]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/platform/efi/efi_64.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / arch / x86 / platform / efi / efi_64.c
1 /*
2  * x86_64 specific EFI support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 2005-2008 Intel Co.
6  *      Fenghua Yu <fenghua.yu@intel.com>
7  *      Bibo Mao <bibo.mao@intel.com>
8  *      Chandramouli Narayanan <mouli@linux.intel.com>
9  *      Huang Ying <ying.huang@intel.com>
10  *
11  * Code to convert EFI to E820 map has been implemented in elilo bootloader
12  * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
13  * is setup appropriately for EFI runtime code.
14  * - mouli 06/14/2007.
15  *
16  */
17
18 #define pr_fmt(fmt) "efi: " fmt
19
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/mm.h>
23 #include <linux/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/bootmem.h>
26 #include <linux/ioport.h>
27 #include <linux/module.h>
28 #include <linux/efi.h>
29 #include <linux/uaccess.h>
30 #include <linux/io.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33
34 #include <asm/setup.h>
35 #include <asm/page.h>
36 #include <asm/e820.h>
37 #include <asm/pgtable.h>
38 #include <asm/tlbflush.h>
39 #include <asm/proto.h>
40 #include <asm/efi.h>
41 #include <asm/cacheflush.h>
42 #include <asm/fixmap.h>
43 #include <asm/realmode.h>
44 #include <asm/time.h>
45 #include <asm/pgalloc.h>
46
47 /*
48  * We allocate runtime services regions bottom-up, starting from -4G, i.e.
49  * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
50  */
51 static u64 efi_va = EFI_VA_START;
52
53 struct efi_scratch efi_scratch;
54
55 static void __init early_code_mapping_set_exec(int executable)
56 {
57         efi_memory_desc_t *md;
58
59         if (!(__supported_pte_mask & _PAGE_NX))
60                 return;
61
62         /* Make EFI service code area executable */
63         for_each_efi_memory_desc(md) {
64                 if (md->type == EFI_RUNTIME_SERVICES_CODE ||
65                     md->type == EFI_BOOT_SERVICES_CODE)
66                         efi_set_executable(md, executable);
67         }
68 }
69
70 pgd_t * __init efi_call_phys_prolog(void)
71 {
72         unsigned long vaddress;
73         pgd_t *save_pgd;
74
75         int pgd;
76         int n_pgds;
77
78         if (!efi_enabled(EFI_OLD_MEMMAP)) {
79                 save_pgd = (pgd_t *)read_cr3();
80                 write_cr3((unsigned long)efi_scratch.efi_pgt);
81                 goto out;
82         }
83
84         early_code_mapping_set_exec(1);
85
86         n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
87         save_pgd = kmalloc(n_pgds * sizeof(pgd_t), GFP_KERNEL);
88
89         for (pgd = 0; pgd < n_pgds; pgd++) {
90                 save_pgd[pgd] = *pgd_offset_k(pgd * PGDIR_SIZE);
91                 vaddress = (unsigned long)__va(pgd * PGDIR_SIZE);
92                 set_pgd(pgd_offset_k(pgd * PGDIR_SIZE), *pgd_offset_k(vaddress));
93         }
94 out:
95         __flush_tlb_all();
96
97         return save_pgd;
98 }
99
100 void __init efi_call_phys_epilog(pgd_t *save_pgd)
101 {
102         /*
103          * After the lock is released, the original page table is restored.
104          */
105         int pgd_idx;
106         int nr_pgds;
107
108         if (!efi_enabled(EFI_OLD_MEMMAP)) {
109                 write_cr3((unsigned long)save_pgd);
110                 __flush_tlb_all();
111                 return;
112         }
113
114         nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);
115
116         for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++)
117                 set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);
118
119         kfree(save_pgd);
120
121         __flush_tlb_all();
122         early_code_mapping_set_exec(0);
123 }
124
125 static pgd_t *efi_pgd;
126
127 /*
128  * We need our own copy of the higher levels of the page tables
129  * because we want to avoid inserting EFI region mappings (EFI_VA_END
130  * to EFI_VA_START) into the standard kernel page tables. Everything
131  * else can be shared, see efi_sync_low_kernel_mappings().
132  */
133 int __init efi_alloc_page_tables(void)
134 {
135         pgd_t *pgd;
136         pud_t *pud;
137         gfp_t gfp_mask;
138
139         if (efi_enabled(EFI_OLD_MEMMAP))
140                 return 0;
141
142         gfp_mask = GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO;
143         efi_pgd = (pgd_t *)__get_free_page(gfp_mask);
144         if (!efi_pgd)
145                 return -ENOMEM;
146
147         pgd = efi_pgd + pgd_index(EFI_VA_END);
148
149         pud = pud_alloc_one(NULL, 0);
150         if (!pud) {
151                 free_page((unsigned long)efi_pgd);
152                 return -ENOMEM;
153         }
154
155         pgd_populate(NULL, pgd, pud);
156
157         return 0;
158 }
159
160 /*
161  * Add low kernel mappings for passing arguments to EFI functions.
162  */
163 void efi_sync_low_kernel_mappings(void)
164 {
165         unsigned num_entries;
166         pgd_t *pgd_k, *pgd_efi;
167         pud_t *pud_k, *pud_efi;
168
169         if (efi_enabled(EFI_OLD_MEMMAP))
170                 return;
171
172         /*
173          * We can share all PGD entries apart from the one entry that
174          * covers the EFI runtime mapping space.
175          *
176          * Make sure the EFI runtime region mappings are guaranteed to
177          * only span a single PGD entry and that the entry also maps
178          * other important kernel regions.
179          */
180         BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
181         BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
182                         (EFI_VA_END & PGDIR_MASK));
183
184         pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
185         pgd_k = pgd_offset_k(PAGE_OFFSET);
186
187         num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
188         memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
189
190         /*
191          * We share all the PUD entries apart from those that map the
192          * EFI regions. Copy around them.
193          */
194         BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
195         BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
196
197         pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
198         pud_efi = pud_offset(pgd_efi, 0);
199
200         pgd_k = pgd_offset_k(EFI_VA_END);
201         pud_k = pud_offset(pgd_k, 0);
202
203         num_entries = pud_index(EFI_VA_END);
204         memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
205
206         pud_efi = pud_offset(pgd_efi, EFI_VA_START);
207         pud_k = pud_offset(pgd_k, EFI_VA_START);
208
209         num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
210         memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
211 }
212
213 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
214 {
215         unsigned long pfn, text;
216         efi_memory_desc_t *md;
217         struct page *page;
218         unsigned npages;
219         pgd_t *pgd;
220
221         if (efi_enabled(EFI_OLD_MEMMAP))
222                 return 0;
223
224         efi_scratch.efi_pgt = (pgd_t *)__pa(efi_pgd);
225         pgd = efi_pgd;
226
227         /*
228          * It can happen that the physical address of new_memmap lands in memory
229          * which is not mapped in the EFI page table. Therefore we need to go
230          * and ident-map those pages containing the map before calling
231          * phys_efi_set_virtual_address_map().
232          */
233         pfn = pa_memmap >> PAGE_SHIFT;
234         if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, _PAGE_NX | _PAGE_RW)) {
235                 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
236                 return 1;
237         }
238
239         efi_scratch.use_pgd = true;
240
241         /*
242          * When making calls to the firmware everything needs to be 1:1
243          * mapped and addressable with 32-bit pointers. Map the kernel
244          * text and allocate a new stack because we can't rely on the
245          * stack pointer being < 4GB.
246          */
247         if (!IS_ENABLED(CONFIG_EFI_MIXED))
248                 return 0;
249
250         /*
251          * Map all of RAM so that we can access arguments in the 1:1
252          * mapping when making EFI runtime calls.
253          */
254         for_each_efi_memory_desc(md) {
255                 if (md->type != EFI_CONVENTIONAL_MEMORY &&
256                     md->type != EFI_LOADER_DATA &&
257                     md->type != EFI_LOADER_CODE)
258                         continue;
259
260                 pfn = md->phys_addr >> PAGE_SHIFT;
261                 npages = md->num_pages;
262
263                 if (kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, npages, _PAGE_RW)) {
264                         pr_err("Failed to map 1:1 memory\n");
265                         return 1;
266                 }
267         }
268
269         page = alloc_page(GFP_KERNEL|__GFP_DMA32);
270         if (!page)
271                 panic("Unable to allocate EFI runtime stack < 4GB\n");
272
273         efi_scratch.phys_stack = virt_to_phys(page_address(page));
274         efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */
275
276         npages = (_etext - _text) >> PAGE_SHIFT;
277         text = __pa(_text);
278         pfn = text >> PAGE_SHIFT;
279
280         if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, _PAGE_RW)) {
281                 pr_err("Failed to map kernel text 1:1\n");
282                 return 1;
283         }
284
285         return 0;
286 }
287
288 static void __init __map_region(efi_memory_desc_t *md, u64 va)
289 {
290         unsigned long flags = _PAGE_RW;
291         unsigned long pfn;
292         pgd_t *pgd = efi_pgd;
293
294         if (!(md->attribute & EFI_MEMORY_WB))
295                 flags |= _PAGE_PCD;
296
297         pfn = md->phys_addr >> PAGE_SHIFT;
298         if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
299                 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
300                            md->phys_addr, va);
301 }
302
303 void __init efi_map_region(efi_memory_desc_t *md)
304 {
305         unsigned long size = md->num_pages << PAGE_SHIFT;
306         u64 pa = md->phys_addr;
307
308         if (efi_enabled(EFI_OLD_MEMMAP))
309                 return old_map_region(md);
310
311         /*
312          * Make sure the 1:1 mappings are present as a catch-all for b0rked
313          * firmware which doesn't update all internal pointers after switching
314          * to virtual mode and would otherwise crap on us.
315          */
316         __map_region(md, md->phys_addr);
317
318         /*
319          * Enforce the 1:1 mapping as the default virtual address when
320          * booting in EFI mixed mode, because even though we may be
321          * running a 64-bit kernel, the firmware may only be 32-bit.
322          */
323         if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) {
324                 md->virt_addr = md->phys_addr;
325                 return;
326         }
327
328         efi_va -= size;
329
330         /* Is PA 2M-aligned? */
331         if (!(pa & (PMD_SIZE - 1))) {
332                 efi_va &= PMD_MASK;
333         } else {
334                 u64 pa_offset = pa & (PMD_SIZE - 1);
335                 u64 prev_va = efi_va;
336
337                 /* get us the same offset within this 2M page */
338                 efi_va = (efi_va & PMD_MASK) + pa_offset;
339
340                 if (efi_va > prev_va)
341                         efi_va -= PMD_SIZE;
342         }
343
344         if (efi_va < EFI_VA_END) {
345                 pr_warn(FW_WARN "VA address range overflow!\n");
346                 return;
347         }
348
349         /* Do the VA map */
350         __map_region(md, efi_va);
351         md->virt_addr = efi_va;
352 }
353
354 /*
355  * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
356  * md->virt_addr is the original virtual address which had been mapped in kexec
357  * 1st kernel.
358  */
359 void __init efi_map_region_fixed(efi_memory_desc_t *md)
360 {
361         __map_region(md, md->virt_addr);
362 }
363
364 void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
365                                  u32 type, u64 attribute)
366 {
367         unsigned long last_map_pfn;
368
369         if (type == EFI_MEMORY_MAPPED_IO)
370                 return ioremap(phys_addr, size);
371
372         last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size);
373         if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
374                 unsigned long top = last_map_pfn << PAGE_SHIFT;
375                 efi_ioremap(top, size - (top - phys_addr), type, attribute);
376         }
377
378         if (!(attribute & EFI_MEMORY_WB))
379                 efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);
380
381         return (void __iomem *)__va(phys_addr);
382 }
383
384 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
385 {
386         efi_setup = phys_addr + sizeof(struct setup_data);
387 }
388
389 void __init efi_runtime_update_mappings(void)
390 {
391         unsigned long pfn;
392         pgd_t *pgd = efi_pgd;
393         efi_memory_desc_t *md;
394
395         if (efi_enabled(EFI_OLD_MEMMAP)) {
396                 if (__supported_pte_mask & _PAGE_NX)
397                         runtime_code_page_mkexec();
398                 return;
399         }
400
401         if (!efi_enabled(EFI_NX_PE_DATA))
402                 return;
403
404         for_each_efi_memory_desc(md) {
405                 unsigned long pf = 0;
406
407                 if (!(md->attribute & EFI_MEMORY_RUNTIME))
408                         continue;
409
410                 if (!(md->attribute & EFI_MEMORY_WB))
411                         pf |= _PAGE_PCD;
412
413                 if ((md->attribute & EFI_MEMORY_XP) ||
414                         (md->type == EFI_RUNTIME_SERVICES_DATA))
415                         pf |= _PAGE_NX;
416
417                 if (!(md->attribute & EFI_MEMORY_RO) &&
418                         (md->type != EFI_RUNTIME_SERVICES_CODE))
419                         pf |= _PAGE_RW;
420
421                 /* Update the 1:1 mapping */
422                 pfn = md->phys_addr >> PAGE_SHIFT;
423                 if (kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf))
424                         pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
425                                    md->phys_addr, md->virt_addr);
426
427                 if (kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf))
428                         pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
429                                    md->phys_addr, md->virt_addr);
430         }
431 }
432
433 void __init efi_dump_pagetable(void)
434 {
435 #ifdef CONFIG_EFI_PGT_DUMP
436         ptdump_walk_pgd_level(NULL, efi_pgd);
437 #endif
438 }
439
440 #ifdef CONFIG_EFI_MIXED
441 extern efi_status_t efi64_thunk(u32, ...);
442
443 #define runtime_service32(func)                                          \
444 ({                                                                       \
445         u32 table = (u32)(unsigned long)efi.systab;                      \
446         u32 *rt, *___f;                                                  \
447                                                                          \
448         rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime));  \
449         ___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
450         *___f;                                                           \
451 })
452
453 /*
454  * Switch to the EFI page tables early so that we can access the 1:1
455  * runtime services mappings which are not mapped in any other page
456  * tables. This function must be called before runtime_service32().
457  *
458  * Also, disable interrupts because the IDT points to 64-bit handlers,
459  * which aren't going to function correctly when we switch to 32-bit.
460  */
461 #define efi_thunk(f, ...)                                               \
462 ({                                                                      \
463         efi_status_t __s;                                               \
464         unsigned long __flags;                                          \
465         u32 __func;                                                     \
466                                                                         \
467         local_irq_save(__flags);                                        \
468         arch_efi_call_virt_setup();                                     \
469                                                                         \
470         __func = runtime_service32(f);                                  \
471         __s = efi64_thunk(__func, __VA_ARGS__);                         \
472                                                                         \
473         arch_efi_call_virt_teardown();                                  \
474         local_irq_restore(__flags);                                     \
475                                                                         \
476         __s;                                                            \
477 })
478
479 efi_status_t efi_thunk_set_virtual_address_map(
480         void *phys_set_virtual_address_map,
481         unsigned long memory_map_size,
482         unsigned long descriptor_size,
483         u32 descriptor_version,
484         efi_memory_desc_t *virtual_map)
485 {
486         efi_status_t status;
487         unsigned long flags;
488         u32 func;
489
490         efi_sync_low_kernel_mappings();
491         local_irq_save(flags);
492
493         efi_scratch.prev_cr3 = read_cr3();
494         write_cr3((unsigned long)efi_scratch.efi_pgt);
495         __flush_tlb_all();
496
497         func = (u32)(unsigned long)phys_set_virtual_address_map;
498         status = efi64_thunk(func, memory_map_size, descriptor_size,
499                              descriptor_version, virtual_map);
500
501         write_cr3(efi_scratch.prev_cr3);
502         __flush_tlb_all();
503         local_irq_restore(flags);
504
505         return status;
506 }
507
508 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
509 {
510         efi_status_t status;
511         u32 phys_tm, phys_tc;
512
513         spin_lock(&rtc_lock);
514
515         phys_tm = virt_to_phys(tm);
516         phys_tc = virt_to_phys(tc);
517
518         status = efi_thunk(get_time, phys_tm, phys_tc);
519
520         spin_unlock(&rtc_lock);
521
522         return status;
523 }
524
525 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
526 {
527         efi_status_t status;
528         u32 phys_tm;
529
530         spin_lock(&rtc_lock);
531
532         phys_tm = virt_to_phys(tm);
533
534         status = efi_thunk(set_time, phys_tm);
535
536         spin_unlock(&rtc_lock);
537
538         return status;
539 }
540
541 static efi_status_t
542 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
543                           efi_time_t *tm)
544 {
545         efi_status_t status;
546         u32 phys_enabled, phys_pending, phys_tm;
547
548         spin_lock(&rtc_lock);
549
550         phys_enabled = virt_to_phys(enabled);
551         phys_pending = virt_to_phys(pending);
552         phys_tm = virt_to_phys(tm);
553
554         status = efi_thunk(get_wakeup_time, phys_enabled,
555                              phys_pending, phys_tm);
556
557         spin_unlock(&rtc_lock);
558
559         return status;
560 }
561
562 static efi_status_t
563 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
564 {
565         efi_status_t status;
566         u32 phys_tm;
567
568         spin_lock(&rtc_lock);
569
570         phys_tm = virt_to_phys(tm);
571
572         status = efi_thunk(set_wakeup_time, enabled, phys_tm);
573
574         spin_unlock(&rtc_lock);
575
576         return status;
577 }
578
579
580 static efi_status_t
581 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
582                        u32 *attr, unsigned long *data_size, void *data)
583 {
584         efi_status_t status;
585         u32 phys_name, phys_vendor, phys_attr;
586         u32 phys_data_size, phys_data;
587
588         phys_data_size = virt_to_phys(data_size);
589         phys_vendor = virt_to_phys(vendor);
590         phys_name = virt_to_phys(name);
591         phys_attr = virt_to_phys(attr);
592         phys_data = virt_to_phys(data);
593
594         status = efi_thunk(get_variable, phys_name, phys_vendor,
595                            phys_attr, phys_data_size, phys_data);
596
597         return status;
598 }
599
600 static efi_status_t
601 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
602                        u32 attr, unsigned long data_size, void *data)
603 {
604         u32 phys_name, phys_vendor, phys_data;
605         efi_status_t status;
606
607         phys_name = virt_to_phys(name);
608         phys_vendor = virt_to_phys(vendor);
609         phys_data = virt_to_phys(data);
610
611         /* If data_size is > sizeof(u32) we've got problems */
612         status = efi_thunk(set_variable, phys_name, phys_vendor,
613                            attr, data_size, phys_data);
614
615         return status;
616 }
617
618 static efi_status_t
619 efi_thunk_get_next_variable(unsigned long *name_size,
620                             efi_char16_t *name,
621                             efi_guid_t *vendor)
622 {
623         efi_status_t status;
624         u32 phys_name_size, phys_name, phys_vendor;
625
626         phys_name_size = virt_to_phys(name_size);
627         phys_vendor = virt_to_phys(vendor);
628         phys_name = virt_to_phys(name);
629
630         status = efi_thunk(get_next_variable, phys_name_size,
631                            phys_name, phys_vendor);
632
633         return status;
634 }
635
636 static efi_status_t
637 efi_thunk_get_next_high_mono_count(u32 *count)
638 {
639         efi_status_t status;
640         u32 phys_count;
641
642         phys_count = virt_to_phys(count);
643         status = efi_thunk(get_next_high_mono_count, phys_count);
644
645         return status;
646 }
647
648 static void
649 efi_thunk_reset_system(int reset_type, efi_status_t status,
650                        unsigned long data_size, efi_char16_t *data)
651 {
652         u32 phys_data;
653
654         phys_data = virt_to_phys(data);
655
656         efi_thunk(reset_system, reset_type, status, data_size, phys_data);
657 }
658
659 static efi_status_t
660 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
661                          unsigned long count, unsigned long sg_list)
662 {
663         /*
664          * To properly support this function we would need to repackage
665          * 'capsules' because the firmware doesn't understand 64-bit
666          * pointers.
667          */
668         return EFI_UNSUPPORTED;
669 }
670
671 static efi_status_t
672 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
673                               u64 *remaining_space,
674                               u64 *max_variable_size)
675 {
676         efi_status_t status;
677         u32 phys_storage, phys_remaining, phys_max;
678
679         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
680                 return EFI_UNSUPPORTED;
681
682         phys_storage = virt_to_phys(storage_space);
683         phys_remaining = virt_to_phys(remaining_space);
684         phys_max = virt_to_phys(max_variable_size);
685
686         status = efi_thunk(query_variable_info, attr, phys_storage,
687                            phys_remaining, phys_max);
688
689         return status;
690 }
691
692 static efi_status_t
693 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
694                              unsigned long count, u64 *max_size,
695                              int *reset_type)
696 {
697         /*
698          * To properly support this function we would need to repackage
699          * 'capsules' because the firmware doesn't understand 64-bit
700          * pointers.
701          */
702         return EFI_UNSUPPORTED;
703 }
704
705 void efi_thunk_runtime_setup(void)
706 {
707         efi.get_time = efi_thunk_get_time;
708         efi.set_time = efi_thunk_set_time;
709         efi.get_wakeup_time = efi_thunk_get_wakeup_time;
710         efi.set_wakeup_time = efi_thunk_set_wakeup_time;
711         efi.get_variable = efi_thunk_get_variable;
712         efi.get_next_variable = efi_thunk_get_next_variable;
713         efi.set_variable = efi_thunk_set_variable;
714         efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
715         efi.reset_system = efi_thunk_reset_system;
716         efi.query_variable_info = efi_thunk_query_variable_info;
717         efi.update_capsule = efi_thunk_update_capsule;
718         efi.query_capsule_caps = efi_thunk_query_capsule_caps;
719 }
720 #endif /* CONFIG_EFI_MIXED */