += gtod->boot_ns;
1596         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1597         *t = ns;
1598
1599         return mode;
1600 }
1601
1602 /* returns true if host is using tsc clocksource */
1603 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1604 {
1605         /* checked again under seqlock below */
1606         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1607                 return false;
1608
1609         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1610 }
1611 #endif
1612
1613 /*
1614  *
1615  * Assuming a stable TSC across physical CPUS, and a stable TSC
1616  * across virtual CPUs, the following condition is possible.
1617  * Each numbered line represents an event visible to both
1618  * CPUs at the next numbered event.
1619  *
1620  * "timespecX" represents host monotonic time. "tscX" represents
1621  * RDTSC value.
1622  *
1623  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1624  *
1625  * 1.  read timespec0,tsc0
1626  * 2.                                   | timespec1 = timespec0 + N
1627  *                                      | tsc1 = tsc0 + M
1628  * 3. transition to guest               | transition to guest
1629  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1630  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1631  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1632  *
1633  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1634  *
1635  *      - ret0 < ret1
1636  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1637  *              ...
1638  *      - 0 < N - M => M < N
1639  *
1640  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1641  * always the case (the difference between two distinct xtime instances
1642  * might be smaller then the difference between corresponding TSC reads,
1643  * when updating guest vcpus pvclock areas).
1644  *
1645  * To avoid that problem, do not allow visibility of distinct
1646  * system_timestamp/tsc_timestamp values simultaneously: use a master
1647  * copy of host monotonic time values. Update that master copy
1648  * in lockstep.
1649  *
1650  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1651  *
1652  */
1653
1654 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1655 {
1656 #ifdef CONFIG_X86_64
1657         struct kvm_arch *ka = &kvm->arch;
1658         int vclock_mode;
1659         bool host_tsc_clocksource, vcpus_matched;
1660
1661         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1662                         atomic_read(&kvm->online_vcpus));
1663
1664         /*
1665          * If the host uses TSC clock, then passthrough TSC as stable
1666          * to the guest.
1667          */
1668         host_tsc_clocksource = kvm_get_time_and_clockread(
1669                                         &ka->master_kernel_ns,
1670                                         &ka->master_cycle_now);
1671
1672         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1673                                 && !backwards_tsc_observed
1674                                 && !ka->boot_vcpu_runs_old_kvmclock;
1675
1676         if (ka->use_master_clock)
1677                 atomic_set(&kvm_guest_has_master_clock, 1);
1678
1679         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1680         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1681                                         vcpus_matched);
1682 #endif
1683 }
1684
1685 static void kvm_gen_update_masterclock(struct kvm *kvm)
1686 {
1687 #ifdef CONFIG_X86_64
1688         int i;
1689         struct kvm_vcpu *vcpu;
1690         struct kvm_arch *ka = &kvm->arch;
1691
1692         spin_lock(&ka->pvclock_gtod_sync_lock);
1693         kvm_make_mclock_inprogress_request(kvm);
1694         /* no guest entries from this point */
1695         pvclock_update_vm_gtod_copy(kvm);
1696
1697         kvm_for_each_vcpu(i, vcpu, kvm)
1698                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1699
1700         /* guest entries allowed */
1701         kvm_for_each_vcpu(i, vcpu, kvm)
1702                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1703
1704         spin_unlock(&ka->pvclock_gtod_sync_lock);
1705 #endif
1706 }
1707
1708 static int kvm_guest_time_update(struct kvm_vcpu *v)
1709 {
1710         unsigned long flags, this_tsc_khz, tgt_tsc_khz;
1711         struct kvm_vcpu_arch *vcpu = &v->arch;
1712         struct kvm_arch *ka = &v->kvm->arch;
1713         s64 kernel_ns;
1714         u64 tsc_timestamp, host_tsc;
1715         struct pvclock_vcpu_time_info guest_hv_clock;
1716         u8 pvclock_flags;
1717         bool use_master_clock;
1718
1719         kernel_ns = 0;
1720         host_tsc = 0;
1721
1722         /*
1723          * If the host uses TSC clock, then passthrough TSC as stable
1724          * to the guest.
1725          */
1726         spin_lock(&ka->pvclock_gtod_sync_lock);
1727         use_master_clock = ka->use_master_clock;
1728         if (use_master_clock) {
1729                 host_tsc = ka->master_cycle_now;
1730                 kernel_ns = ka->master_kernel_ns;
1731         }
1732         spin_unlock(&ka->pvclock_gtod_sync_lock);
1733
1734         /* Keep irq disabled to prevent changes to the clock */
1735         local_irq_save(flags);
1736         this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1737         if (unlikely(this_tsc_khz == 0)) {
1738                 local_irq_restore(flags);
1739                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1740                 return 1;
1741         }
1742         if (!use_master_clock) {
1743                 host_tsc = rdtsc();
1744                 kernel_ns = get_kernel_ns();
1745         }
1746
1747         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1748
1749         /*
1750          * We may have to catch up the TSC to match elapsed wall clock
1751          * time for two reasons, even if kvmclock is used.
1752          *   1) CPU could have been running below the maximum TSC rate
1753          *   2) Broken TSC compensation resets the base at each VCPU
1754          *      entry to avoid unknown leaps of TSC even when running
1755          *      again on the same CPU.  This may cause apparent elapsed
1756          *      time to disappear, and the guest to stand still or run
1757          *      very slowly.
1758          */
1759         if (vcpu->tsc_catchup) {
1760                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1761                 if (tsc > tsc_timestamp) {
1762                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1763                         tsc_timestamp = tsc;
1764                 }
1765         }
1766
1767         local_irq_restore(flags);
1768
1769         if (!vcpu->pv_time_enabled)
1770                 return 0;
1771
1772         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1773                 tgt_tsc_khz = kvm_has_tsc_control ?
1774                         vcpu->virtual_tsc_khz : this_tsc_khz;
1775                 kvm_get_time_scale(NSEC_PER_SEC / 1000, tgt_tsc_khz,
1776                                    &vcpu->hv_clock.tsc_shift,
1777                                    &vcpu->hv_clock.tsc_to_system_mul);
1778                 vcpu->hw_tsc_khz = this_tsc_khz;
1779         }
1780
1781         /* With all the info we got, fill in the values */
1782         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1783         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1784         vcpu->last_guest_tsc = tsc_timestamp;
1785
1786         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1787                 &guest_hv_clock, sizeof(guest_hv_clock))))
1788                 return 0;
1789
1790         /* This VCPU is paused, but it's legal for a guest to read another
1791          * VCPU's kvmclock, so we really have to follow the specification where
1792          * it says that version is odd if data is being modified, and even after
1793          * it is consistent.
1794          *
1795          * Version field updates must be kept separate.  This is because
1796          * kvm_write_guest_cached might use a "rep movs" instruction, and
1797          * writes within a string instruction are weakly ordered.  So there
1798          * are three writes overall.
1799          *
1800          * As a small optimization, only write the version field in the first
1801          * and third write.  The vcpu->pv_time cache is still valid, because the
1802          * version field is the first in the struct.
1803          */
1804         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1805
1806         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1807         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1808                                 &vcpu->hv_clock,
1809                                 sizeof(vcpu->hv_clock.version));
1810
1811         smp_wmb();
1812
1813         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1814         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1815
1816         if (vcpu->pvclock_set_guest_stopped_request) {
1817                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1818                 vcpu->pvclock_set_guest_stopped_request = false;
1819         }
1820
1821         /* If the host uses TSC clocksource, then it is stable */
1822         if (use_master_clock)
1823                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1824
1825         vcpu->hv_clock.flags = pvclock_flags;
1826
1827         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1828
1829         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1830                                 &vcpu->hv_clock,
1831                                 sizeof(vcpu->hv_clock));
1832
1833         smp_wmb();
1834
1835         vcpu->hv_clock.version++;
1836         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1837                                 &vcpu->hv_clock,
1838                                 sizeof(vcpu->hv_clock.version));
1839         return 0;
1840 }
1841
1842 /*
1843  * kvmclock updates which are isolated to a given vcpu, such as
1844  * vcpu->cpu migration, should not allow system_timestamp from
1845  * the rest of the vcpus to remain static. Otherwise ntp frequency
1846  * correction applies to one vcpu's system_timestamp but not
1847  * the others.
1848  *
1849  * So in those cases, request a kvmclock update for all vcpus.
1850  * We need to rate-limit these requests though, as they can
1851  * considerably slow guests that have a large number of vcpus.
1852  * The time for a remote vcpu to update its kvmclock is bound
1853  * by the delay we use to rate-limit the updates.
1854  */
1855
1856 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1857
1858 static void kvmclock_update_fn(struct work_struct *work)
1859 {
1860         int i;
1861         struct delayed_work *dwork = to_delayed_work(work);
1862         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1863                                            kvmclock_update_work);
1864         struct kvm *kvm = container_of(ka, struct kvm, arch);
1865         struct kvm_vcpu *vcpu;
1866
1867         kvm_for_each_vcpu(i, vcpu, kvm) {
1868                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1869                 kvm_vcpu_kick(vcpu);
1870         }
1871 }
1872
1873 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1874 {
1875         struct kvm *kvm = v->kvm;
1876
1877         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1878         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1879                                         KVMCLOCK_UPDATE_DELAY);
1880 }
1881
1882 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1883
1884 static void kvmclock_sync_fn(struct work_struct *work)
1885 {
1886         struct delayed_work *dwork = to_delayed_work(work);
1887         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1888                                            kvmclock_sync_work);
1889         struct kvm *kvm = container_of(ka, struct kvm, arch);
1890
1891         if (!kvmclock_periodic_sync)
1892                 return;
1893
1894         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1895         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1896                                         KVMCLOCK_SYNC_PERIOD);
1897 }
1898
1899 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1900 {
1901         u64 mcg_cap = vcpu->arch.mcg_cap;
1902         unsigned bank_num = mcg_cap & 0xff;
1903
1904         switch (msr) {
1905         case MSR_IA32_MCG_STATUS:
1906                 vcpu->arch.mcg_status = data;
1907                 break;
1908         case MSR_IA32_MCG_CTL:
1909                 if (!(mcg_cap & MCG_CTL_P))
1910                         return 1;
1911                 if (data != 0 && data != ~(u64)0)
1912                         return -1;
1913                 vcpu->arch.mcg_ctl = data;
1914                 break;
1915         default:
1916                 if (msr >= MSR_IA32_MC0_CTL &&
1917                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1918                         u32 offset = msr - MSR_IA32_MC0_CTL;
1919                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1920                          * some Linux kernels though clear bit 10 in bank 4 to
1921                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1922                          * this to avoid an uncatched #GP in the guest
1923                          */
1924                         if ((offset & 0x3) == 0 &&
1925                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1926                                 return -1;
1927                         vcpu->arch.mce_banks[offset] = data;
1928                         break;
1929                 }
1930                 return 1;
1931         }
1932         return 0;
1933 }
1934
1935 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1936 {
1937         struct kvm *kvm = vcpu->kvm;
1938         int lm = is_long_mode(vcpu);
1939         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1940                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1941         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1942                 : kvm->arch.xen_hvm_config.blob_size_32;
1943         u32 page_num = data & ~PAGE_MASK;
1944         u64 page_addr = data & PAGE_MASK;
1945         u8 *page;
1946         int r;
1947
1948         r = -E2BIG;
1949         if (page_num >= blob_size)
1950                 goto out;
1951         r = -ENOMEM;
1952         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1953         if (IS_ERR(page)) {
1954                 r = PTR_ERR(page);
1955                 goto out;
1956         }
1957         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1958                 goto out_free;
1959         r = 0;
1960 out_free:
1961         kfree(page);
1962 out:
1963         return r;
1964 }
1965
1966 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1967 {
1968         gpa_t gpa = data & ~0x3f;
1969
1970         /* Bits 2:5 are reserved, Should be zero */
1971         if (data & 0x3c)
1972                 return 1;
1973
1974         vcpu->arch.apf.msr_val = data;
1975
1976         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1977                 kvm_clear_async_pf_completion_queue(vcpu);
1978                 kvm_async_pf_hash_reset(vcpu);
1979                 return 0;
1980         }
1981
1982         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1983                                         sizeof(u32)))
1984                 return 1;
1985
1986         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1987         kvm_async_pf_wakeup_all(vcpu);
1988         return 0;
1989 }
1990
1991 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1992 {
1993         vcpu->arch.pv_time_enabled = false;
1994 }
1995
1996 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1997 {
1998         u64 delta;
1999
2000         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2001                 return;
2002
2003         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2004         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2005         vcpu->arch.st.accum_steal = delta;
2006 }
2007
2008 static void record_steal_time(struct kvm_vcpu *vcpu)
2009 {
2010         accumulate_steal_time(vcpu);
2011
2012         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2013                 return;
2014
2015         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2016                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2017                 return;
2018
2019         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2020         vcpu->arch.st.steal.version += 2;
2021         vcpu->arch.st.accum_steal = 0;
2022
2023         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2024                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2025 }
2026
2027 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2028 {
2029         bool pr = false;
2030         u32 msr = msr_info->index;
2031         u64 data = msr_info->data;
2032
2033         switch (msr) {
2034         case MSR_AMD64_NB_CFG:
2035         case MSR_IA32_UCODE_REV:
2036         case MSR_IA32_UCODE_WRITE:
2037         case MSR_VM_HSAVE_PA:
2038         case MSR_AMD64_PATCH_LOADER:
2039         case MSR_AMD64_BU_CFG2:
2040                 break;
2041
2042         case MSR_EFER:
2043                 return set_efer(vcpu, data);
2044         case MSR_K7_HWCR:
2045                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2046                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2047                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2048                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2049                 if (data != 0) {
2050                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2051                                     data);
2052                         return 1;
2053                 }
2054                 break;
2055         case MSR_FAM10H_MMIO_CONF_BASE:
2056                 if (data != 0) {
2057                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2058                                     "0x%llx\n", data);
2059                         return 1;
2060                 }
2061                 break;
2062         case MSR_IA32_DEBUGCTLMSR:
2063                 if (!data) {
2064                         /* We support the non-activated case already */
2065                         break;
2066                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2067                         /* Values other than LBR and BTF are vendor-specific,
2068                            thus reserved and should throw a #GP */
2069                         return 1;
2070                 }
2071                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2072                             __func__, data);
2073                 break;
2074         case 0x200 ... 0x2ff:
2075                 return kvm_mtrr_set_msr(vcpu, msr, data);
2076         case MSR_IA32_APICBASE:
2077                 return kvm_set_apic_base(vcpu, msr_info);
2078         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2079                 return kvm_x2apic_msr_write(vcpu, msr, data);
2080         case MSR_IA32_TSCDEADLINE:
2081                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2082                 break;
2083         case MSR_IA32_TSC_ADJUST:
2084                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2085                         if (!msr_info->host_initiated) {
2086                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2087                                 adjust_tsc_offset_guest(vcpu, adj);
2088                         }
2089                         vcpu->arch.ia32_tsc_adjust_msr = data;
2090                 }
2091                 break;
2092         case MSR_IA32_MISC_ENABLE:
2093                 vcpu->arch.ia32_misc_enable_msr = data;
2094                 break;
2095         case MSR_IA32_SMBASE:
2096                 if (!msr_info->host_initiated)
2097                         return 1;
2098                 vcpu->arch.smbase = data;
2099                 break;
2100         case MSR_KVM_WALL_CLOCK_NEW:
2101         case MSR_KVM_WALL_CLOCK:
2102                 vcpu->kvm->arch.wall_clock = data;
2103                 kvm_write_wall_clock(vcpu->kvm, data);
2104                 break;
2105         case MSR_KVM_SYSTEM_TIME_NEW:
2106         case MSR_KVM_SYSTEM_TIME: {
2107                 u64 gpa_offset;
2108                 struct kvm_arch *ka = &vcpu->kvm->arch;
2109
2110                 kvmclock_reset(vcpu);
2111
2112                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2113                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2114
2115                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2116                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2117                                         &vcpu->requests);
2118
2119                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2120                 }
2121
2122                 vcpu->arch.time = data;
2123                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2124
2125                 /* we verify if the enable bit is set... */
2126                 if (!(data & 1))
2127                         break;
2128
2129                 gpa_offset = data & ~(PAGE_MASK | 1);
2130
2131                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2132                      &vcpu->arch.pv_time, data & ~1ULL,
2133                      sizeof(struct pvclock_vcpu_time_info)))
2134                         vcpu->arch.pv_time_enabled = false;
2135                 else
2136                         vcpu->arch.pv_time_enabled = true;
2137
2138                 break;
2139         }
2140         case MSR_KVM_ASYNC_PF_EN:
2141                 if (kvm_pv_enable_async_pf(vcpu, data))
2142                         return 1;
2143                 break;
2144         case MSR_KVM_STEAL_TIME:
2145
2146                 if (unlikely(!sched_info_on()))
2147                         return 1;
2148
2149                 if (data & KVM_STEAL_RESERVED_MASK)
2150                         return 1;
2151
2152                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2153                                                 data & KVM_STEAL_VALID_BITS,
2154                                                 sizeof(struct kvm_steal_time)))
2155                         return 1;
2156
2157                 vcpu->arch.st.msr_val = data;
2158
2159                 if (!(data & KVM_MSR_ENABLED))
2160                         break;
2161
2162                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2163
2164                 break;
2165         case MSR_KVM_PV_EOI_EN:
2166                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2167                         return 1;
2168                 break;
2169
2170         case MSR_IA32_MCG_CTL:
2171         case MSR_IA32_MCG_STATUS:
2172         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2173                 return set_msr_mce(vcpu, msr, data);
2174
2175         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2176         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2177                 pr = true; /* fall through */
2178         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2179         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2180                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2181                         return kvm_pmu_set_msr(vcpu, msr_info);
2182
2183                 if (pr || data != 0)
2184                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2185                                     "0x%x data 0x%llx\n", msr, data);
2186                 break;
2187         case MSR_K7_CLK_CTL:
2188                 /*
2189                  * Ignore all writes to this no longer documented MSR.
2190                  * Writes are only relevant for old K7 processors,
2191                  * all pre-dating SVM, but a recommended workaround from
2192                  * AMD for these chips. It is possible to specify the
2193                  * affected processor models on the command line, hence
2194                  * the need to ignore the workaround.
2195                  */
2196                 break;
2197         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2198         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2199         case HV_X64_MSR_CRASH_CTL:
2200                 return kvm_hv_set_msr_common(vcpu, msr, data,
2201                                              msr_info->host_initiated);
2202         case MSR_IA32_BBL_CR_CTL3:
2203                 /* Drop writes to this legacy MSR -- see rdmsr
2204                  * counterpart for further detail.
2205                  */
2206                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2207                 break;
2208         case MSR_AMD64_OSVW_ID_LENGTH:
2209                 if (!guest_cpuid_has_osvw(vcpu))
2210                         return 1;
2211                 vcpu->arch.osvw.length = data;
2212                 break;
2213         case MSR_AMD64_OSVW_STATUS:
2214                 if (!guest_cpuid_has_osvw(vcpu))
2215                         return 1;
2216                 vcpu->arch.osvw.status = data;
2217                 break;
2218         default:
2219                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2220                         return xen_hvm_config(vcpu, data);
2221                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2222                         return kvm_pmu_set_msr(vcpu, msr_info);
2223                 if (!ignore_msrs) {
2224                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2225                                     msr, data);
2226                         return 1;
2227                 } else {
2228                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2229                                     msr, data);
2230                         break;
2231                 }
2232         }
2233         return 0;
2234 }
2235 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2236
2237
2238 /*
2239  * Reads an msr value (of 'msr_index') into 'pdata'.
2240  * Returns 0 on success, non-0 otherwise.
2241  * Assumes vcpu_load() was already called.
2242  */
2243 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2244 {
2245         return kvm_x86_ops->get_msr(vcpu, msr);
2246 }
2247 EXPORT_SYMBOL_GPL(kvm_get_msr);
2248
2249 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2250 {
2251         u64 data;
2252         u64 mcg_cap = vcpu->arch.mcg_cap;
2253         unsigned bank_num = mcg_cap & 0xff;
2254
2255         switch (msr) {
2256         case MSR_IA32_P5_MC_ADDR:
2257         case MSR_IA32_P5_MC_TYPE:
2258                 data = 0;
2259                 break;
2260         case MSR_IA32_MCG_CAP:
2261                 data = vcpu->arch.mcg_cap;
2262                 break;
2263         case MSR_IA32_MCG_CTL:
2264                 if (!(mcg_cap & MCG_CTL_P))
2265                         return 1;
2266                 data = vcpu->arch.mcg_ctl;
2267                 break;
2268         case MSR_IA32_MCG_STATUS:
2269                 data = vcpu->arch.mcg_status;
2270                 break;
2271         default:
2272                 if (msr >= MSR_IA32_MC0_CTL &&
2273                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2274                         u32 offset = msr - MSR_IA32_MC0_CTL;
2275                         data = vcpu->arch.mce_banks[offset];
2276                         break;
2277                 }
2278                 return 1;
2279         }
2280         *pdata = data;
2281         return 0;
2282 }
2283
2284 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2285 {
2286         switch (msr_info->index) {
2287         case MSR_IA32_PLATFORM_ID:
2288         case MSR_IA32_EBL_CR_POWERON:
2289         case MSR_IA32_DEBUGCTLMSR:
2290         case MSR_IA32_LASTBRANCHFROMIP:
2291         case MSR_IA32_LASTBRANCHTOIP:
2292         case MSR_IA32_LASTINTFROMIP:
2293         case MSR_IA32_LASTINTTOIP:
2294         case MSR_K8_SYSCFG:
2295         case MSR_K8_TSEG_ADDR:
2296         case MSR_K8_TSEG_MASK:
2297         case MSR_K7_HWCR:
2298         case MSR_VM_HSAVE_PA:
2299         case MSR_K8_INT_PENDING_MSG:
2300         case MSR_AMD64_NB_CFG:
2301         case MSR_FAM10H_MMIO_CONF_BASE:
2302         case MSR_AMD64_BU_CFG2:
2303                 msr_info->data = 0;
2304                 break;
2305         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2306         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2307         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2308         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2309                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2310                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2311                 msr_info->data = 0;
2312                 break;
2313         case MSR_IA32_UCODE_REV:
2314                 msr_info->data = 0x100000000ULL;
2315                 break;
2316         case MSR_MTRRcap:
2317         case 0x200 ... 0x2ff:
2318                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2319         case 0xcd: /* fsb frequency */
2320                 msr_info->data = 3;
2321                 break;
2322                 /*
2323                  * MSR_EBC_FREQUENCY_ID
2324                  * Conservative value valid for even the basic CPU models.
2325                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2326                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2327                  * and 266MHz for model 3, or 4. Set Core Clock
2328                  * Frequency to System Bus Frequency Ratio to 1 (bits
2329                  * 31:24) even though these are only valid for CPU
2330                  * models > 2, however guests may end up dividing or
2331                  * multiplying by zero otherwise.
2332                  */
2333         case MSR_EBC_FREQUENCY_ID:
2334                 msr_info->data = 1 << 24;
2335                 break;
2336         case MSR_IA32_APICBASE:
2337                 msr_info->data = kvm_get_apic_base(vcpu);
2338                 break;
2339         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2340                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2341                 break;
2342         case MSR_IA32_TSCDEADLINE:
2343                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2344                 break;
2345         case MSR_IA32_TSC_ADJUST:
2346                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2347                 break;
2348         case MSR_IA32_MISC_ENABLE:
2349                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2350                 break;
2351         case MSR_IA32_SMBASE:
2352                 if (!msr_info->host_initiated)
2353                         return 1;
2354                 msr_info->data = vcpu->arch.smbase;
2355                 break;
2356         case MSR_IA32_PERF_STATUS:
2357                 /* TSC increment by tick */
2358                 msr_info->data = 1000ULL;
2359                 /* CPU multiplier */
2360                 msr_info->data |= (((uint64_t)4ULL) << 40);
2361                 break;
2362         case MSR_EFER:
2363                 msr_info->data = vcpu->arch.efer;
2364                 break;
2365         case MSR_KVM_WALL_CLOCK:
2366         case MSR_KVM_WALL_CLOCK_NEW:
2367                 msr_info->data = vcpu->kvm->arch.wall_clock;
2368                 break;
2369         case MSR_KVM_SYSTEM_TIME:
2370         case MSR_KVM_SYSTEM_TIME_NEW:
2371                 msr_info->data = vcpu->arch.time;
2372                 break;
2373         case MSR_KVM_ASYNC_PF_EN:
2374                 msr_info->data = vcpu->arch.apf.msr_val;
2375                 break;
2376         case MSR_KVM_STEAL_TIME:
2377                 msr_info->data = vcpu->arch.st.msr_val;
2378                 break;
2379         case MSR_KVM_PV_EOI_EN:
2380                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2381                 break;
2382         case MSR_IA32_P5_MC_ADDR:
2383         case MSR_IA32_P5_MC_TYPE:
2384         case MSR_IA32_MCG_CAP:
2385         case MSR_IA32_MCG_CTL:
2386         case MSR_IA32_MCG_STATUS:
2387         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2388                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2389         case MSR_K7_CLK_CTL:
2390                 /*
2391                  * Provide expected ramp-up count for K7. All other
2392                  * are set to zero, indicating minimum divisors for
2393                  * every field.
2394                  *
2395                  * This prevents guest kernels on AMD host with CPU
2396                  * type 6, model 8 and higher from exploding due to
2397                  * the rdmsr failing.
2398                  */
2399                 msr_info->data = 0x20000000;
2400                 break;
2401         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2402         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2403         case HV_X64_MSR_CRASH_CTL:
2404                 return kvm_hv_get_msr_common(vcpu,
2405                                              msr_info->index, &msr_info->data);
2406                 break;
2407         case MSR_IA32_BBL_CR_CTL3:
2408                 /* This legacy MSR exists but isn't fully documented in current
2409                  * silicon.  It is however accessed by winxp in very narrow
2410                  * scenarios where it sets bit #19, itself documented as
2411                  * a "reserved" bit.  Best effort attempt to source coherent
2412                  * read data here should the balance of the register be
2413                  * interpreted by the guest:
2414                  *
2415                  * L2 cache control register 3: 64GB range, 256KB size,
2416                  * enabled, latency 0x1, configured
2417                  */
2418                 msr_info->data = 0xbe702111;
2419                 break;
2420         case MSR_AMD64_OSVW_ID_LENGTH:
2421                 if (!guest_cpuid_has_osvw(vcpu))
2422                         return 1;
2423                 msr_info->data = vcpu->arch.osvw.length;
2424                 break;
2425         case MSR_AMD64_OSVW_STATUS:
2426                 if (!guest_cpuid_has_osvw(vcpu))
2427                         return 1;
2428                 msr_info->data = vcpu->arch.osvw.status;
2429                 break;
2430         default:
2431                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2432                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2433                 if (!ignore_msrs) {
2434                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2435                         return 1;
2436                 } else {
2437                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2438                         msr_info->data = 0;
2439                 }
2440                 break;
2441         }
2442         return 0;
2443 }
2444 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2445
2446 /*
2447  * Read or write a bunch of msrs. All parameters are kernel addresses.
2448  *
2449  * @return number of msrs set successfully.
2450  */
2451 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2452                     struct kvm_msr_entry *entries,
2453                     int (*do_msr)(struct kvm_vcpu *vcpu,
2454                                   unsigned index, u64 *data))
2455 {
2456         int i, idx;
2457
2458         idx = srcu_read_lock(&vcpu->kvm->srcu);
2459         for (i = 0; i < msrs->nmsrs; ++i)
2460                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2461                         break;
2462         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2463
2464         return i;
2465 }
2466
2467 /*
2468  * Read or write a bunch of msrs. Parameters are user addresses.
2469  *
2470  * @return number of msrs set successfully.
2471  */
2472 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2473                   int (*do_msr)(struct kvm_vcpu *vcpu,
2474                                 unsigned index, u64 *data),
2475                   int writeback)
2476 {
2477         struct kvm_msrs msrs;
2478         struct kvm_msr_entry *entries;
2479         int r, n;
2480         unsigned size;
2481
2482         r = -EFAULT;
2483         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2484                 goto out;
2485
2486         r = -E2BIG;
2487         if (msrs.nmsrs >= MAX_IO_MSRS)
2488                 goto out;
2489
2490         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2491         entries = memdup_user(user_msrs->entries, size);
2492         if (IS_ERR(entries)) {
2493                 r = PTR_ERR(entries);
2494                 goto out;
2495         }
2496
2497         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2498         if (r < 0)
2499                 goto out_free;
2500
2501         r = -EFAULT;
2502         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2503                 goto out_free;
2504
2505         r = n;
2506
2507 out_free:
2508         kfree(entries);
2509 out:
2510         return r;
2511 }
2512
2513 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2514 {
2515         int r;
2516
2517         switch (ext) {
2518         case KVM_CAP_IRQCHIP:
2519         case KVM_CAP_HLT:
2520         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2521         case KVM_CAP_SET_TSS_ADDR:
2522         case KVM_CAP_EXT_CPUID:
2523         case KVM_CAP_EXT_EMUL_CPUID:
2524         case KVM_CAP_CLOCKSOURCE:
2525         case KVM_CAP_PIT:
2526         case KVM_CAP_NOP_IO_DELAY:
2527         case KVM_CAP_MP_STATE:
2528         case KVM_CAP_SYNC_MMU:
2529         case KVM_CAP_USER_NMI:
2530         case KVM_CAP_REINJECT_CONTROL:
2531         case KVM_CAP_IRQ_INJECT_STATUS:
2532         case KVM_CAP_IOEVENTFD:
2533         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2534         case KVM_CAP_PIT2:
2535         case KVM_CAP_PIT_STATE2:
2536         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2537         case KVM_CAP_XEN_HVM:
2538         case KVM_CAP_ADJUST_CLOCK:
2539         case KVM_CAP_VCPU_EVENTS:
2540         case KVM_CAP_HYPERV:
2541         case KVM_CAP_HYPERV_VAPIC:
2542         case KVM_CAP_HYPERV_SPIN:
2543         case KVM_CAP_PCI_SEGMENT:
2544         case KVM_CAP_DEBUGREGS:
2545         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2546         case KVM_CAP_XSAVE:
2547         case KVM_CAP_ASYNC_PF:
2548         case KVM_CAP_GET_TSC_KHZ:
2549         case KVM_CAP_KVMCLOCK_CTRL:
2550         case KVM_CAP_READONLY_MEM:
2551         case KVM_CAP_HYPERV_TIME:
2552         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2553         case KVM_CAP_TSC_DEADLINE_TIMER:
2554         case KVM_CAP_ENABLE_CAP_VM:
2555         case KVM_CAP_DISABLE_QUIRKS:
2556         case KVM_CAP_SET_BOOT_CPU_ID:
2557         case KVM_CAP_SPLIT_IRQCHIP:
2558 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2559         case KVM_CAP_ASSIGN_DEV_IRQ:
2560         case KVM_CAP_PCI_2_3:
2561 #endif
2562                 r = 1;
2563                 break;
2564         case KVM_CAP_X86_SMM:
2565                 /* SMBASE is usually relocated above 1M on modern chipsets,
2566                  * and SMM handlers might indeed rely on 4G segment limits,
2567                  * so do not report SMM to be available if real mode is
2568                  * emulated via vm86 mode.  Still, do not go to great lengths
2569                  * to avoid userspace's usage of the feature, because it is a
2570                  * fringe case that is not enabled except via specific settings
2571                  * of the module parameters.
2572                  */
2573                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2574                 break;
2575         case KVM_CAP_COALESCED_MMIO:
2576                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2577                 break;
2578         case KVM_CAP_VAPIC:
2579                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2580                 break;
2581         case KVM_CAP_NR_VCPUS:
2582                 r = KVM_SOFT_MAX_VCPUS;
2583                 break;
2584         case KVM_CAP_MAX_VCPUS:
2585                 r = KVM_MAX_VCPUS;
2586                 break;
2587         case KVM_CAP_NR_MEMSLOTS:
2588                 r = KVM_USER_MEM_SLOTS;
2589                 break;
2590         case KVM_CAP_PV_MMU:    /* obsolete */
2591                 r = 0;
2592                 break;
2593 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2594         case KVM_CAP_IOMMU:
2595                 r = iommu_present(&pci_bus_type);
2596                 break;
2597 #endif
2598         case KVM_CAP_MCE:
2599                 r = KVM_MAX_MCE_BANKS;
2600                 break;
2601         case KVM_CAP_XCRS:
2602                 r = cpu_has_xsave;
2603                 break;
2604         case KVM_CAP_TSC_CONTROL:
2605                 r = kvm_has_tsc_control;
2606                 break;
2607         default:
2608                 r = 0;
2609                 break;
2610         }
2611         return r;
2612
2613 }
2614
2615 long kvm_arch_dev_ioctl(struct file *filp,
2616                         unsigned int ioctl, unsigned long arg)
2617 {
2618         void __user *argp = (void __user *)arg;
2619         long r;
2620
2621         switch (ioctl) {
2622         case KVM_GET_MSR_INDEX_LIST: {
2623                 struct kvm_msr_list __user *user_msr_list = argp;
2624                 struct kvm_msr_list msr_list;
2625                 unsigned n;
2626
2627                 r = -EFAULT;
2628                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2629                         goto out;
2630                 n = msr_list.nmsrs;
2631                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2632                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2633                         goto out;
2634                 r = -E2BIG;
2635                 if (n < msr_list.nmsrs)
2636                         goto out;
2637                 r = -EFAULT;
2638                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2639                                  num_msrs_to_save * sizeof(u32)))
2640                         goto out;
2641                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2642                                  &emulated_msrs,
2643                                  num_emulated_msrs * sizeof(u32)))
2644                         goto out;
2645                 r = 0;
2646                 break;
2647         }
2648         case KVM_GET_SUPPORTED_CPUID:
2649         case KVM_GET_EMULATED_CPUID: {
2650                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2651                 struct kvm_cpuid2 cpuid;
2652
2653                 r = -EFAULT;
2654                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2655                         goto out;
2656
2657                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2658                                             ioctl);
2659                 if (r)
2660                         goto out;
2661
2662                 r = -EFAULT;
2663                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2664                         goto out;
2665                 r = 0;
2666                 break;
2667         }
2668         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2669                 u64 mce_cap;
2670
2671                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2672                 r = -EFAULT;
2673                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2674                         goto out;
2675                 r = 0;
2676                 break;
2677         }
2678         default:
2679                 r = -EINVAL;
2680         }
2681 out:
2682         return r;
2683 }
2684
2685 static void wbinvd_ipi(void *garbage)
2686 {
2687         wbinvd();
2688 }
2689
2690 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2691 {
2692         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2693 }
2694
2695 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2696 {
2697         /* Address WBINVD may be executed by guest */
2698         if (need_emulate_wbinvd(vcpu)) {
2699                 if (kvm_x86_ops->has_wbinvd_exit())
2700                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2701                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2702                         smp_call_function_single(vcpu->cpu,
2703                                         wbinvd_ipi, NULL, 1);
2704         }
2705
2706         kvm_x86_ops->vcpu_load(vcpu, cpu);
2707
2708         /* Apply any externally detected TSC adjustments (due to suspend) */
2709         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2710                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2711                 vcpu->arch.tsc_offset_adjustment = 0;
2712                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2713         }
2714
2715         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2716                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2717                                 rdtsc() - vcpu->arch.last_host_tsc;
2718                 if (tsc_delta < 0)
2719                         mark_tsc_unstable("KVM discovered backwards TSC");
2720                 if (check_tsc_unstable()) {
2721                         u64 offset = kvm_compute_tsc_offset(vcpu,
2722                                                 vcpu->arch.last_guest_tsc);
2723                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2724                         vcpu->arch.tsc_catchup = 1;
2725                 }
2726                 /*
2727                  * On a host with synchronized TSC, there is no need to update
2728                  * kvmclock on vcpu->cpu migration
2729                  */
2730                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2731                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2732                 if (vcpu->cpu != cpu)
2733                         kvm_migrate_timers(vcpu);
2734                 vcpu->cpu = cpu;
2735         }
2736
2737         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2738         vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
2739 }
2740
2741 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2742 {
2743         kvm_x86_ops->vcpu_put(vcpu);
2744         kvm_put_guest_fpu(vcpu);
2745         vcpu->arch.last_host_tsc = rdtsc();
2746 }
2747
2748 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2749                                     struct kvm_lapic_state *s)
2750 {
2751         kvm_x86_ops->sync_pir_to_irr(vcpu);
2752         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2753
2754         return 0;
2755 }
2756
2757 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2758                                     struct kvm_lapic_state *s)
2759 {
2760         kvm_apic_post_state_restore(vcpu, s);
2761         update_cr8_intercept(vcpu);
2762
2763         return 0;
2764 }
2765
2766 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2767 {
2768         return (!lapic_in_kernel(vcpu) ||
2769                 kvm_apic_accept_pic_intr(vcpu));
2770 }
2771
2772 /*
2773  * if userspace requested an interrupt window, check that the
2774  * interrupt window is open.
2775  *
2776  * No need to exit to userspace if we already have an interrupt queued.
2777  */
2778 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2779 {
2780         return kvm_arch_interrupt_allowed(vcpu) &&
2781                 !kvm_cpu_has_interrupt(vcpu) &&
2782                 !kvm_event_needs_reinjection(vcpu) &&
2783                 kvm_cpu_accept_dm_intr(vcpu);
2784 }
2785
2786 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2787                                     struct kvm_interrupt *irq)
2788 {
2789         if (irq->irq >= KVM_NR_INTERRUPTS)
2790                 return -EINVAL;
2791
2792         if (!irqchip_in_kernel(vcpu->kvm)) {
2793                 kvm_queue_interrupt(vcpu, irq->irq, false);
2794                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2795                 return 0;
2796         }
2797
2798         /*
2799          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2800          * fail for in-kernel 8259.
2801          */
2802         if (pic_in_kernel(vcpu->kvm))
2803                 return -ENXIO;
2804
2805         if (vcpu->arch.pending_external_vector != -1)
2806                 return -EEXIST;
2807
2808         vcpu->arch.pending_external_vector = irq->irq;
2809         kvm_make_request(KVM_REQ_EVENT, vcpu);
2810         return 0;
2811 }
2812
2813 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2814 {
2815         kvm_inject_nmi(vcpu);
2816
2817         return 0;
2818 }
2819
2820 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2821 {
2822         kvm_make_request(KVM_REQ_SMI, vcpu);
2823
2824         return 0;
2825 }
2826
2827 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2828                                            struct kvm_tpr_access_ctl *tac)
2829 {
2830         if (tac->flags)
2831                 return -EINVAL;
2832         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2833         return 0;
2834 }
2835
2836 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2837                                         u64 mcg_cap)
2838 {
2839         int r;
2840         unsigned bank_num = mcg_cap & 0xff, bank;
2841
2842         r = -EINVAL;
2843         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2844                 goto out;
2845         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2846                 goto out;
2847         r = 0;
2848         vcpu->arch.mcg_cap = mcg_cap;
2849         /* Init IA32_MCG_CTL to all 1s */
2850         if (mcg_cap & MCG_CTL_P)
2851                 vcpu->arch.mcg_ctl = ~(u64)0;
2852         /* Init IA32_MCi_CTL to all 1s */
2853         for (bank = 0; bank < bank_num; bank++)
2854                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2855 out:
2856         return r;
2857 }
2858
2859 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2860                                       struct kvm_x86_mce *mce)
2861 {
2862         u64 mcg_cap = vcpu->arch.mcg_cap;
2863         unsigned bank_num = mcg_cap & 0xff;
2864         u64 *banks = vcpu->arch.mce_banks;
2865
2866         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2867                 return -EINVAL;
2868         /*
2869          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2870          * reporting is disabled
2871          */
2872         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2873             vcpu->arch.mcg_ctl != ~(u64)0)
2874                 return 0;
2875         banks += 4 * mce->bank;
2876         /*
2877          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2878          * reporting is disabled for the bank
2879          */
2880         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2881                 return 0;
2882         if (mce->status & MCI_STATUS_UC) {
2883                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2884                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2885                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2886                         return 0;
2887                 }
2888                 if (banks[1] & MCI_STATUS_VAL)
2889                         mce->status |= MCI_STATUS_OVER;
2890                 banks[2] = mce->addr;
2891                 banks[3] = mce->misc;
2892                 vcpu->arch.mcg_status = mce->mcg_status;
2893                 banks[1] = mce->status;
2894                 kvm_queue_exception(vcpu, MC_VECTOR);
2895         } else if (!(banks[1] & MCI_STATUS_VAL)
2896                    || !(banks[1] & MCI_STATUS_UC)) {
2897                 if (banks[1] & MCI_STATUS_VAL)
2898                         mce->status |= MCI_STATUS_OVER;
2899                 banks[2] = mce->addr;
2900                 banks[3] = mce->misc;
2901                 banks[1] = mce->status;
2902         } else
2903                 banks[1] |= MCI_STATUS_OVER;
2904         return 0;
2905 }
2906
2907 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2908                                                struct kvm_vcpu_events *events)
2909 {
2910         process_nmi(vcpu);
2911         events->exception.injected =
2912                 vcpu->arch.exception.pending &&
2913                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2914         events->exception.nr = vcpu->arch.exception.nr;
2915         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2916         events->exception.pad = 0;
2917         events->exception.error_code = vcpu->arch.exception.error_code;
2918
2919         events->interrupt.injected =
2920                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2921         events->interrupt.nr = vcpu->arch.interrupt.nr;
2922         events->interrupt.soft = 0;
2923         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2924
2925         events->nmi.injected = vcpu->arch.nmi_injected;
2926         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2927         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2928         events->nmi.pad = 0;
2929
2930         events->sipi_vector = 0; /* never valid when reporting to user space */
2931
2932         events->smi.smm = is_smm(vcpu);
2933         events->smi.pending = vcpu->arch.smi_pending;
2934         events->smi.smm_inside_nmi =
2935                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2936         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2937
2938         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2939                          | KVM_VCPUEVENT_VALID_SHADOW
2940                          | KVM_VCPUEVENT_VALID_SMM);
2941         memset(&events->reserved, 0, sizeof(events->reserved));
2942 }
2943
2944 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2945                                               struct kvm_vcpu_events *events)
2946 {
2947         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2948                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2949                               | KVM_VCPUEVENT_VALID_SHADOW
2950                               | KVM_VCPUEVENT_VALID_SMM))
2951                 return -EINVAL;
2952
2953         process_nmi(vcpu);
2954         vcpu->arch.exception.pending = events->exception.injected;
2955         vcpu->arch.exception.nr = events->exception.nr;
2956         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2957         vcpu->arch.exception.error_code = events->exception.error_code;
2958
2959         vcpu->arch.interrupt.pending = events->interrupt.injected;
2960         vcpu->arch.interrupt.nr = events->interrupt.nr;
2961         vcpu->arch.interrupt.soft = events->interrupt.soft;
2962         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2963                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2964                                                   events->interrupt.shadow);
2965
2966         vcpu->arch.nmi_injected = events->nmi.injected;
2967         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2968                 vcpu->arch.nmi_pending = events->nmi.pending;
2969         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2970
2971         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2972             kvm_vcpu_has_lapic(vcpu))
2973                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2974
2975         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2976                 if (events->smi.smm)
2977                         vcpu->arch.hflags |= HF_SMM_MASK;
2978                 else
2979                         vcpu->arch.hflags &= ~HF_SMM_MASK;
2980                 vcpu->arch.smi_pending = events->smi.pending;
2981                 if (events->smi.smm_inside_nmi)
2982                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
2983                 else
2984                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
2985                 if (kvm_vcpu_has_lapic(vcpu)) {
2986                         if (events->smi.latched_init)
2987                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2988                         else
2989                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2990                 }
2991         }
2992
2993         kvm_make_request(KVM_REQ_EVENT, vcpu);
2994
2995         return 0;
2996 }
2997
2998 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2999                                              struct kvm_debugregs *dbgregs)
3000 {
3001         unsigned long val;
3002
3003         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3004         kvm_get_dr(vcpu, 6, &val);
3005         dbgregs->dr6 = val;
3006         dbgregs->dr7 = vcpu->arch.dr7;
3007         dbgregs->flags = 0;
3008         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3009 }
3010
3011 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3012                                             struct kvm_debugregs *dbgregs)
3013 {
3014         if (dbgregs->flags)
3015                 return -EINVAL;
3016
3017         if (dbgregs->dr6 & ~0xffffffffull)
3018                 return -EINVAL;
3019         if (dbgregs->dr7 & ~0xffffffffull)
3020                 return -EINVAL;
3021
3022         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3023         kvm_update_dr0123(vcpu);
3024         vcpu->arch.dr6 = dbgregs->dr6;
3025         kvm_update_dr6(vcpu);
3026         vcpu->arch.dr7 = dbgregs->dr7;
3027         kvm_update_dr7(vcpu);
3028
3029         return 0;
3030 }
3031
3032 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3033
3034 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3035 {
3036         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3037         u64 xstate_bv = xsave->header.xfeatures;
3038         u64 valid;
3039
3040         /*
3041          * Copy legacy XSAVE area, to avoid complications with CPUID
3042          * leaves 0 and 1 in the loop below.
3043          */
3044         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3045
3046         /* Set XSTATE_BV */
3047         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3048
3049         /*
3050          * Copy each region from the possibly compacted offset to the
3051          * non-compacted offset.
3052          */
3053         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3054         while (valid) {
3055                 u64 feature = valid & -valid;
3056                 int index = fls64(feature) - 1;
3057                 void *src = get_xsave_addr(xsave, feature);
3058
3059                 if (src) {
3060                         u32 size, offset, ecx, edx;
3061                         cpuid_count(XSTATE_CPUID, index,
3062                                     &size, &offset, &ecx, &edx);
3063                         memcpy(dest + offset, src, size);
3064                 }
3065
3066                 valid -= feature;
3067         }
3068 }
3069
3070 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3071 {
3072         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3073         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3074         u64 valid;
3075
3076         /*
3077          * Copy legacy XSAVE area, to avoid complications with CPUID
3078          * leaves 0 and 1 in the loop below.
3079          */
3080         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3081
3082         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3083         xsave->header.xfeatures = xstate_bv;
3084         if (cpu_has_xsaves)
3085                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3086
3087         /*
3088          * Copy each region from the non-compacted offset to the
3089          * possibly compacted offset.
3090          */
3091         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3092         while (valid) {
3093                 u64 feature = valid & -valid;
3094                 int index = fls64(feature) - 1;
3095                 void *dest = get_xsave_addr(xsave, feature);
3096
3097                 if (dest) {
3098                         u32 size, offset, ecx, edx;
3099                         cpuid_count(XSTATE_CPUID, index,
3100                                     &size, &offset, &ecx, &edx);
3101                         memcpy(dest, src + offset, size);
3102                 }
3103
3104                 valid -= feature;
3105         }
3106 }
3107
3108 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3109                                          struct kvm_xsave *guest_xsave)
3110 {
3111         if (cpu_has_xsave) {
3112                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3113                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3114         } else {
3115                 memcpy(guest_xsave->region,
3116                         &vcpu->arch.guest_fpu.state.fxsave,
3117                         sizeof(struct fxregs_state));
3118                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3119                         XFEATURE_MASK_FPSSE;
3120         }
3121 }
3122
3123 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3124                                         struct kvm_xsave *guest_xsave)
3125 {
3126         u64 xstate_bv =
3127                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3128
3129         if (cpu_has_xsave) {
3130                 /*
3131                  * Here we allow setting states that are not present in
3132                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3133                  * with old userspace.
3134                  */
3135                 if (xstate_bv & ~kvm_supported_xcr0())
3136                         return -EINVAL;
3137                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3138         } else {
3139                 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3140                         return -EINVAL;
3141                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3142                         guest_xsave->region, sizeof(struct fxregs_state));
3143         }
3144         return 0;
3145 }
3146
3147 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3148                                         struct kvm_xcrs *guest_xcrs)
3149 {
3150         if (!cpu_has_xsave) {
3151                 guest_xcrs->nr_xcrs = 0;
3152                 return;
3153         }
3154
3155         guest_xcrs->nr_xcrs = 1;
3156         guest_xcrs->flags = 0;
3157         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3158         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3159 }
3160
3161 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3162                                        struct kvm_xcrs *guest_xcrs)
3163 {
3164         int i, r = 0;
3165
3166         if (!cpu_has_xsave)
3167                 return -EINVAL;
3168
3169         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3170                 return -EINVAL;
3171
3172         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3173                 /* Only support XCR0 currently */
3174                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3175                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3176                                 guest_xcrs->xcrs[i].value);
3177                         break;
3178                 }
3179         if (r)
3180                 r = -EINVAL;
3181         return r;
3182 }
3183
3184 /*
3185  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3186  * stopped by the hypervisor.  This function will be called from the host only.
3187  * EINVAL is returned when the host attempts to set the flag for a guest that
3188  * does not support pv clocks.
3189  */
3190 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3191 {
3192         if (!vcpu->arch.pv_time_enabled)
3193                 return -EINVAL;
3194         vcpu->arch.pvclock_set_guest_stopped_request = true;
3195         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3196         return 0;
3197 }
3198
3199 long kvm_arch_vcpu_ioctl(struct file *filp,
3200                          unsigned int ioctl, unsigned long arg)
3201 {
3202         struct kvm_vcpu *vcpu = filp->private_data;
3203         void __user *argp = (void __user *)arg;
3204         int r;
3205         union {
3206                 struct kvm_lapic_state *lapic;
3207                 struct kvm_xsave *xsave;
3208                 struct kvm_xcrs *xcrs;
3209                 void *buffer;
3210         } u;
3211
3212         u.buffer = NULL;
3213         switch (ioctl) {
3214         case KVM_GET_LAPIC: {
3215                 r = -EINVAL;
3216                 if (!vcpu->arch.apic)
3217                         goto out;
3218                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3219
3220                 r = -ENOMEM;
3221                 if (!u.lapic)
3222                         goto out;
3223                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3224                 if (r)
3225                         goto out;
3226                 r = -EFAULT;
3227                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3228                         goto out;
3229                 r = 0;
3230                 break;
3231         }
3232         case KVM_SET_LAPIC: {
3233                 r = -EINVAL;
3234                 if (!vcpu->arch.apic)
3235                         goto out;
3236                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3237                 if (IS_ERR(u.lapic))
3238                         return PTR_ERR(u.lapic);
3239
3240                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3241                 break;
3242         }
3243         case KVM_INTERRUPT: {
3244                 struct kvm_interrupt irq;
3245
3246                 r = -EFAULT;
3247                 if (copy_from_user(&irq, argp, sizeof irq))
3248                         goto out;
3249                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3250                 break;
3251         }
3252         case KVM_NMI: {
3253                 r = kvm_vcpu_ioctl_nmi(vcpu);
3254                 break;
3255         }
3256         case KVM_SMI: {
3257                 r = kvm_vcpu_ioctl_smi(vcpu);
3258                 break;
3259         }
3260         case KVM_SET_CPUID: {
3261                 struct kvm_cpuid __user *cpuid_arg = argp;
3262                 struct kvm_cpuid cpuid;
3263
3264                 r = -EFAULT;
3265                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3266                         goto out;
3267                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3268                 break;
3269         }
3270         case KVM_SET_CPUID2: {
3271                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3272                 struct kvm_cpuid2 cpuid;
3273
3274                 r = -EFAULT;
3275                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3276                         goto out;
3277                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3278                                               cpuid_arg->entries);
3279                 break;
3280         }
3281         case KVM_GET_CPUID2: {
3282                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3283                 struct kvm_cpuid2 cpuid;
3284
3285                 r = -EFAULT;
3286                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3287                         goto out;
3288                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3289                                               cpuid_arg->entries);
3290                 if (r)
3291                         goto out;
3292                 r = -EFAULT;
3293                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3294                         goto out;
3295                 r = 0;
3296                 break;
3297         }
3298         case KVM_GET_MSRS:
3299                 r = msr_io(vcpu, argp, do_get_msr, 1);
3300                 break;
3301         case KVM_SET_MSRS:
3302                 r = msr_io(vcpu, argp, do_set_msr, 0);
3303                 break;
3304         case KVM_TPR_ACCESS_REPORTING: {
3305                 struct kvm_tpr_access_ctl tac;
3306
3307                 r = -EFAULT;
3308                 if (copy_from_user(&tac, argp, sizeof tac))
3309                         goto out;
3310                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3311                 if (r)
3312                         goto out;
3313                 r = -EFAULT;
3314                 if (copy_to_user(argp, &tac, sizeof tac))
3315                         goto out;
3316                 r = 0;
3317                 break;
3318         };
3319         case KVM_SET_VAPIC_ADDR: {
3320                 struct kvm_vapic_addr va;
3321
3322                 r = -EINVAL;
3323                 if (!lapic_in_kernel(vcpu))
3324                         goto out;
3325                 r = -EFAULT;
3326                 if (copy_from_user(&va, argp, sizeof va))
3327                         goto out;
3328                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3329                 break;
3330         }
3331         case KVM_X86_SETUP_MCE: {
3332                 u64 mcg_cap;
3333
3334                 r = -EFAULT;
3335                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3336                         goto out;
3337                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3338                 break;
3339         }
3340         case KVM_X86_SET_MCE: {
3341                 struct kvm_x86_mce mce;
3342
3343                 r = -EFAULT;
3344                 if (copy_from_user(&mce, argp, sizeof mce))
3345                         goto out;
3346                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3347                 break;
3348         }
3349         case KVM_GET_VCPU_EVENTS: {
3350                 struct kvm_vcpu_events events;
3351
3352                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3353
3354                 r = -EFAULT;
3355                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3356                         break;
3357                 r = 0;
3358                 break;
3359         }
3360         case KVM_SET_VCPU_EVENTS: {
3361                 struct kvm_vcpu_events events;
3362
3363                 r = -EFAULT;
3364                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3365                         break;
3366
3367                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3368                 break;
3369         }
3370         case KVM_GET_DEBUGREGS: {
3371                 struct kvm_debugregs dbgregs;
3372
3373                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3374
3375                 r = -EFAULT;
3376                 if (copy_to_user(argp, &dbgregs,
3377                                  sizeof(struct kvm_debugregs)))
3378                         break;
3379                 r = 0;
3380                 break;
3381         }
3382         case KVM_SET_DEBUGREGS: {
3383                 struct kvm_debugregs dbgregs;
3384
3385                 r = -EFAULT;
3386                 if (copy_from_user(&dbgregs, argp,
3387                                    sizeof(struct kvm_debugregs)))
3388                         break;
3389
3390                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3391                 break;
3392         }
3393         case KVM_GET_XSAVE: {
3394                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3395                 r = -ENOMEM;
3396                 if (!u.xsave)
3397                         break;
3398
3399                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3400
3401                 r = -EFAULT;
3402                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3403                         break;
3404                 r = 0;
3405                 break;
3406         }
3407         case KVM_SET_XSAVE: {
3408                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3409                 if (IS_ERR(u.xsave))
3410                         return PTR_ERR(u.xsave);
3411
3412                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3413                 break;
3414         }
3415         case KVM_GET_XCRS: {
3416                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3417                 r = -ENOMEM;
3418                 if (!u.xcrs)
3419                         break;
3420
3421                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3422
3423                 r = -EFAULT;
3424                 if (copy_to_user(argp, u.xcrs,
3425                                  sizeof(struct kvm_xcrs)))
3426                         break;
3427                 r = 0;
3428                 break;
3429         }
3430         case KVM_SET_XCRS: {
3431                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3432                 if (IS_ERR(u.xcrs))
3433                         return PTR_ERR(u.xcrs);
3434
3435                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3436                 break;
3437         }
3438         case KVM_SET_TSC_KHZ: {
3439                 u32 user_tsc_khz;
3440
3441                 r = -EINVAL;
3442                 user_tsc_khz = (u32)arg;
3443
3444                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3445                         goto out;
3446
3447                 if (user_tsc_khz == 0)
3448                         user_tsc_khz = tsc_khz;
3449
3450                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3451                         r = 0;
3452
3453                 goto out;
3454         }
3455         case KVM_GET_TSC_KHZ: {
3456                 r = vcpu->arch.virtual_tsc_khz;
3457                 goto out;
3458         }
3459         case KVM_KVMCLOCK_CTRL: {
3460                 r = kvm_set_guest_paused(vcpu);
3461                 goto out;
3462         }
3463         default:
3464                 r = -EINVAL;
3465         }
3466 out:
3467         kfree(u.buffer);
3468         return r;
3469 }
3470
3471 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3472 {
3473         return VM_FAULT_SIGBUS;
3474 }
3475
3476 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3477 {
3478         int ret;
3479
3480         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3481                 return -EINVAL;
3482         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3483         return ret;
3484 }
3485
3486 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3487                                               u64 ident_addr)
3488 {
3489         kvm->arch.ept_identity_map_addr = ident_addr;
3490         return 0;
3491 }
3492
3493 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3494                                           u32 kvm_nr_mmu_pages)
3495 {
3496         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3497                 return -EINVAL;
3498
3499         mutex_lock(&kvm->slots_lock);
3500
3501         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3502         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3503
3504         mutex_unlock(&kvm->slots_lock);
3505         return 0;
3506 }
3507
3508 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3509 {
3510         return kvm->arch.n_max_mmu_pages;
3511 }
3512
3513 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3514 {
3515         int r;
3516
3517         r = 0;
3518         switch (chip->chip_id) {
3519         case KVM_IRQCHIP_PIC_MASTER:
3520                 memcpy(&chip->chip.pic,
3521                         &pic_irqchip(kvm)->pics[0],
3522                         sizeof(struct kvm_pic_state));
3523                 break;
3524         case KVM_IRQCHIP_PIC_SLAVE:
3525                 memcpy(&chip->chip.pic,
3526                         &pic_irqchip(kvm)->pics[1],
3527                         sizeof(struct kvm_pic_state));
3528                 break;
3529         case KVM_IRQCHIP_IOAPIC:
3530                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3531                 break;
3532         default:
3533                 r = -EINVAL;
3534                 break;
3535         }
3536         return r;
3537 }
3538
3539 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3540 {
3541         int r;
3542
3543         r = 0;
3544         switch (chip->chip_id) {
3545         case KVM_IRQCHIP_PIC_MASTER:
3546                 spin_lock(&pic_irqchip(kvm)->lock);
3547                 memcpy(&pic_irqchip(kvm)->pics[0],
3548                         &chip->chip.pic,
3549                         sizeof(struct kvm_pic_state));
3550                 spin_unlock(&pic_irqchip(kvm)->lock);
3551                 break;
3552         case KVM_IRQCHIP_PIC_SLAVE:
3553                 spin_lock(&pic_irqchip(kvm)->lock);
3554                 memcpy(&pic_irqchip(kvm)->pics[1],
3555                         &chip->chip.pic,
3556                         sizeof(struct kvm_pic_state));
3557                 spin_unlock(&pic_irqchip(kvm)->lock);
3558                 break;
3559         case KVM_IRQCHIP_IOAPIC:
3560                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3561                 break;
3562         default:
3563                 r = -EINVAL;
3564                 break;
3565         }
3566         kvm_pic_update_irq(pic_irqchip(kvm));
3567         return r;
3568 }
3569
3570 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3571 {
3572         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3573         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3574         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3575         return 0;
3576 }
3577
3578 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3579 {
3580         int i;
3581         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3582         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3583         for (i = 0; i < 3; i++)
3584                 kvm_pit_load_count(kvm, i, ps->channels[i].count, 0);
3585         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3586         return 0;
3587 }
3588
3589 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3590 {
3591         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3592         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3593                 sizeof(ps->channels));
3594         ps->flags = kvm->arch.vpit->pit_state.flags;
3595         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3596         memset(&ps->reserved, 0, sizeof(ps->reserved));
3597         return 0;
3598 }
3599
3600 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3601 {
3602         int start = 0;
3603         int i;
3604         u32 prev_legacy, cur_legacy;
3605         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3606         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3607         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3608         if (!prev_legacy && cur_legacy)
3609                 start = 1;
3610         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3611                sizeof(kvm->arch.vpit->pit_state.channels));
3612         kvm->arch.vpit->pit_state.flags = ps->flags;
3613         for (i = 0; i < 3; i++)
3614                 kvm_pit_load_count(kvm, i, kvm->arch.vpit->pit_state.channels[i].count,
3615                                    start && i == 0);
3616         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3617         return 0;
3618 }
3619
3620 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3621                                  struct kvm_reinject_control *control)
3622 {
3623         if (!kvm->arch.vpit)
3624                 return -ENXIO;
3625         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3626         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3627         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3628         return 0;
3629 }
3630
3631 /**
3632  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3633  * @kvm: kvm instance
3634  * @log: slot id and address to which we copy the log
3635  *
3636  * Steps 1-4 below provide general overview of dirty page logging. See
3637  * kvm_get_dirty_log_protect() function description for additional details.
3638  *
3639  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3640  * always flush the TLB (step 4) even if previous step failed  and the dirty
3641  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3642  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3643  * writes will be marked dirty for next log read.
3644  *
3645  *   1. Take a snapshot of the bit and clear it if needed.
3646  *   2. Write protect the corresponding page.
3647  *   3. Copy the snapshot to the userspace.
3648  *   4. Flush TLB's if needed.
3649  */
3650 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3651 {
3652         bool is_dirty = false;
3653         int r;
3654
3655         mutex_lock(&kvm->slots_lock);
3656
3657         /*
3658          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3659          */
3660         if (kvm_x86_ops->flush_log_dirty)
3661                 kvm_x86_ops->flush_log_dirty(kvm);
3662
3663         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3664
3665         /*
3666          * All the TLBs can be flushed out of mmu lock, see the comments in
3667          * kvm_mmu_slot_remove_write_access().
3668          */
3669         lockdep_assert_held(&kvm->slots_lock);
3670         if (is_dirty)
3671                 kvm_flush_remote_tlbs(kvm);
3672
3673         mutex_unlock(&kvm->slots_lock);
3674         return r;
3675 }
3676
3677 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3678                         bool line_status)
3679 {
3680         if (!irqchip_in_kernel(kvm))
3681                 return -ENXIO;
3682
3683         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3684                                         irq_event->irq, irq_event->level,
3685                                         line_status);
3686         return 0;
3687 }
3688
3689 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3690                                    struct kvm_enable_cap *cap)
3691 {
3692         int r;
3693
3694         if (cap->flags)
3695                 return -EINVAL;
3696
3697         switch (cap->cap) {
3698         case KVM_CAP_DISABLE_QUIRKS:
3699                 kvm->arch.disabled_quirks = cap->args[0];
3700                 r = 0;
3701                 break;
3702         case KVM_CAP_SPLIT_IRQCHIP: {
3703                 mutex_lock(&kvm->lock);
3704                 r = -EINVAL;
3705                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3706                         goto split_irqchip_unlock;
3707                 r = -EEXIST;
3708                 if (irqchip_in_kernel(kvm))
3709                         goto split_irqchip_unlock;
3710                 if (atomic_read(&kvm->online_vcpus))
3711                         goto split_irqchip_unlock;
3712                 r = kvm_setup_empty_irq_routing(kvm);
3713                 if (r)
3714                         goto split_irqchip_unlock;
3715                 /* Pairs with irqchip_in_kernel. */
3716                 smp_wmb();
3717                 kvm->arch.irqchip_split = true;
3718                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3719                 r = 0;
3720 split_irqchip_unlock:
3721                 mutex_unlock(&kvm->lock);
3722                 break;
3723         }
3724         default:
3725                 r = -EINVAL;
3726                 break;
3727         }
3728         return r;
3729 }
3730
3731 long kvm_arch_vm_ioctl(struct file *filp,
3732                        unsigned int ioctl, unsigned long arg)
3733 {
3734         struct kvm *kvm = filp->private_data;
3735         void __user *argp = (void __user *)arg;
3736         int r = -ENOTTY;
3737         /*
3738          * This union makes it completely explicit to gcc-3.x
3739          * that these two variables' stack usage should be
3740          * combined, not added together.
3741          */
3742         union {
3743                 struct kvm_pit_state ps;
3744                 struct kvm_pit_state2 ps2;
3745                 struct kvm_pit_config pit_config;
3746         } u;
3747
3748         switch (ioctl) {
3749         case KVM_SET_TSS_ADDR:
3750                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3751                 break;
3752         case KVM_SET_IDENTITY_MAP_ADDR: {
3753                 u64 ident_addr;
3754
3755                 r = -EFAULT;
3756                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3757                         goto out;
3758                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3759                 break;
3760         }
3761         case KVM_SET_NR_MMU_PAGES:
3762                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3763                 break;
3764         case KVM_GET_NR_MMU_PAGES:
3765                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3766                 break;
3767         case KVM_CREATE_IRQCHIP: {
3768                 struct kvm_pic *vpic;
3769
3770                 mutex_lock(&kvm->lock);
3771                 r = -EEXIST;
3772                 if (kvm->arch.vpic)
3773                         goto create_irqchip_unlock;
3774                 r = -EINVAL;
3775                 if (atomic_read(&kvm->online_vcpus))
3776                         goto create_irqchip_unlock;
3777                 r = -ENOMEM;
3778                 vpic = kvm_create_pic(kvm);
3779                 if (vpic) {
3780                         r = kvm_ioapic_init(kvm);
3781                         if (r) {
3782                                 mutex_lock(&kvm->slots_lock);
3783                                 kvm_destroy_pic(vpic);
3784                                 mutex_unlock(&kvm->slots_lock);
3785                                 goto create_irqchip_unlock;
3786                         }
3787                 } else
3788                         goto create_irqchip_unlock;
3789                 r = kvm_setup_default_irq_routing(kvm);
3790                 if (r) {
3791                         mutex_lock(&kvm->slots_lock);
3792                         mutex_lock(&kvm->irq_lock);
3793                         kvm_ioapic_destroy(kvm);
3794                         kvm_destroy_pic(vpic);
3795                         mutex_unlock(&kvm->irq_lock);
3796                         mutex_unlock(&kvm->slots_lock);
3797                         goto create_irqchip_unlock;
3798                 }
3799                 /* Write kvm->irq_routing before kvm->arch.vpic.  */
3800                 smp_wmb();
3801                 kvm->arch.vpic = vpic;
3802         create_irqchip_unlock:
3803                 mutex_unlock(&kvm->lock);
3804                 break;
3805         }
3806         case KVM_CREATE_PIT:
3807                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3808                 goto create_pit;
3809         case KVM_CREATE_PIT2:
3810                 r = -EFAULT;
3811                 if (copy_from_user(&u.pit_config, argp,
3812                                    sizeof(struct kvm_pit_config)))
3813                         goto out;
3814         create_pit:
3815                 mutex_lock(&kvm->slots_lock);
3816                 r = -EEXIST;
3817                 if (kvm->arch.vpit)
3818                         goto create_pit_unlock;
3819                 r = -ENOMEM;
3820                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3821                 if (kvm->arch.vpit)
3822                         r = 0;
3823         create_pit_unlock:
3824                 mutex_unlock(&kvm->slots_lock);
3825                 break;
3826         case KVM_GET_IRQCHIP: {
3827                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3828                 struct kvm_irqchip *chip;
3829
3830                 chip = memdup_user(argp, sizeof(*chip));
3831                 if (IS_ERR(chip)) {
3832                         r = PTR_ERR(chip);
3833                         goto out;
3834                 }
3835
3836                 r = -ENXIO;
3837                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3838                         goto get_irqchip_out;
3839                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3840                 if (r)
3841                         goto get_irqchip_out;
3842                 r = -EFAULT;
3843                 if (copy_to_user(argp, chip, sizeof *chip))
3844                         goto get_irqchip_out;
3845                 r = 0;
3846         get_irqchip_out:
3847                 kfree(chip);
3848                 break;
3849         }
3850         case KVM_SET_IRQCHIP: {
3851                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3852                 struct kvm_irqchip *chip;
3853
3854                 chip = memdup_user(argp, sizeof(*chip));
3855                 if (IS_ERR(chip)) {
3856                         r = PTR_ERR(chip);
3857                         goto out;
3858                 }
3859
3860                 r = -ENXIO;
3861                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3862                         goto set_irqchip_out;
3863                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3864                 if (r)
3865                         goto set_irqchip_out;
3866                 r = 0;
3867         set_irqchip_out:
3868                 kfree(chip);
3869                 break;
3870         }
3871         case KVM_GET_PIT: {
3872                 r = -EFAULT;
3873                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3874                         goto out;
3875                 r = -ENXIO;
3876                 if (!kvm->arch.vpit)
3877                         goto out;
3878                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3879                 if (r)
3880                         goto out;
3881                 r = -EFAULT;
3882                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3883                         goto out;
3884                 r = 0;
3885                 break;
3886         }
3887         case KVM_SET_PIT: {
3888                 r = -EFAULT;
3889                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3890                         goto out;
3891                 r = -ENXIO;
3892                 if (!kvm->arch.vpit)
3893                         goto out;
3894                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3895                 break;
3896         }
3897         case KVM_GET_PIT2: {
3898                 r = -ENXIO;
3899                 if (!kvm->arch.vpit)
3900                         goto out;
3901                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3902                 if (r)
3903                         goto out;
3904                 r = -EFAULT;
3905                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3906                         goto out;
3907                 r = 0;
3908                 break;
3909         }
3910         case KVM_SET_PIT2: {
3911                 r = -EFAULT;
3912                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3913                         goto out;
3914                 r = -ENXIO;
3915                 if (!kvm->arch.vpit)
3916                         goto out;
3917                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3918                 break;
3919         }
3920         case KVM_REINJECT_CONTROL: {
3921                 struct kvm_reinject_control control;
3922                 r =  -EFAULT;
3923                 if (copy_from_user(&control, argp, sizeof(control)))
3924                         goto out;
3925                 r = kvm_vm_ioctl_reinject(kvm, &control);
3926                 break;
3927         }
3928         case KVM_SET_BOOT_CPU_ID:
3929                 r = 0;
3930                 mutex_lock(&kvm->lock);
3931                 if (atomic_read(&kvm->online_vcpus) != 0)
3932                         r = -EBUSY;
3933                 else
3934                         kvm->arch.bsp_vcpu_id = arg;
3935                 mutex_unlock(&kvm->lock);
3936                 break;
3937         case KVM_XEN_HVM_CONFIG: {
3938                 r = -EFAULT;
3939                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3940                                    sizeof(struct kvm_xen_hvm_config)))
3941                         goto out;
3942                 r = -EINVAL;
3943                 if (kvm->arch.xen_hvm_config.flags)
3944                         goto out;
3945                 r = 0;
3946                 break;
3947         }
3948         case KVM_SET_CLOCK: {
3949                 struct kvm_clock_data user_ns;
3950                 u64 now_ns;
3951                 s64 delta;
3952
3953                 r = -EFAULT;
3954                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3955                         goto out;
3956
3957                 r = -EINVAL;
3958                 if (user_ns.flags)
3959                         goto out;
3960
3961                 r = 0;
3962                 local_irq_disable();
3963                 now_ns = get_kernel_ns();
3964                 delta = user_ns.clock - now_ns;
3965                 local_irq_enable();
3966                 kvm->arch.kvmclock_offset = delta;
3967                 kvm_gen_update_masterclock(kvm);
3968                 break;
3969         }
3970         case KVM_GET_CLOCK: {
3971                 struct kvm_clock_data user_ns;
3972                 u64 now_ns;
3973
3974                 local_irq_disable();
3975                 now_ns = get_kernel_ns();
3976                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3977                 local_irq_enable();
3978                 user_ns.flags = 0;
3979                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3980
3981                 r = -EFAULT;
3982                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3983                         goto out;
3984                 r = 0;
3985                 break;
3986         }
3987         case KVM_ENABLE_CAP: {
3988                 struct kvm_enable_cap cap;
3989
3990                 r = -EFAULT;
3991                 if (copy_from_user(&cap, argp, sizeof(cap)))
3992                         goto out;
3993                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
3994                 break;
3995         }
3996         default:
3997                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
3998         }
3999 out:
4000         return r;
4001 }
4002
4003 static void kvm_init_msr_list(void)
4004 {
4005         u32 dummy[2];
4006         unsigned i, j;
4007
4008         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4009                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4010                         continue;
4011
4012                 /*
4013                  * Even MSRs that are valid in the host may not be exposed
4014                  * to the guests in some cases.
4015                  */
4016                 switch (msrs_to_save[i]) {
4017                 case MSR_IA32_BNDCFGS:
4018                         if (!kvm_x86_ops->mpx_supported())
4019                                 continue;
4020                         break;
4021                 case MSR_TSC_AUX:
4022                         if (!kvm_x86_ops->rdtscp_supported())
4023                                 continue;
4024                         break;
4025                 default:
4026                         break;
4027                 }
4028
4029                 if (j < i)
4030                         msrs_to_save[j] = msrs_to_save[i];
4031                 j++;
4032         }
4033         num_msrs_to_save = j;
4034
4035         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4036                 switch (emulated_msrs[i]) {
4037                 case MSR_IA32_SMBASE:
4038                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4039                                 continue;
4040                         break;
4041                 default:
4042                         break;
4043                 }
4044
4045                 if (j < i)
4046                         emulated_msrs[j] = emulated_msrs[i];
4047                 j++;
4048         }
4049         num_emulated_msrs = j;
4050 }
4051
4052 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4053                            const void *v)
4054 {
4055         int handled = 0;
4056         int n;
4057
4058         do {
4059                 n = min(len, 8);
4060                 if (!(vcpu->arch.apic &&
4061                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4062                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4063                         break;
4064                 handled += n;
4065                 addr += n;
4066                 len -= n;
4067                 v += n;
4068         } while (len);
4069
4070         return handled;
4071 }
4072
4073 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4074 {
4075         int handled = 0;
4076         int n;
4077
4078         do {
4079                 n = min(len, 8);
4080                 if (!(vcpu->arch.apic &&
4081                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4082                                          addr, n, v))
4083                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4084                         break;
4085                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4086                 handled += n;
4087                 addr += n;
4088                 len -= n;
4089                 v += n;
4090         } while (len);
4091
4092         return handled;
4093 }
4094
4095 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4096                         struct kvm_segment *var, int seg)
4097 {
4098         kvm_x86_ops->set_segment(vcpu, var, seg);
4099 }
4100
4101 void kvm_get_segment(struct kvm_vcpu *vcpu,
4102                      struct kvm_segment *var, int seg)
4103 {
4104         kvm_x86_ops->get_segment(vcpu, var, seg);
4105 }
4106
4107 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4108                            struct x86_exception *exception)
4109 {
4110         gpa_t t_gpa;
4111
4112         BUG_ON(!mmu_is_nested(vcpu));
4113
4114         /* NPT walks are always user-walks */
4115         access |= PFERR_USER_MASK;
4116         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4117
4118         return t_gpa;
4119 }
4120
4121 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4122                               struct x86_exception *exception)
4123 {
4124         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4125         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4126 }
4127
4128  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4129                                 struct x86_exception *exception)
4130 {
4131         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4132         access |= PFERR_FETCH_MASK;
4133         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4134 }
4135
4136 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4137                                struct x86_exception *exception)
4138 {
4139         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4140         access |= PFERR_WRITE_MASK;
4141         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4142 }
4143
4144 /* uses this to access any guest's mapped memory without checking CPL */
4145 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4146                                 struct x86_exception *exception)
4147 {
4148         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4149 }
4150
4151 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4152                                       struct kvm_vcpu *vcpu, u32 access,
4153                                       struct x86_exception *exception)
4154 {
4155         void *data = val;
4156         int r = X86EMUL_CONTINUE;
4157
4158         while (bytes) {
4159                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4160                                                             exception);
4161                 unsigned offset = addr & (PAGE_SIZE-1);
4162                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4163                 int ret;
4164
4165                 if (gpa == UNMAPPED_GVA)
4166                         return X86EMUL_PROPAGATE_FAULT;
4167                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4168                                                offset, toread);
4169                 if (ret < 0) {
4170                         r = X86EMUL_IO_NEEDED;
4171                         goto out;
4172                 }
4173
4174                 bytes -= toread;
4175                 data += toread;
4176                 addr += toread;
4177         }
4178 out:
4179         return r;
4180 }
4181
4182 /* used for instruction fetching */
4183 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4184                                 gva_t addr, void *val, unsigned int bytes,
4185                                 struct x86_exception *exception)
4186 {
4187         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4188         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4189         unsigned offset;
4190         int ret;
4191
4192         /* Inline kvm_read_guest_virt_helper for speed.  */
4193         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4194                                                     exception);
4195         if (unlikely(gpa == UNMAPPED_GVA))
4196                 return X86EMUL_PROPAGATE_FAULT;
4197
4198         offset = addr & (PAGE_SIZE-1);
4199         if (WARN_ON(offset + bytes > PAGE_SIZE))
4200                 bytes = (unsigned)PAGE_SIZE - offset;
4201         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4202                                        offset, bytes);
4203         if (unlikely(ret < 0))
4204                 return X86EMUL_IO_NEEDED;
4205
4206         return X86EMUL_CONTINUE;
4207 }
4208
4209 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4210                                gva_t addr, void *val, unsigned int bytes,
4211                                struct x86_exception *exception)
4212 {
4213         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4214         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4215
4216         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4217                                           exception);
4218 }
4219 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4220
4221 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4222                                       gva_t addr, void *val, unsigned int bytes,
4223                                       struct x86_exception *exception)
4224 {
4225         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4226         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4227 }
4228
4229 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4230                 unsigned long addr, void *val, unsigned int bytes)
4231 {
4232         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4233         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4234
4235         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4236 }
4237
4238 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4239                                        gva_t addr, void *val,
4240                                        unsigned int bytes,
4241                                        struct x86_exception *exception)
4242 {
4243         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4244         void *data = val;
4245         int r = X86EMUL_CONTINUE;
4246
4247         while (bytes) {
4248                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4249                                                              PFERR_WRITE_MASK,
4250                                                              exception);
4251                 unsigned offset = addr & (PAGE_SIZE-1);
4252                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4253                 int ret;
4254
4255                 if (gpa == UNMAPPED_GVA)
4256                         return X86EMUL_PROPAGATE_FAULT;
4257                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4258                 if (ret < 0) {
4259                         r = X86EMUL_IO_NEEDED;
4260                         goto out;
4261                 }
4262
4263                 bytes -= towrite;
4264                 data += towrite;
4265                 addr += towrite;
4266         }
4267 out:
4268         return r;
4269 }
4270 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4271
4272 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4273                                 gpa_t *gpa, struct x86_exception *exception,
4274                                 bool write)
4275 {
4276         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4277                 | (write ? PFERR_WRITE_MASK : 0);
4278
4279         if (vcpu_match_mmio_gva(vcpu, gva)
4280             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4281                                  vcpu->arch.access, access)) {
4282                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4283                                         (gva & (PAGE_SIZE - 1));
4284                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4285                 return 1;
4286         }
4287
4288         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4289
4290         if (*gpa == UNMAPPED_GVA)
4291                 return -1;
4292
4293         /* For APIC access vmexit */
4294         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4295                 return 1;
4296
4297         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4298                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4299                 return 1;
4300         }
4301
4302         return 0;
4303 }
4304
4305 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4306                         const void *val, int bytes)
4307 {
4308         int ret;
4309
4310         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4311         if (ret < 0)
4312                 return 0;
4313         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4314         return 1;
4315 }
4316
4317 struct read_write_emulator_ops {
4318         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4319                                   int bytes);
4320         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4321                                   void *val, int bytes);
4322         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4323                                int bytes, void *val);
4324         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4325                                     void *val, int bytes);
4326         bool write;
4327 };
4328
4329 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4330 {
4331         if (vcpu->mmio_read_completed) {
4332                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4333                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4334                 vcpu->mmio_read_completed = 0;
4335                 return 1;
4336         }
4337
4338         return 0;
4339 }
4340
4341 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4342                         void *val, int bytes)
4343 {
4344         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4345 }
4346
4347 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4348                          void *val, int bytes)
4349 {
4350         return emulator_write_phys(vcpu, gpa, val, bytes);
4351 }
4352
4353 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4354 {
4355         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4356         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4357 }
4358
4359 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4360                           void *val, int bytes)
4361 {
4362         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4363         return X86EMUL_IO_NEEDED;
4364 }
4365
4366 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4367                            void *val, int bytes)
4368 {
4369         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4370
4371         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4372         return X86EMUL_CONTINUE;
4373 }
4374
4375 static const struct read_write_emulator_ops read_emultor = {
4376         .read_write_prepare = read_prepare,
4377         .read_write_emulate = read_emulate,
4378         .read_write_mmio = vcpu_mmio_read,
4379         .read_write_exit_mmio = read_exit_mmio,
4380 };
4381
4382 static const struct read_write_emulator_ops write_emultor = {
4383         .read_write_emulate = write_emulate,
4384         .read_write_mmio = write_mmio,
4385         .read_write_exit_mmio = write_exit_mmio,
4386         .write = true,
4387 };
4388
4389 static int emulator_read_write_onepage(unsigned long addr, void *val,
4390                                        unsigned int bytes,
4391                                        struct x86_exception *exception,
4392                                        struct kvm_vcpu *vcpu,
4393                                        const struct read_write_emulator_ops *ops)
4394 {
4395         gpa_t gpa;
4396         int handled, ret;
4397         bool write = ops->write;
4398         struct kvm_mmio_fragment *frag;
4399
4400         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4401
4402         if (ret < 0)
4403                 return X86EMUL_PROPAGATE_FAULT;
4404
4405         /* For APIC access vmexit */
4406         if (ret)
4407                 goto mmio;
4408
4409         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4410                 return X86EMUL_CONTINUE;
4411
4412 mmio:
4413         /*
4414          * Is this MMIO handled locally?
4415          */
4416         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4417         if (handled == bytes)
4418                 return X86EMUL_CONTINUE;
4419
4420         gpa += handled;
4421         bytes -= handled;
4422         val += handled;
4423
4424         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4425         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4426         frag->gpa = gpa;
4427         frag->data = val;
4428         frag->len = bytes;
4429         return X86EMUL_CONTINUE;
4430 }
4431
4432 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4433                         unsigned long addr,
4434                         void *val, unsigned int bytes,
4435                         struct x86_exception *exception,
4436                         const struct read_write_emulator_ops *ops)
4437 {
4438         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4439         gpa_t gpa;
4440         int rc;
4441
4442         if (ops->read_write_prepare &&
4443                   ops->read_write_prepare(vcpu, val, bytes))
4444                 return X86EMUL_CONTINUE;
4445
4446         vcpu->mmio_nr_fragments = 0;
4447
4448         /* Crossing a page boundary? */
4449         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4450                 int now;
4451
4452                 now = -addr & ~PAGE_MASK;
4453                 rc = emulator_read_write_onepage(addr, val, now, exception,
4454                                                  vcpu, ops);
4455
4456                 if (rc != X86EMUL_CONTINUE)
4457                         return rc;
4458                 addr += now;
4459                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4460                         addr = (u32)addr;
4461                 val += now;
4462                 bytes -= now;
4463         }
4464
4465         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4466                                          vcpu, ops);
4467         if (rc != X86EMUL_CONTINUE)
4468                 return rc;
4469
4470         if (!vcpu->mmio_nr_fragments)
4471                 return rc;
4472
4473         gpa = vcpu->mmio_fragments[0].gpa;
4474
4475         vcpu->mmio_needed = 1;
4476         vcpu->mmio_cur_fragment = 0;
4477
4478         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4479         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4480         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4481         vcpu->run->mmio.phys_addr = gpa;
4482
4483         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4484 }
4485
4486 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4487                                   unsigned long addr,
4488                                   void *val,
4489                                   unsigned int bytes,
4490                                   struct x86_exception *exception)
4491 {
4492         return emulator_read_write(ctxt, addr, val, bytes,
4493                                    exception, &read_emultor);
4494 }
4495
4496 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4497                             unsigned long addr,
4498                             const void *val,
4499                             unsigned int bytes,
4500                             struct x86_exception *exception)
4501 {
4502         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4503                                    exception, &write_emultor);
4504 }
4505
4506 #define CMPXCHG_TYPE(t, ptr, old, new) \
4507         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4508
4509 #ifdef CONFIG_X86_64
4510 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4511 #else
4512 #  define CMPXCHG64(ptr, old, new) \
4513         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4514 #endif
4515
4516 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4517                                      unsigned long addr,
4518                                      const void *old,
4519                                      const void *new,
4520                                      unsigned int bytes,
4521                                      struct x86_exception *exception)
4522 {
4523         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4524         gpa_t gpa;
4525         struct page *page;
4526         char *kaddr;
4527         bool exchanged;
4528
4529         /* guests cmpxchg8b have to be emulated atomically */
4530         if (bytes > 8 || (bytes & (bytes - 1)))
4531                 goto emul_write;
4532
4533         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4534
4535         if (gpa == UNMAPPED_GVA ||
4536             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4537                 goto emul_write;
4538
4539         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4540                 goto emul_write;
4541
4542         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4543         if (is_error_page(page))
4544                 goto emul_write;
4545
4546         kaddr = kmap_atomic(page);
4547         kaddr += offset_in_page(gpa);
4548         switch (bytes) {
4549         case 1:
4550                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4551                 break;
4552         case 2:
4553                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4554                 break;
4555         case 4:
4556                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4557                 break;
4558         case 8:
4559                 exchanged = CMPXCHG64(kaddr, old, new);
4560                 break;
4561         default:
4562                 BUG();
4563         }
4564         kunmap_atomic(kaddr);
4565         kvm_release_page_dirty(page);
4566
4567         if (!exchanged)
4568                 return X86EMUL_CMPXCHG_FAILED;
4569
4570         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4571         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4572
4573         return X86EMUL_CONTINUE;
4574
4575 emul_write:
4576         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4577
4578         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4579 }
4580
4581 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4582 {
4583         /* TODO: String I/O for in kernel device */
4584         int r;
4585
4586         if (vcpu->arch.pio.in)
4587                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4588                                     vcpu->arch.pio.size, pd);
4589         else
4590                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4591                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4592                                      pd);
4593         return r;
4594 }
4595
4596 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4597                                unsigned short port, void *val,
4598                                unsigned int count, bool in)
4599 {
4600         vcpu->arch.pio.port = port;
4601         vcpu->arch.pio.in = in;
4602         vcpu->arch.pio.count  = count;
4603         vcpu->arch.pio.size = size;
4604
4605         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4606                 vcpu->arch.pio.count = 0;
4607                 return 1;
4608         }
4609
4610         vcpu->run->exit_reason = KVM_EXIT_IO;
4611         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4612         vcpu->run->io.size = size;
4613         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4614         vcpu->run->io.count = count;
4615         vcpu->run->io.port = port;
4616
4617         return 0;
4618 }
4619
4620 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4621                                     int size, unsigned short port, void *val,
4622                                     unsigned int count)
4623 {
4624         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4625         int ret;
4626
4627         if (vcpu->arch.pio.count)
4628                 goto data_avail;
4629
4630         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4631         if (ret) {
4632 data_avail:
4633                 memcpy(val, vcpu->arch.pio_data, size * count);
4634                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4635                 vcpu->arch.pio.count = 0;
4636                 return 1;
4637         }
4638
4639         return 0;
4640 }
4641
4642 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4643                                      int size, unsigned short port,
4644                                      const void *val, unsigned int count)
4645 {
4646         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4647
4648         memcpy(vcpu->arch.pio_data, val, size * count);
4649         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4650         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4651 }
4652
4653 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4654 {
4655         return kvm_x86_ops->get_segment_base(vcpu, seg);
4656 }
4657
4658 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4659 {
4660         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4661 }
4662
4663 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4664 {
4665         if (!need_emulate_wbinvd(vcpu))
4666                 return X86EMUL_CONTINUE;
4667
4668         if (kvm_x86_ops->has_wbinvd_exit()) {
4669                 int cpu = get_cpu();
4670
4671                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4672                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4673                                 wbinvd_ipi, NULL, 1);
4674                 put_cpu();
4675                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4676         } else
4677                 wbinvd();
4678         return X86EMUL_CONTINUE;
4679 }
4680
4681 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4682 {
4683         kvm_x86_ops->skip_emulated_instruction(vcpu);
4684         return kvm_emulate_wbinvd_noskip(vcpu);
4685 }
4686 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4687
4688
4689
4690 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4691 {
4692         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4693 }
4694
4695 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4696                            unsigned long *dest)
4697 {
4698         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4699 }
4700
4701 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4702                            unsigned long value)
4703 {
4704
4705         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4706 }
4707
4708 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4709 {
4710         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4711 }
4712
4713 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4714 {
4715         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4716         unsigned long value;
4717
4718         switch (cr) {
4719         case 0:
4720                 value = kvm_read_cr0(vcpu);
4721                 break;
4722         case 2:
4723                 value = vcpu->arch.cr2;
4724                 break;
4725         case 3:
4726                 value = kvm_read_cr3(vcpu);
4727                 break;
4728         case 4:
4729                 value = kvm_read_cr4(vcpu);
4730                 break;
4731         case 8:
4732                 value = kvm_get_cr8(vcpu);
4733                 break;
4734         default:
4735                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4736                 return 0;
4737         }
4738
4739         return value;
4740 }
4741
4742 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4743 {
4744         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4745         int res = 0;
4746
4747         switch (cr) {
4748         case 0:
4749                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4750                 break;
4751         case 2:
4752                 vcpu->arch.cr2 = val;
4753                 break;
4754         case 3:
4755                 res = kvm_set_cr3(vcpu, val);
4756                 break;
4757         case 4:
4758                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4759                 break;
4760         case 8:
4761                 res = kvm_set_cr8(vcpu, val);
4762                 break;
4763         default:
4764                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4765                 res = -1;
4766         }
4767
4768         return res;
4769 }
4770
4771 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4772 {
4773         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4774 }
4775
4776 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4777 {
4778         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4779 }
4780
4781 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4782 {
4783         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4784 }
4785
4786 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4787 {
4788         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4789 }
4790
4791 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4792 {
4793         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4794 }
4795
4796 static unsigned long emulator_get_cached_segment_base(
4797         struct x86_emulate_ctxt *ctxt, int seg)
4798 {
4799         return get_segment_base(emul_to_vcpu(ctxt), seg);
4800 }
4801
4802 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4803                                  struct desc_struct *desc, u32 *base3,
4804                                  int seg)
4805 {
4806         struct kvm_segment var;
4807
4808         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4809         *selector = var.selector;
4810
4811         if (var.unusable) {
4812                 memset(desc, 0, sizeof(*desc));
4813                 return false;
4814         }
4815
4816         if (var.g)
4817                 var.limit >>= 12;
4818         set_desc_limit(desc, var.limit);
4819         set_desc_base(desc, (unsigned long)var.base);
4820 #ifdef CONFIG_X86_64
4821         if (base3)
4822                 *base3 = var.base >> 32;
4823 #endif
4824         desc->type = var.type;
4825         desc->s = var.s;
4826         desc->dpl = var.dpl;
4827         desc->p = var.present;
4828         desc->avl = var.avl;
4829         desc->l = var.l;
4830         desc->d = var.db;
4831         desc->g = var.g;
4832
4833         return true;
4834 }
4835
4836 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4837                                  struct desc_struct *desc, u32 base3,
4838                                  int seg)
4839 {
4840         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4841         struct kvm_segment var;
4842
4843         var.selector = selector;
4844         var.base = get_desc_base(desc);
4845 #ifdef CONFIG_X86_64
4846         var.base |= ((u64)base3) << 32;
4847 #endif
4848         var.limit = get_desc_limit(desc);
4849         if (desc->g)
4850                 var.limit = (var.limit << 12) | 0xfff;
4851         var.type = desc->type;
4852         var.dpl = desc->dpl;
4853         var.db = desc->d;
4854         var.s = desc->s;
4855         var.l = desc->l;
4856         var.g = desc->g;
4857         var.avl = desc->avl;
4858         var.present = desc->p;
4859         var.unusable = !var.present;
4860         var.padding = 0;
4861
4862         kvm_set_segment(vcpu, &var, seg);
4863         return;
4864 }
4865
4866 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4867                             u32 msr_index, u64 *pdata)
4868 {
4869         struct msr_data msr;
4870         int r;
4871
4872         msr.index = msr_index;
4873         msr.host_initiated = false;
4874         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4875         if (r)
4876                 return r;
4877
4878         *pdata = msr.data;
4879         return 0;
4880 }
4881
4882 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4883                             u32 msr_index, u64 data)
4884 {
4885         struct msr_data msr;
4886
4887         msr.data = data;
4888         msr.index = msr_index;
4889         msr.host_initiated = false;
4890         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4891 }
4892
4893 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4894 {
4895         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4896
4897         return vcpu->arch.smbase;
4898 }
4899
4900 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4901 {
4902         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4903
4904         vcpu->arch.smbase = smbase;
4905 }
4906
4907 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4908                               u32 pmc)
4909 {
4910         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4911 }
4912
4913 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4914                              u32 pmc, u64 *pdata)
4915 {
4916         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4917 }
4918
4919 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4920 {
4921         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4922 }
4923
4924 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4925 {
4926         preempt_disable();
4927         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4928         /*
4929          * CR0.TS may reference the host fpu state, not the guest fpu state,
4930          * so it may be clear at this point.
4931          */
4932         clts();
4933 }
4934
4935 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4936 {
4937         preempt_enable();
4938 }
4939
4940 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4941                               struct x86_instruction_info *info,
4942                               enum x86_intercept_stage stage)
4943 {
4944         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4945 }
4946
4947 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4948                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4949 {
4950         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4951 }
4952
4953 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4954 {
4955         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4956 }
4957
4958 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4959 {
4960         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4961 }
4962
4963 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
4964 {
4965         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
4966 }
4967
4968 static const struct x86_emulate_ops emulate_ops = {
4969         .read_gpr            = emulator_read_gpr,
4970         .write_gpr           = emulator_write_gpr,
4971         .read_std            = kvm_read_guest_virt_system,
4972         .write_std           = kvm_write_guest_virt_system,
4973         .read_phys           = kvm_read_guest_phys_system,
4974         .fetch               = kvm_fetch_guest_virt,
4975         .read_emulated       = emulator_read_emulated,
4976         .write_emulated      = emulator_write_emulated,
4977         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4978         .invlpg              = emulator_invlpg,
4979         .pio_in_emulated     = emulator_pio_in_emulated,
4980         .pio_out_emulated    = emulator_pio_out_emulated,
4981         .get_segment         = emulator_get_segment,
4982         .set_segment         = emulator_set_segment,
4983         .get_cached_segment_base = emulator_get_cached_segment_base,
4984         .get_gdt             = emulator_get_gdt,
4985         .get_idt             = emulator_get_idt,
4986         .set_gdt             = emulator_set_gdt,
4987         .set_idt             = emulator_set_idt,
4988         .get_cr              = emulator_get_cr,
4989         .set_cr              = emulator_set_cr,
4990         .cpl                 = emulator_get_cpl,
4991         .get_dr              = emulator_get_dr,
4992         .set_dr              = emulator_set_dr,
4993         .get_smbase          = emulator_get_smbase,
4994         .set_smbase          = emulator_set_smbase,
4995         .set_msr             = emulator_set_msr,
4996         .get_msr             = emulator_get_msr,
4997         .check_pmc           = emulator_check_pmc,
4998         .read_pmc            = emulator_read_pmc,
4999         .halt                = emulator_halt,
5000         .wbinvd              = emulator_wbinvd,
5001         .fix_hypercall       = emulator_fix_hypercall,
5002         .get_fpu             = emulator_get_fpu,
5003         .put_fpu             = emulator_put_fpu,
5004         .intercept           = emulator_intercept,
5005         .get_cpuid           = emulator_get_cpuid,
5006         .set_nmi_mask        = emulator_set_nmi_mask,
5007 };
5008
5009 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5010 {
5011         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5012         /*
5013          * an sti; sti; sequence only disable interrupts for the first
5014          * instruction. So, if the last instruction, be it emulated or
5015          * not, left the system with the INT_STI flag enabled, it
5016          * means that the last instruction is an sti. We should not
5017          * leave the flag on in this case. The same goes for mov ss
5018          */
5019         if (int_shadow & mask)
5020                 mask = 0;
5021         if (unlikely(int_shadow || mask)) {
5022                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5023                 if (!mask)
5024                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5025         }
5026 }
5027
5028 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5029 {
5030         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5031         if (ctxt->exception.vector == PF_VECTOR)
5032                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5033
5034         if (ctxt->exception.error_code_valid)
5035                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5036                                       ctxt->exception.error_code);
5037         else
5038                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5039         return false;
5040 }
5041
5042 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5043 {
5044         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5045         int cs_db, cs_l;
5046
5047         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5048
5049         ctxt->eflags = kvm_get_rflags(vcpu);
5050         ctxt->eip = kvm_rip_read(vcpu);
5051         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5052                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5053                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5054                      cs_db                              ? X86EMUL_MODE_PROT32 :
5055                                                           X86EMUL_MODE_PROT16;
5056         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5057         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5058         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5059         ctxt->emul_flags = vcpu->arch.hflags;
5060
5061         init_decode_cache(ctxt);
5062         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5063 }
5064
5065 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5066 {
5067         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5068         int ret;
5069
5070         init_emulate_ctxt(vcpu);
5071
5072         ctxt->op_bytes = 2;
5073         ctxt->ad_bytes = 2;
5074         ctxt->_eip = ctxt->eip + inc_eip;
5075         ret = emulate_int_real(ctxt, irq);
5076
5077         if (ret != X86EMUL_CONTINUE)
5078                 return EMULATE_FAIL;
5079
5080         ctxt->eip = ctxt->_eip;
5081         kvm_rip_write(vcpu, ctxt->eip);
5082         kvm_set_rflags(vcpu, ctxt->eflags);
5083
5084         if (irq == NMI_VECTOR)
5085                 vcpu->arch.nmi_pending = 0;
5086         else
5087                 vcpu->arch.interrupt.pending = false;
5088
5089         return EMULATE_DONE;
5090 }
5091 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5092
5093 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5094 {
5095         int r = EMULATE_DONE;
5096
5097         ++vcpu->stat.insn_emulation_fail;
5098         trace_kvm_emulate_insn_failed(vcpu);
5099         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5100                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5101                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5102                 vcpu->run->internal.ndata = 0;
5103                 r = EMULATE_FAIL;
5104         }
5105         kvm_queue_exception(vcpu, UD_VECTOR);
5106
5107         return r;
5108 }
5109
5110 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5111                                   bool write_fault_to_shadow_pgtable,
5112                                   int emulation_type)
5113 {
5114         gpa_t gpa = cr2;
5115         pfn_t pfn;
5116
5117         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5118                 return false;
5119
5120         if (!vcpu->arch.mmu.direct_map) {
5121                 /*
5122                  * Write permission should be allowed since only
5123                  * write access need to be emulated.
5124                  */
5125                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5126
5127                 /*
5128                  * If the mapping is invalid in guest, let cpu retry
5129                  * it to generate fault.
5130                  */
5131                 if (gpa == UNMAPPED_GVA)
5132                         return true;
5133         }
5134
5135         /*
5136          * Do not retry the unhandleable instruction if it faults on the
5137          * readonly host memory, otherwise it will goto a infinite loop:
5138          * retry instruction -> write #PF -> emulation fail -> retry
5139          * instruction -> ...
5140          */
5141         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5142
5143         /*
5144          * If the instruction failed on the error pfn, it can not be fixed,
5145          * report the error to userspace.
5146          */
5147         if (is_error_noslot_pfn(pfn))
5148                 return false;
5149
5150         kvm_release_pfn_clean(pfn);
5151
5152         /* The instructions are well-emulated on direct mmu. */
5153         if (vcpu->arch.mmu.direct_map) {
5154                 unsigned int indirect_shadow_pages;
5155
5156                 spin_lock(&vcpu->kvm->mmu_lock);
5157                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5158                 spin_unlock(&vcpu->kvm->mmu_lock);
5159
5160                 if (indirect_shadow_pages)
5161                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5162
5163                 return true;
5164         }
5165
5166         /*
5167          * if emulation was due to access to shadowed page table
5168          * and it failed try to unshadow page and re-enter the
5169          * guest to let CPU execute the instruction.
5170          */
5171         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5172
5173         /*
5174          * If the access faults on its page table, it can not
5175          * be fixed by unprotecting shadow page and it should
5176          * be reported to userspace.
5177          */
5178         return !write_fault_to_shadow_pgtable;
5179 }
5180
5181 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5182                               unsigned long cr2,  int emulation_type)
5183 {
5184         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5185         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5186
5187         last_retry_eip = vcpu->arch.last_retry_eip;
5188         last_retry_addr = vcpu->arch.last_retry_addr;
5189
5190         /*
5191          * If the emulation is caused by #PF and it is non-page_table
5192          * writing instruction, it means the VM-EXIT is caused by shadow
5193          * page protected, we can zap the shadow page and retry this
5194          * instruction directly.
5195          *
5196          * Note: if the guest uses a non-page-table modifying instruction
5197          * on the PDE that points to the instruction, then we will unmap
5198          * the instruction and go to an infinite loop. So, we cache the
5199          * last retried eip and the last fault address, if we meet the eip
5200          * and the address again, we can break out of the potential infinite
5201          * loop.
5202          */
5203         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5204
5205         if (!(emulation_type & EMULTYPE_RETRY))
5206                 return false;
5207
5208         if (x86_page_table_writing_insn(ctxt))
5209                 return false;
5210
5211         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5212                 return false;
5213
5214         vcpu->arch.last_retry_eip = ctxt->eip;
5215         vcpu->arch.last_retry_addr = cr2;
5216
5217         if (!vcpu->arch.mmu.direct_map)
5218                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5219
5220         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5221
5222         return true;
5223 }
5224
5225 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5226 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5227
5228 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5229 {
5230         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5231                 /* This is a good place to trace that we are exiting SMM.  */
5232                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5233
5234                 if (unlikely(vcpu->arch.smi_pending)) {
5235                         kvm_make_request(KVM_REQ_SMI, vcpu);
5236                         vcpu->arch.smi_pending = 0;
5237                 } else {
5238                         /* Process a latched INIT, if any.  */
5239                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5240                 }
5241         }
5242
5243         kvm_mmu_reset_context(vcpu);
5244 }
5245
5246 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5247 {
5248         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5249
5250         vcpu->arch.hflags = emul_flags;
5251
5252         if (changed & HF_SMM_MASK)
5253                 kvm_smm_changed(vcpu);
5254 }
5255
5256 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5257                                 unsigned long *db)
5258 {
5259         u32 dr6 = 0;
5260         int i;
5261         u32 enable, rwlen;
5262
5263         enable = dr7;
5264         rwlen = dr7 >> 16;
5265         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5266                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5267                         dr6 |= (1 << i);
5268         return dr6;
5269 }
5270
5271 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5272 {
5273         struct kvm_run *kvm_run = vcpu->run;
5274
5275         /*
5276          * rflags is the old, "raw" value of the flags.  The new value has
5277          * not been saved yet.
5278          *
5279          * This is correct even for TF set by the guest, because "the
5280          * processor will not generate this exception after the instruction
5281          * that sets the TF flag".
5282          */
5283         if (unlikely(rflags & X86_EFLAGS_TF)) {
5284                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5285                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5286                                                   DR6_RTM;
5287                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5288                         kvm_run->debug.arch.exception = DB_VECTOR;
5289                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5290                         *r = EMULATE_USER_EXIT;
5291                 } else {
5292                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5293                         /*
5294                          * "Certain debug exceptions may clear bit 0-3.  The
5295                          * remaining contents of the DR6 register are never
5296                          * cleared by the processor".
5297                          */
5298                         vcpu->arch.dr6 &= ~15;
5299                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5300                         kvm_queue_exception(vcpu, DB_VECTOR);
5301                 }
5302         }
5303 }
5304
5305 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5306 {
5307         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5308             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5309                 struct kvm_run *kvm_run = vcpu->run;
5310                 unsigned long eip = kvm_get_linear_rip(vcpu);
5311                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5312                                            vcpu->arch.guest_debug_dr7,
5313                                            vcpu->arch.eff_db);
5314
5315                 if (dr6 != 0) {
5316                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5317                         kvm_run->debug.arch.pc = eip;
5318                         kvm_run->debug.arch.exception = DB_VECTOR;
5319                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5320                         *r = EMULATE_USER_EXIT;
5321                         return true;
5322                 }
5323         }
5324
5325         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5326             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5327                 unsigned long eip = kvm_get_linear_rip(vcpu);
5328                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5329                                            vcpu->arch.dr7,
5330                                            vcpu->arch.db);
5331
5332                 if (dr6 != 0) {
5333                         vcpu->arch.dr6 &= ~15;
5334                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5335                         kvm_queue_exception(vcpu, DB_VECTOR);
5336                         *r = EMULATE_DONE;
5337                         return true;
5338                 }
5339         }
5340
5341         return false;
5342 }
5343
5344 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5345                             unsigned long cr2,
5346                             int emulation_type,
5347                             void *insn,
5348                             int insn_len)
5349 {
5350         int r;
5351         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5352         bool writeback = true;
5353         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5354
5355         /*
5356          * Clear write_fault_to_shadow_pgtable here to ensure it is
5357          * never reused.
5358          */
5359         vcpu->arch.write_fault_to_shadow_pgtable = false;
5360         kvm_clear_exception_queue(vcpu);
5361
5362         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5363                 init_emulate_ctxt(vcpu);
5364
5365                 /*
5366                  * We will reenter on the same instruction since
5367                  * we do not set complete_userspace_io.  This does not
5368                  * handle watchpoints yet, those would be handled in
5369                  * the emulate_ops.
5370                  */
5371                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5372                         return r;
5373
5374                 ctxt->interruptibility = 0;
5375                 ctxt->have_exception = false;
5376                 ctxt->exception.vector = -1;
5377                 ctxt->perm_ok = false;
5378
5379                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5380
5381                 r = x86_decode_insn(ctxt, insn, insn_len);
5382
5383                 trace_kvm_emulate_insn_start(vcpu);
5384                 ++vcpu->stat.insn_emulation;
5385                 if (r != EMULATION_OK)  {
5386                         if (emulation_type & EMULTYPE_TRAP_UD)
5387                                 return EMULATE_FAIL;
5388                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5389                                                 emulation_type))
5390                                 return EMULATE_DONE;
5391                         if (emulation_type & EMULTYPE_SKIP)
5392                                 return EMULATE_FAIL;
5393                         return handle_emulation_failure(vcpu);
5394                 }
5395         }
5396
5397         if (emulation_type & EMULTYPE_SKIP) {
5398                 kvm_rip_write(vcpu, ctxt->_eip);
5399                 if (ctxt->eflags & X86_EFLAGS_RF)
5400                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5401                 return EMULATE_DONE;
5402         }
5403
5404         if (retry_instruction(ctxt, cr2, emulation_type))
5405                 return EMULATE_DONE;
5406
5407         /* this is needed for vmware backdoor interface to work since it
5408            changes registers values  during IO operation */
5409         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5410                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5411                 emulator_invalidate_register_cache(ctxt);
5412         }
5413
5414 restart:
5415         r = x86_emulate_insn(ctxt);
5416
5417         if (r == EMULATION_INTERCEPTED)
5418                 return EMULATE_DONE;
5419
5420         if (r == EMULATION_FAILED) {
5421                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5422                                         emulation_type))
5423                         return EMULATE_DONE;
5424
5425                 return handle_emulation_failure(vcpu);
5426         }
5427
5428         if (ctxt->have_exception) {
5429                 r = EMULATE_DONE;
5430                 if (inject_emulated_exception(vcpu))
5431                         return r;
5432         } else if (vcpu->arch.pio.count) {
5433                 if (!vcpu->arch.pio.in) {
5434                         /* FIXME: return into emulator if single-stepping.  */
5435                         vcpu->arch.pio.count = 0;
5436                 } else {
5437                         writeback = false;
5438                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5439                 }
5440                 r = EMULATE_USER_EXIT;
5441         } else if (vcpu->mmio_needed) {
5442                 if (!vcpu->mmio_is_write)
5443                         writeback = false;
5444                 r = EMULATE_USER_EXIT;
5445                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5446         } else if (r == EMULATION_RESTART)
5447                 goto restart;
5448         else
5449                 r = EMULATE_DONE;
5450
5451         if (writeback) {
5452                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5453                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5454                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5455                 if (vcpu->arch.hflags != ctxt->emul_flags)
5456                         kvm_set_hflags(vcpu, ctxt->emul_flags);
5457                 kvm_rip_write(vcpu, ctxt->eip);
5458                 if (r == EMULATE_DONE)
5459                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5460                 if (!ctxt->have_exception ||
5461                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5462                         __kvm_set_rflags(vcpu, ctxt->eflags);
5463
5464                 /*
5465                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5466                  * do nothing, and it will be requested again as soon as
5467                  * the shadow expires.  But we still need to check here,
5468                  * because POPF has no interrupt shadow.
5469                  */
5470                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5471                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5472         } else
5473                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5474
5475         return r;
5476 }
5477 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5478
5479 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5480 {
5481         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5482         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5483                                             size, port, &val, 1);
5484         /* do not return to emulator after return from userspace */
5485         vcpu->arch.pio.count = 0;
5486         return ret;
5487 }
5488 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5489
5490 static void tsc_bad(void *info)
5491 {
5492         __this_cpu_write(cpu_tsc_khz, 0);
5493 }
5494
5495 static void tsc_khz_changed(void *data)
5496 {
5497         struct cpufreq_freqs *freq = data;
5498         unsigned long khz = 0;
5499
5500         if (data)
5501                 khz = freq->new;
5502         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5503                 khz = cpufreq_quick_get(raw_smp_processor_id());
5504         if (!khz)
5505                 khz = tsc_khz;
5506         __this_cpu_write(cpu_tsc_khz, khz);
5507 }
5508
5509 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5510                                      void *data)
5511 {
5512         struct cpufreq_freqs *freq = data;
5513         struct kvm *kvm;
5514         struct kvm_vcpu *vcpu;
5515         int i, send_ipi = 0;
5516
5517         /*
5518          * We allow guests to temporarily run on slowing clocks,
5519          * provided we notify them after, or to run on accelerating
5520          * clocks, provided we notify them before.  Thus time never
5521          * goes backwards.
5522          *
5523          * However, we have a problem.  We can't atomically update
5524          * the frequency of a given CPU from this function; it is
5525          * merely a notifier, which can be called from any CPU.
5526          * Changing the TSC frequency at arbitrary points in time
5527          * requires a recomputation of local variables related to
5528          * the TSC for each VCPU.  We must flag these local variables
5529          * to be updated and be sure the update takes place with the
5530          * new frequency before any guests proceed.
5531          *
5532          * Unfortunately, the combination of hotplug CPU and frequency
5533          * change creates an intractable locking scenario; the order
5534          * of when these callouts happen is undefined with respect to
5535          * CPU hotplug, and they can race with each other.  As such,
5536          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5537          * undefined; you can actually have a CPU frequency change take
5538          * place in between the computation of X and the setting of the
5539          * variable.  To protect against this problem, all updates of
5540          * the per_cpu tsc_khz variable are done in an interrupt
5541          * protected IPI, and all callers wishing to update the value
5542          * must wait for a synchronous IPI to complete (which is trivial
5543          * if the caller is on the CPU already).  This establishes the
5544          * necessary total order on variable updates.
5545          *
5546          * Note that because a guest time update may take place
5547          * anytime after the setting of the VCPU's request bit, the
5548          * correct TSC value must be set before the request.  However,
5549          * to ensure the update actually makes it to any guest which
5550          * starts running in hardware virtualization between the set
5551          * and the acquisition of the spinlock, we must also ping the
5552          * CPU after setting the request bit.
5553          *
5554          */
5555
5556         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5557                 return 0;
5558         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5559                 return 0;
5560
5561         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5562
5563         spin_lock(&kvm_lock);
5564         list_for_each_entry(kvm, &vm_list, vm_list) {
5565                 kvm_for_each_vcpu(i, vcpu, kvm) {
5566                         if (vcpu->cpu != freq->cpu)
5567                                 continue;
5568                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5569                         if (vcpu->cpu != smp_processor_id())
5570                                 send_ipi = 1;
5571                 }
5572         }
5573         spin_unlock(&kvm_lock);
5574
5575         if (freq->old < freq->new && send_ipi) {
5576                 /*
5577                  * We upscale the frequency.  Must make the guest
5578                  * doesn't see old kvmclock values while running with
5579                  * the new frequency, otherwise we risk the guest sees
5580                  * time go backwards.
5581                  *
5582                  * In case we update the frequency for another cpu
5583                  * (which might be in guest context) send an interrupt
5584                  * to kick the cpu out of guest context.  Next time
5585                  * guest context is entered kvmclock will be updated,
5586                  * so the guest will not see stale values.
5587                  */
5588                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5589         }
5590         return 0;
5591 }
5592
5593 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5594         .notifier_call  = kvmclock_cpufreq_notifier
5595 };
5596
5597 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5598                                         unsigned long action, void *hcpu)
5599 {
5600         unsigned int cpu = (unsigned long)hcpu;
5601
5602         switch (action) {
5603                 case CPU_ONLINE:
5604                 case CPU_DOWN_FAILED:
5605                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5606                         break;
5607                 case CPU_DOWN_PREPARE:
5608                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5609                         break;
5610         }
5611         return NOTIFY_OK;
5612 }
5613
5614 static struct notifier_block kvmclock_cpu_notifier_block = {
5615         .notifier_call  = kvmclock_cpu_notifier,
5616         .priority = -INT_MAX
5617 };
5618
5619 static void kvm_timer_init(void)
5620 {
5621         int cpu;
5622
5623         max_tsc_khz = tsc_khz;
5624
5625         cpu_notifier_register_begin();
5626         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5627 #ifdef CONFIG_CPU_FREQ
5628                 struct cpufreq_policy policy;
5629                 memset(&policy, 0, sizeof(policy));
5630                 cpu = get_cpu();
5631                 cpufreq_get_policy(&policy, cpu);
5632                 if (policy.cpuinfo.max_freq)
5633                         max_tsc_khz = policy.cpuinfo.max_freq;
5634                 put_cpu();
5635 #endif
5636                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5637                                           CPUFREQ_TRANSITION_NOTIFIER);
5638         }
5639         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5640         for_each_online_cpu(cpu)
5641                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5642
5643         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5644         cpu_notifier_register_done();
5645
5646 }
5647
5648 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5649
5650 int kvm_is_in_guest(void)
5651 {
5652         return __this_cpu_read(current_vcpu) != NULL;
5653 }
5654
5655 static int kvm_is_user_mode(void)
5656 {
5657         int user_mode = 3;
5658
5659         if (__this_cpu_read(current_vcpu))
5660                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5661
5662         return user_mode != 0;
5663 }
5664
5665 static unsigned long kvm_get_guest_ip(void)
5666 {
5667         unsigned long ip = 0;
5668
5669         if (__this_cpu_read(current_vcpu))
5670                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5671
5672         return ip;
5673 }
5674
5675 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5676         .is_in_guest            = kvm_is_in_guest,
5677         .is_user_mode           = kvm_is_user_mode,
5678         .get_guest_ip           = kvm_get_guest_ip,
5679 };
5680
5681 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5682 {
5683         __this_cpu_write(current_vcpu, vcpu);
5684 }
5685 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5686
5687 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5688 {
5689         __this_cpu_write(current_vcpu, NULL);
5690 }
5691 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5692
5693 static void kvm_set_mmio_spte_mask(void)
5694 {
5695         u64 mask;
5696         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5697
5698         /*
5699          * Set the reserved bits and the present bit of an paging-structure
5700          * entry to generate page fault with PFER.RSV = 1.
5701          */
5702          /* Mask the reserved physical address bits. */
5703         mask = rsvd_bits(maxphyaddr, 51);
5704
5705         /* Bit 62 is always reserved for 32bit host. */
5706         mask |= 0x3ull << 62;
5707
5708         /* Set the present bit. */
5709         mask |= 1ull;
5710
5711 #ifdef CONFIG_X86_64
5712         /*
5713          * If reserved bit is not supported, clear the present bit to disable
5714          * mmio page fault.
5715          */
5716         if (maxphyaddr == 52)
5717                 mask &= ~1ull;
5718 #endif
5719
5720         kvm_mmu_set_mmio_spte_mask(mask);
5721 }
5722
5723 #ifdef CONFIG_X86_64
5724 static void pvclock_gtod_update_fn(struct work_struct *work)
5725 {
5726         struct kvm *kvm;
5727
5728         struct kvm_vcpu *vcpu;
5729         int i;
5730
5731         spin_lock(&kvm_lock);
5732         list_for_each_entry(kvm, &vm_list, vm_list)
5733                 kvm_for_each_vcpu(i, vcpu, kvm)
5734                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5735         atomic_set(&kvm_guest_has_master_clock, 0);
5736         spin_unlock(&kvm_lock);
5737 }
5738
5739 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5740
5741 /*
5742  * Notification about pvclock gtod data update.
5743  */
5744 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5745                                void *priv)
5746 {
5747         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5748         struct timekeeper *tk = priv;
5749
5750         update_pvclock_gtod(tk);
5751
5752         /* disable master clock if host does not trust, or does not
5753          * use, TSC clocksource
5754          */
5755         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5756             atomic_read(&kvm_guest_has_master_clock) != 0)
5757                 queue_work(system_long_wq, &pvclock_gtod_work);
5758
5759         return 0;
5760 }
5761
5762 static struct notifier_block pvclock_gtod_notifier = {
5763         .notifier_call = pvclock_gtod_notify,
5764 };
5765 #endif
5766
5767 int kvm_arch_init(void *opaque)
5768 {
5769         int r;
5770         struct kvm_x86_ops *ops = opaque;
5771
5772         if (kvm_x86_ops) {
5773                 printk(KERN_ERR "kvm: already loaded the other module\n");
5774                 r = -EEXIST;
5775                 goto out;
5776         }
5777
5778         if (!ops->cpu_has_kvm_support()) {
5779                 printk(KERN_ERR "kvm: no hardware support\n");
5780                 r = -EOPNOTSUPP;
5781                 goto out;
5782         }
5783         if (ops->disabled_by_bios()) {
5784                 printk(KERN_ERR "kvm: disabled by bios\n");
5785                 r = -EOPNOTSUPP;
5786                 goto out;
5787         }
5788
5789         r = -ENOMEM;
5790         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5791         if (!shared_msrs) {
5792                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5793                 goto out;
5794         }
5795
5796         r = kvm_mmu_module_init();
5797         if (r)
5798                 goto out_free_percpu;
5799
5800         kvm_set_mmio_spte_mask();
5801
5802         kvm_x86_ops = ops;
5803
5804         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5805                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5806
5807         kvm_timer_init();
5808
5809         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5810
5811         if (cpu_has_xsave)
5812                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5813
5814         kvm_lapic_init();
5815 #ifdef CONFIG_X86_64
5816         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5817 #endif
5818
5819         return 0;
5820
5821 out_free_percpu:
5822         free_percpu(shared_msrs);
5823 out:
5824         return r;
5825 }
5826
5827 void kvm_arch_exit(void)
5828 {
5829         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5830
5831         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5832                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5833                                             CPUFREQ_TRANSITION_NOTIFIER);
5834         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5835 #ifdef CONFIG_X86_64
5836         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5837 #endif
5838         kvm_x86_ops = NULL;
5839         kvm_mmu_module_exit();
5840         free_percpu(shared_msrs);
5841 }
5842
5843 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5844 {
5845         ++vcpu->stat.halt_exits;
5846         if (lapic_in_kernel(vcpu)) {
5847                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5848                 return 1;
5849         } else {
5850                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5851                 return 0;
5852         }
5853 }
5854 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5855
5856 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5857 {
5858         kvm_x86_ops->skip_emulated_instruction(vcpu);
5859         return kvm_vcpu_halt(vcpu);
5860 }
5861 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5862
5863 /*
5864  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5865  *
5866  * @apicid - apicid of vcpu to be kicked.
5867  */
5868 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5869 {
5870         struct kvm_lapic_irq lapic_irq;
5871
5872         lapic_irq.shorthand = 0;
5873         lapic_irq.dest_mode = 0;
5874         lapic_irq.dest_id = apicid;
5875         lapic_irq.msi_redir_hint = false;
5876
5877         lapic_irq.delivery_mode = APIC_DM_REMRD;
5878         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5879 }
5880
5881 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5882 {
5883         unsigned long nr, a0, a1, a2, a3, ret;
5884         int op_64_bit, r = 1;
5885
5886         kvm_x86_ops->skip_emulated_instruction(vcpu);
5887
5888         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5889                 return kvm_hv_hypercall(vcpu);
5890
5891         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5892         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5893         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5894         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5895         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5896
5897         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5898
5899         op_64_bit = is_64_bit_mode(vcpu);
5900         if (!op_64_bit) {
5901                 nr &= 0xFFFFFFFF;
5902                 a0 &= 0xFFFFFFFF;
5903                 a1 &= 0xFFFFFFFF;
5904                 a2 &= 0xFFFFFFFF;
5905                 a3 &= 0xFFFFFFFF;
5906         }
5907
5908         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5909                 ret = -KVM_EPERM;
5910                 goto out;
5911         }
5912
5913         switch (nr) {
5914         case KVM_HC_VAPIC_POLL_IRQ:
5915                 ret = 0;
5916                 break;
5917         case KVM_HC_KICK_CPU:
5918                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5919                 ret = 0;
5920                 break;
5921         default:
5922                 ret = -KVM_ENOSYS;
5923                 break;
5924         }
5925 out:
5926         if (!op_64_bit)
5927                 ret = (u32)ret;
5928         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5929         ++vcpu->stat.hypercalls;
5930         return r;
5931 }
5932 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5933
5934 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5935 {
5936         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5937         char instruction[3];
5938         unsigned long rip = kvm_rip_read(vcpu);
5939
5940         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5941
5942         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5943 }
5944
5945 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5946 {
5947         return vcpu->run->request_interrupt_window &&
5948                 likely(!pic_in_kernel(vcpu->kvm));
5949 }
5950
5951 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5952 {
5953         struct kvm_run *kvm_run = vcpu->run;
5954
5955         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5956         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
5957         kvm_run->cr8 = kvm_get_cr8(vcpu);
5958         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5959         kvm_run->ready_for_interrupt_injection =
5960                 pic_in_kernel(vcpu->kvm) ||
5961                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
5962 }
5963
5964 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5965 {
5966         int max_irr, tpr;
5967
5968         if (!kvm_x86_ops->update_cr8_intercept)
5969                 return;
5970
5971         if (!vcpu->arch.apic)
5972                 return;
5973
5974         if (!vcpu->arch.apic->vapic_addr)
5975                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5976         else
5977                 max_irr = -1;
5978
5979         if (max_irr != -1)
5980                 max_irr >>= 4;
5981
5982         tpr = kvm_lapic_get_cr8(vcpu);
5983
5984         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5985 }
5986
5987 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
5988 {
5989         int r;
5990
5991         /* try to reinject previous events if any */
5992         if (vcpu->arch.exception.pending) {
5993                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5994                                         vcpu->arch.exception.has_error_code,
5995                                         vcpu->arch.exception.error_code);
5996
5997                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
5998                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
5999                                              X86_EFLAGS_RF);
6000
6001                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6002                     (vcpu->arch.dr7 & DR7_GD)) {
6003                         vcpu->arch.dr7 &= ~DR7_GD;
6004                         kvm_update_dr7(vcpu);
6005                 }
6006
6007                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6008                                           vcpu->arch.exception.has_error_code,
6009                                           vcpu->arch.exception.error_code,
6010                                           vcpu->arch.exception.reinject);
6011                 return 0;
6012         }
6013
6014         if (vcpu->arch.nmi_injected) {
6015                 kvm_x86_ops->set_nmi(vcpu);
6016                 return 0;
6017         }
6018
6019         if (vcpu->arch.interrupt.pending) {
6020                 kvm_x86_ops->set_irq(vcpu);
6021                 return 0;
6022         }
6023
6024         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6025                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6026                 if (r != 0)
6027                         return r;
6028         }
6029
6030         /* try to inject new event if pending */
6031         if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6032                 --vcpu->arch.nmi_pending;
6033                 vcpu->arch.nmi_injected = true;
6034                 kvm_x86_ops->set_nmi(vcpu);
6035         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6036                 /*
6037                  * Because interrupts can be injected asynchronously, we are
6038                  * calling check_nested_events again here to avoid a race condition.
6039                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6040                  * proposal and current concerns.  Perhaps we should be setting
6041                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6042                  */
6043                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6044                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6045                         if (r != 0)
6046                                 return r;
6047                 }
6048                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6049                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6050                                             false);
6051                         kvm_x86_ops->set_irq(vcpu);
6052                 }
6053         }
6054         return 0;
6055 }
6056
6057 static void process_nmi(struct kvm_vcpu *vcpu)
6058 {
6059         unsigned limit = 2;
6060
6061         /*
6062          * x86 is limited to one NMI running, and one NMI pending after it.
6063          * If an NMI is already in progress, limit further NMIs to just one.
6064          * Otherwise, allow two (and we'll inject the first one immediately).
6065          */
6066         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6067                 limit = 1;
6068
6069         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6070         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6071         kvm_make_request(KVM_REQ_EVENT, vcpu);
6072 }
6073
6074 #define put_smstate(type, buf, offset, val)                       \
6075         *(type *)((buf) + (offset) - 0x7e00) = val
6076
6077 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6078 {
6079         u32 flags = 0;
6080         flags |= seg->g       << 23;
6081         flags |= seg->db      << 22;
6082         flags |= seg->l       << 21;
6083         flags |= seg->avl     << 20;
6084         flags |= seg->present << 15;
6085         flags |= seg->dpl     << 13;
6086         flags |= seg->s       << 12;
6087         flags |= seg->type    << 8;
6088         return flags;
6089 }
6090
6091 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6092 {
6093         struct kvm_segment seg;
6094         int offset;
6095
6096         kvm_get_segment(vcpu, &seg, n);
6097         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6098
6099         if (n < 3)
6100                 offset = 0x7f84 + n * 12;
6101         else
6102                 offset = 0x7f2c + (n - 3) * 12;
6103
6104         put_smstate(u32, buf, offset + 8, seg.base);
6105         put_smstate(u32, buf, offset + 4, seg.limit);
6106         put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6107 }
6108
6109 #ifdef CONFIG_X86_64
6110 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6111 {
6112         struct kvm_segment seg;
6113         int offset;
6114         u16 flags;
6115
6116         kvm_get_segment(vcpu, &seg, n);
6117         offset = 0x7e00 + n * 16;
6118
6119         flags = process_smi_get_segment_flags(&seg) >> 8;
6120         put_smstate(u16, buf, offset, seg.selector);
6121         put_smstate(u16, buf, offset + 2, flags);
6122         put_smstate(u32, buf, offset + 4, seg.limit);
6123         put_smstate(u64, buf, offset + 8, seg.base);
6124 }
6125 #endif
6126
6127 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6128 {
6129         struct desc_ptr dt;
6130         struct kvm_segment seg;
6131         unsigned long val;
6132         int i;
6133
6134         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6135         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6136         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6137         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6138
6139         for (i = 0; i < 8; i++)
6140                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6141
6142         kvm_get_dr(vcpu, 6, &val);
6143         put_smstate(u32, buf, 0x7fcc, (u32)val);
6144         kvm_get_dr(vcpu, 7, &val);
6145         put_smstate(u32, buf, 0x7fc8, (u32)val);
6146
6147         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6148         put_smstate(u32, buf, 0x7fc4, seg.selector);
6149         put_smstate(u32, buf, 0x7f64, seg.base);
6150         put_smstate(u32, buf, 0x7f60, seg.limit);
6151         put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6152
6153         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6154         put_smstate(u32, buf, 0x7fc0, seg.selector);
6155         put_smstate(u32, buf, 0x7f80, seg.base);
6156         put_smstate(u32, buf, 0x7f7c, seg.limit);
6157         put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6158
6159         kvm_x86_ops->get_gdt(vcpu, &dt);
6160         put_smstate(u32, buf, 0x7f74, dt.address);
6161         put_smstate(u32, buf, 0x7f70, dt.size);
6162
6163         kvm_x86_ops->get_idt(vcpu, &dt);
6164         put_smstate(u32, buf, 0x7f58, dt.address);
6165         put_smstate(u32, buf, 0x7f54, dt.size);
6166
6167         for (i = 0; i < 6; i++)
6168                 process_smi_save_seg_32(vcpu, buf, i);
6169
6170         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6171
6172         /* revision id */
6173         put_smstate(u32, buf, 0x7efc, 0x00020000);
6174         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6175 }
6176
6177 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6178 {
6179 #ifdef CONFIG_X86_64
6180         struct desc_ptr dt;
6181         struct kvm_segment seg;
6182         unsigned long val;
6183         int i;
6184
6185         for (i = 0; i < 16; i++)
6186                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6187
6188         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6189         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6190
6191         kvm_get_dr(vcpu, 6, &val);
6192         put_smstate(u64, buf, 0x7f68, val);
6193         kvm_get_dr(vcpu, 7, &val);
6194         put_smstate(u64, buf, 0x7f60, val);
6195
6196         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6197         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6198         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6199
6200         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6201
6202         /* revision id */
6203         put_smstate(u32, buf, 0x7efc, 0x00020064);
6204
6205         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6206
6207         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6208         put_smstate(u16, buf, 0x7e90, seg.selector);
6209         put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6210         put_smstate(u32, buf, 0x7e94, seg.limit);
6211         put_smstate(u64, buf, 0x7e98, seg.base);
6212
6213         kvm_x86_ops->get_idt(vcpu, &dt);
6214         put_smstate(u32, buf, 0x7e84, dt.size);
6215         put_smstate(u64, buf, 0x7e88, dt.address);
6216
6217         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6218         put_smstate(u16, buf, 0x7e70, seg.selector);
6219         put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6220         put_smstate(u32, buf, 0x7e74, seg.limit);
6221         put_smstate(u64, buf, 0x7e78, seg.base);
6222
6223         kvm_x86_ops->get_gdt(vcpu, &dt);
6224         put_smstate(u32, buf, 0x7e64, dt.size);
6225         put_smstate(u64, buf, 0x7e68, dt.address);
6226
6227         for (i = 0; i < 6; i++)
6228                 process_smi_save_seg_64(vcpu, buf, i);
6229 #else
6230         WARN_ON_ONCE(1);
6231 #endif
6232 }
6233
6234 static void process_smi(struct kvm_vcpu *vcpu)
6235 {
6236         struct kvm_segment cs, ds;
6237         struct desc_ptr dt;
6238         char buf[512];
6239         u32 cr0;
6240
6241         if (is_smm(vcpu)) {
6242                 vcpu->arch.smi_pending = true;
6243                 return;
6244         }
6245
6246         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6247         vcpu->arch.hflags |= HF_SMM_MASK;
6248         memset(buf, 0, 512);
6249         if (guest_cpuid_has_longmode(vcpu))
6250                 process_smi_save_state_64(vcpu, buf);
6251         else
6252                 process_smi_save_state_32(vcpu, buf);
6253
6254         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6255
6256         if (kvm_x86_ops->get_nmi_mask(vcpu))
6257                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6258         else
6259                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6260
6261         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6262         kvm_rip_write(vcpu, 0x8000);
6263
6264         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6265         kvm_x86_ops->set_cr0(vcpu, cr0);
6266         vcpu->arch.cr0 = cr0;
6267
6268         kvm_x86_ops->set_cr4(vcpu, 0);
6269
6270         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6271         dt.address = dt.size = 0;
6272         kvm_x86_ops->set_idt(vcpu, &dt);
6273
6274         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6275
6276         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6277         cs.base = vcpu->arch.smbase;
6278
6279         ds.selector = 0;
6280         ds.base = 0;
6281
6282         cs.limit    = ds.limit = 0xffffffff;
6283         cs.type     = ds.type = 0x3;
6284         cs.dpl      = ds.dpl = 0;
6285         cs.db       = ds.db = 0;
6286         cs.s        = ds.s = 1;
6287         cs.l        = ds.l = 0;
6288         cs.g        = ds.g = 1;
6289         cs.avl      = ds.avl = 0;
6290         cs.present  = ds.present = 1;
6291         cs.unusable = ds.unusable = 0;
6292         cs.padding  = ds.padding = 0;
6293
6294         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6295         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6296         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6297         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6298         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6299         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6300
6301         if (guest_cpuid_has_longmode(vcpu))
6302                 kvm_x86_ops->set_efer(vcpu, 0);
6303
6304         kvm_update_cpuid(vcpu);
6305         kvm_mmu_reset_context(vcpu);
6306 }
6307
6308 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6309 {
6310         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6311                 return;
6312
6313         memset(vcpu->arch.eoi_exit_bitmap, 0, 256 / 8);
6314
6315         if (irqchip_split(vcpu->kvm))
6316                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.eoi_exit_bitmap);
6317         else {
6318                 kvm_x86_ops->sync_pir_to_irr(vcpu);
6319                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.eoi_exit_bitmap);
6320         }
6321         kvm_x86_ops->load_eoi_exitmap(vcpu);
6322 }
6323
6324 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6325 {
6326         ++vcpu->stat.tlb_flush;
6327         kvm_x86_ops->tlb_flush(vcpu);
6328 }
6329
6330 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6331 {
6332         struct page *page = NULL;
6333
6334         if (!lapic_in_kernel(vcpu))
6335                 return;
6336
6337         if (!kvm_x86_ops->set_apic_access_page_addr)
6338                 return;
6339
6340         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6341         if (is_error_page(page))
6342                 return;
6343         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6344
6345         /*
6346          * Do not pin apic access page in memory, the MMU notifier
6347          * will call us again if it is migrated or swapped out.
6348          */
6349         put_page(page);
6350 }
6351 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6352
6353 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6354                                            unsigned long address)
6355 {
6356         /*
6357          * The physical address of apic access page is stored in the VMCS.
6358          * Update it when it becomes invalid.
6359          */
6360         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6361                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6362 }
6363
6364 /*
6365  * Returns 1 to let vcpu_run() continue the guest execution loop without
6366  * exiting to the userspace.  Otherwise, the value will be returned to the
6367  * userspace.
6368  */
6369 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6370 {
6371         int r;
6372         bool req_int_win =
6373                 dm_request_for_irq_injection(vcpu) &&
6374                 kvm_cpu_accept_dm_intr(vcpu);
6375
6376         bool req_immediate_exit = false;
6377
6378         if (vcpu->requests) {
6379                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6380                         kvm_mmu_unload(vcpu);
6381                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6382                         __kvm_migrate_timers(vcpu);
6383                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6384                         kvm_gen_update_masterclock(vcpu->kvm);
6385                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6386                         kvm_gen_kvmclock_update(vcpu);
6387                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6388                         r = kvm_guest_time_update(vcpu);
6389                         if (unlikely(r))
6390                                 goto out;
6391                 }
6392                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6393                         kvm_mmu_sync_roots(vcpu);
6394                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6395                         kvm_vcpu_flush_tlb(vcpu);
6396                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6397                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6398                         r = 0;
6399                         goto out;
6400                 }
6401                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6402                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6403                         r = 0;
6404                         goto out;
6405                 }
6406                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6407                         vcpu->fpu_active = 0;
6408                         kvm_x86_ops->fpu_deactivate(vcpu);
6409                 }
6410                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6411                         /* Page is swapped out. Do synthetic halt */
6412                         vcpu->arch.apf.halted = true;
6413                         r = 1;
6414                         goto out;
6415                 }
6416                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6417                         record_steal_time(vcpu);
6418                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6419                         process_smi(vcpu);
6420                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6421                         process_nmi(vcpu);
6422                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6423                         kvm_pmu_handle_event(vcpu);
6424                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6425                         kvm_pmu_deliver_pmi(vcpu);
6426                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6427                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6428                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6429                                      (void *) vcpu->arch.eoi_exit_bitmap)) {
6430                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6431                                 vcpu->run->eoi.vector =
6432                                                 vcpu->arch.pending_ioapic_eoi;
6433                                 r = 0;
6434                                 goto out;
6435                         }
6436                 }
6437                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6438                         vcpu_scan_ioapic(vcpu);
6439                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6440                         kvm_vcpu_reload_apic_access_page(vcpu);
6441                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6442                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6443                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6444                         r = 0;
6445                         goto out;
6446                 }
6447                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6448                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6449                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6450                         r = 0;
6451                         goto out;
6452                 }
6453         }
6454
6455         /*
6456          * KVM_REQ_EVENT is not set when posted interrupts are set by
6457          * VT-d hardware, so we have to update RVI unconditionally.
6458          */
6459         if (kvm_lapic_enabled(vcpu)) {
6460                 /*
6461                  * Update architecture specific hints for APIC
6462                  * virtual interrupt delivery.
6463                  */
6464                 if (kvm_x86_ops->hwapic_irr_update)
6465                         kvm_x86_ops->hwapic_irr_update(vcpu,
6466                                 kvm_lapic_find_highest_irr(vcpu));
6467         }
6468
6469         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6470                 kvm_apic_accept_events(vcpu);
6471                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6472                         r = 1;
6473                         goto out;
6474                 }
6475
6476                 if (inject_pending_event(vcpu, req_int_win) != 0)
6477                         req_immediate_exit = true;
6478                 /* enable NMI/IRQ window open exits if needed */
6479                 else {
6480                         if (vcpu->arch.nmi_pending)
6481                                 kvm_x86_ops->enable_nmi_window(vcpu);
6482                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6483                                 kvm_x86_ops->enable_irq_window(vcpu);
6484                 }
6485
6486                 if (kvm_lapic_enabled(vcpu)) {
6487                         update_cr8_intercept(vcpu);
6488                         kvm_lapic_sync_to_vapic(vcpu);
6489                 }
6490         }
6491
6492         r = kvm_mmu_reload(vcpu);
6493         if (unlikely(r)) {
6494                 goto cancel_injection;
6495         }
6496
6497         preempt_disable();
6498
6499         kvm_x86_ops->prepare_guest_switch(vcpu);
6500         if (vcpu->fpu_active)
6501                 kvm_load_guest_fpu(vcpu);
6502         vcpu->mode = IN_GUEST_MODE;
6503
6504         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6505
6506         /* We should set ->mode before check ->requests,
6507          * see the comment in make_all_cpus_request.
6508          */
6509         smp_mb__after_srcu_read_unlock();
6510
6511         local_irq_disable();
6512
6513         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6514             || need_resched() || signal_pending(current)) {
6515                 vcpu->mode = OUTSIDE_GUEST_MODE;
6516                 smp_wmb();
6517                 local_irq_enable();
6518                 preempt_enable();
6519                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6520                 r = 1;
6521                 goto cancel_injection;
6522         }
6523
6524         kvm_load_guest_xcr0(vcpu);
6525
6526         if (req_immediate_exit)
6527                 smp_send_reschedule(vcpu->cpu);
6528
6529         trace_kvm_entry(vcpu->vcpu_id);
6530         wait_lapic_expire(vcpu);
6531         __kvm_guest_enter();
6532
6533         if (unlikely(vcpu->arch.switch_db_regs)) {
6534                 set_debugreg(0, 7);
6535                 set_debugreg(vcpu->arch.eff_db[0], 0);
6536                 set_debugreg(vcpu->arch.eff_db[1], 1);
6537                 set_debugreg(vcpu->arch.eff_db[2], 2);
6538                 set_debugreg(vcpu->arch.eff_db[3], 3);
6539                 set_debugreg(vcpu->arch.dr6, 6);
6540                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6541         }
6542
6543         kvm_x86_ops->run(vcpu);
6544
6545         /*
6546          * Do this here before restoring debug registers on the host.  And
6547          * since we do this before handling the vmexit, a DR access vmexit
6548          * can (a) read the correct value of the debug registers, (b) set
6549          * KVM_DEBUGREG_WONT_EXIT again.
6550          */
6551         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6552                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6553                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6554                 kvm_update_dr0123(vcpu);
6555                 kvm_update_dr6(vcpu);
6556                 kvm_update_dr7(vcpu);
6557                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6558         }
6559
6560         /*
6561          * If the guest has used debug registers, at least dr7
6562          * will be disabled while returning to the host.
6563          * If we don't have active breakpoints in the host, we don't
6564          * care about the messed up debug address registers. But if
6565          * we have some of them active, restore the old state.
6566          */
6567         if (hw_breakpoint_active())
6568                 hw_breakpoint_restore();
6569
6570         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6571
6572         vcpu->mode = OUTSIDE_GUEST_MODE;
6573         smp_wmb();
6574
6575         kvm_put_guest_xcr0(vcpu);
6576
6577         /* Interrupt is enabled by handle_external_intr() */
6578         kvm_x86_ops->handle_external_intr(vcpu);
6579
6580         ++vcpu->stat.exits;
6581
6582         /*
6583          * We must have an instruction between local_irq_enable() and
6584          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6585          * the interrupt shadow.  The stat.exits increment will do nicely.
6586          * But we need to prevent reordering, hence this barrier():
6587          */
6588         barrier();
6589
6590         kvm_guest_exit();
6591
6592         preempt_enable();
6593
6594         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6595
6596         /*
6597          * Profile KVM exit RIPs:
6598          */
6599         if (unlikely(prof_on == KVM_PROFILING)) {
6600                 unsigned long rip = kvm_rip_read(vcpu);
6601                 profile_hit(KVM_PROFILING, (void *)rip);
6602         }
6603
6604         if (unlikely(vcpu->arch.tsc_always_catchup))
6605                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6606
6607         if (vcpu->arch.apic_attention)
6608                 kvm_lapic_sync_from_vapic(vcpu);
6609
6610         r = kvm_x86_ops->handle_exit(vcpu);
6611         return r;
6612
6613 cancel_injection:
6614         kvm_x86_ops->cancel_injection(vcpu);
6615         if (unlikely(vcpu->arch.apic_attention))
6616                 kvm_lapic_sync_from_vapic(vcpu);
6617 out:
6618         return r;
6619 }
6620
6621 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6622 {
6623         if (!kvm_arch_vcpu_runnable(vcpu) &&
6624             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6625                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6626                 kvm_vcpu_block(vcpu);
6627                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6628
6629                 if (kvm_x86_ops->post_block)
6630                         kvm_x86_ops->post_block(vcpu);
6631
6632                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6633                         return 1;
6634         }
6635
6636         kvm_apic_accept_events(vcpu);
6637         switch(vcpu->arch.mp_state) {
6638         case KVM_MP_STATE_HALTED:
6639                 vcpu->arch.pv.pv_unhalted = false;
6640                 vcpu->arch.mp_state =
6641                         KVM_MP_STATE_RUNNABLE;
6642         case KVM_MP_STATE_RUNNABLE:
6643                 vcpu->arch.apf.halted = false;
6644                 break;
6645         case KVM_MP_STATE_INIT_RECEIVED:
6646                 break;
6647         default:
6648                 return -EINTR;
6649                 break;
6650         }
6651         return 1;
6652 }
6653
6654 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6655 {
6656         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6657                 !vcpu->arch.apf.halted);
6658 }
6659
6660 static int vcpu_run(struct kvm_vcpu *vcpu)
6661 {
6662         int r;
6663         struct kvm *kvm = vcpu->kvm;
6664
6665         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6666
6667         for (;;) {
6668                 if (kvm_vcpu_running(vcpu)) {
6669                         r = vcpu_enter_guest(vcpu);
6670                 } else {
6671                         r = vcpu_block(kvm, vcpu);
6672                 }
6673
6674                 if (r <= 0)
6675                         break;
6676
6677                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6678                 if (kvm_cpu_has_pending_timer(vcpu))
6679                         kvm_inject_pending_timer_irqs(vcpu);
6680
6681                 if (dm_request_for_irq_injection(vcpu) &&
6682                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6683                         r = 0;
6684                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6685                         ++vcpu->stat.request_irq_exits;
6686                         break;
6687                 }
6688
6689                 kvm_check_async_pf_completion(vcpu);
6690
6691                 if (signal_pending(current)) {
6692                         r = -EINTR;
6693                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6694                         ++vcpu->stat.signal_exits;
6695                         break;
6696                 }
6697                 if (need_resched()) {
6698                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6699                         cond_resched();
6700                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6701                 }
6702         }
6703
6704         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6705
6706         return r;
6707 }
6708
6709 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6710 {
6711         int r;
6712         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6713         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6714         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6715         if (r != EMULATE_DONE)
6716                 return 0;
6717         return 1;
6718 }
6719
6720 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6721 {
6722         BUG_ON(!vcpu->arch.pio.count);
6723
6724         return complete_emulated_io(vcpu);
6725 }
6726
6727 /*
6728  * Implements the following, as a state machine:
6729  *
6730  * read:
6731  *   for each fragment
6732  *     for each mmio piece in the fragment
6733  *       write gpa, len
6734  *       exit
6735  *       copy data
6736  *   execute insn
6737  *
6738  * write:
6739  *   for each fragment
6740  *     for each mmio piece in the fragment
6741  *       write gpa, len
6742  *       copy data
6743  *       exit
6744  */
6745 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6746 {
6747         struct kvm_run *run = vcpu->run;
6748         struct kvm_mmio_fragment *frag;
6749         unsigned len;
6750
6751         BUG_ON(!vcpu->mmio_needed);
6752
6753         /* Complete previous fragment */
6754         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6755         len = min(8u, frag->len);
6756         if (!vcpu->mmio_is_write)
6757                 memcpy(frag->data, run->mmio.data, len);
6758
6759         if (frag->len <= 8) {
6760                 /* Switch to the next fragment. */
6761                 frag++;
6762                 vcpu->mmio_cur_fragment++;
6763         } else {
6764                 /* Go forward to the next mmio piece. */
6765                 frag->data += len;
6766                 frag->gpa += len;
6767                 frag->len -= len;
6768         }
6769
6770         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6771                 vcpu->mmio_needed = 0;
6772
6773                 /* FIXME: return into emulator if single-stepping.  */
6774                 if (vcpu->mmio_is_write)
6775                         return 1;
6776                 vcpu->mmio_read_completed = 1;
6777                 return complete_emulated_io(vcpu);
6778         }
6779
6780         run->exit_reason = KVM_EXIT_MMIO;
6781         run->mmio.phys_addr = frag->gpa;
6782         if (vcpu->mmio_is_write)
6783                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6784         run->mmio.len = min(8u, frag->len);
6785         run->mmio.is_write = vcpu->mmio_is_write;
6786         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6787         return 0;
6788 }
6789
6790
6791 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6792 {
6793         struct fpu *fpu = &current->thread.fpu;
6794         int r;
6795         sigset_t sigsaved;
6796
6797         fpu__activate_curr(fpu);
6798
6799         if (vcpu->sigset_active)
6800                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6801
6802         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6803                 kvm_vcpu_block(vcpu);
6804                 kvm_apic_accept_events(vcpu);
6805                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6806                 r = -EAGAIN;
6807                 goto out;
6808         }
6809
6810         /* re-sync apic's tpr */
6811         if (!lapic_in_kernel(vcpu)) {
6812                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6813                         r = -EINVAL;
6814                         goto out;
6815                 }
6816         }
6817
6818         if (unlikely(vcpu->arch.complete_userspace_io)) {
6819                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6820                 vcpu->arch.complete_userspace_io = NULL;
6821                 r = cui(vcpu);
6822                 if (r <= 0)
6823                         goto out;
6824         } else
6825                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6826
6827         r = vcpu_run(vcpu);
6828
6829 out:
6830         post_kvm_run_save(vcpu);
6831         if (vcpu->sigset_active)
6832                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6833
6834         return r;
6835 }
6836
6837 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6838 {
6839         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6840                 /*
6841                  * We are here if userspace calls get_regs() in the middle of
6842                  * instruction emulation. Registers state needs to be copied
6843                  * back from emulation context to vcpu. Userspace shouldn't do
6844                  * that usually, but some bad designed PV devices (vmware
6845                  * backdoor interface) need this to work
6846                  */
6847                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6848                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6849         }
6850         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6851         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6852         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6853         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6854         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6855         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6856         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6857         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6858 #ifdef CONFIG_X86_64
6859         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6860         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6861         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6862         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6863         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6864         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6865         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6866         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6867 #endif
6868
6869         regs->rip = kvm_rip_read(vcpu);
6870         regs->rflags = kvm_get_rflags(vcpu);
6871
6872         return 0;
6873 }
6874
6875 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6876 {
6877         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6878         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6879
6880         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6881         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6882         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6883         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6884         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6885         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6886         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6887         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6888 #ifdef CONFIG_X86_64
6889         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6890         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6891         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6892         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6893         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6894         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6895         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6896         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6897 #endif
6898
6899         kvm_rip_write(vcpu, regs->rip);
6900         kvm_set_rflags(vcpu, regs->rflags);
6901
6902         vcpu->arch.exception.pending = false;
6903
6904         kvm_make_request(KVM_REQ_EVENT, vcpu);
6905
6906         return 0;
6907 }
6908
6909 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6910 {
6911         struct kvm_segment cs;
6912
6913         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6914         *db = cs.db;
6915         *l = cs.l;
6916 }
6917 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6918
6919 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6920                                   struct kvm_sregs *sregs)
6921 {
6922         struct desc_ptr dt;
6923
6924         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6925         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6926         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6927         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6928         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6929         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6930
6931         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6932         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6933
6934         kvm_x86_ops->get_idt(vcpu, &dt);
6935         sregs->idt.limit = dt.size;
6936         sregs->idt.base = dt.address;
6937         kvm_x86_ops->get_gdt(vcpu, &dt);
6938         sregs->gdt.limit = dt.size;
6939         sregs->gdt.base = dt.address;
6940
6941         sregs->cr0 = kvm_read_cr0(vcpu);
6942         sregs->cr2 = vcpu->arch.cr2;
6943         sregs->cr3 = kvm_read_cr3(vcpu);
6944         sregs->cr4 = kvm_read_cr4(vcpu);
6945         sregs->cr8 = kvm_get_cr8(vcpu);
6946         sregs->efer = vcpu->arch.efer;
6947         sregs->apic_base = kvm_get_apic_base(vcpu);
6948
6949         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6950
6951         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6952                 set_bit(vcpu->arch.interrupt.nr,
6953                         (unsigned long *)sregs->interrupt_bitmap);
6954
6955         return 0;
6956 }
6957
6958 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6959                                     struct kvm_mp_state *mp_state)
6960 {
6961         kvm_apic_accept_events(vcpu);
6962         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6963                                         vcpu->arch.pv.pv_unhalted)
6964                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6965         else
6966                 mp_state->mp_state = vcpu->arch.mp_state;
6967
6968         return 0;
6969 }
6970
6971 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6972                                     struct kvm_mp_state *mp_state)
6973 {
6974         if (!kvm_vcpu_has_lapic(vcpu) &&
6975             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6976                 return -EINVAL;
6977
6978         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6979                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6980                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6981         } else
6982                 vcpu->arch.mp_state = mp_state->mp_state;
6983         kvm_make_request(KVM_REQ_EVENT, vcpu);
6984         return 0;
6985 }
6986
6987 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6988                     int reason, bool has_error_code, u32 error_code)
6989 {
6990         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6991         int ret;
6992
6993         init_emulate_ctxt(vcpu);
6994
6995         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6996                                    has_error_code, error_code);
6997
6998         if (ret)
6999                 return EMULATE_FAIL;
7000
7001         kvm_rip_write(vcpu, ctxt->eip);
7002         kvm_set_rflags(vcpu, ctxt->eflags);
7003         kvm_make_request(KVM_REQ_EVENT, vcpu);
7004         return EMULATE_DONE;
7005 }
7006 EXPORT_SYMBOL_GPL(kvm_task_switch);
7007
7008 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7009                                   struct kvm_sregs *sregs)
7010 {
7011         struct msr_data apic_base_msr;
7012         int mmu_reset_needed = 0;
7013         int pending_vec, max_bits, idx;
7014         struct desc_ptr dt;
7015
7016         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7017                 return -EINVAL;
7018
7019         dt.size = sregs->idt.limit;
7020         dt.address = sregs->idt.base;
7021         kvm_x86_ops->set_idt(vcpu, &dt);
7022         dt.size = sregs->gdt.limit;
7023         dt.address = sregs->gdt.base;
7024         kvm_x86_ops->set_gdt(vcpu, &dt);
7025
7026         vcpu->arch.cr2 = sregs->cr2;
7027         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7028         vcpu->arch.cr3 = sregs->cr3;
7029         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7030
7031         kvm_set_cr8(vcpu, sregs->cr8);
7032
7033         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7034         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7035         apic_base_msr.data = sregs->apic_base;
7036         apic_base_msr.host_initiated = true;
7037         kvm_set_apic_base(vcpu, &apic_base_msr);
7038
7039         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7040         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7041         vcpu->arch.cr0 = sregs->cr0;
7042
7043         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7044         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7045         if (sregs->cr4 & X86_CR4_OSXSAVE)
7046                 kvm_update_cpuid(vcpu);
7047
7048         idx = srcu_read_lock(&vcpu->kvm->srcu);
7049         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7050                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7051                 mmu_reset_needed = 1;
7052         }
7053         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7054
7055         if (mmu_reset_needed)
7056                 kvm_mmu_reset_context(vcpu);
7057
7058         max_bits = KVM_NR_INTERRUPTS;
7059         pending_vec = find_first_bit(
7060                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7061         if (pending_vec < max_bits) {
7062                 kvm_queue_interrupt(vcpu, pending_vec, false);
7063                 pr_debug("Set back pending irq %d\n", pending_vec);
7064         }
7065
7066         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7067         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7068         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7069         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7070         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7071         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7072
7073         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7074         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7075
7076         update_cr8_intercept(vcpu);
7077
7078         /* Older userspace won't unhalt the vcpu on reset. */
7079         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7080             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7081             !is_protmode(vcpu))
7082                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7083
7084         kvm_make_request(KVM_REQ_EVENT, vcpu);
7085
7086         return 0;
7087 }
7088
7089 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7090                                         struct kvm_guest_debug *dbg)
7091 {
7092         unsigned long rflags;
7093         int i, r;
7094
7095         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7096                 r = -EBUSY;
7097                 if (vcpu->arch.exception.pending)
7098                         goto out;
7099                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7100                         kvm_queue_exception(vcpu, DB_VECTOR);
7101                 else
7102                         kvm_queue_exception(vcpu, BP_VECTOR);
7103         }
7104
7105         /*
7106          * Read rflags as long as potentially injected trace flags are still
7107          * filtered out.
7108          */
7109         rflags = kvm_get_rflags(vcpu);
7110
7111         vcpu->guest_debug = dbg->control;
7112         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7113                 vcpu->guest_debug = 0;
7114
7115         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7116                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7117                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7118                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7119         } else {
7120                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7121                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7122         }
7123         kvm_update_dr7(vcpu);
7124
7125         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7126                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7127                         get_segment_base(vcpu, VCPU_SREG_CS);
7128
7129         /*
7130          * Trigger an rflags update that will inject or remove the trace
7131          * flags.
7132          */
7133         kvm_set_rflags(vcpu, rflags);
7134
7135         kvm_x86_ops->update_bp_intercept(vcpu);
7136
7137         r = 0;
7138
7139 out:
7140
7141         return r;
7142 }
7143
7144 /*
7145  * Translate a guest virtual address to a guest physical address.
7146  */
7147 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7148                                     struct kvm_translation *tr)
7149 {
7150         unsigned long vaddr = tr->linear_address;
7151         gpa_t gpa;
7152         int idx;
7153
7154         idx = srcu_read_lock(&vcpu->kvm->srcu);
7155         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7156         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7157         tr->physical_address = gpa;
7158         tr->valid = gpa != UNMAPPED_GVA;
7159         tr->writeable = 1;
7160         tr->usermode = 0;
7161
7162         return 0;
7163 }
7164
7165 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7166 {
7167         struct fxregs_state *fxsave =
7168                         &vcpu->arch.guest_fpu.state.fxsave;
7169
7170         memcpy(fpu->fpr, fxsave->st_space, 128);
7171         fpu->fcw = fxsave->cwd;
7172         fpu->fsw = fxsave->swd;
7173         fpu->ftwx = fxsave->twd;
7174         fpu->last_opcode = fxsave->fop;
7175         fpu->last_ip = fxsave->rip;
7176         fpu->last_dp = fxsave->rdp;
7177         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7178
7179         return 0;
7180 }
7181
7182 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7183 {
7184         struct fxregs_state *fxsave =
7185                         &vcpu->arch.guest_fpu.state.fxsave;
7186
7187         memcpy(fxsave->st_space, fpu->fpr, 128);
7188         fxsave->cwd = fpu->fcw;
7189         fxsave->swd = fpu->fsw;
7190         fxsave->twd = fpu->ftwx;
7191         fxsave->fop = fpu->last_opcode;
7192         fxsave->rip = fpu->last_ip;
7193         fxsave->rdp = fpu->last_dp;
7194         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7195
7196         return 0;
7197 }
7198
7199 static void fx_init(struct kvm_vcpu *vcpu)
7200 {
7201         fpstate_init(&vcpu->arch.guest_fpu.state);
7202         if (cpu_has_xsaves)
7203                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7204                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7205
7206         /*
7207          * Ensure guest xcr0 is valid for loading
7208          */
7209         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7210
7211         vcpu->arch.cr0 |= X86_CR0_ET;
7212 }
7213
7214 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7215 {
7216         if (vcpu->guest_fpu_loaded)
7217                 return;
7218
7219         /*
7220          * Restore all possible states in the guest,
7221          * and assume host would use all available bits.
7222          * Guest xcr0 would be loaded later.
7223          */
7224         vcpu->guest_fpu_loaded = 1;
7225         __kernel_fpu_begin();
7226         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7227         trace_kvm_fpu(1);
7228 }
7229
7230 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7231 {
7232         if (!vcpu->guest_fpu_loaded) {
7233                 vcpu->fpu_counter = 0;
7234                 return;
7235         }
7236
7237         vcpu->guest_fpu_loaded = 0;
7238         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7239         __kernel_fpu_end();
7240         ++vcpu->stat.fpu_reload;
7241         /*
7242          * If using eager FPU mode, or if the guest is a frequent user
7243          * of the FPU, just leave the FPU active for next time.
7244          * Every 255 times fpu_counter rolls over to 0; a guest that uses
7245          * the FPU in bursts will revert to loading it on demand.
7246          */
7247         if (!vcpu->arch.eager_fpu) {
7248                 if (++vcpu->fpu_counter < 5)
7249                         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7250         }
7251         trace_kvm_fpu(0);
7252 }
7253
7254 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7255 {
7256         kvmclock_reset(vcpu);
7257
7258         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7259         kvm_x86_ops->vcpu_free(vcpu);
7260 }
7261
7262 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7263                                                 unsigned int id)
7264 {
7265         struct kvm_vcpu *vcpu;
7266
7267         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7268                 printk_once(KERN_WARNING
7269                 "kvm: SMP vm created on host with unstable TSC; "
7270                 "guest TSC will not be reliable\n");
7271
7272         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7273
7274         return vcpu;
7275 }
7276
7277 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7278 {
7279         int r;
7280
7281         kvm_vcpu_mtrr_init(vcpu);
7282         r = vcpu_load(vcpu);
7283         if (r)
7284                 return r;
7285         kvm_vcpu_reset(vcpu, false);
7286         kvm_mmu_setup(vcpu);
7287         vcpu_put(vcpu);
7288         return r;
7289 }
7290
7291 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7292 {
7293         struct msr_data msr;
7294         struct kvm *kvm = vcpu->kvm;
7295
7296         if (vcpu_load(vcpu))
7297                 return;
7298         msr.data = 0x0;
7299         msr.index = MSR_IA32_TSC;
7300         msr.host_initiated = true;
7301         kvm_write_tsc(vcpu, &msr);
7302         vcpu_put(vcpu);
7303
7304         if (!kvmclock_periodic_sync)
7305                 return;
7306
7307         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7308                                         KVMCLOCK_SYNC_PERIOD);
7309 }
7310
7311 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7312 {
7313         int r;
7314         vcpu->arch.apf.msr_val = 0;
7315
7316         r = vcpu_load(vcpu);
7317         BUG_ON(r);
7318         kvm_mmu_unload(vcpu);
7319         vcpu_put(vcpu);
7320
7321         kvm_x86_ops->vcpu_free(vcpu);
7322 }
7323
7324 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7325 {
7326         vcpu->arch.hflags = 0;
7327
7328         atomic_set(&vcpu->arch.nmi_queued, 0);
7329         vcpu->arch.nmi_pending = 0;
7330         vcpu->arch.nmi_injected = false;
7331         kvm_clear_interrupt_queue(vcpu);
7332         kvm_clear_exception_queue(vcpu);
7333
7334         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7335         kvm_update_dr0123(vcpu);
7336         vcpu->arch.dr6 = DR6_INIT;
7337         kvm_update_dr6(vcpu);
7338         vcpu->arch.dr7 = DR7_FIXED_1;
7339         kvm_update_dr7(vcpu);
7340
7341         vcpu->arch.cr2 = 0;
7342
7343         kvm_make_request(KVM_REQ_EVENT, vcpu);
7344         vcpu->arch.apf.msr_val = 0;
7345         vcpu->arch.st.msr_val = 0;
7346
7347         kvmclock_reset(vcpu);
7348
7349         kvm_clear_async_pf_completion_queue(vcpu);
7350         kvm_async_pf_hash_reset(vcpu);
7351         vcpu->arch.apf.halted = false;
7352
7353         if (!init_event) {
7354                 kvm_pmu_reset(vcpu);
7355                 vcpu->arch.smbase = 0x30000;
7356         }
7357
7358         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7359         vcpu->arch.regs_avail = ~0;
7360         vcpu->arch.regs_dirty = ~0;
7361
7362         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7363 }
7364
7365 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7366 {
7367         struct kvm_segment cs;
7368
7369         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7370         cs.selector = vector << 8;
7371         cs.base = vector << 12;
7372         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7373         kvm_rip_write(vcpu, 0);
7374 }
7375
7376 int kvm_arch_hardware_enable(void)
7377 {
7378         struct kvm *kvm;
7379         struct kvm_vcpu *vcpu;
7380         int i;
7381         int ret;
7382         u64 local_tsc;
7383         u64 max_tsc = 0;
7384         bool stable, backwards_tsc = false;
7385
7386         kvm_shared_msr_cpu_online();
7387         ret = kvm_x86_ops->hardware_enable();
7388         if (ret != 0)
7389                 return ret;
7390
7391         local_tsc = rdtsc();
7392         stable = !check_tsc_unstable();
7393         list_for_each_entry(kvm, &vm_list, vm_list) {
7394                 kvm_for_each_vcpu(i, vcpu, kvm) {
7395                         if (!stable && vcpu->cpu == smp_processor_id())
7396                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7397                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7398                                 backwards_tsc = true;
7399                                 if (vcpu->arch.last_host_tsc > max_tsc)
7400                                         max_tsc = vcpu->arch.last_host_tsc;
7401                         }
7402                 }
7403         }
7404
7405         /*
7406          * Sometimes, even reliable TSCs go backwards.  This happens on
7407          * platforms that reset TSC during suspend or hibernate actions, but
7408          * maintain synchronization.  We must compensate.  Fortunately, we can
7409          * detect that condition here, which happens early in CPU bringup,
7410          * before any KVM threads can be running.  Unfortunately, we can't
7411          * bring the TSCs fully up to date with real time, as we aren't yet far
7412          * enough into CPU bringup that we know how much real time has actually
7413          * elapsed; our helper function, get_kernel_ns() will be using boot
7414          * variables that haven't been updated yet.
7415          *
7416          * So we simply find the maximum observed TSC above, then record the
7417          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7418          * the adjustment will be applied.  Note that we accumulate
7419          * adjustments, in case multiple suspend cycles happen before some VCPU
7420          * gets a chance to run again.  In the event that no KVM threads get a
7421          * chance to run, we will miss the entire elapsed period, as we'll have
7422          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7423          * loose cycle time.  This isn't too big a deal, since the loss will be
7424          * uniform across all VCPUs (not to mention the scenario is extremely
7425          * unlikely). It is possible that a second hibernate recovery happens
7426          * much faster than a first, causing the observed TSC here to be
7427          * smaller; this would require additional padding adjustment, which is
7428          * why we set last_host_tsc to the local tsc observed here.
7429          *
7430          * N.B. - this code below runs only on platforms with reliable TSC,
7431          * as that is the only way backwards_tsc is set above.  Also note
7432          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7433          * have the same delta_cyc adjustment applied if backwards_tsc
7434          * is detected.  Note further, this adjustment is only done once,
7435          * as we reset last_host_tsc on all VCPUs to stop this from being
7436          * called multiple times (one for each physical CPU bringup).
7437          *
7438          * Platforms with unreliable TSCs don't have to deal with this, they
7439          * will be compensated by the logic in vcpu_load, which sets the TSC to
7440          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7441          * guarantee that they stay in perfect synchronization.
7442          */
7443         if (backwards_tsc) {
7444                 u64 delta_cyc = max_tsc - local_tsc;
7445                 backwards_tsc_observed = true;
7446                 list_for_each_entry(kvm, &vm_list, vm_list) {
7447                         kvm_for_each_vcpu(i, vcpu, kvm) {
7448                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7449                                 vcpu->arch.last_host_tsc = local_tsc;
7450                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7451                         }
7452
7453                         /*
7454                          * We have to disable TSC offset matching.. if you were
7455                          * booting a VM while issuing an S4 host suspend....
7456                          * you may have some problem.  Solving this issue is
7457                          * left as an exercise to the reader.
7458                          */
7459                         kvm->arch.last_tsc_nsec = 0;
7460                         kvm->arch.last_tsc_write = 0;
7461                 }
7462
7463         }
7464         return 0;
7465 }
7466
7467 void kvm_arch_hardware_disable(void)
7468 {
7469         kvm_x86_ops->hardware_disable();
7470         drop_user_return_notifiers();
7471 }
7472
7473 int kvm_arch_hardware_setup(void)
7474 {
7475         int r;
7476
7477         r = kvm_x86_ops->hardware_setup();
7478         if (r != 0)
7479                 return r;
7480
7481         if (kvm_has_tsc_control) {
7482                 /*
7483                  * Make sure the user can only configure tsc_khz values that
7484                  * fit into a signed integer.
7485                  * A min value is not calculated needed because it will always
7486                  * be 1 on all machines.
7487                  */
7488                 u64 max = min(0x7fffffffULL,
7489                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7490                 kvm_max_guest_tsc_khz = max;
7491
7492                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7493         }
7494
7495         kvm_init_msr_list();
7496         return 0;
7497 }
7498
7499 void kvm_arch_hardware_unsetup(void)
7500 {
7501         kvm_x86_ops->hardware_unsetup();
7502 }
7503
7504 void kvm_arch_check_processor_compat(void *rtn)
7505 {
7506         kvm_x86_ops->check_processor_compatibility(rtn);
7507 }
7508
7509 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7510 {
7511         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7512 }
7513 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7514
7515 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7516 {
7517         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7518 }
7519
7520 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7521 {
7522         return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu);
7523 }
7524
7525 struct static_key kvm_no_apic_vcpu __read_mostly;
7526
7527 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7528 {
7529         struct page *page;
7530         struct kvm *kvm;
7531         int r;
7532
7533         BUG_ON(vcpu->kvm == NULL);
7534         kvm = vcpu->kvm;
7535
7536         vcpu->arch.pv.pv_unhalted = false;
7537         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7538         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7539                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7540         else
7541                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7542
7543         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7544         if (!page) {
7545                 r = -ENOMEM;
7546                 goto fail;
7547         }
7548         vcpu->arch.pio_data = page_address(page);
7549
7550         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7551
7552         r = kvm_mmu_create(vcpu);
7553         if (r < 0)
7554                 goto fail_free_pio_data;
7555
7556         if (irqchip_in_kernel(kvm)) {
7557                 r = kvm_create_lapic(vcpu);
7558                 if (r < 0)
7559                         goto fail_mmu_destroy;
7560         } else
7561                 static_key_slow_inc(&kvm_no_apic_vcpu);
7562
7563         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7564                                        GFP_KERNEL);
7565         if (!vcpu->arch.mce_banks) {
7566                 r = -ENOMEM;
7567                 goto fail_free_lapic;
7568         }
7569         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7570
7571         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7572                 r = -ENOMEM;
7573                 goto fail_free_mce_banks;
7574         }
7575
7576         fx_init(vcpu);
7577
7578         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7579         vcpu->arch.pv_time_enabled = false;
7580
7581         vcpu->arch.guest_supported_xcr0 = 0;
7582         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7583
7584         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7585
7586         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7587
7588         kvm_async_pf_hash_reset(vcpu);
7589         kvm_pmu_init(vcpu);
7590
7591         vcpu->arch.pending_external_vector = -1;
7592
7593         return 0;
7594
7595 fail_free_mce_banks:
7596         kfree(vcpu->arch.mce_banks);
7597 fail_free_lapic:
7598         kvm_free_lapic(vcpu);
7599 fail_mmu_destroy:
7600         kvm_mmu_destroy(vcpu);
7601 fail_free_pio_data:
7602         free_page((unsigned long)vcpu->arch.pio_data);
7603 fail:
7604         return r;
7605 }
7606
7607 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7608 {
7609         int idx;
7610
7611         kvm_pmu_destroy(vcpu);
7612         kfree(vcpu->arch.mce_banks);
7613         kvm_free_lapic(vcpu);
7614         idx = srcu_read_lock(&vcpu->kvm->srcu);
7615         kvm_mmu_destroy(vcpu);
7616         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7617         free_page((unsigned long)vcpu->arch.pio_data);
7618         if (!lapic_in_kernel(vcpu))
7619                 static_key_slow_dec(&kvm_no_apic_vcpu);
7620 }
7621
7622 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7623 {
7624         kvm_x86_ops->sched_in(vcpu, cpu);
7625 }
7626
7627 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7628 {
7629         if (type)
7630                 return -EINVAL;
7631
7632         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7633         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7634         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7635         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7636         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7637
7638         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7639         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7640         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7641         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7642                 &kvm->arch.irq_sources_bitmap);
7643
7644         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7645         mutex_init(&kvm->arch.apic_map_lock);
7646         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7647
7648         pvclock_update_vm_gtod_copy(kvm);
7649
7650         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7651         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7652
7653         return 0;
7654 }
7655
7656 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7657 {
7658         int r;
7659         r = vcpu_load(vcpu);
7660         BUG_ON(r);
7661         kvm_mmu_unload(vcpu);
7662         vcpu_put(vcpu);
7663 }
7664
7665 static void kvm_free_vcpus(struct kvm *kvm)
7666 {
7667         unsigned int i;
7668         struct kvm_vcpu *vcpu;
7669
7670         /*
7671          * Unpin any mmu pages first.
7672          */
7673         kvm_for_each_vcpu(i, vcpu, kvm) {
7674                 kvm_clear_async_pf_completion_queue(vcpu);
7675                 kvm_unload_vcpu_mmu(vcpu);
7676         }
7677         kvm_for_each_vcpu(i, vcpu, kvm)
7678                 kvm_arch_vcpu_free(vcpu);
7679
7680         mutex_lock(&kvm->lock);
7681         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7682                 kvm->vcpus[i] = NULL;
7683
7684         atomic_set(&kvm->online_vcpus, 0);
7685         mutex_unlock(&kvm->lock);
7686 }
7687
7688 void kvm_arch_sync_events(struct kvm *kvm)
7689 {
7690         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7691         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7692         kvm_free_all_assigned_devices(kvm);
7693         kvm_free_pit(kvm);
7694 }
7695
7696 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7697 {
7698         int i, r;
7699         unsigned long hva;
7700         struct kvm_memslots *slots = kvm_memslots(kvm);
7701         struct kvm_memory_slot *slot, old;
7702
7703         /* Called with kvm->slots_lock held.  */
7704         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7705                 return -EINVAL;
7706
7707         slot = id_to_memslot(slots, id);
7708         if (size) {
7709                 if (WARN_ON(slot->npages))
7710                         return -EEXIST;
7711
7712                 /*
7713                  * MAP_SHARED to prevent internal slot pages from being moved
7714                  * by fork()/COW.
7715                  */
7716                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7717                               MAP_SHARED | MAP_ANONYMOUS, 0);
7718                 if (IS_ERR((void *)hva))
7719                         return PTR_ERR((void *)hva);
7720         } else {
7721                 if (!slot->npages)
7722                         return 0;
7723
7724                 hva = 0;
7725         }
7726
7727         old = *slot;
7728         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7729                 struct kvm_userspace_memory_region m;
7730
7731                 m.slot = id | (i << 16);
7732                 m.flags = 0;
7733                 m.guest_phys_addr = gpa;
7734                 m.userspace_addr = hva;
7735                 m.memory_size = size;
7736                 r = __kvm_set_memory_region(kvm, &m);
7737                 if (r < 0)
7738                         return r;
7739         }
7740
7741         if (!size) {
7742                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7743                 WARN_ON(r < 0);
7744         }
7745
7746         return 0;
7747 }
7748 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7749
7750 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7751 {
7752         int r;
7753
7754         mutex_lock(&kvm->slots_lock);
7755         r = __x86_set_memory_region(kvm, id, gpa, size);
7756         mutex_unlock(&kvm->slots_lock);
7757
7758         return r;
7759 }
7760 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7761
7762 void kvm_arch_destroy_vm(struct kvm *kvm)
7763 {
7764         if (current->mm == kvm->mm) {
7765                 /*
7766                  * Free memory regions allocated on behalf of userspace,
7767                  * unless the the memory map has changed due to process exit
7768                  * or fd copying.
7769                  */
7770                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7771                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7772                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7773         }
7774         kvm_iommu_unmap_guest(kvm);
7775         kfree(kvm->arch.vpic);
7776         kfree(kvm->arch.vioapic);
7777         kvm_free_vcpus(kvm);
7778         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7779 }
7780
7781 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7782                            struct kvm_memory_slot *dont)
7783 {
7784         int i;
7785
7786         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7787                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7788                         kvfree(free->arch.rmap[i]);
7789                         free->arch.rmap[i] = NULL;
7790                 }
7791                 if (i == 0)
7792                         continue;
7793
7794                 if (!dont || free->arch.lpage_info[i - 1] !=
7795                              dont->arch.lpage_info[i - 1]) {
7796                         kvfree(free->arch.lpage_info[i - 1]);
7797                         free->arch.lpage_info[i - 1] = NULL;
7798                 }
7799         }
7800 }
7801
7802 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7803                             unsigned long npages)
7804 {
7805         int i;
7806
7807         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7808                 unsigned long ugfn;
7809                 int lpages;
7810                 int level = i + 1;
7811
7812                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7813                                       slot->base_gfn, level) + 1;
7814
7815                 slot->arch.rmap[i] =
7816                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7817                 if (!slot->arch.rmap[i])
7818                         goto out_free;
7819                 if (i == 0)
7820                         continue;
7821
7822                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7823                                         sizeof(*slot->arch.lpage_info[i - 1]));
7824                 if (!slot->arch.lpage_info[i - 1])
7825                         goto out_free;
7826
7827                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7828                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7829                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7830                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7831                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7832                 /*
7833                  * If the gfn and userspace address are not aligned wrt each
7834                  * other, or if explicitly asked to, disable large page
7835                  * support for this slot
7836                  */
7837                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7838                     !kvm_largepages_enabled()) {
7839                         unsigned long j;
7840
7841                         for (j = 0; j < lpages; ++j)
7842                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7843                 }
7844         }
7845
7846         return 0;
7847
7848 out_free:
7849         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7850                 kvfree(slot->arch.rmap[i]);
7851                 slot->arch.rmap[i] = NULL;
7852                 if (i == 0)
7853                         continue;
7854
7855                 kvfree(slot->arch.lpage_info[i - 1]);
7856                 slot->arch.lpage_info[i - 1] = NULL;
7857         }
7858         return -ENOMEM;
7859 }
7860
7861 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7862 {
7863         /*
7864          * memslots->generation has been incremented.
7865          * mmio generation may have reached its maximum value.
7866          */
7867         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7868 }
7869
7870 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7871                                 struct kvm_memory_slot *memslot,
7872                                 const struct kvm_userspace_memory_region *mem,
7873                                 enum kvm_mr_change change)
7874 {
7875         return 0;
7876 }
7877
7878 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7879                                      struct kvm_memory_slot *new)
7880 {
7881         /* Still write protect RO slot */
7882         if (new->flags & KVM_MEM_READONLY) {
7883                 kvm_mmu_slot_remove_write_access(kvm, new);
7884                 return;
7885         }
7886
7887         /*
7888          * Call kvm_x86_ops dirty logging hooks when they are valid.
7889          *
7890          * kvm_x86_ops->slot_disable_log_dirty is called when:
7891          *
7892          *  - KVM_MR_CREATE with dirty logging is disabled
7893          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7894          *
7895          * The reason is, in case of PML, we need to set D-bit for any slots
7896          * with dirty logging disabled in order to eliminate unnecessary GPA
7897          * logging in PML buffer (and potential PML buffer full VMEXT). This
7898          * guarantees leaving PML enabled during guest's lifetime won't have
7899          * any additonal overhead from PML when guest is running with dirty
7900          * logging disabled for memory slots.
7901          *
7902          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7903          * to dirty logging mode.
7904          *
7905          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7906          *
7907          * In case of write protect:
7908          *
7909          * Write protect all pages for dirty logging.
7910          *
7911          * All the sptes including the large sptes which point to this
7912          * slot are set to readonly. We can not create any new large
7913          * spte on this slot until the end of the logging.
7914          *
7915          * See the comments in fast_page_fault().
7916          */
7917         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7918                 if (kvm_x86_ops->slot_enable_log_dirty)
7919                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7920                 else
7921                         kvm_mmu_slot_remove_write_access(kvm, new);
7922         } else {
7923                 if (kvm_x86_ops->slot_disable_log_dirty)
7924                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7925         }
7926 }
7927
7928 void kvm_arch_commit_memory_region(struct kvm *kvm,
7929                                 const struct kvm_userspace_memory_region *mem,
7930                                 const struct kvm_memory_slot *old,
7931                                 const struct kvm_memory_slot *new,
7932                                 enum kvm_mr_change change)
7933 {
7934         int nr_mmu_pages = 0;
7935
7936         if (!kvm->arch.n_requested_mmu_pages)
7937                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7938
7939         if (nr_mmu_pages)
7940                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7941
7942         /*
7943          * Dirty logging tracks sptes in 4k granularity, meaning that large
7944          * sptes have to be split.  If live migration is successful, the guest
7945          * in the source machine will be destroyed and large sptes will be
7946          * created in the destination. However, if the guest continues to run
7947          * in the source machine (for example if live migration fails), small
7948          * sptes will remain around and cause bad performance.
7949          *
7950          * Scan sptes if dirty logging has been stopped, dropping those
7951          * which can be collapsed into a single large-page spte.  Later
7952          * page faults will create the large-page sptes.
7953          */
7954         if ((change != KVM_MR_DELETE) &&
7955                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7956                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7957                 kvm_mmu_zap_collapsible_sptes(kvm, new);
7958
7959         /*
7960          * Set up write protection and/or dirty logging for the new slot.
7961          *
7962          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7963          * been zapped so no dirty logging staff is needed for old slot. For
7964          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7965          * new and it's also covered when dealing with the new slot.
7966          *
7967          * FIXME: const-ify all uses of struct kvm_memory_slot.
7968          */
7969         if (change != KVM_MR_DELETE)
7970                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
7971 }
7972
7973 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7974 {
7975         kvm_mmu_invalidate_zap_all_pages(kvm);
7976 }
7977
7978 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7979                                    struct kvm_memory_slot *slot)
7980 {
7981         kvm_mmu_invalidate_zap_all_pages(kvm);
7982 }
7983
7984 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
7985 {
7986         if (!list_empty_careful(&vcpu->async_pf.done))
7987                 return true;
7988
7989         if (kvm_apic_has_events(vcpu))
7990                 return true;
7991
7992         if (vcpu->arch.pv.pv_unhalted)
7993                 return true;
7994
7995         if (atomic_read(&vcpu->arch.nmi_queued))
7996                 return true;
7997
7998         if (test_bit(KVM_REQ_SMI, &vcpu->requests))
7999                 return true;
8000
8001         if (kvm_arch_interrupt_allowed(vcpu) &&
8002             kvm_cpu_has_interrupt(vcpu))
8003                 return true;
8004
8005         return false;
8006 }
8007
8008 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8009 {
8010         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8011                 kvm_x86_ops->check_nested_events(vcpu, false);
8012
8013         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8014 }
8015
8016 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8017 {
8018         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8019 }
8020
8021 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8022 {
8023         return kvm_x86_ops->interrupt_allowed(vcpu);
8024 }
8025
8026 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8027 {
8028         if (is_64_bit_mode(vcpu))
8029                 return kvm_rip_read(vcpu);
8030         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8031                      kvm_rip_read(vcpu));
8032 }
8033 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8034
8035 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8036 {
8037         return kvm_get_linear_rip(vcpu) == linear_rip;
8038 }
8039 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8040
8041 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8042 {
8043         unsigned long rflags;
8044
8045         rflags = kvm_x86_ops->get_rflags(vcpu);
8046         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8047                 rflags &= ~X86_EFLAGS_TF;
8048         return rflags;
8049 }
8050 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8051
8052 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8053 {
8054         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8055             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8056                 rflags |= X86_EFLAGS_TF;
8057         kvm_x86_ops->set_rflags(vcpu, rflags);
8058 }
8059
8060 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8061 {
8062         __kvm_set_rflags(vcpu, rflags);
8063         kvm_make_request(KVM_REQ_EVENT, vcpu);
8064 }
8065 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8066
8067 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8068 {
8069         int r;
8070
8071         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8072               work->wakeup_all)
8073                 return;
8074
8075         r = kvm_mmu_reload(vcpu);
8076         if (unlikely(r))
8077                 return;
8078
8079         if (!vcpu->arch.mmu.direct_map &&
8080               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8081                 return;
8082
8083         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8084 }
8085
8086 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8087 {
8088         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8089 }
8090
8091 static inline u32 kvm_async_pf_next_probe(u32 key)
8092 {
8093         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8094 }
8095
8096 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8097 {
8098         u32 key = kvm_async_pf_hash_fn(gfn);
8099
8100         while (vcpu->arch.apf.gfns[key] != ~0)
8101                 key = kvm_async_pf_next_probe(key);
8102
8103         vcpu->arch.apf.gfns[key] = gfn;
8104 }
8105
8106 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8107 {
8108         int i;
8109         u32 key = kvm_async_pf_hash_fn(gfn);
8110
8111         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8112                      (vcpu->arch.apf.gfns[key] != gfn &&
8113                       vcpu->arch.apf.gfns[key] != ~0); i++)
8114                 key = kvm_async_pf_next_probe(key);
8115
8116         return key;
8117 }
8118
8119 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8120 {
8121         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8122 }
8123
8124 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8125 {
8126         u32 i, j, k;
8127
8128         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8129         while (true) {
8130                 vcpu->arch.apf.gfns[i] = ~0;
8131                 do {
8132                         j = kvm_async_pf_next_probe(j);
8133                         if (vcpu->arch.apf.gfns[j] == ~0)
8134                                 return;
8135                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8136                         /*
8137                          * k lies cyclically in ]i,j]
8138                          * |    i.k.j |
8139                          * |....j i.k.| or  |.k..j i...|
8140                          */
8141                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8142                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8143                 i = j;
8144         }
8145 }
8146
8147 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8148 {
8149
8150         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8151                                       sizeof(val));
8152 }
8153
8154 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8155                                      struct kvm_async_pf *work)
8156 {
8157         struct x86_exception fault;
8158
8159         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8160         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8161
8162         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8163             (vcpu->arch.apf.send_user_only &&
8164              kvm_x86_ops->get_cpl(vcpu) == 0))
8165                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8166         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8167                 fault.vector = PF_VECTOR;
8168                 fault.error_code_valid = true;
8169                 fault.error_code = 0;
8170                 fault.nested_page_fault = false;
8171                 fault.address = work->arch.token;
8172                 kvm_inject_page_fault(vcpu, &fault);
8173         }
8174 }
8175
8176 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8177                                  struct kvm_async_pf *work)
8178 {
8179         struct x86_exception fault;
8180
8181         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8182         if (work->wakeup_all)
8183                 work->arch.token = ~0; /* broadcast wakeup */
8184         else
8185                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8186
8187         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8188             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8189                 fault.vector = PF_VECTOR;
8190                 fault.error_code_valid = true;
8191                 fault.error_code = 0;
8192                 fault.nested_page_fault = false;
8193                 fault.address = work->arch.token;
8194                 kvm_inject_page_fault(vcpu, &fault);
8195         }
8196         vcpu->arch.apf.halted = false;
8197         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8198 }
8199
8200 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8201 {
8202         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8203                 return true;
8204         else
8205                 return !kvm_event_needs_reinjection(vcpu) &&
8206                         kvm_x86_ops->interrupt_allowed(vcpu);
8207 }
8208
8209 void kvm_arch_start_assignment(struct kvm *kvm)
8210 {
8211         atomic_inc(&kvm->arch.assigned_device_count);
8212 }
8213 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8214
8215 void kvm_arch_end_assignment(struct kvm *kvm)
8216 {
8217         atomic_dec(&kvm->arch.assigned_device_count);
8218 }
8219 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8220
8221 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8222 {
8223         return atomic_read(&kvm->arch.assigned_device_count);
8224 }
8225 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8226
8227 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8228 {
8229         atomic_inc(&kvm->arch.noncoherent_dma_count);
8230 }
8231 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8232
8233 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8234 {
8235         atomic_dec(&kvm->arch.noncoherent_dma_count);
8236 }
8237 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8238
8239 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8240 {
8241         return atomic_read(&kvm->arch.noncoherent_dma_count);
8242 }
8243 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8244
8245 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8246                                       struct irq_bypass_producer *prod)
8247 {
8248         struct kvm_kernel_irqfd *irqfd =
8249                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8250
8251         if (kvm_x86_ops->update_pi_irte) {
8252                 irqfd->producer = prod;
8253                 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8254                                 prod->irq, irqfd->gsi, 1);
8255         }
8256
8257         return -EINVAL;
8258 }
8259
8260 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8261                                       struct irq_bypass_producer *prod)
8262 {
8263         int ret;
8264         struct kvm_kernel_irqfd *irqfd =
8265                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8266
8267         if (!kvm_x86_ops->update_pi_irte) {
8268                 WARN_ON(irqfd->producer != NULL);
8269                 return;
8270         }
8271
8272         WARN_ON(irqfd->producer != prod);
8273         irqfd->producer = NULL;
8274
8275         /*
8276          * When producer of consumer is unregistered, we change back to
8277          * remapped mode, so we can re-use the current implementation
8278          * when the irq is masked/disabed or the consumer side (KVM
8279          * int this case doesn't want to receive the interrupts.
8280         */
8281         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8282         if (ret)
8283                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8284                        " fails: %d\n", irqfd->consumer.token, ret);
8285 }
8286
8287 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8288                                    uint32_t guest_irq, bool set)
8289 {
8290         if (!kvm_x86_ops->update_pi_irte)
8291                 return -EINVAL;
8292
8293         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8294 }
8295
8296 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8297 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8298 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8299 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8300 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8301 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8302 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8303 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8304 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8305 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8306 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8307 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8308 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8309 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8310 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8311 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8312 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);