]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/platform/uv/tlb_uv.c
drm/nouveau/disp/nv04: avoid creation of output paths
[karo-tx-linux.git] / arch / x86 / platform / uv / tlb_uv.c
1 /*
2  *      SGI UltraViolet TLB flush routines.
3  *
4  *      (c) 2008-2014 Cliff Wickman <cpw@sgi.com>, SGI.
5  *
6  *      This code is released under the GNU General Public License version 2 or
7  *      later.
8  */
9 #include <linux/seq_file.h>
10 #include <linux/proc_fs.h>
11 #include <linux/debugfs.h>
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
15
16 #include <asm/mmu_context.h>
17 #include <asm/uv/uv.h>
18 #include <asm/uv/uv_mmrs.h>
19 #include <asm/uv/uv_hub.h>
20 #include <asm/uv/uv_bau.h>
21 #include <asm/apic.h>
22 #include <asm/tsc.h>
23 #include <asm/irq_vectors.h>
24 #include <asm/timer.h>
25
26 static struct bau_operations ops __ro_after_init;
27
28 /* timeouts in nanoseconds (indexed by UVH_AGING_PRESCALE_SEL urgency7 30:28) */
29 static int timeout_base_ns[] = {
30                 20,
31                 160,
32                 1280,
33                 10240,
34                 81920,
35                 655360,
36                 5242880,
37                 167772160
38 };
39
40 static int timeout_us;
41 static bool nobau = true;
42 static int nobau_perm;
43 static cycles_t congested_cycles;
44
45 /* tunables: */
46 static int max_concurr          = MAX_BAU_CONCURRENT;
47 static int max_concurr_const    = MAX_BAU_CONCURRENT;
48 static int plugged_delay        = PLUGGED_DELAY;
49 static int plugsb4reset         = PLUGSB4RESET;
50 static int giveup_limit         = GIVEUP_LIMIT;
51 static int timeoutsb4reset      = TIMEOUTSB4RESET;
52 static int ipi_reset_limit      = IPI_RESET_LIMIT;
53 static int complete_threshold   = COMPLETE_THRESHOLD;
54 static int congested_respns_us  = CONGESTED_RESPONSE_US;
55 static int congested_reps       = CONGESTED_REPS;
56 static int disabled_period      = DISABLED_PERIOD;
57
58 static struct tunables tunables[] = {
59         {&max_concurr,           MAX_BAU_CONCURRENT}, /* must be [0] */
60         {&plugged_delay,         PLUGGED_DELAY},
61         {&plugsb4reset,          PLUGSB4RESET},
62         {&timeoutsb4reset,       TIMEOUTSB4RESET},
63         {&ipi_reset_limit,       IPI_RESET_LIMIT},
64         {&complete_threshold,    COMPLETE_THRESHOLD},
65         {&congested_respns_us,   CONGESTED_RESPONSE_US},
66         {&congested_reps,        CONGESTED_REPS},
67         {&disabled_period,       DISABLED_PERIOD},
68         {&giveup_limit,          GIVEUP_LIMIT}
69 };
70
71 static struct dentry *tunables_dir;
72 static struct dentry *tunables_file;
73
74 /* these correspond to the statistics printed by ptc_seq_show() */
75 static char *stat_description[] = {
76         "sent:     number of shootdown messages sent",
77         "stime:    time spent sending messages",
78         "numuvhubs: number of hubs targeted with shootdown",
79         "numuvhubs16: number times 16 or more hubs targeted",
80         "numuvhubs8: number times 8 or more hubs targeted",
81         "numuvhubs4: number times 4 or more hubs targeted",
82         "numuvhubs2: number times 2 or more hubs targeted",
83         "numuvhubs1: number times 1 hub targeted",
84         "numcpus:  number of cpus targeted with shootdown",
85         "dto:      number of destination timeouts",
86         "retries:  destination timeout retries sent",
87         "rok:   :  destination timeouts successfully retried",
88         "resetp:   ipi-style resource resets for plugs",
89         "resett:   ipi-style resource resets for timeouts",
90         "giveup:   fall-backs to ipi-style shootdowns",
91         "sto:      number of source timeouts",
92         "bz:       number of stay-busy's",
93         "throt:    number times spun in throttle",
94         "swack:   image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE",
95         "recv:     shootdown messages received",
96         "rtime:    time spent processing messages",
97         "all:      shootdown all-tlb messages",
98         "one:      shootdown one-tlb messages",
99         "mult:     interrupts that found multiple messages",
100         "none:     interrupts that found no messages",
101         "retry:    number of retry messages processed",
102         "canc:     number messages canceled by retries",
103         "nocan:    number retries that found nothing to cancel",
104         "reset:    number of ipi-style reset requests processed",
105         "rcan:     number messages canceled by reset requests",
106         "disable:  number times use of the BAU was disabled",
107         "enable:   number times use of the BAU was re-enabled"
108 };
109
110 static int __init setup_bau(char *arg)
111 {
112         int result;
113
114         if (!arg)
115                 return -EINVAL;
116
117         result = strtobool(arg, &nobau);
118         if (result)
119                 return result;
120
121         /* we need to flip the logic here, so that bau=y sets nobau to false */
122         nobau = !nobau;
123
124         if (!nobau)
125                 pr_info("UV BAU Enabled\n");
126         else
127                 pr_info("UV BAU Disabled\n");
128
129         return 0;
130 }
131 early_param("bau", setup_bau);
132
133 /* base pnode in this partition */
134 static int uv_base_pnode __read_mostly;
135
136 static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
137 static DEFINE_PER_CPU(struct bau_control, bau_control);
138 static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
139
140 static void
141 set_bau_on(void)
142 {
143         int cpu;
144         struct bau_control *bcp;
145
146         if (nobau_perm) {
147                 pr_info("BAU not initialized; cannot be turned on\n");
148                 return;
149         }
150         nobau = false;
151         for_each_present_cpu(cpu) {
152                 bcp = &per_cpu(bau_control, cpu);
153                 bcp->nobau = false;
154         }
155         pr_info("BAU turned on\n");
156         return;
157 }
158
159 static void
160 set_bau_off(void)
161 {
162         int cpu;
163         struct bau_control *bcp;
164
165         nobau = true;
166         for_each_present_cpu(cpu) {
167                 bcp = &per_cpu(bau_control, cpu);
168                 bcp->nobau = true;
169         }
170         pr_info("BAU turned off\n");
171         return;
172 }
173
174 /*
175  * Determine the first node on a uvhub. 'Nodes' are used for kernel
176  * memory allocation.
177  */
178 static int __init uvhub_to_first_node(int uvhub)
179 {
180         int node, b;
181
182         for_each_online_node(node) {
183                 b = uv_node_to_blade_id(node);
184                 if (uvhub == b)
185                         return node;
186         }
187         return -1;
188 }
189
190 /*
191  * Determine the apicid of the first cpu on a uvhub.
192  */
193 static int __init uvhub_to_first_apicid(int uvhub)
194 {
195         int cpu;
196
197         for_each_present_cpu(cpu)
198                 if (uvhub == uv_cpu_to_blade_id(cpu))
199                         return per_cpu(x86_cpu_to_apicid, cpu);
200         return -1;
201 }
202
203 /*
204  * Free a software acknowledge hardware resource by clearing its Pending
205  * bit. This will return a reply to the sender.
206  * If the message has timed out, a reply has already been sent by the
207  * hardware but the resource has not been released. In that case our
208  * clear of the Timeout bit (as well) will free the resource. No reply will
209  * be sent (the hardware will only do one reply per message).
210  */
211 static void reply_to_message(struct msg_desc *mdp, struct bau_control *bcp,
212                                                 int do_acknowledge)
213 {
214         unsigned long dw;
215         struct bau_pq_entry *msg;
216
217         msg = mdp->msg;
218         if (!msg->canceled && do_acknowledge) {
219                 dw = (msg->swack_vec << UV_SW_ACK_NPENDING) | msg->swack_vec;
220                 ops.write_l_sw_ack(dw);
221         }
222         msg->replied_to = 1;
223         msg->swack_vec = 0;
224 }
225
226 /*
227  * Process the receipt of a RETRY message
228  */
229 static void bau_process_retry_msg(struct msg_desc *mdp,
230                                         struct bau_control *bcp)
231 {
232         int i;
233         int cancel_count = 0;
234         unsigned long msg_res;
235         unsigned long mmr = 0;
236         struct bau_pq_entry *msg = mdp->msg;
237         struct bau_pq_entry *msg2;
238         struct ptc_stats *stat = bcp->statp;
239
240         stat->d_retries++;
241         /*
242          * cancel any message from msg+1 to the retry itself
243          */
244         for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) {
245                 if (msg2 > mdp->queue_last)
246                         msg2 = mdp->queue_first;
247                 if (msg2 == msg)
248                         break;
249
250                 /* same conditions for cancellation as do_reset */
251                 if ((msg2->replied_to == 0) && (msg2->canceled == 0) &&
252                     (msg2->swack_vec) && ((msg2->swack_vec &
253                         msg->swack_vec) == 0) &&
254                     (msg2->sending_cpu == msg->sending_cpu) &&
255                     (msg2->msg_type != MSG_NOOP)) {
256                         mmr = ops.read_l_sw_ack();
257                         msg_res = msg2->swack_vec;
258                         /*
259                          * This is a message retry; clear the resources held
260                          * by the previous message only if they timed out.
261                          * If it has not timed out we have an unexpected
262                          * situation to report.
263                          */
264                         if (mmr & (msg_res << UV_SW_ACK_NPENDING)) {
265                                 unsigned long mr;
266                                 /*
267                                  * Is the resource timed out?
268                                  * Make everyone ignore the cancelled message.
269                                  */
270                                 msg2->canceled = 1;
271                                 stat->d_canceled++;
272                                 cancel_count++;
273                                 mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
274                                 ops.write_l_sw_ack(mr);
275                         }
276                 }
277         }
278         if (!cancel_count)
279                 stat->d_nocanceled++;
280 }
281
282 /*
283  * Do all the things a cpu should do for a TLB shootdown message.
284  * Other cpu's may come here at the same time for this message.
285  */
286 static void bau_process_message(struct msg_desc *mdp, struct bau_control *bcp,
287                                                 int do_acknowledge)
288 {
289         short socket_ack_count = 0;
290         short *sp;
291         struct atomic_short *asp;
292         struct ptc_stats *stat = bcp->statp;
293         struct bau_pq_entry *msg = mdp->msg;
294         struct bau_control *smaster = bcp->socket_master;
295
296         /*
297          * This must be a normal message, or retry of a normal message
298          */
299         if (msg->address == TLB_FLUSH_ALL) {
300                 local_flush_tlb();
301                 stat->d_alltlb++;
302         } else {
303                 __flush_tlb_one(msg->address);
304                 stat->d_onetlb++;
305         }
306         stat->d_requestee++;
307
308         /*
309          * One cpu on each uvhub has the additional job on a RETRY
310          * of releasing the resource held by the message that is
311          * being retried.  That message is identified by sending
312          * cpu number.
313          */
314         if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master)
315                 bau_process_retry_msg(mdp, bcp);
316
317         /*
318          * This is a swack message, so we have to reply to it.
319          * Count each responding cpu on the socket. This avoids
320          * pinging the count's cache line back and forth between
321          * the sockets.
322          */
323         sp = &smaster->socket_acknowledge_count[mdp->msg_slot];
324         asp = (struct atomic_short *)sp;
325         socket_ack_count = atom_asr(1, asp);
326         if (socket_ack_count == bcp->cpus_in_socket) {
327                 int msg_ack_count;
328                 /*
329                  * Both sockets dump their completed count total into
330                  * the message's count.
331                  */
332                 *sp = 0;
333                 asp = (struct atomic_short *)&msg->acknowledge_count;
334                 msg_ack_count = atom_asr(socket_ack_count, asp);
335
336                 if (msg_ack_count == bcp->cpus_in_uvhub) {
337                         /*
338                          * All cpus in uvhub saw it; reply
339                          * (unless we are in the UV2 workaround)
340                          */
341                         reply_to_message(mdp, bcp, do_acknowledge);
342                 }
343         }
344
345         return;
346 }
347
348 /*
349  * Determine the first cpu on a pnode.
350  */
351 static int pnode_to_first_cpu(int pnode, struct bau_control *smaster)
352 {
353         int cpu;
354         struct hub_and_pnode *hpp;
355
356         for_each_present_cpu(cpu) {
357                 hpp = &smaster->thp[cpu];
358                 if (pnode == hpp->pnode)
359                         return cpu;
360         }
361         return -1;
362 }
363
364 /*
365  * Last resort when we get a large number of destination timeouts is
366  * to clear resources held by a given cpu.
367  * Do this with IPI so that all messages in the BAU message queue
368  * can be identified by their nonzero swack_vec field.
369  *
370  * This is entered for a single cpu on the uvhub.
371  * The sender want's this uvhub to free a specific message's
372  * swack resources.
373  */
374 static void do_reset(void *ptr)
375 {
376         int i;
377         struct bau_control *bcp = &per_cpu(bau_control, smp_processor_id());
378         struct reset_args *rap = (struct reset_args *)ptr;
379         struct bau_pq_entry *msg;
380         struct ptc_stats *stat = bcp->statp;
381
382         stat->d_resets++;
383         /*
384          * We're looking for the given sender, and
385          * will free its swack resource.
386          * If all cpu's finally responded after the timeout, its
387          * message 'replied_to' was set.
388          */
389         for (msg = bcp->queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) {
390                 unsigned long msg_res;
391                 /* do_reset: same conditions for cancellation as
392                    bau_process_retry_msg() */
393                 if ((msg->replied_to == 0) &&
394                     (msg->canceled == 0) &&
395                     (msg->sending_cpu == rap->sender) &&
396                     (msg->swack_vec) &&
397                     (msg->msg_type != MSG_NOOP)) {
398                         unsigned long mmr;
399                         unsigned long mr;
400                         /*
401                          * make everyone else ignore this message
402                          */
403                         msg->canceled = 1;
404                         /*
405                          * only reset the resource if it is still pending
406                          */
407                         mmr = ops.read_l_sw_ack();
408                         msg_res = msg->swack_vec;
409                         mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
410                         if (mmr & msg_res) {
411                                 stat->d_rcanceled++;
412                                 ops.write_l_sw_ack(mr);
413                         }
414                 }
415         }
416         return;
417 }
418
419 /*
420  * Use IPI to get all target uvhubs to release resources held by
421  * a given sending cpu number.
422  */
423 static void reset_with_ipi(struct pnmask *distribution, struct bau_control *bcp)
424 {
425         int pnode;
426         int apnode;
427         int maskbits;
428         int sender = bcp->cpu;
429         cpumask_t *mask = bcp->uvhub_master->cpumask;
430         struct bau_control *smaster = bcp->socket_master;
431         struct reset_args reset_args;
432
433         reset_args.sender = sender;
434         cpumask_clear(mask);
435         /* find a single cpu for each uvhub in this distribution mask */
436         maskbits = sizeof(struct pnmask) * BITSPERBYTE;
437         /* each bit is a pnode relative to the partition base pnode */
438         for (pnode = 0; pnode < maskbits; pnode++) {
439                 int cpu;
440                 if (!bau_uvhub_isset(pnode, distribution))
441                         continue;
442                 apnode = pnode + bcp->partition_base_pnode;
443                 cpu = pnode_to_first_cpu(apnode, smaster);
444                 cpumask_set_cpu(cpu, mask);
445         }
446
447         /* IPI all cpus; preemption is already disabled */
448         smp_call_function_many(mask, do_reset, (void *)&reset_args, 1);
449         return;
450 }
451
452 /*
453  * Not to be confused with cycles_2_ns() from tsc.c; this gives a relative
454  * number, not an absolute. It converts a duration in cycles to a duration in
455  * ns.
456  */
457 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
458 {
459         struct cyc2ns_data data;
460         unsigned long long ns;
461
462         cyc2ns_read_begin(&data);
463         ns = mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
464         cyc2ns_read_end();
465
466         return ns;
467 }
468
469 /*
470  * The reverse of the above; converts a duration in ns to a duration in cycles.
471  */
472 static inline unsigned long long ns_2_cycles(unsigned long long ns)
473 {
474         struct cyc2ns_data data;
475         unsigned long long cyc;
476
477         cyc2ns_read_begin(&data);
478         cyc = (ns << data.cyc2ns_shift) / data.cyc2ns_mul;
479         cyc2ns_read_end();
480
481         return cyc;
482 }
483
484 static inline unsigned long cycles_2_us(unsigned long long cyc)
485 {
486         return cycles_2_ns(cyc) / NSEC_PER_USEC;
487 }
488
489 static inline cycles_t sec_2_cycles(unsigned long sec)
490 {
491         return ns_2_cycles(sec * NSEC_PER_SEC);
492 }
493
494 static inline unsigned long long usec_2_cycles(unsigned long usec)
495 {
496         return ns_2_cycles(usec * NSEC_PER_USEC);
497 }
498
499 /*
500  * wait for all cpus on this hub to finish their sends and go quiet
501  * leaves uvhub_quiesce set so that no new broadcasts are started by
502  * bau_flush_send_and_wait()
503  */
504 static inline void quiesce_local_uvhub(struct bau_control *hmaster)
505 {
506         atom_asr(1, (struct atomic_short *)&hmaster->uvhub_quiesce);
507 }
508
509 /*
510  * mark this quiet-requestor as done
511  */
512 static inline void end_uvhub_quiesce(struct bau_control *hmaster)
513 {
514         atom_asr(-1, (struct atomic_short *)&hmaster->uvhub_quiesce);
515 }
516
517 static unsigned long uv1_read_status(unsigned long mmr_offset, int right_shift)
518 {
519         unsigned long descriptor_status;
520
521         descriptor_status = uv_read_local_mmr(mmr_offset);
522         descriptor_status >>= right_shift;
523         descriptor_status &= UV_ACT_STATUS_MASK;
524         return descriptor_status;
525 }
526
527 /*
528  * Wait for completion of a broadcast software ack message
529  * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP
530  */
531 static int uv1_wait_completion(struct bau_desc *bau_desc,
532                                 struct bau_control *bcp, long try)
533 {
534         unsigned long descriptor_status;
535         cycles_t ttm;
536         u64 mmr_offset = bcp->status_mmr;
537         int right_shift = bcp->status_index;
538         struct ptc_stats *stat = bcp->statp;
539
540         descriptor_status = uv1_read_status(mmr_offset, right_shift);
541         /* spin on the status MMR, waiting for it to go idle */
542         while ((descriptor_status != DS_IDLE)) {
543                 /*
544                  * Our software ack messages may be blocked because
545                  * there are no swack resources available.  As long
546                  * as none of them has timed out hardware will NACK
547                  * our message and its state will stay IDLE.
548                  */
549                 if (descriptor_status == DS_SOURCE_TIMEOUT) {
550                         stat->s_stimeout++;
551                         return FLUSH_GIVEUP;
552                 } else if (descriptor_status == DS_DESTINATION_TIMEOUT) {
553                         stat->s_dtimeout++;
554                         ttm = get_cycles();
555
556                         /*
557                          * Our retries may be blocked by all destination
558                          * swack resources being consumed, and a timeout
559                          * pending.  In that case hardware returns the
560                          * ERROR that looks like a destination timeout.
561                          */
562                         if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
563                                 bcp->conseccompletes = 0;
564                                 return FLUSH_RETRY_PLUGGED;
565                         }
566
567                         bcp->conseccompletes = 0;
568                         return FLUSH_RETRY_TIMEOUT;
569                 } else {
570                         /*
571                          * descriptor_status is still BUSY
572                          */
573                         cpu_relax();
574                 }
575                 descriptor_status = uv1_read_status(mmr_offset, right_shift);
576         }
577         bcp->conseccompletes++;
578         return FLUSH_COMPLETE;
579 }
580
581 /*
582  * UV2 could have an extra bit of status in the ACTIVATION_STATUS_2 register.
583  * But not currently used.
584  */
585 static unsigned long uv2_3_read_status(unsigned long offset, int rshft, int desc)
586 {
587         return ((read_lmmr(offset) >> rshft) & UV_ACT_STATUS_MASK) << 1;
588 }
589
590 /*
591  * Entered when a bau descriptor has gone into a permanent busy wait because
592  * of a hardware bug.
593  * Workaround the bug.
594  */
595 static int handle_uv2_busy(struct bau_control *bcp)
596 {
597         struct ptc_stats *stat = bcp->statp;
598
599         stat->s_uv2_wars++;
600         bcp->busy = 1;
601         return FLUSH_GIVEUP;
602 }
603
604 static int uv2_3_wait_completion(struct bau_desc *bau_desc,
605                                 struct bau_control *bcp, long try)
606 {
607         unsigned long descriptor_stat;
608         cycles_t ttm;
609         u64 mmr_offset = bcp->status_mmr;
610         int right_shift = bcp->status_index;
611         int desc = bcp->uvhub_cpu;
612         long busy_reps = 0;
613         struct ptc_stats *stat = bcp->statp;
614
615         descriptor_stat = uv2_3_read_status(mmr_offset, right_shift, desc);
616
617         /* spin on the status MMR, waiting for it to go idle */
618         while (descriptor_stat != UV2H_DESC_IDLE) {
619                 if ((descriptor_stat == UV2H_DESC_SOURCE_TIMEOUT)) {
620                         /*
621                          * A h/w bug on the destination side may
622                          * have prevented the message being marked
623                          * pending, thus it doesn't get replied to
624                          * and gets continually nacked until it times
625                          * out with a SOURCE_TIMEOUT.
626                          */
627                         stat->s_stimeout++;
628                         return FLUSH_GIVEUP;
629                 } else if (descriptor_stat == UV2H_DESC_DEST_TIMEOUT) {
630                         ttm = get_cycles();
631
632                         /*
633                          * Our retries may be blocked by all destination
634                          * swack resources being consumed, and a timeout
635                          * pending.  In that case hardware returns the
636                          * ERROR that looks like a destination timeout.
637                          * Without using the extended status we have to
638                          * deduce from the short time that this was a
639                          * strong nack.
640                          */
641                         if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
642                                 bcp->conseccompletes = 0;
643                                 stat->s_plugged++;
644                                 /* FLUSH_RETRY_PLUGGED causes hang on boot */
645                                 return FLUSH_GIVEUP;
646                         }
647                         stat->s_dtimeout++;
648                         bcp->conseccompletes = 0;
649                         /* FLUSH_RETRY_TIMEOUT causes hang on boot */
650                         return FLUSH_GIVEUP;
651                 } else {
652                         busy_reps++;
653                         if (busy_reps > 1000000) {
654                                 /* not to hammer on the clock */
655                                 busy_reps = 0;
656                                 ttm = get_cycles();
657                                 if ((ttm - bcp->send_message) > bcp->timeout_interval)
658                                         return handle_uv2_busy(bcp);
659                         }
660                         /*
661                          * descriptor_stat is still BUSY
662                          */
663                         cpu_relax();
664                 }
665                 descriptor_stat = uv2_3_read_status(mmr_offset, right_shift, desc);
666         }
667         bcp->conseccompletes++;
668         return FLUSH_COMPLETE;
669 }
670
671 /*
672  * Returns the status of current BAU message for cpu desc as a bit field
673  * [Error][Busy][Aux]
674  */
675 static u64 read_status(u64 status_mmr, int index, int desc)
676 {
677         u64 stat;
678
679         stat = ((read_lmmr(status_mmr) >> index) & UV_ACT_STATUS_MASK) << 1;
680         stat |= (read_lmmr(UVH_LB_BAU_SB_ACTIVATION_STATUS_2) >> desc) & 0x1;
681
682         return stat;
683 }
684
685 static int uv4_wait_completion(struct bau_desc *bau_desc,
686                                 struct bau_control *bcp, long try)
687 {
688         struct ptc_stats *stat = bcp->statp;
689         u64 descriptor_stat;
690         u64 mmr = bcp->status_mmr;
691         int index = bcp->status_index;
692         int desc = bcp->uvhub_cpu;
693
694         descriptor_stat = read_status(mmr, index, desc);
695
696         /* spin on the status MMR, waiting for it to go idle */
697         while (descriptor_stat != UV2H_DESC_IDLE) {
698                 switch (descriptor_stat) {
699                 case UV2H_DESC_SOURCE_TIMEOUT:
700                         stat->s_stimeout++;
701                         return FLUSH_GIVEUP;
702
703                 case UV2H_DESC_DEST_TIMEOUT:
704                         stat->s_dtimeout++;
705                         bcp->conseccompletes = 0;
706                         return FLUSH_RETRY_TIMEOUT;
707
708                 case UV2H_DESC_DEST_STRONG_NACK:
709                         stat->s_plugged++;
710                         bcp->conseccompletes = 0;
711                         return FLUSH_RETRY_PLUGGED;
712
713                 case UV2H_DESC_DEST_PUT_ERR:
714                         bcp->conseccompletes = 0;
715                         return FLUSH_GIVEUP;
716
717                 default:
718                         /* descriptor_stat is still BUSY */
719                         cpu_relax();
720                 }
721                 descriptor_stat = read_status(mmr, index, desc);
722         }
723         bcp->conseccompletes++;
724         return FLUSH_COMPLETE;
725 }
726
727 /*
728  * Our retries are blocked by all destination sw ack resources being
729  * in use, and a timeout is pending. In that case hardware immediately
730  * returns the ERROR that looks like a destination timeout.
731  */
732 static void destination_plugged(struct bau_desc *bau_desc,
733                         struct bau_control *bcp,
734                         struct bau_control *hmaster, struct ptc_stats *stat)
735 {
736         udelay(bcp->plugged_delay);
737         bcp->plugged_tries++;
738
739         if (bcp->plugged_tries >= bcp->plugsb4reset) {
740                 bcp->plugged_tries = 0;
741
742                 quiesce_local_uvhub(hmaster);
743
744                 spin_lock(&hmaster->queue_lock);
745                 reset_with_ipi(&bau_desc->distribution, bcp);
746                 spin_unlock(&hmaster->queue_lock);
747
748                 end_uvhub_quiesce(hmaster);
749
750                 bcp->ipi_attempts++;
751                 stat->s_resets_plug++;
752         }
753 }
754
755 static void destination_timeout(struct bau_desc *bau_desc,
756                         struct bau_control *bcp, struct bau_control *hmaster,
757                         struct ptc_stats *stat)
758 {
759         hmaster->max_concurr = 1;
760         bcp->timeout_tries++;
761         if (bcp->timeout_tries >= bcp->timeoutsb4reset) {
762                 bcp->timeout_tries = 0;
763
764                 quiesce_local_uvhub(hmaster);
765
766                 spin_lock(&hmaster->queue_lock);
767                 reset_with_ipi(&bau_desc->distribution, bcp);
768                 spin_unlock(&hmaster->queue_lock);
769
770                 end_uvhub_quiesce(hmaster);
771
772                 bcp->ipi_attempts++;
773                 stat->s_resets_timeout++;
774         }
775 }
776
777 /*
778  * Stop all cpus on a uvhub from using the BAU for a period of time.
779  * This is reversed by check_enable.
780  */
781 static void disable_for_period(struct bau_control *bcp, struct ptc_stats *stat)
782 {
783         int tcpu;
784         struct bau_control *tbcp;
785         struct bau_control *hmaster;
786         cycles_t tm1;
787
788         hmaster = bcp->uvhub_master;
789         spin_lock(&hmaster->disable_lock);
790         if (!bcp->baudisabled) {
791                 stat->s_bau_disabled++;
792                 tm1 = get_cycles();
793                 for_each_present_cpu(tcpu) {
794                         tbcp = &per_cpu(bau_control, tcpu);
795                         if (tbcp->uvhub_master == hmaster) {
796                                 tbcp->baudisabled = 1;
797                                 tbcp->set_bau_on_time =
798                                         tm1 + bcp->disabled_period;
799                         }
800                 }
801         }
802         spin_unlock(&hmaster->disable_lock);
803 }
804
805 static void count_max_concurr(int stat, struct bau_control *bcp,
806                                 struct bau_control *hmaster)
807 {
808         bcp->plugged_tries = 0;
809         bcp->timeout_tries = 0;
810         if (stat != FLUSH_COMPLETE)
811                 return;
812         if (bcp->conseccompletes <= bcp->complete_threshold)
813                 return;
814         if (hmaster->max_concurr >= hmaster->max_concurr_const)
815                 return;
816         hmaster->max_concurr++;
817 }
818
819 static void record_send_stats(cycles_t time1, cycles_t time2,
820                 struct bau_control *bcp, struct ptc_stats *stat,
821                 int completion_status, int try)
822 {
823         cycles_t elapsed;
824
825         if (time2 > time1) {
826                 elapsed = time2 - time1;
827                 stat->s_time += elapsed;
828
829                 if ((completion_status == FLUSH_COMPLETE) && (try == 1)) {
830                         bcp->period_requests++;
831                         bcp->period_time += elapsed;
832                         if ((elapsed > congested_cycles) &&
833                             (bcp->period_requests > bcp->cong_reps) &&
834                             ((bcp->period_time / bcp->period_requests) >
835                                                         congested_cycles)) {
836                                 stat->s_congested++;
837                                 disable_for_period(bcp, stat);
838                         }
839                 }
840         } else
841                 stat->s_requestor--;
842
843         if (completion_status == FLUSH_COMPLETE && try > 1)
844                 stat->s_retriesok++;
845         else if (completion_status == FLUSH_GIVEUP) {
846                 stat->s_giveup++;
847                 if (get_cycles() > bcp->period_end)
848                         bcp->period_giveups = 0;
849                 bcp->period_giveups++;
850                 if (bcp->period_giveups == 1)
851                         bcp->period_end = get_cycles() + bcp->disabled_period;
852                 if (bcp->period_giveups > bcp->giveup_limit) {
853                         disable_for_period(bcp, stat);
854                         stat->s_giveuplimit++;
855                 }
856         }
857 }
858
859 /*
860  * Because of a uv1 hardware bug only a limited number of concurrent
861  * requests can be made.
862  */
863 static void uv1_throttle(struct bau_control *hmaster, struct ptc_stats *stat)
864 {
865         spinlock_t *lock = &hmaster->uvhub_lock;
866         atomic_t *v;
867
868         v = &hmaster->active_descriptor_count;
869         if (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr)) {
870                 stat->s_throttles++;
871                 do {
872                         cpu_relax();
873                 } while (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr));
874         }
875 }
876
877 /*
878  * Handle the completion status of a message send.
879  */
880 static void handle_cmplt(int completion_status, struct bau_desc *bau_desc,
881                         struct bau_control *bcp, struct bau_control *hmaster,
882                         struct ptc_stats *stat)
883 {
884         if (completion_status == FLUSH_RETRY_PLUGGED)
885                 destination_plugged(bau_desc, bcp, hmaster, stat);
886         else if (completion_status == FLUSH_RETRY_TIMEOUT)
887                 destination_timeout(bau_desc, bcp, hmaster, stat);
888 }
889
890 /*
891  * Send a broadcast and wait for it to complete.
892  *
893  * The flush_mask contains the cpus the broadcast is to be sent to including
894  * cpus that are on the local uvhub.
895  *
896  * Returns 0 if all flushing represented in the mask was done.
897  * Returns 1 if it gives up entirely and the original cpu mask is to be
898  * returned to the kernel.
899  */
900 static int uv_flush_send_and_wait(struct cpumask *flush_mask,
901                                   struct bau_control *bcp,
902                                   struct bau_desc *bau_desc)
903 {
904         int seq_number = 0;
905         int completion_stat = 0;
906         int uv1 = 0;
907         long try = 0;
908         unsigned long index;
909         cycles_t time1;
910         cycles_t time2;
911         struct ptc_stats *stat = bcp->statp;
912         struct bau_control *hmaster = bcp->uvhub_master;
913         struct uv1_bau_msg_header *uv1_hdr = NULL;
914         struct uv2_3_bau_msg_header *uv2_3_hdr = NULL;
915
916         if (bcp->uvhub_version == UV_BAU_V1) {
917                 uv1 = 1;
918                 uv1_throttle(hmaster, stat);
919         }
920
921         while (hmaster->uvhub_quiesce)
922                 cpu_relax();
923
924         time1 = get_cycles();
925         if (uv1)
926                 uv1_hdr = &bau_desc->header.uv1_hdr;
927         else
928                 /* uv2 and uv3 */
929                 uv2_3_hdr = &bau_desc->header.uv2_3_hdr;
930
931         do {
932                 if (try == 0) {
933                         if (uv1)
934                                 uv1_hdr->msg_type = MSG_REGULAR;
935                         else
936                                 uv2_3_hdr->msg_type = MSG_REGULAR;
937                         seq_number = bcp->message_number++;
938                 } else {
939                         if (uv1)
940                                 uv1_hdr->msg_type = MSG_RETRY;
941                         else
942                                 uv2_3_hdr->msg_type = MSG_RETRY;
943                         stat->s_retry_messages++;
944                 }
945
946                 if (uv1)
947                         uv1_hdr->sequence = seq_number;
948                 else
949                         uv2_3_hdr->sequence = seq_number;
950                 index = (1UL << AS_PUSH_SHIFT) | bcp->uvhub_cpu;
951                 bcp->send_message = get_cycles();
952
953                 write_mmr_activation(index);
954
955                 try++;
956                 completion_stat = ops.wait_completion(bau_desc, bcp, try);
957
958                 handle_cmplt(completion_stat, bau_desc, bcp, hmaster, stat);
959
960                 if (bcp->ipi_attempts >= bcp->ipi_reset_limit) {
961                         bcp->ipi_attempts = 0;
962                         stat->s_overipilimit++;
963                         completion_stat = FLUSH_GIVEUP;
964                         break;
965                 }
966                 cpu_relax();
967         } while ((completion_stat == FLUSH_RETRY_PLUGGED) ||
968                  (completion_stat == FLUSH_RETRY_TIMEOUT));
969
970         time2 = get_cycles();
971
972         count_max_concurr(completion_stat, bcp, hmaster);
973
974         while (hmaster->uvhub_quiesce)
975                 cpu_relax();
976
977         atomic_dec(&hmaster->active_descriptor_count);
978
979         record_send_stats(time1, time2, bcp, stat, completion_stat, try);
980
981         if (completion_stat == FLUSH_GIVEUP)
982                 /* FLUSH_GIVEUP will fall back to using IPI's for tlb flush */
983                 return 1;
984         return 0;
985 }
986
987 /*
988  * The BAU is disabled for this uvhub. When the disabled time period has
989  * expired re-enable it.
990  * Return 0 if it is re-enabled for all cpus on this uvhub.
991  */
992 static int check_enable(struct bau_control *bcp, struct ptc_stats *stat)
993 {
994         int tcpu;
995         struct bau_control *tbcp;
996         struct bau_control *hmaster;
997
998         hmaster = bcp->uvhub_master;
999         spin_lock(&hmaster->disable_lock);
1000         if (bcp->baudisabled && (get_cycles() >= bcp->set_bau_on_time)) {
1001                 stat->s_bau_reenabled++;
1002                 for_each_present_cpu(tcpu) {
1003                         tbcp = &per_cpu(bau_control, tcpu);
1004                         if (tbcp->uvhub_master == hmaster) {
1005                                 tbcp->baudisabled = 0;
1006                                 tbcp->period_requests = 0;
1007                                 tbcp->period_time = 0;
1008                                 tbcp->period_giveups = 0;
1009                         }
1010                 }
1011                 spin_unlock(&hmaster->disable_lock);
1012                 return 0;
1013         }
1014         spin_unlock(&hmaster->disable_lock);
1015         return -1;
1016 }
1017
1018 static void record_send_statistics(struct ptc_stats *stat, int locals, int hubs,
1019                                 int remotes, struct bau_desc *bau_desc)
1020 {
1021         stat->s_requestor++;
1022         stat->s_ntargcpu += remotes + locals;
1023         stat->s_ntargremotes += remotes;
1024         stat->s_ntarglocals += locals;
1025
1026         /* uvhub statistics */
1027         hubs = bau_uvhub_weight(&bau_desc->distribution);
1028         if (locals) {
1029                 stat->s_ntarglocaluvhub++;
1030                 stat->s_ntargremoteuvhub += (hubs - 1);
1031         } else
1032                 stat->s_ntargremoteuvhub += hubs;
1033
1034         stat->s_ntarguvhub += hubs;
1035
1036         if (hubs >= 16)
1037                 stat->s_ntarguvhub16++;
1038         else if (hubs >= 8)
1039                 stat->s_ntarguvhub8++;
1040         else if (hubs >= 4)
1041                 stat->s_ntarguvhub4++;
1042         else if (hubs >= 2)
1043                 stat->s_ntarguvhub2++;
1044         else
1045                 stat->s_ntarguvhub1++;
1046 }
1047
1048 /*
1049  * Translate a cpu mask to the uvhub distribution mask in the BAU
1050  * activation descriptor.
1051  */
1052 static int set_distrib_bits(struct cpumask *flush_mask, struct bau_control *bcp,
1053                         struct bau_desc *bau_desc, int *localsp, int *remotesp)
1054 {
1055         int cpu;
1056         int pnode;
1057         int cnt = 0;
1058         struct hub_and_pnode *hpp;
1059
1060         for_each_cpu(cpu, flush_mask) {
1061                 /*
1062                  * The distribution vector is a bit map of pnodes, relative
1063                  * to the partition base pnode (and the partition base nasid
1064                  * in the header).
1065                  * Translate cpu to pnode and hub using a local memory array.
1066                  */
1067                 hpp = &bcp->socket_master->thp[cpu];
1068                 pnode = hpp->pnode - bcp->partition_base_pnode;
1069                 bau_uvhub_set(pnode, &bau_desc->distribution);
1070                 cnt++;
1071                 if (hpp->uvhub == bcp->uvhub)
1072                         (*localsp)++;
1073                 else
1074                         (*remotesp)++;
1075         }
1076         if (!cnt)
1077                 return 1;
1078         return 0;
1079 }
1080
1081 /*
1082  * globally purge translation cache of a virtual address or all TLB's
1083  * @cpumask: mask of all cpu's in which the address is to be removed
1084  * @mm: mm_struct containing virtual address range
1085  * @start: start virtual address to be removed from TLB
1086  * @end: end virtual address to be remove from TLB
1087  * @cpu: the current cpu
1088  *
1089  * This is the entry point for initiating any UV global TLB shootdown.
1090  *
1091  * Purges the translation caches of all specified processors of the given
1092  * virtual address, or purges all TLB's on specified processors.
1093  *
1094  * The caller has derived the cpumask from the mm_struct.  This function
1095  * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
1096  *
1097  * The cpumask is converted into a uvhubmask of the uvhubs containing
1098  * those cpus.
1099  *
1100  * Note that this function should be called with preemption disabled.
1101  *
1102  * Returns NULL if all remote flushing was done.
1103  * Returns pointer to cpumask if some remote flushing remains to be
1104  * done.  The returned pointer is valid till preemption is re-enabled.
1105  */
1106 const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
1107                                           const struct flush_tlb_info *info)
1108 {
1109         unsigned int cpu = smp_processor_id();
1110         int locals = 0, remotes = 0, hubs = 0;
1111         struct bau_desc *bau_desc;
1112         struct cpumask *flush_mask;
1113         struct ptc_stats *stat;
1114         struct bau_control *bcp;
1115         unsigned long descriptor_status, status, address;
1116
1117         bcp = &per_cpu(bau_control, cpu);
1118
1119         if (bcp->nobau)
1120                 return cpumask;
1121
1122         stat = bcp->statp;
1123         stat->s_enters++;
1124
1125         if (bcp->busy) {
1126                 descriptor_status =
1127                         read_lmmr(UVH_LB_BAU_SB_ACTIVATION_STATUS_0);
1128                 status = ((descriptor_status >> (bcp->uvhub_cpu *
1129                         UV_ACT_STATUS_SIZE)) & UV_ACT_STATUS_MASK) << 1;
1130                 if (status == UV2H_DESC_BUSY)
1131                         return cpumask;
1132                 bcp->busy = 0;
1133         }
1134
1135         /* bau was disabled due to slow response */
1136         if (bcp->baudisabled) {
1137                 if (check_enable(bcp, stat)) {
1138                         stat->s_ipifordisabled++;
1139                         return cpumask;
1140                 }
1141         }
1142
1143         /*
1144          * Each sending cpu has a per-cpu mask which it fills from the caller's
1145          * cpu mask.  All cpus are converted to uvhubs and copied to the
1146          * activation descriptor.
1147          */
1148         flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu);
1149         /* don't actually do a shootdown of the local cpu */
1150         cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
1151
1152         if (cpumask_test_cpu(cpu, cpumask))
1153                 stat->s_ntargself++;
1154
1155         bau_desc = bcp->descriptor_base;
1156         bau_desc += (ITEMS_PER_DESC * bcp->uvhub_cpu);
1157         bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
1158         if (set_distrib_bits(flush_mask, bcp, bau_desc, &locals, &remotes))
1159                 return NULL;
1160
1161         record_send_statistics(stat, locals, hubs, remotes, bau_desc);
1162
1163         if (!info->end || (info->end - info->start) <= PAGE_SIZE)
1164                 address = info->start;
1165         else
1166                 address = TLB_FLUSH_ALL;
1167
1168         switch (bcp->uvhub_version) {
1169         case UV_BAU_V1:
1170         case UV_BAU_V2:
1171         case UV_BAU_V3:
1172                 bau_desc->payload.uv1_2_3.address = address;
1173                 bau_desc->payload.uv1_2_3.sending_cpu = cpu;
1174                 break;
1175         case UV_BAU_V4:
1176                 bau_desc->payload.uv4.address = address;
1177                 bau_desc->payload.uv4.sending_cpu = cpu;
1178                 bau_desc->payload.uv4.qualifier = BAU_DESC_QUALIFIER;
1179                 break;
1180         }
1181
1182         /*
1183          * uv_flush_send_and_wait returns 0 if all cpu's were messaged,
1184          * or 1 if it gave up and the original cpumask should be returned.
1185          */
1186         if (!uv_flush_send_and_wait(flush_mask, bcp, bau_desc))
1187                 return NULL;
1188         else
1189                 return cpumask;
1190 }
1191
1192 /*
1193  * Search the message queue for any 'other' unprocessed message with the
1194  * same software acknowledge resource bit vector as the 'msg' message.
1195  */
1196 static struct bau_pq_entry *find_another_by_swack(struct bau_pq_entry *msg,
1197                                                   struct bau_control *bcp)
1198 {
1199         struct bau_pq_entry *msg_next = msg + 1;
1200         unsigned char swack_vec = msg->swack_vec;
1201
1202         if (msg_next > bcp->queue_last)
1203                 msg_next = bcp->queue_first;
1204         while (msg_next != msg) {
1205                 if ((msg_next->canceled == 0) && (msg_next->replied_to == 0) &&
1206                                 (msg_next->swack_vec == swack_vec))
1207                         return msg_next;
1208                 msg_next++;
1209                 if (msg_next > bcp->queue_last)
1210                         msg_next = bcp->queue_first;
1211         }
1212         return NULL;
1213 }
1214
1215 /*
1216  * UV2 needs to work around a bug in which an arriving message has not
1217  * set a bit in the UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE register.
1218  * Such a message must be ignored.
1219  */
1220 void process_uv2_message(struct msg_desc *mdp, struct bau_control *bcp)
1221 {
1222         unsigned long mmr_image;
1223         unsigned char swack_vec;
1224         struct bau_pq_entry *msg = mdp->msg;
1225         struct bau_pq_entry *other_msg;
1226
1227         mmr_image = ops.read_l_sw_ack();
1228         swack_vec = msg->swack_vec;
1229
1230         if ((swack_vec & mmr_image) == 0) {
1231                 /*
1232                  * This message was assigned a swack resource, but no
1233                  * reserved acknowlegment is pending.
1234                  * The bug has prevented this message from setting the MMR.
1235                  */
1236                 /*
1237                  * Some message has set the MMR 'pending' bit; it might have
1238                  * been another message.  Look for that message.
1239                  */
1240                 other_msg = find_another_by_swack(msg, bcp);
1241                 if (other_msg) {
1242                         /*
1243                          * There is another. Process this one but do not
1244                          * ack it.
1245                          */
1246                         bau_process_message(mdp, bcp, 0);
1247                         /*
1248                          * Let the natural processing of that other message
1249                          * acknowledge it. Don't get the processing of sw_ack's
1250                          * out of order.
1251                          */
1252                         return;
1253                 }
1254         }
1255
1256         /*
1257          * Either the MMR shows this one pending a reply or there is no
1258          * other message using this sw_ack, so it is safe to acknowledge it.
1259          */
1260         bau_process_message(mdp, bcp, 1);
1261
1262         return;
1263 }
1264
1265 /*
1266  * The BAU message interrupt comes here. (registered by set_intr_gate)
1267  * See entry_64.S
1268  *
1269  * We received a broadcast assist message.
1270  *
1271  * Interrupts are disabled; this interrupt could represent
1272  * the receipt of several messages.
1273  *
1274  * All cores/threads on this hub get this interrupt.
1275  * The last one to see it does the software ack.
1276  * (the resource will not be freed until noninterruptable cpus see this
1277  *  interrupt; hardware may timeout the s/w ack and reply ERROR)
1278  */
1279 void uv_bau_message_interrupt(struct pt_regs *regs)
1280 {
1281         int count = 0;
1282         cycles_t time_start;
1283         struct bau_pq_entry *msg;
1284         struct bau_control *bcp;
1285         struct ptc_stats *stat;
1286         struct msg_desc msgdesc;
1287
1288         ack_APIC_irq();
1289         time_start = get_cycles();
1290
1291         bcp = &per_cpu(bau_control, smp_processor_id());
1292         stat = bcp->statp;
1293
1294         msgdesc.queue_first = bcp->queue_first;
1295         msgdesc.queue_last = bcp->queue_last;
1296
1297         msg = bcp->bau_msg_head;
1298         while (msg->swack_vec) {
1299                 count++;
1300
1301                 msgdesc.msg_slot = msg - msgdesc.queue_first;
1302                 msgdesc.msg = msg;
1303                 if (bcp->uvhub_version == UV_BAU_V2)
1304                         process_uv2_message(&msgdesc, bcp);
1305                 else
1306                         /* no error workaround for uv1 or uv3 */
1307                         bau_process_message(&msgdesc, bcp, 1);
1308
1309                 msg++;
1310                 if (msg > msgdesc.queue_last)
1311                         msg = msgdesc.queue_first;
1312                 bcp->bau_msg_head = msg;
1313         }
1314         stat->d_time += (get_cycles() - time_start);
1315         if (!count)
1316                 stat->d_nomsg++;
1317         else if (count > 1)
1318                 stat->d_multmsg++;
1319 }
1320
1321 /*
1322  * Each target uvhub (i.e. a uvhub that has cpu's) needs to have
1323  * shootdown message timeouts enabled.  The timeout does not cause
1324  * an interrupt, but causes an error message to be returned to
1325  * the sender.
1326  */
1327 static void __init enable_timeouts(void)
1328 {
1329         int uvhub;
1330         int nuvhubs;
1331         int pnode;
1332         unsigned long mmr_image;
1333
1334         nuvhubs = uv_num_possible_blades();
1335
1336         for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
1337                 if (!uv_blade_nr_possible_cpus(uvhub))
1338                         continue;
1339
1340                 pnode = uv_blade_to_pnode(uvhub);
1341                 mmr_image = read_mmr_misc_control(pnode);
1342                 /*
1343                  * Set the timeout period and then lock it in, in three
1344                  * steps; captures and locks in the period.
1345                  *
1346                  * To program the period, the SOFT_ACK_MODE must be off.
1347                  */
1348                 mmr_image &= ~(1L << SOFTACK_MSHIFT);
1349                 write_mmr_misc_control(pnode, mmr_image);
1350                 /*
1351                  * Set the 4-bit period.
1352                  */
1353                 mmr_image &= ~((unsigned long)0xf << SOFTACK_PSHIFT);
1354                 mmr_image |= (SOFTACK_TIMEOUT_PERIOD << SOFTACK_PSHIFT);
1355                 write_mmr_misc_control(pnode, mmr_image);
1356                 /*
1357                  * UV1:
1358                  * Subsequent reversals of the timebase bit (3) cause an
1359                  * immediate timeout of one or all INTD resources as
1360                  * indicated in bits 2:0 (7 causes all of them to timeout).
1361                  */
1362                 mmr_image |= (1L << SOFTACK_MSHIFT);
1363                 if (is_uv2_hub()) {
1364                         /* do not touch the legacy mode bit */
1365                         /* hw bug workaround; do not use extended status */
1366                         mmr_image &= ~(1L << UV2_EXT_SHFT);
1367                 } else if (is_uv3_hub()) {
1368                         mmr_image &= ~(1L << PREFETCH_HINT_SHFT);
1369                         mmr_image |= (1L << SB_STATUS_SHFT);
1370                 }
1371                 write_mmr_misc_control(pnode, mmr_image);
1372         }
1373 }
1374
1375 static void *ptc_seq_start(struct seq_file *file, loff_t *offset)
1376 {
1377         if (*offset < num_possible_cpus())
1378                 return offset;
1379         return NULL;
1380 }
1381
1382 static void *ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
1383 {
1384         (*offset)++;
1385         if (*offset < num_possible_cpus())
1386                 return offset;
1387         return NULL;
1388 }
1389
1390 static void ptc_seq_stop(struct seq_file *file, void *data)
1391 {
1392 }
1393
1394 /*
1395  * Display the statistics thru /proc/sgi_uv/ptc_statistics
1396  * 'data' points to the cpu number
1397  * Note: see the descriptions in stat_description[].
1398  */
1399 static int ptc_seq_show(struct seq_file *file, void *data)
1400 {
1401         struct ptc_stats *stat;
1402         struct bau_control *bcp;
1403         int cpu;
1404
1405         cpu = *(loff_t *)data;
1406         if (!cpu) {
1407                 seq_puts(file,
1408                          "# cpu bauoff sent stime self locals remotes ncpus localhub ");
1409                 seq_puts(file, "remotehub numuvhubs numuvhubs16 numuvhubs8 ");
1410                 seq_puts(file,
1411                          "numuvhubs4 numuvhubs2 numuvhubs1 dto snacks retries ");
1412                 seq_puts(file,
1413                          "rok resetp resett giveup sto bz throt disable ");
1414                 seq_puts(file,
1415                          "enable wars warshw warwaits enters ipidis plugged ");
1416                 seq_puts(file,
1417                          "ipiover glim cong swack recv rtime all one mult ");
1418                 seq_puts(file, "none retry canc nocan reset rcan\n");
1419         }
1420         if (cpu < num_possible_cpus() && cpu_online(cpu)) {
1421                 bcp = &per_cpu(bau_control, cpu);
1422                 if (bcp->nobau) {
1423                         seq_printf(file, "cpu %d bau disabled\n", cpu);
1424                         return 0;
1425                 }
1426                 stat = bcp->statp;
1427                 /* source side statistics */
1428                 seq_printf(file,
1429                         "cpu %d %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1430                            cpu, bcp->nobau, stat->s_requestor,
1431                            cycles_2_us(stat->s_time),
1432                            stat->s_ntargself, stat->s_ntarglocals,
1433                            stat->s_ntargremotes, stat->s_ntargcpu,
1434                            stat->s_ntarglocaluvhub, stat->s_ntargremoteuvhub,
1435                            stat->s_ntarguvhub, stat->s_ntarguvhub16);
1436                 seq_printf(file, "%ld %ld %ld %ld %ld %ld ",
1437                            stat->s_ntarguvhub8, stat->s_ntarguvhub4,
1438                            stat->s_ntarguvhub2, stat->s_ntarguvhub1,
1439                            stat->s_dtimeout, stat->s_strongnacks);
1440                 seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ",
1441                            stat->s_retry_messages, stat->s_retriesok,
1442                            stat->s_resets_plug, stat->s_resets_timeout,
1443                            stat->s_giveup, stat->s_stimeout,
1444                            stat->s_busy, stat->s_throttles);
1445                 seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1446                            stat->s_bau_disabled, stat->s_bau_reenabled,
1447                            stat->s_uv2_wars, stat->s_uv2_wars_hw,
1448                            stat->s_uv2_war_waits, stat->s_enters,
1449                            stat->s_ipifordisabled, stat->s_plugged,
1450                            stat->s_overipilimit, stat->s_giveuplimit,
1451                            stat->s_congested);
1452
1453                 /* destination side statistics */
1454                 seq_printf(file,
1455                         "%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n",
1456                            ops.read_g_sw_ack(uv_cpu_to_pnode(cpu)),
1457                            stat->d_requestee, cycles_2_us(stat->d_time),
1458                            stat->d_alltlb, stat->d_onetlb, stat->d_multmsg,
1459                            stat->d_nomsg, stat->d_retries, stat->d_canceled,
1460                            stat->d_nocanceled, stat->d_resets,
1461                            stat->d_rcanceled);
1462         }
1463         return 0;
1464 }
1465
1466 /*
1467  * Display the tunables thru debugfs
1468  */
1469 static ssize_t tunables_read(struct file *file, char __user *userbuf,
1470                                 size_t count, loff_t *ppos)
1471 {
1472         char *buf;
1473         int ret;
1474
1475         buf = kasprintf(GFP_KERNEL, "%s %s %s\n%d %d %d %d %d %d %d %d %d %d\n",
1476                 "max_concur plugged_delay plugsb4reset timeoutsb4reset",
1477                 "ipi_reset_limit complete_threshold congested_response_us",
1478                 "congested_reps disabled_period giveup_limit",
1479                 max_concurr, plugged_delay, plugsb4reset,
1480                 timeoutsb4reset, ipi_reset_limit, complete_threshold,
1481                 congested_respns_us, congested_reps, disabled_period,
1482                 giveup_limit);
1483
1484         if (!buf)
1485                 return -ENOMEM;
1486
1487         ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
1488         kfree(buf);
1489         return ret;
1490 }
1491
1492 /*
1493  * handle a write to /proc/sgi_uv/ptc_statistics
1494  * -1: reset the statistics
1495  *  0: display meaning of the statistics
1496  */
1497 static ssize_t ptc_proc_write(struct file *file, const char __user *user,
1498                                 size_t count, loff_t *data)
1499 {
1500         int cpu;
1501         int i;
1502         int elements;
1503         long input_arg;
1504         char optstr[64];
1505         struct ptc_stats *stat;
1506
1507         if (count == 0 || count > sizeof(optstr))
1508                 return -EINVAL;
1509         if (copy_from_user(optstr, user, count))
1510                 return -EFAULT;
1511         optstr[count - 1] = '\0';
1512
1513         if (!strcmp(optstr, "on")) {
1514                 set_bau_on();
1515                 return count;
1516         } else if (!strcmp(optstr, "off")) {
1517                 set_bau_off();
1518                 return count;
1519         }
1520
1521         if (kstrtol(optstr, 10, &input_arg) < 0) {
1522                 pr_debug("%s is invalid\n", optstr);
1523                 return -EINVAL;
1524         }
1525
1526         if (input_arg == 0) {
1527                 elements = ARRAY_SIZE(stat_description);
1528                 pr_debug("# cpu:      cpu number\n");
1529                 pr_debug("Sender statistics:\n");
1530                 for (i = 0; i < elements; i++)
1531                         pr_debug("%s\n", stat_description[i]);
1532         } else if (input_arg == -1) {
1533                 for_each_present_cpu(cpu) {
1534                         stat = &per_cpu(ptcstats, cpu);
1535                         memset(stat, 0, sizeof(struct ptc_stats));
1536                 }
1537         }
1538
1539         return count;
1540 }
1541
1542 static int local_atoi(const char *name)
1543 {
1544         int val = 0;
1545
1546         for (;; name++) {
1547                 switch (*name) {
1548                 case '0' ... '9':
1549                         val = 10*val+(*name-'0');
1550                         break;
1551                 default:
1552                         return val;
1553                 }
1554         }
1555 }
1556
1557 /*
1558  * Parse the values written to /sys/kernel/debug/sgi_uv/bau_tunables.
1559  * Zero values reset them to defaults.
1560  */
1561 static int parse_tunables_write(struct bau_control *bcp, char *instr,
1562                                 int count)
1563 {
1564         char *p;
1565         char *q;
1566         int cnt = 0;
1567         int val;
1568         int e = ARRAY_SIZE(tunables);
1569
1570         p = instr + strspn(instr, WHITESPACE);
1571         q = p;
1572         for (; *p; p = q + strspn(q, WHITESPACE)) {
1573                 q = p + strcspn(p, WHITESPACE);
1574                 cnt++;
1575                 if (q == p)
1576                         break;
1577         }
1578         if (cnt != e) {
1579                 pr_info("bau tunable error: should be %d values\n", e);
1580                 return -EINVAL;
1581         }
1582
1583         p = instr + strspn(instr, WHITESPACE);
1584         q = p;
1585         for (cnt = 0; *p; p = q + strspn(q, WHITESPACE), cnt++) {
1586                 q = p + strcspn(p, WHITESPACE);
1587                 val = local_atoi(p);
1588                 switch (cnt) {
1589                 case 0:
1590                         if (val == 0) {
1591                                 max_concurr = MAX_BAU_CONCURRENT;
1592                                 max_concurr_const = MAX_BAU_CONCURRENT;
1593                                 continue;
1594                         }
1595                         if (val < 1 || val > bcp->cpus_in_uvhub) {
1596                                 pr_debug(
1597                                 "Error: BAU max concurrent %d is invalid\n",
1598                                 val);
1599                                 return -EINVAL;
1600                         }
1601                         max_concurr = val;
1602                         max_concurr_const = val;
1603                         continue;
1604                 default:
1605                         if (val == 0)
1606                                 *tunables[cnt].tunp = tunables[cnt].deflt;
1607                         else
1608                                 *tunables[cnt].tunp = val;
1609                         continue;
1610                 }
1611                 if (q == p)
1612                         break;
1613         }
1614         return 0;
1615 }
1616
1617 /*
1618  * Handle a write to debugfs. (/sys/kernel/debug/sgi_uv/bau_tunables)
1619  */
1620 static ssize_t tunables_write(struct file *file, const char __user *user,
1621                                 size_t count, loff_t *data)
1622 {
1623         int cpu;
1624         int ret;
1625         char instr[100];
1626         struct bau_control *bcp;
1627
1628         if (count == 0 || count > sizeof(instr)-1)
1629                 return -EINVAL;
1630         if (copy_from_user(instr, user, count))
1631                 return -EFAULT;
1632
1633         instr[count] = '\0';
1634
1635         cpu = get_cpu();
1636         bcp = &per_cpu(bau_control, cpu);
1637         ret = parse_tunables_write(bcp, instr, count);
1638         put_cpu();
1639         if (ret)
1640                 return ret;
1641
1642         for_each_present_cpu(cpu) {
1643                 bcp = &per_cpu(bau_control, cpu);
1644                 bcp->max_concurr         = max_concurr;
1645                 bcp->max_concurr_const   = max_concurr;
1646                 bcp->plugged_delay       = plugged_delay;
1647                 bcp->plugsb4reset        = plugsb4reset;
1648                 bcp->timeoutsb4reset     = timeoutsb4reset;
1649                 bcp->ipi_reset_limit     = ipi_reset_limit;
1650                 bcp->complete_threshold  = complete_threshold;
1651                 bcp->cong_response_us    = congested_respns_us;
1652                 bcp->cong_reps           = congested_reps;
1653                 bcp->disabled_period     = sec_2_cycles(disabled_period);
1654                 bcp->giveup_limit        = giveup_limit;
1655         }
1656         return count;
1657 }
1658
1659 static const struct seq_operations uv_ptc_seq_ops = {
1660         .start          = ptc_seq_start,
1661         .next           = ptc_seq_next,
1662         .stop           = ptc_seq_stop,
1663         .show           = ptc_seq_show
1664 };
1665
1666 static int ptc_proc_open(struct inode *inode, struct file *file)
1667 {
1668         return seq_open(file, &uv_ptc_seq_ops);
1669 }
1670
1671 static int tunables_open(struct inode *inode, struct file *file)
1672 {
1673         return 0;
1674 }
1675
1676 static const struct file_operations proc_uv_ptc_operations = {
1677         .open           = ptc_proc_open,
1678         .read           = seq_read,
1679         .write          = ptc_proc_write,
1680         .llseek         = seq_lseek,
1681         .release        = seq_release,
1682 };
1683
1684 static const struct file_operations tunables_fops = {
1685         .open           = tunables_open,
1686         .read           = tunables_read,
1687         .write          = tunables_write,
1688         .llseek         = default_llseek,
1689 };
1690
1691 static int __init uv_ptc_init(void)
1692 {
1693         struct proc_dir_entry *proc_uv_ptc;
1694
1695         if (!is_uv_system())
1696                 return 0;
1697
1698         proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
1699                                   &proc_uv_ptc_operations);
1700         if (!proc_uv_ptc) {
1701                 pr_err("unable to create %s proc entry\n",
1702                        UV_PTC_BASENAME);
1703                 return -EINVAL;
1704         }
1705
1706         tunables_dir = debugfs_create_dir(UV_BAU_TUNABLES_DIR, NULL);
1707         if (!tunables_dir) {
1708                 pr_err("unable to create debugfs directory %s\n",
1709                        UV_BAU_TUNABLES_DIR);
1710                 return -EINVAL;
1711         }
1712         tunables_file = debugfs_create_file(UV_BAU_TUNABLES_FILE, 0600,
1713                                         tunables_dir, NULL, &tunables_fops);
1714         if (!tunables_file) {
1715                 pr_err("unable to create debugfs file %s\n",
1716                        UV_BAU_TUNABLES_FILE);
1717                 return -EINVAL;
1718         }
1719         return 0;
1720 }
1721
1722 /*
1723  * Initialize the sending side's sending buffers.
1724  */
1725 static void activation_descriptor_init(int node, int pnode, int base_pnode)
1726 {
1727         int i;
1728         int cpu;
1729         int uv1 = 0;
1730         unsigned long gpa;
1731         unsigned long m;
1732         unsigned long n;
1733         size_t dsize;
1734         struct bau_desc *bau_desc;
1735         struct bau_desc *bd2;
1736         struct uv1_bau_msg_header *uv1_hdr;
1737         struct uv2_3_bau_msg_header *uv2_3_hdr;
1738         struct bau_control *bcp;
1739
1740         /*
1741          * each bau_desc is 64 bytes; there are 8 (ITEMS_PER_DESC)
1742          * per cpu; and one per cpu on the uvhub (ADP_SZ)
1743          */
1744         dsize = sizeof(struct bau_desc) * ADP_SZ * ITEMS_PER_DESC;
1745         bau_desc = kmalloc_node(dsize, GFP_KERNEL, node);
1746         BUG_ON(!bau_desc);
1747
1748         gpa = uv_gpa(bau_desc);
1749         n = uv_gpa_to_gnode(gpa);
1750         m = ops.bau_gpa_to_offset(gpa);
1751         if (is_uv1_hub())
1752                 uv1 = 1;
1753
1754         /* the 14-bit pnode */
1755         write_mmr_descriptor_base(pnode, (n << UV_DESC_PSHIFT | m));
1756         /*
1757          * Initializing all 8 (ITEMS_PER_DESC) descriptors for each
1758          * cpu even though we only use the first one; one descriptor can
1759          * describe a broadcast to 256 uv hubs.
1760          */
1761         for (i = 0, bd2 = bau_desc; i < (ADP_SZ * ITEMS_PER_DESC); i++, bd2++) {
1762                 memset(bd2, 0, sizeof(struct bau_desc));
1763                 if (uv1) {
1764                         uv1_hdr = &bd2->header.uv1_hdr;
1765                         uv1_hdr->swack_flag = 1;
1766                         /*
1767                          * The base_dest_nasid set in the message header
1768                          * is the nasid of the first uvhub in the partition.
1769                          * The bit map will indicate destination pnode numbers
1770                          * relative to that base. They may not be consecutive
1771                          * if nasid striding is being used.
1772                          */
1773                         uv1_hdr->base_dest_nasid =
1774                                                   UV_PNODE_TO_NASID(base_pnode);
1775                         uv1_hdr->dest_subnodeid  = UV_LB_SUBNODEID;
1776                         uv1_hdr->command         = UV_NET_ENDPOINT_INTD;
1777                         uv1_hdr->int_both        = 1;
1778                         /*
1779                          * all others need to be set to zero:
1780                          *   fairness chaining multilevel count replied_to
1781                          */
1782                 } else {
1783                         /*
1784                          * BIOS uses legacy mode, but uv2 and uv3 hardware always
1785                          * uses native mode for selective broadcasts.
1786                          */
1787                         uv2_3_hdr = &bd2->header.uv2_3_hdr;
1788                         uv2_3_hdr->swack_flag      = 1;
1789                         uv2_3_hdr->base_dest_nasid =
1790                                                   UV_PNODE_TO_NASID(base_pnode);
1791                         uv2_3_hdr->dest_subnodeid  = UV_LB_SUBNODEID;
1792                         uv2_3_hdr->command         = UV_NET_ENDPOINT_INTD;
1793                 }
1794         }
1795         for_each_present_cpu(cpu) {
1796                 if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu)))
1797                         continue;
1798                 bcp = &per_cpu(bau_control, cpu);
1799                 bcp->descriptor_base = bau_desc;
1800         }
1801 }
1802
1803 /*
1804  * initialize the destination side's receiving buffers
1805  * entered for each uvhub in the partition
1806  * - node is first node (kernel memory notion) on the uvhub
1807  * - pnode is the uvhub's physical identifier
1808  */
1809 static void pq_init(int node, int pnode)
1810 {
1811         int cpu;
1812         size_t plsize;
1813         char *cp;
1814         void *vp;
1815         unsigned long gnode, first, last, tail;
1816         struct bau_pq_entry *pqp;
1817         struct bau_control *bcp;
1818
1819         plsize = (DEST_Q_SIZE + 1) * sizeof(struct bau_pq_entry);
1820         vp = kmalloc_node(plsize, GFP_KERNEL, node);
1821         pqp = (struct bau_pq_entry *)vp;
1822         BUG_ON(!pqp);
1823
1824         cp = (char *)pqp + 31;
1825         pqp = (struct bau_pq_entry *)(((unsigned long)cp >> 5) << 5);
1826
1827         for_each_present_cpu(cpu) {
1828                 if (pnode != uv_cpu_to_pnode(cpu))
1829                         continue;
1830                 /* for every cpu on this pnode: */
1831                 bcp = &per_cpu(bau_control, cpu);
1832                 bcp->queue_first        = pqp;
1833                 bcp->bau_msg_head       = pqp;
1834                 bcp->queue_last         = pqp + (DEST_Q_SIZE - 1);
1835         }
1836
1837         first = ops.bau_gpa_to_offset(uv_gpa(pqp));
1838         last = ops.bau_gpa_to_offset(uv_gpa(pqp + (DEST_Q_SIZE - 1)));
1839
1840         /*
1841          * Pre UV4, the gnode is required to locate the payload queue
1842          * and the payload queue tail must be maintained by the kernel.
1843          */
1844         bcp = &per_cpu(bau_control, smp_processor_id());
1845         if (bcp->uvhub_version <= UV_BAU_V3) {
1846                 tail = first;
1847                 gnode = uv_gpa_to_gnode(uv_gpa(pqp));
1848                 first = (gnode << UV_PAYLOADQ_GNODE_SHIFT) | tail;
1849                 write_mmr_payload_tail(pnode, tail);
1850         }
1851
1852         ops.write_payload_first(pnode, first);
1853         ops.write_payload_last(pnode, last);
1854
1855         /* in effect, all msg_type's are set to MSG_NOOP */
1856         memset(pqp, 0, sizeof(struct bau_pq_entry) * DEST_Q_SIZE);
1857 }
1858
1859 /*
1860  * Initialization of each UV hub's structures
1861  */
1862 static void __init init_uvhub(int uvhub, int vector, int base_pnode)
1863 {
1864         int node;
1865         int pnode;
1866         unsigned long apicid;
1867
1868         node = uvhub_to_first_node(uvhub);
1869         pnode = uv_blade_to_pnode(uvhub);
1870
1871         activation_descriptor_init(node, pnode, base_pnode);
1872
1873         pq_init(node, pnode);
1874         /*
1875          * The below initialization can't be in firmware because the
1876          * messaging IRQ will be determined by the OS.
1877          */
1878         apicid = uvhub_to_first_apicid(uvhub) | uv_apicid_hibits;
1879         write_mmr_data_config(pnode, ((apicid << 32) | vector));
1880 }
1881
1882 /*
1883  * We will set BAU_MISC_CONTROL with a timeout period.
1884  * But the BIOS has set UVH_AGING_PRESCALE_SEL and UVH_TRANSACTION_TIMEOUT.
1885  * So the destination timeout period has to be calculated from them.
1886  */
1887 static int calculate_destination_timeout(void)
1888 {
1889         unsigned long mmr_image;
1890         int mult1;
1891         int mult2;
1892         int index;
1893         int base;
1894         int ret;
1895         unsigned long ts_ns;
1896
1897         if (is_uv1_hub()) {
1898                 mult1 = SOFTACK_TIMEOUT_PERIOD & BAU_MISC_CONTROL_MULT_MASK;
1899                 mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
1900                 index = (mmr_image >> BAU_URGENCY_7_SHIFT) & BAU_URGENCY_7_MASK;
1901                 mmr_image = uv_read_local_mmr(UVH_TRANSACTION_TIMEOUT);
1902                 mult2 = (mmr_image >> BAU_TRANS_SHIFT) & BAU_TRANS_MASK;
1903                 ts_ns = timeout_base_ns[index];
1904                 ts_ns *= (mult1 * mult2);
1905                 ret = ts_ns / 1000;
1906         } else {
1907                 /* same destination timeout for uv2 and uv3 */
1908                 /* 4 bits  0/1 for 10/80us base, 3 bits of multiplier */
1909                 mmr_image = uv_read_local_mmr(UVH_LB_BAU_MISC_CONTROL);
1910                 mmr_image = (mmr_image & UV_SA_MASK) >> UV_SA_SHFT;
1911                 if (mmr_image & (1L << UV2_ACK_UNITS_SHFT))
1912                         base = 80;
1913                 else
1914                         base = 10;
1915                 mult1 = mmr_image & UV2_ACK_MASK;
1916                 ret = mult1 * base;
1917         }
1918         return ret;
1919 }
1920
1921 static void __init init_per_cpu_tunables(void)
1922 {
1923         int cpu;
1924         struct bau_control *bcp;
1925
1926         for_each_present_cpu(cpu) {
1927                 bcp = &per_cpu(bau_control, cpu);
1928                 bcp->baudisabled                = 0;
1929                 if (nobau)
1930                         bcp->nobau              = true;
1931                 bcp->statp                      = &per_cpu(ptcstats, cpu);
1932                 /* time interval to catch a hardware stay-busy bug */
1933                 bcp->timeout_interval           = usec_2_cycles(2*timeout_us);
1934                 bcp->max_concurr                = max_concurr;
1935                 bcp->max_concurr_const          = max_concurr;
1936                 bcp->plugged_delay              = plugged_delay;
1937                 bcp->plugsb4reset               = plugsb4reset;
1938                 bcp->timeoutsb4reset            = timeoutsb4reset;
1939                 bcp->ipi_reset_limit            = ipi_reset_limit;
1940                 bcp->complete_threshold         = complete_threshold;
1941                 bcp->cong_response_us           = congested_respns_us;
1942                 bcp->cong_reps                  = congested_reps;
1943                 bcp->disabled_period            = sec_2_cycles(disabled_period);
1944                 bcp->giveup_limit               = giveup_limit;
1945                 spin_lock_init(&bcp->queue_lock);
1946                 spin_lock_init(&bcp->uvhub_lock);
1947                 spin_lock_init(&bcp->disable_lock);
1948         }
1949 }
1950
1951 /*
1952  * Scan all cpus to collect blade and socket summaries.
1953  */
1954 static int __init get_cpu_topology(int base_pnode,
1955                                         struct uvhub_desc *uvhub_descs,
1956                                         unsigned char *uvhub_mask)
1957 {
1958         int cpu;
1959         int pnode;
1960         int uvhub;
1961         int socket;
1962         struct bau_control *bcp;
1963         struct uvhub_desc *bdp;
1964         struct socket_desc *sdp;
1965
1966         for_each_present_cpu(cpu) {
1967                 bcp = &per_cpu(bau_control, cpu);
1968
1969                 memset(bcp, 0, sizeof(struct bau_control));
1970
1971                 pnode = uv_cpu_hub_info(cpu)->pnode;
1972                 if ((pnode - base_pnode) >= UV_DISTRIBUTION_SIZE) {
1973                         pr_emerg(
1974                                 "cpu %d pnode %d-%d beyond %d; BAU disabled\n",
1975                                 cpu, pnode, base_pnode, UV_DISTRIBUTION_SIZE);
1976                         return 1;
1977                 }
1978
1979                 bcp->osnode = cpu_to_node(cpu);
1980                 bcp->partition_base_pnode = base_pnode;
1981
1982                 uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
1983                 *(uvhub_mask + (uvhub/8)) |= (1 << (uvhub%8));
1984                 bdp = &uvhub_descs[uvhub];
1985
1986                 bdp->num_cpus++;
1987                 bdp->uvhub = uvhub;
1988                 bdp->pnode = pnode;
1989
1990                 /* kludge: 'assuming' one node per socket, and assuming that
1991                    disabling a socket just leaves a gap in node numbers */
1992                 socket = bcp->osnode & 1;
1993                 bdp->socket_mask |= (1 << socket);
1994                 sdp = &bdp->socket[socket];
1995                 sdp->cpu_number[sdp->num_cpus] = cpu;
1996                 sdp->num_cpus++;
1997                 if (sdp->num_cpus > MAX_CPUS_PER_SOCKET) {
1998                         pr_emerg("%d cpus per socket invalid\n",
1999                                 sdp->num_cpus);
2000                         return 1;
2001                 }
2002         }
2003         return 0;
2004 }
2005
2006 /*
2007  * Each socket is to get a local array of pnodes/hubs.
2008  */
2009 static void make_per_cpu_thp(struct bau_control *smaster)
2010 {
2011         int cpu;
2012         size_t hpsz = sizeof(struct hub_and_pnode) * num_possible_cpus();
2013
2014         smaster->thp = kmalloc_node(hpsz, GFP_KERNEL, smaster->osnode);
2015         memset(smaster->thp, 0, hpsz);
2016         for_each_present_cpu(cpu) {
2017                 smaster->thp[cpu].pnode = uv_cpu_hub_info(cpu)->pnode;
2018                 smaster->thp[cpu].uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
2019         }
2020 }
2021
2022 /*
2023  * Each uvhub is to get a local cpumask.
2024  */
2025 static void make_per_hub_cpumask(struct bau_control *hmaster)
2026 {
2027         int sz = sizeof(cpumask_t);
2028
2029         hmaster->cpumask = kzalloc_node(sz, GFP_KERNEL, hmaster->osnode);
2030 }
2031
2032 /*
2033  * Initialize all the per_cpu information for the cpu's on a given socket,
2034  * given what has been gathered into the socket_desc struct.
2035  * And reports the chosen hub and socket masters back to the caller.
2036  */
2037 static int scan_sock(struct socket_desc *sdp, struct uvhub_desc *bdp,
2038                         struct bau_control **smasterp,
2039                         struct bau_control **hmasterp)
2040 {
2041         int i, cpu, uvhub_cpu;
2042         struct bau_control *bcp;
2043
2044         for (i = 0; i < sdp->num_cpus; i++) {
2045                 cpu = sdp->cpu_number[i];
2046                 bcp = &per_cpu(bau_control, cpu);
2047                 bcp->cpu = cpu;
2048                 if (i == 0) {
2049                         *smasterp = bcp;
2050                         if (!(*hmasterp))
2051                                 *hmasterp = bcp;
2052                 }
2053                 bcp->cpus_in_uvhub = bdp->num_cpus;
2054                 bcp->cpus_in_socket = sdp->num_cpus;
2055                 bcp->socket_master = *smasterp;
2056                 bcp->uvhub = bdp->uvhub;
2057                 if (is_uv1_hub())
2058                         bcp->uvhub_version = UV_BAU_V1;
2059                 else if (is_uv2_hub())
2060                         bcp->uvhub_version = UV_BAU_V2;
2061                 else if (is_uv3_hub())
2062                         bcp->uvhub_version = UV_BAU_V3;
2063                 else if (is_uv4_hub())
2064                         bcp->uvhub_version = UV_BAU_V4;
2065                 else {
2066                         pr_emerg("uvhub version not 1, 2, 3, or 4\n");
2067                         return 1;
2068                 }
2069                 bcp->uvhub_master = *hmasterp;
2070                 uvhub_cpu = uv_cpu_blade_processor_id(cpu);
2071                 bcp->uvhub_cpu = uvhub_cpu;
2072
2073                 /*
2074                  * The ERROR and BUSY status registers are located pairwise over
2075                  * the STATUS_0 and STATUS_1 mmrs; each an array[32] of 2 bits.
2076                  */
2077                 if (uvhub_cpu < UV_CPUS_PER_AS) {
2078                         bcp->status_mmr = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
2079                         bcp->status_index = uvhub_cpu * UV_ACT_STATUS_SIZE;
2080                 } else {
2081                         bcp->status_mmr = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
2082                         bcp->status_index = (uvhub_cpu - UV_CPUS_PER_AS)
2083                                                 * UV_ACT_STATUS_SIZE;
2084                 }
2085
2086                 if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) {
2087                         pr_emerg("%d cpus per uvhub invalid\n",
2088                                 bcp->uvhub_cpu);
2089                         return 1;
2090                 }
2091         }
2092         return 0;
2093 }
2094
2095 /*
2096  * Summarize the blade and socket topology into the per_cpu structures.
2097  */
2098 static int __init summarize_uvhub_sockets(int nuvhubs,
2099                         struct uvhub_desc *uvhub_descs,
2100                         unsigned char *uvhub_mask)
2101 {
2102         int socket;
2103         int uvhub;
2104         unsigned short socket_mask;
2105
2106         for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
2107                 struct uvhub_desc *bdp;
2108                 struct bau_control *smaster = NULL;
2109                 struct bau_control *hmaster = NULL;
2110
2111                 if (!(*(uvhub_mask + (uvhub/8)) & (1 << (uvhub%8))))
2112                         continue;
2113
2114                 bdp = &uvhub_descs[uvhub];
2115                 socket_mask = bdp->socket_mask;
2116                 socket = 0;
2117                 while (socket_mask) {
2118                         struct socket_desc *sdp;
2119                         if ((socket_mask & 1)) {
2120                                 sdp = &bdp->socket[socket];
2121                                 if (scan_sock(sdp, bdp, &smaster, &hmaster))
2122                                         return 1;
2123                                 make_per_cpu_thp(smaster);
2124                         }
2125                         socket++;
2126                         socket_mask = (socket_mask >> 1);
2127                 }
2128                 make_per_hub_cpumask(hmaster);
2129         }
2130         return 0;
2131 }
2132
2133 /*
2134  * initialize the bau_control structure for each cpu
2135  */
2136 static int __init init_per_cpu(int nuvhubs, int base_part_pnode)
2137 {
2138         unsigned char *uvhub_mask;
2139         void *vp;
2140         struct uvhub_desc *uvhub_descs;
2141
2142         if (is_uv3_hub() || is_uv2_hub() || is_uv1_hub())
2143                 timeout_us = calculate_destination_timeout();
2144
2145         vp = kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL);
2146         uvhub_descs = (struct uvhub_desc *)vp;
2147         memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc));
2148         uvhub_mask = kzalloc((nuvhubs+7)/8, GFP_KERNEL);
2149
2150         if (get_cpu_topology(base_part_pnode, uvhub_descs, uvhub_mask))
2151                 goto fail;
2152
2153         if (summarize_uvhub_sockets(nuvhubs, uvhub_descs, uvhub_mask))
2154                 goto fail;
2155
2156         kfree(uvhub_descs);
2157         kfree(uvhub_mask);
2158         init_per_cpu_tunables();
2159         return 0;
2160
2161 fail:
2162         kfree(uvhub_descs);
2163         kfree(uvhub_mask);
2164         return 1;
2165 }
2166
2167 static const struct bau_operations uv1_bau_ops __initconst = {
2168         .bau_gpa_to_offset       = uv_gpa_to_offset,
2169         .read_l_sw_ack           = read_mmr_sw_ack,
2170         .read_g_sw_ack           = read_gmmr_sw_ack,
2171         .write_l_sw_ack          = write_mmr_sw_ack,
2172         .write_g_sw_ack          = write_gmmr_sw_ack,
2173         .write_payload_first     = write_mmr_payload_first,
2174         .write_payload_last      = write_mmr_payload_last,
2175         .wait_completion         = uv1_wait_completion,
2176 };
2177
2178 static const struct bau_operations uv2_3_bau_ops __initconst = {
2179         .bau_gpa_to_offset       = uv_gpa_to_offset,
2180         .read_l_sw_ack           = read_mmr_sw_ack,
2181         .read_g_sw_ack           = read_gmmr_sw_ack,
2182         .write_l_sw_ack          = write_mmr_sw_ack,
2183         .write_g_sw_ack          = write_gmmr_sw_ack,
2184         .write_payload_first     = write_mmr_payload_first,
2185         .write_payload_last      = write_mmr_payload_last,
2186         .wait_completion         = uv2_3_wait_completion,
2187 };
2188
2189 static const struct bau_operations uv4_bau_ops __initconst = {
2190         .bau_gpa_to_offset       = uv_gpa_to_soc_phys_ram,
2191         .read_l_sw_ack           = read_mmr_proc_sw_ack,
2192         .read_g_sw_ack           = read_gmmr_proc_sw_ack,
2193         .write_l_sw_ack          = write_mmr_proc_sw_ack,
2194         .write_g_sw_ack          = write_gmmr_proc_sw_ack,
2195         .write_payload_first     = write_mmr_proc_payload_first,
2196         .write_payload_last      = write_mmr_proc_payload_last,
2197         .wait_completion         = uv4_wait_completion,
2198 };
2199
2200 /*
2201  * Initialization of BAU-related structures
2202  */
2203 static int __init uv_bau_init(void)
2204 {
2205         int uvhub;
2206         int pnode;
2207         int nuvhubs;
2208         int cur_cpu;
2209         int cpus;
2210         int vector;
2211         cpumask_var_t *mask;
2212
2213         if (!is_uv_system())
2214                 return 0;
2215
2216         if (is_uv4_hub())
2217                 ops = uv4_bau_ops;
2218         else if (is_uv3_hub())
2219                 ops = uv2_3_bau_ops;
2220         else if (is_uv2_hub())
2221                 ops = uv2_3_bau_ops;
2222         else if (is_uv1_hub())
2223                 ops = uv1_bau_ops;
2224
2225         for_each_possible_cpu(cur_cpu) {
2226                 mask = &per_cpu(uv_flush_tlb_mask, cur_cpu);
2227                 zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cur_cpu));
2228         }
2229
2230         nuvhubs = uv_num_possible_blades();
2231         congested_cycles = usec_2_cycles(congested_respns_us);
2232
2233         uv_base_pnode = 0x7fffffff;
2234         for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
2235                 cpus = uv_blade_nr_possible_cpus(uvhub);
2236                 if (cpus && (uv_blade_to_pnode(uvhub) < uv_base_pnode))
2237                         uv_base_pnode = uv_blade_to_pnode(uvhub);
2238         }
2239
2240         /* software timeouts are not supported on UV4 */
2241         if (is_uv3_hub() || is_uv2_hub() || is_uv1_hub())
2242                 enable_timeouts();
2243
2244         if (init_per_cpu(nuvhubs, uv_base_pnode)) {
2245                 set_bau_off();
2246                 nobau_perm = 1;
2247                 return 0;
2248         }
2249
2250         vector = UV_BAU_MESSAGE;
2251         for_each_possible_blade(uvhub) {
2252                 if (uv_blade_nr_possible_cpus(uvhub))
2253                         init_uvhub(uvhub, vector, uv_base_pnode);
2254         }
2255
2256         alloc_intr_gate(vector, uv_bau_message_intr1);
2257
2258         for_each_possible_blade(uvhub) {
2259                 if (uv_blade_nr_possible_cpus(uvhub)) {
2260                         unsigned long val;
2261                         unsigned long mmr;
2262                         pnode = uv_blade_to_pnode(uvhub);
2263                         /* INIT the bau */
2264                         val = 1L << 63;
2265                         write_gmmr_activation(pnode, val);
2266                         mmr = 1; /* should be 1 to broadcast to both sockets */
2267                         if (!is_uv1_hub())
2268                                 write_mmr_data_broadcast(pnode, mmr);
2269                 }
2270         }
2271
2272         return 0;
2273 }
2274 core_initcall(uv_bau_init);
2275 fs_initcall(uv_ptc_init);