]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/pci/vmd.c
x86/PCI: VMD: Fix infinite loop executing irq's
[karo-tx-linux.git] / arch / x86 / pci / vmd.c
1 /*
2  * Volume Management Device driver
3  * Copyright (c) 2015, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/irq.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/msi.h>
21 #include <linux/pci.h>
22 #include <linux/rculist.h>
23 #include <linux/rcupdate.h>
24
25 #include <asm/irqdomain.h>
26 #include <asm/device.h>
27 #include <asm/msi.h>
28 #include <asm/msidef.h>
29
30 #define VMD_CFGBAR      0
31 #define VMD_MEMBAR1     2
32 #define VMD_MEMBAR2     4
33
34 /*
35  * Lock for manipulating VMD IRQ lists.
36  */
37 static DEFINE_RAW_SPINLOCK(list_lock);
38
39 /**
40  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
41  * @node:       list item for parent traversal.
42  * @rcu:        RCU callback item for freeing.
43  * @irq:        back pointer to parent.
44  * @enabled:    true if driver enabled IRQ
45  * @virq:       the virtual IRQ value provided to the requesting driver.
46  *
47  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
48  * a VMD IRQ using this structure.
49  */
50 struct vmd_irq {
51         struct list_head        node;
52         struct rcu_head         rcu;
53         struct vmd_irq_list     *irq;
54         bool                    enabled;
55         unsigned int            virq;
56 };
57
58 /**
59  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
60  * @irq_list:   the list of irq's the VMD one demuxes to.
61  * @vmd_vector: the h/w IRQ assigned to the VMD.
62  * @index:      index into the VMD MSI-X table; used for message routing.
63  * @count:      number of child IRQs assigned to this vector; used to track
64  *              sharing.
65  */
66 struct vmd_irq_list {
67         struct list_head        irq_list;
68         struct vmd_dev          *vmd;
69         unsigned int            vmd_vector;
70         unsigned int            index;
71         unsigned int            count;
72 };
73
74 struct vmd_dev {
75         struct pci_dev          *dev;
76
77         spinlock_t              cfg_lock;
78         char __iomem            *cfgbar;
79
80         int msix_count;
81         struct msix_entry       *msix_entries;
82         struct vmd_irq_list     *irqs;
83
84         struct pci_sysdata      sysdata;
85         struct resource         resources[3];
86         struct irq_domain       *irq_domain;
87         struct pci_bus          *bus;
88
89 #ifdef CONFIG_X86_DEV_DMA_OPS
90         struct dma_map_ops      dma_ops;
91         struct dma_domain       dma_domain;
92 #endif
93 };
94
95 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
96 {
97         return container_of(bus->sysdata, struct vmd_dev, sysdata);
98 }
99
100 /*
101  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
102  * but the MSI entry for the hardware it's driving will be programmed with a
103  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
104  * domain into one of its own, and the VMD driver de-muxes these for the
105  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
106  * and irq_chip to set this up.
107  */
108 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
109 {
110         struct vmd_irq *vmdirq = data->chip_data;
111         struct vmd_irq_list *irq = vmdirq->irq;
112
113         msg->address_hi = MSI_ADDR_BASE_HI;
114         msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_DEST_ID(irq->index);
115         msg->data = 0;
116 }
117
118 /*
119  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
120  */
121 static void vmd_irq_enable(struct irq_data *data)
122 {
123         struct vmd_irq *vmdirq = data->chip_data;
124         unsigned long flags;
125
126         raw_spin_lock_irqsave(&list_lock, flags);
127         WARN_ON(vmdirq->enabled);
128         list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
129         vmdirq->enabled = true;
130         raw_spin_unlock_irqrestore(&list_lock, flags);
131
132         data->chip->irq_unmask(data);
133 }
134
135 static void vmd_irq_disable(struct irq_data *data)
136 {
137         struct vmd_irq *vmdirq = data->chip_data;
138         unsigned long flags;
139
140         data->chip->irq_mask(data);
141
142         raw_spin_lock_irqsave(&list_lock, flags);
143         if (vmdirq->enabled) {
144                 list_del_rcu(&vmdirq->node);
145                 vmdirq->enabled = false;
146         }
147         raw_spin_unlock_irqrestore(&list_lock, flags);
148 }
149
150 /*
151  * XXX: Stubbed until we develop acceptable way to not create conflicts with
152  * other devices sharing the same vector.
153  */
154 static int vmd_irq_set_affinity(struct irq_data *data,
155                                 const struct cpumask *dest, bool force)
156 {
157         return -EINVAL;
158 }
159
160 static struct irq_chip vmd_msi_controller = {
161         .name                   = "VMD-MSI",
162         .irq_enable             = vmd_irq_enable,
163         .irq_disable            = vmd_irq_disable,
164         .irq_compose_msi_msg    = vmd_compose_msi_msg,
165         .irq_set_affinity       = vmd_irq_set_affinity,
166 };
167
168 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
169                                      msi_alloc_info_t *arg)
170 {
171         return 0;
172 }
173
174 /*
175  * XXX: We can be even smarter selecting the best IRQ once we solve the
176  * affinity problem.
177  */
178 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
179 {
180         int i, best = 1;
181         unsigned long flags;
182
183         if (!desc->msi_attrib.is_msix || vmd->msix_count == 1)
184                 return &vmd->irqs[0];
185
186         raw_spin_lock_irqsave(&list_lock, flags);
187         for (i = 1; i < vmd->msix_count; i++)
188                 if (vmd->irqs[i].count < vmd->irqs[best].count)
189                         best = i;
190         vmd->irqs[best].count++;
191         raw_spin_unlock_irqrestore(&list_lock, flags);
192
193         return &vmd->irqs[best];
194 }
195
196 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
197                         unsigned int virq, irq_hw_number_t hwirq,
198                         msi_alloc_info_t *arg)
199 {
200         struct msi_desc *desc = arg->desc;
201         struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
202         struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
203
204         if (!vmdirq)
205                 return -ENOMEM;
206
207         INIT_LIST_HEAD(&vmdirq->node);
208         vmdirq->irq = vmd_next_irq(vmd, desc);
209         vmdirq->virq = virq;
210
211         irq_domain_set_info(domain, virq, vmdirq->irq->vmd_vector, info->chip,
212                             vmdirq, handle_untracked_irq, vmd, NULL);
213         return 0;
214 }
215
216 static void vmd_msi_free(struct irq_domain *domain,
217                         struct msi_domain_info *info, unsigned int virq)
218 {
219         struct vmd_irq *vmdirq = irq_get_chip_data(virq);
220         unsigned long flags;
221
222         /* XXX: Potential optimization to rebalance */
223         raw_spin_lock_irqsave(&list_lock, flags);
224         vmdirq->irq->count--;
225         raw_spin_unlock_irqrestore(&list_lock, flags);
226
227         kfree_rcu(vmdirq, rcu);
228 }
229
230 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
231                            int nvec, msi_alloc_info_t *arg)
232 {
233         struct pci_dev *pdev = to_pci_dev(dev);
234         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
235
236         if (nvec > vmd->msix_count)
237                 return vmd->msix_count;
238
239         memset(arg, 0, sizeof(*arg));
240         return 0;
241 }
242
243 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
244 {
245         arg->desc = desc;
246 }
247
248 static struct msi_domain_ops vmd_msi_domain_ops = {
249         .get_hwirq      = vmd_get_hwirq,
250         .msi_init       = vmd_msi_init,
251         .msi_free       = vmd_msi_free,
252         .msi_prepare    = vmd_msi_prepare,
253         .set_desc       = vmd_set_desc,
254 };
255
256 static struct msi_domain_info vmd_msi_domain_info = {
257         .flags          = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
258                           MSI_FLAG_PCI_MSIX,
259         .ops            = &vmd_msi_domain_ops,
260         .chip           = &vmd_msi_controller,
261 };
262
263 #ifdef CONFIG_X86_DEV_DMA_OPS
264 /*
265  * VMD replaces the requester ID with its own.  DMA mappings for devices in a
266  * VMD domain need to be mapped for the VMD, not the device requiring
267  * the mapping.
268  */
269 static struct device *to_vmd_dev(struct device *dev)
270 {
271         struct pci_dev *pdev = to_pci_dev(dev);
272         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
273
274         return &vmd->dev->dev;
275 }
276
277 static struct dma_map_ops *vmd_dma_ops(struct device *dev)
278 {
279         return get_dma_ops(to_vmd_dev(dev));
280 }
281
282 static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr,
283                        gfp_t flag, unsigned long attrs)
284 {
285         return vmd_dma_ops(dev)->alloc(to_vmd_dev(dev), size, addr, flag,
286                                        attrs);
287 }
288
289 static void vmd_free(struct device *dev, size_t size, void *vaddr,
290                      dma_addr_t addr, unsigned long attrs)
291 {
292         return vmd_dma_ops(dev)->free(to_vmd_dev(dev), size, vaddr, addr,
293                                       attrs);
294 }
295
296 static int vmd_mmap(struct device *dev, struct vm_area_struct *vma,
297                     void *cpu_addr, dma_addr_t addr, size_t size,
298                     unsigned long attrs)
299 {
300         return vmd_dma_ops(dev)->mmap(to_vmd_dev(dev), vma, cpu_addr, addr,
301                                       size, attrs);
302 }
303
304 static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt,
305                            void *cpu_addr, dma_addr_t addr, size_t size,
306                            unsigned long attrs)
307 {
308         return vmd_dma_ops(dev)->get_sgtable(to_vmd_dev(dev), sgt, cpu_addr,
309                                              addr, size, attrs);
310 }
311
312 static dma_addr_t vmd_map_page(struct device *dev, struct page *page,
313                                unsigned long offset, size_t size,
314                                enum dma_data_direction dir,
315                                unsigned long attrs)
316 {
317         return vmd_dma_ops(dev)->map_page(to_vmd_dev(dev), page, offset, size,
318                                           dir, attrs);
319 }
320
321 static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size,
322                            enum dma_data_direction dir, unsigned long attrs)
323 {
324         vmd_dma_ops(dev)->unmap_page(to_vmd_dev(dev), addr, size, dir, attrs);
325 }
326
327 static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents,
328                       enum dma_data_direction dir, unsigned long attrs)
329 {
330         return vmd_dma_ops(dev)->map_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
331 }
332
333 static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
334                          enum dma_data_direction dir, unsigned long attrs)
335 {
336         vmd_dma_ops(dev)->unmap_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
337 }
338
339 static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
340                                     size_t size, enum dma_data_direction dir)
341 {
342         vmd_dma_ops(dev)->sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir);
343 }
344
345 static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr,
346                                        size_t size, enum dma_data_direction dir)
347 {
348         vmd_dma_ops(dev)->sync_single_for_device(to_vmd_dev(dev), addr, size,
349                                                  dir);
350 }
351
352 static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
353                                 int nents, enum dma_data_direction dir)
354 {
355         vmd_dma_ops(dev)->sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir);
356 }
357
358 static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
359                                    int nents, enum dma_data_direction dir)
360 {
361         vmd_dma_ops(dev)->sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir);
362 }
363
364 static int vmd_mapping_error(struct device *dev, dma_addr_t addr)
365 {
366         return vmd_dma_ops(dev)->mapping_error(to_vmd_dev(dev), addr);
367 }
368
369 static int vmd_dma_supported(struct device *dev, u64 mask)
370 {
371         return vmd_dma_ops(dev)->dma_supported(to_vmd_dev(dev), mask);
372 }
373
374 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
375 static u64 vmd_get_required_mask(struct device *dev)
376 {
377         return vmd_dma_ops(dev)->get_required_mask(to_vmd_dev(dev));
378 }
379 #endif
380
381 static void vmd_teardown_dma_ops(struct vmd_dev *vmd)
382 {
383         struct dma_domain *domain = &vmd->dma_domain;
384
385         if (get_dma_ops(&vmd->dev->dev))
386                 del_dma_domain(domain);
387 }
388
389 #define ASSIGN_VMD_DMA_OPS(source, dest, fn)    \
390         do {                                    \
391                 if (source->fn)                 \
392                         dest->fn = vmd_##fn;    \
393         } while (0)
394
395 static void vmd_setup_dma_ops(struct vmd_dev *vmd)
396 {
397         const struct dma_map_ops *source = get_dma_ops(&vmd->dev->dev);
398         struct dma_map_ops *dest = &vmd->dma_ops;
399         struct dma_domain *domain = &vmd->dma_domain;
400
401         domain->domain_nr = vmd->sysdata.domain;
402         domain->dma_ops = dest;
403
404         if (!source)
405                 return;
406         ASSIGN_VMD_DMA_OPS(source, dest, alloc);
407         ASSIGN_VMD_DMA_OPS(source, dest, free);
408         ASSIGN_VMD_DMA_OPS(source, dest, mmap);
409         ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable);
410         ASSIGN_VMD_DMA_OPS(source, dest, map_page);
411         ASSIGN_VMD_DMA_OPS(source, dest, unmap_page);
412         ASSIGN_VMD_DMA_OPS(source, dest, map_sg);
413         ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg);
414         ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu);
415         ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device);
416         ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu);
417         ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device);
418         ASSIGN_VMD_DMA_OPS(source, dest, mapping_error);
419         ASSIGN_VMD_DMA_OPS(source, dest, dma_supported);
420 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
421         ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask);
422 #endif
423         add_dma_domain(domain);
424 }
425 #undef ASSIGN_VMD_DMA_OPS
426 #else
427 static void vmd_teardown_dma_ops(struct vmd_dev *vmd) {}
428 static void vmd_setup_dma_ops(struct vmd_dev *vmd) {}
429 #endif
430
431 static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
432                                   unsigned int devfn, int reg, int len)
433 {
434         char __iomem *addr = vmd->cfgbar +
435                              (bus->number << 20) + (devfn << 12) + reg;
436
437         if ((addr - vmd->cfgbar) + len >=
438             resource_size(&vmd->dev->resource[VMD_CFGBAR]))
439                 return NULL;
440
441         return addr;
442 }
443
444 /*
445  * CPU may deadlock if config space is not serialized on some versions of this
446  * hardware, so all config space access is done under a spinlock.
447  */
448 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
449                         int len, u32 *value)
450 {
451         struct vmd_dev *vmd = vmd_from_bus(bus);
452         char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
453         unsigned long flags;
454         int ret = 0;
455
456         if (!addr)
457                 return -EFAULT;
458
459         spin_lock_irqsave(&vmd->cfg_lock, flags);
460         switch (len) {
461         case 1:
462                 *value = readb(addr);
463                 break;
464         case 2:
465                 *value = readw(addr);
466                 break;
467         case 4:
468                 *value = readl(addr);
469                 break;
470         default:
471                 ret = -EINVAL;
472                 break;
473         }
474         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
475         return ret;
476 }
477
478 /*
479  * VMD h/w converts non-posted config writes to posted memory writes. The
480  * read-back in this function forces the completion so it returns only after
481  * the config space was written, as expected.
482  */
483 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
484                          int len, u32 value)
485 {
486         struct vmd_dev *vmd = vmd_from_bus(bus);
487         char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
488         unsigned long flags;
489         int ret = 0;
490
491         if (!addr)
492                 return -EFAULT;
493
494         spin_lock_irqsave(&vmd->cfg_lock, flags);
495         switch (len) {
496         case 1:
497                 writeb(value, addr);
498                 readb(addr);
499                 break;
500         case 2:
501                 writew(value, addr);
502                 readw(addr);
503                 break;
504         case 4:
505                 writel(value, addr);
506                 readl(addr);
507                 break;
508         default:
509                 ret = -EINVAL;
510                 break;
511         }
512         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
513         return ret;
514 }
515
516 static struct pci_ops vmd_ops = {
517         .read           = vmd_pci_read,
518         .write          = vmd_pci_write,
519 };
520
521 static void vmd_attach_resources(struct vmd_dev *vmd)
522 {
523         vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
524         vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
525 }
526
527 static void vmd_detach_resources(struct vmd_dev *vmd)
528 {
529         vmd->dev->resource[VMD_MEMBAR1].child = NULL;
530         vmd->dev->resource[VMD_MEMBAR2].child = NULL;
531 }
532
533 /*
534  * VMD domains start at 0x1000 to not clash with ACPI _SEG domains.
535  */
536 static int vmd_find_free_domain(void)
537 {
538         int domain = 0xffff;
539         struct pci_bus *bus = NULL;
540
541         while ((bus = pci_find_next_bus(bus)) != NULL)
542                 domain = max_t(int, domain, pci_domain_nr(bus));
543         return domain + 1;
544 }
545
546 static int vmd_enable_domain(struct vmd_dev *vmd)
547 {
548         struct pci_sysdata *sd = &vmd->sysdata;
549         struct resource *res;
550         u32 upper_bits;
551         unsigned long flags;
552         LIST_HEAD(resources);
553
554         res = &vmd->dev->resource[VMD_CFGBAR];
555         vmd->resources[0] = (struct resource) {
556                 .name  = "VMD CFGBAR",
557                 .start = 0,
558                 .end   = (resource_size(res) >> 20) - 1,
559                 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
560         };
561
562         /*
563          * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
564          * put 32-bit resources in the window.
565          *
566          * There's no hardware reason why a 64-bit window *couldn't*
567          * contain a 32-bit resource, but pbus_size_mem() computes the
568          * bridge window size assuming a 64-bit window will contain no
569          * 32-bit resources.  __pci_assign_resource() enforces that
570          * artificial restriction to make sure everything will fit.
571          *
572          * The only way we could use a 64-bit non-prefechable MEMBAR is
573          * if its address is <4GB so that we can convert it to a 32-bit
574          * resource.  To be visible to the host OS, all VMD endpoints must
575          * be initially configured by platform BIOS, which includes setting
576          * up these resources.  We can assume the device is configured
577          * according to the platform needs.
578          */
579         res = &vmd->dev->resource[VMD_MEMBAR1];
580         upper_bits = upper_32_bits(res->end);
581         flags = res->flags & ~IORESOURCE_SIZEALIGN;
582         if (!upper_bits)
583                 flags &= ~IORESOURCE_MEM_64;
584         vmd->resources[1] = (struct resource) {
585                 .name  = "VMD MEMBAR1",
586                 .start = res->start,
587                 .end   = res->end,
588                 .flags = flags,
589                 .parent = res,
590         };
591
592         res = &vmd->dev->resource[VMD_MEMBAR2];
593         upper_bits = upper_32_bits(res->end);
594         flags = res->flags & ~IORESOURCE_SIZEALIGN;
595         if (!upper_bits)
596                 flags &= ~IORESOURCE_MEM_64;
597         vmd->resources[2] = (struct resource) {
598                 .name  = "VMD MEMBAR2",
599                 .start = res->start + 0x2000,
600                 .end   = res->end,
601                 .flags = flags,
602                 .parent = res,
603         };
604
605         sd->domain = vmd_find_free_domain();
606         if (sd->domain < 0)
607                 return sd->domain;
608
609         sd->node = pcibus_to_node(vmd->dev->bus);
610
611         vmd->irq_domain = pci_msi_create_irq_domain(NULL, &vmd_msi_domain_info,
612                                                     x86_vector_domain);
613         if (!vmd->irq_domain)
614                 return -ENODEV;
615
616         pci_add_resource(&resources, &vmd->resources[0]);
617         pci_add_resource(&resources, &vmd->resources[1]);
618         pci_add_resource(&resources, &vmd->resources[2]);
619         vmd->bus = pci_create_root_bus(&vmd->dev->dev, 0, &vmd_ops, sd,
620                                        &resources);
621         if (!vmd->bus) {
622                 pci_free_resource_list(&resources);
623                 irq_domain_remove(vmd->irq_domain);
624                 return -ENODEV;
625         }
626
627         vmd_attach_resources(vmd);
628         vmd_setup_dma_ops(vmd);
629         dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
630         pci_rescan_bus(vmd->bus);
631
632         WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
633                                "domain"), "Can't create symlink to domain\n");
634         return 0;
635 }
636
637 static irqreturn_t vmd_irq(int irq, void *data)
638 {
639         struct vmd_irq_list *irqs = data;
640         struct vmd_irq *vmdirq;
641
642         rcu_read_lock();
643         list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
644                 generic_handle_irq(vmdirq->virq);
645         rcu_read_unlock();
646
647         return IRQ_HANDLED;
648 }
649
650 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
651 {
652         struct vmd_dev *vmd;
653         int i, err;
654
655         if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
656                 return -ENOMEM;
657
658         vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
659         if (!vmd)
660                 return -ENOMEM;
661
662         vmd->dev = dev;
663         err = pcim_enable_device(dev);
664         if (err < 0)
665                 return err;
666
667         vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
668         if (!vmd->cfgbar)
669                 return -ENOMEM;
670
671         pci_set_master(dev);
672         if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
673             dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
674                 return -ENODEV;
675
676         vmd->msix_count = pci_msix_vec_count(dev);
677         if (vmd->msix_count < 0)
678                 return -ENODEV;
679
680         vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
681                                  GFP_KERNEL);
682         if (!vmd->irqs)
683                 return -ENOMEM;
684
685         vmd->msix_entries = devm_kcalloc(&dev->dev, vmd->msix_count,
686                                          sizeof(*vmd->msix_entries),
687                                          GFP_KERNEL);
688         if (!vmd->msix_entries)
689                 return -ENOMEM;
690         for (i = 0; i < vmd->msix_count; i++)
691                 vmd->msix_entries[i].entry = i;
692
693         vmd->msix_count = pci_enable_msix_range(vmd->dev, vmd->msix_entries, 1,
694                                                 vmd->msix_count);
695         if (vmd->msix_count < 0)
696                 return vmd->msix_count;
697
698         for (i = 0; i < vmd->msix_count; i++) {
699                 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
700                 vmd->irqs[i].vmd_vector = vmd->msix_entries[i].vector;
701                 vmd->irqs[i].index = i;
702
703                 err = devm_request_irq(&dev->dev, vmd->irqs[i].vmd_vector,
704                                        vmd_irq, 0, "vmd", &vmd->irqs[i]);
705                 if (err)
706                         return err;
707         }
708
709         spin_lock_init(&vmd->cfg_lock);
710         pci_set_drvdata(dev, vmd);
711         err = vmd_enable_domain(vmd);
712         if (err)
713                 return err;
714
715         dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
716                  vmd->sysdata.domain);
717         return 0;
718 }
719
720 static void vmd_remove(struct pci_dev *dev)
721 {
722         struct vmd_dev *vmd = pci_get_drvdata(dev);
723
724         vmd_detach_resources(vmd);
725         pci_set_drvdata(dev, NULL);
726         sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
727         pci_stop_root_bus(vmd->bus);
728         pci_remove_root_bus(vmd->bus);
729         vmd_teardown_dma_ops(vmd);
730         irq_domain_remove(vmd->irq_domain);
731 }
732
733 #ifdef CONFIG_PM
734 static int vmd_suspend(struct device *dev)
735 {
736         struct pci_dev *pdev = to_pci_dev(dev);
737
738         pci_save_state(pdev);
739         return 0;
740 }
741
742 static int vmd_resume(struct device *dev)
743 {
744         struct pci_dev *pdev = to_pci_dev(dev);
745
746         pci_restore_state(pdev);
747         return 0;
748 }
749 #endif
750 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
751
752 static const struct pci_device_id vmd_ids[] = {
753         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x201d),},
754         {0,}
755 };
756 MODULE_DEVICE_TABLE(pci, vmd_ids);
757
758 static struct pci_driver vmd_drv = {
759         .name           = "vmd",
760         .id_table       = vmd_ids,
761         .probe          = vmd_probe,
762         .remove         = vmd_remove,
763         .driver         = {
764                 .pm     = &vmd_dev_pm_ops,
765         },
766 };
767 module_pci_driver(vmd_drv);
768
769 MODULE_AUTHOR("Intel Corporation");
770 MODULE_LICENSE("GPL v2");
771 MODULE_VERSION("0.6");