]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/xen/enlighten.c
Merge branch 'for-linus-4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[karo-tx-linux.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/export.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35 #include <linux/frame.h>
36
37 #include <linux/kexec.h>
38
39 #include <xen/xen.h>
40 #include <xen/events.h>
41 #include <xen/interface/xen.h>
42 #include <xen/interface/version.h>
43 #include <xen/interface/physdev.h>
44 #include <xen/interface/vcpu.h>
45 #include <xen/interface/memory.h>
46 #include <xen/interface/nmi.h>
47 #include <xen/interface/xen-mca.h>
48 #include <xen/interface/hvm/start_info.h>
49 #include <xen/features.h>
50 #include <xen/page.h>
51 #include <xen/hvm.h>
52 #include <xen/hvc-console.h>
53 #include <xen/acpi.h>
54
55 #include <asm/paravirt.h>
56 #include <asm/apic.h>
57 #include <asm/page.h>
58 #include <asm/xen/pci.h>
59 #include <asm/xen/hypercall.h>
60 #include <asm/xen/hypervisor.h>
61 #include <asm/xen/cpuid.h>
62 #include <asm/fixmap.h>
63 #include <asm/processor.h>
64 #include <asm/proto.h>
65 #include <asm/msr-index.h>
66 #include <asm/traps.h>
67 #include <asm/setup.h>
68 #include <asm/desc.h>
69 #include <asm/pgalloc.h>
70 #include <asm/pgtable.h>
71 #include <asm/tlbflush.h>
72 #include <asm/reboot.h>
73 #include <asm/stackprotector.h>
74 #include <asm/hypervisor.h>
75 #include <asm/mach_traps.h>
76 #include <asm/mwait.h>
77 #include <asm/pci_x86.h>
78 #include <asm/cpu.h>
79
80 #ifdef CONFIG_ACPI
81 #include <linux/acpi.h>
82 #include <asm/acpi.h>
83 #include <acpi/pdc_intel.h>
84 #include <acpi/processor.h>
85 #include <xen/interface/platform.h>
86 #endif
87
88 #include "xen-ops.h"
89 #include "mmu.h"
90 #include "smp.h"
91 #include "multicalls.h"
92 #include "pmu.h"
93
94 EXPORT_SYMBOL_GPL(hypercall_page);
95
96 /*
97  * Pointer to the xen_vcpu_info structure or
98  * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
99  * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
100  * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
101  * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
102  * acknowledge pending events.
103  * Also more subtly it is used by the patched version of irq enable/disable
104  * e.g. xen_irq_enable_direct and xen_iret in PV mode.
105  *
106  * The desire to be able to do those mask/unmask operations as a single
107  * instruction by using the per-cpu offset held in %gs is the real reason
108  * vcpu info is in a per-cpu pointer and the original reason for this
109  * hypercall.
110  *
111  */
112 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
113
114 /*
115  * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
116  * hypercall. This can be used both in PV and PVHVM mode. The structure
117  * overrides the default per_cpu(xen_vcpu, cpu) value.
118  */
119 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
120
121 /* Linux <-> Xen vCPU id mapping */
122 DEFINE_PER_CPU(uint32_t, xen_vcpu_id);
123 EXPORT_PER_CPU_SYMBOL(xen_vcpu_id);
124
125 enum xen_domain_type xen_domain_type = XEN_NATIVE;
126 EXPORT_SYMBOL_GPL(xen_domain_type);
127
128 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
129 EXPORT_SYMBOL(machine_to_phys_mapping);
130 unsigned long  machine_to_phys_nr;
131 EXPORT_SYMBOL(machine_to_phys_nr);
132
133 struct start_info *xen_start_info;
134 EXPORT_SYMBOL_GPL(xen_start_info);
135
136 struct shared_info xen_dummy_shared_info;
137
138 void *xen_initial_gdt;
139
140 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
141
142 static int xen_cpu_up_prepare(unsigned int cpu);
143 static int xen_cpu_up_online(unsigned int cpu);
144 static int xen_cpu_dead(unsigned int cpu);
145
146 /*
147  * Point at some empty memory to start with. We map the real shared_info
148  * page as soon as fixmap is up and running.
149  */
150 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
151
152 /*
153  * Flag to determine whether vcpu info placement is available on all
154  * VCPUs.  We assume it is to start with, and then set it to zero on
155  * the first failure.  This is because it can succeed on some VCPUs
156  * and not others, since it can involve hypervisor memory allocation,
157  * or because the guest failed to guarantee all the appropriate
158  * constraints on all VCPUs (ie buffer can't cross a page boundary).
159  *
160  * Note that any particular CPU may be using a placed vcpu structure,
161  * but we can only optimise if the all are.
162  *
163  * 0: not available, 1: available
164  */
165 static int have_vcpu_info_placement = 1;
166
167 struct tls_descs {
168         struct desc_struct desc[3];
169 };
170
171 /*
172  * Updating the 3 TLS descriptors in the GDT on every task switch is
173  * surprisingly expensive so we avoid updating them if they haven't
174  * changed.  Since Xen writes different descriptors than the one
175  * passed in the update_descriptor hypercall we keep shadow copies to
176  * compare against.
177  */
178 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
179
180 #ifdef CONFIG_XEN_PVH
181 /*
182  * PVH variables.
183  *
184  * xen_pvh and pvh_bootparams need to live in data segment since they
185  * are used after startup_{32|64}, which clear .bss, are invoked.
186  */
187 bool xen_pvh __attribute__((section(".data"))) = 0;
188 struct boot_params pvh_bootparams __attribute__((section(".data")));
189
190 struct hvm_start_info pvh_start_info;
191 unsigned int pvh_start_info_sz = sizeof(pvh_start_info);
192 #endif
193
194 static void clamp_max_cpus(void)
195 {
196 #ifdef CONFIG_SMP
197         if (setup_max_cpus > MAX_VIRT_CPUS)
198                 setup_max_cpus = MAX_VIRT_CPUS;
199 #endif
200 }
201
202 void xen_vcpu_setup(int cpu)
203 {
204         struct vcpu_register_vcpu_info info;
205         int err;
206         struct vcpu_info *vcpup;
207
208         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
209
210         /*
211          * This path is called twice on PVHVM - first during bootup via
212          * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
213          * hotplugged: cpu_up -> xen_hvm_cpu_notify.
214          * As we can only do the VCPUOP_register_vcpu_info once lets
215          * not over-write its result.
216          *
217          * For PV it is called during restore (xen_vcpu_restore) and bootup
218          * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
219          * use this function.
220          */
221         if (xen_hvm_domain()) {
222                 if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
223                         return;
224         }
225         if (xen_vcpu_nr(cpu) < MAX_VIRT_CPUS)
226                 per_cpu(xen_vcpu, cpu) =
227                         &HYPERVISOR_shared_info->vcpu_info[xen_vcpu_nr(cpu)];
228
229         if (!have_vcpu_info_placement) {
230                 if (cpu >= MAX_VIRT_CPUS)
231                         clamp_max_cpus();
232                 return;
233         }
234
235         vcpup = &per_cpu(xen_vcpu_info, cpu);
236         info.mfn = arbitrary_virt_to_mfn(vcpup);
237         info.offset = offset_in_page(vcpup);
238
239         /* Check to see if the hypervisor will put the vcpu_info
240            structure where we want it, which allows direct access via
241            a percpu-variable.
242            N.B. This hypercall can _only_ be called once per CPU. Subsequent
243            calls will error out with -EINVAL. This is due to the fact that
244            hypervisor has no unregister variant and this hypercall does not
245            allow to over-write info.mfn and info.offset.
246          */
247         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, xen_vcpu_nr(cpu),
248                                  &info);
249
250         if (err) {
251                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
252                 have_vcpu_info_placement = 0;
253                 clamp_max_cpus();
254         } else {
255                 /* This cpu is using the registered vcpu info, even if
256                    later ones fail to. */
257                 per_cpu(xen_vcpu, cpu) = vcpup;
258         }
259 }
260
261 /*
262  * On restore, set the vcpu placement up again.
263  * If it fails, then we're in a bad state, since
264  * we can't back out from using it...
265  */
266 void xen_vcpu_restore(void)
267 {
268         int cpu;
269
270         for_each_possible_cpu(cpu) {
271                 bool other_cpu = (cpu != smp_processor_id());
272                 bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, xen_vcpu_nr(cpu),
273                                                 NULL);
274
275                 if (other_cpu && is_up &&
276                     HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL))
277                         BUG();
278
279                 xen_setup_runstate_info(cpu);
280
281                 if (have_vcpu_info_placement)
282                         xen_vcpu_setup(cpu);
283
284                 if (other_cpu && is_up &&
285                     HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL))
286                         BUG();
287         }
288 }
289
290 static void __init xen_banner(void)
291 {
292         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
293         struct xen_extraversion extra;
294         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
295
296         pr_info("Booting paravirtualized kernel %son %s\n",
297                 xen_feature(XENFEAT_auto_translated_physmap) ?
298                         "with PVH extensions " : "", pv_info.name);
299         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
300                version >> 16, version & 0xffff, extra.extraversion,
301                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
302 }
303 /* Check if running on Xen version (major, minor) or later */
304 bool
305 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
306 {
307         unsigned int version;
308
309         if (!xen_domain())
310                 return false;
311
312         version = HYPERVISOR_xen_version(XENVER_version, NULL);
313         if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
314                 ((version >> 16) > major))
315                 return true;
316         return false;
317 }
318
319 #define CPUID_THERM_POWER_LEAF 6
320 #define APERFMPERF_PRESENT 0
321
322 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
323 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
324
325 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
326 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
327 static __read_mostly unsigned int cpuid_leaf5_edx_val;
328
329 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
330                       unsigned int *cx, unsigned int *dx)
331 {
332         unsigned maskebx = ~0;
333         unsigned maskecx = ~0;
334         unsigned maskedx = ~0;
335         unsigned setecx = 0;
336         /*
337          * Mask out inconvenient features, to try and disable as many
338          * unsupported kernel subsystems as possible.
339          */
340         switch (*ax) {
341         case 1:
342                 maskecx = cpuid_leaf1_ecx_mask;
343                 setecx = cpuid_leaf1_ecx_set_mask;
344                 maskedx = cpuid_leaf1_edx_mask;
345                 break;
346
347         case CPUID_MWAIT_LEAF:
348                 /* Synthesize the values.. */
349                 *ax = 0;
350                 *bx = 0;
351                 *cx = cpuid_leaf5_ecx_val;
352                 *dx = cpuid_leaf5_edx_val;
353                 return;
354
355         case CPUID_THERM_POWER_LEAF:
356                 /* Disabling APERFMPERF for kernel usage */
357                 maskecx = ~(1 << APERFMPERF_PRESENT);
358                 break;
359
360         case 0xb:
361                 /* Suppress extended topology stuff */
362                 maskebx = 0;
363                 break;
364         }
365
366         asm(XEN_EMULATE_PREFIX "cpuid"
367                 : "=a" (*ax),
368                   "=b" (*bx),
369                   "=c" (*cx),
370                   "=d" (*dx)
371                 : "0" (*ax), "2" (*cx));
372
373         *bx &= maskebx;
374         *cx &= maskecx;
375         *cx |= setecx;
376         *dx &= maskedx;
377 }
378 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
379
380 static bool __init xen_check_mwait(void)
381 {
382 #ifdef CONFIG_ACPI
383         struct xen_platform_op op = {
384                 .cmd                    = XENPF_set_processor_pminfo,
385                 .u.set_pminfo.id        = -1,
386                 .u.set_pminfo.type      = XEN_PM_PDC,
387         };
388         uint32_t buf[3];
389         unsigned int ax, bx, cx, dx;
390         unsigned int mwait_mask;
391
392         /* We need to determine whether it is OK to expose the MWAIT
393          * capability to the kernel to harvest deeper than C3 states from ACPI
394          * _CST using the processor_harvest_xen.c module. For this to work, we
395          * need to gather the MWAIT_LEAF values (which the cstate.c code
396          * checks against). The hypervisor won't expose the MWAIT flag because
397          * it would break backwards compatibility; so we will find out directly
398          * from the hardware and hypercall.
399          */
400         if (!xen_initial_domain())
401                 return false;
402
403         /*
404          * When running under platform earlier than Xen4.2, do not expose
405          * mwait, to avoid the risk of loading native acpi pad driver
406          */
407         if (!xen_running_on_version_or_later(4, 2))
408                 return false;
409
410         ax = 1;
411         cx = 0;
412
413         native_cpuid(&ax, &bx, &cx, &dx);
414
415         mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
416                      (1 << (X86_FEATURE_MWAIT % 32));
417
418         if ((cx & mwait_mask) != mwait_mask)
419                 return false;
420
421         /* We need to emulate the MWAIT_LEAF and for that we need both
422          * ecx and edx. The hypercall provides only partial information.
423          */
424
425         ax = CPUID_MWAIT_LEAF;
426         bx = 0;
427         cx = 0;
428         dx = 0;
429
430         native_cpuid(&ax, &bx, &cx, &dx);
431
432         /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
433          * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
434          */
435         buf[0] = ACPI_PDC_REVISION_ID;
436         buf[1] = 1;
437         buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
438
439         set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
440
441         if ((HYPERVISOR_platform_op(&op) == 0) &&
442             (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
443                 cpuid_leaf5_ecx_val = cx;
444                 cpuid_leaf5_edx_val = dx;
445         }
446         return true;
447 #else
448         return false;
449 #endif
450 }
451 static void __init xen_init_cpuid_mask(void)
452 {
453         unsigned int ax, bx, cx, dx;
454         unsigned int xsave_mask;
455
456         cpuid_leaf1_edx_mask =
457                 ~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
458                   (1 << X86_FEATURE_ACC));   /* thermal monitoring */
459
460         if (!xen_initial_domain())
461                 cpuid_leaf1_edx_mask &=
462                         ~((1 << X86_FEATURE_ACPI));  /* disable ACPI */
463
464         cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
465
466         ax = 1;
467         cx = 0;
468         cpuid(1, &ax, &bx, &cx, &dx);
469
470         xsave_mask =
471                 (1 << (X86_FEATURE_XSAVE % 32)) |
472                 (1 << (X86_FEATURE_OSXSAVE % 32));
473
474         /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
475         if ((cx & xsave_mask) != xsave_mask)
476                 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
477         if (xen_check_mwait())
478                 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
479 }
480
481 static void xen_set_debugreg(int reg, unsigned long val)
482 {
483         HYPERVISOR_set_debugreg(reg, val);
484 }
485
486 static unsigned long xen_get_debugreg(int reg)
487 {
488         return HYPERVISOR_get_debugreg(reg);
489 }
490
491 static void xen_end_context_switch(struct task_struct *next)
492 {
493         xen_mc_flush();
494         paravirt_end_context_switch(next);
495 }
496
497 static unsigned long xen_store_tr(void)
498 {
499         return 0;
500 }
501
502 /*
503  * Set the page permissions for a particular virtual address.  If the
504  * address is a vmalloc mapping (or other non-linear mapping), then
505  * find the linear mapping of the page and also set its protections to
506  * match.
507  */
508 static void set_aliased_prot(void *v, pgprot_t prot)
509 {
510         int level;
511         pte_t *ptep;
512         pte_t pte;
513         unsigned long pfn;
514         struct page *page;
515         unsigned char dummy;
516
517         ptep = lookup_address((unsigned long)v, &level);
518         BUG_ON(ptep == NULL);
519
520         pfn = pte_pfn(*ptep);
521         page = pfn_to_page(pfn);
522
523         pte = pfn_pte(pfn, prot);
524
525         /*
526          * Careful: update_va_mapping() will fail if the virtual address
527          * we're poking isn't populated in the page tables.  We don't
528          * need to worry about the direct map (that's always in the page
529          * tables), but we need to be careful about vmap space.  In
530          * particular, the top level page table can lazily propagate
531          * entries between processes, so if we've switched mms since we
532          * vmapped the target in the first place, we might not have the
533          * top-level page table entry populated.
534          *
535          * We disable preemption because we want the same mm active when
536          * we probe the target and when we issue the hypercall.  We'll
537          * have the same nominal mm, but if we're a kernel thread, lazy
538          * mm dropping could change our pgd.
539          *
540          * Out of an abundance of caution, this uses __get_user() to fault
541          * in the target address just in case there's some obscure case
542          * in which the target address isn't readable.
543          */
544
545         preempt_disable();
546
547         probe_kernel_read(&dummy, v, 1);
548
549         if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
550                 BUG();
551
552         if (!PageHighMem(page)) {
553                 void *av = __va(PFN_PHYS(pfn));
554
555                 if (av != v)
556                         if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
557                                 BUG();
558         } else
559                 kmap_flush_unused();
560
561         preempt_enable();
562 }
563
564 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
565 {
566         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
567         int i;
568
569         /*
570          * We need to mark the all aliases of the LDT pages RO.  We
571          * don't need to call vm_flush_aliases(), though, since that's
572          * only responsible for flushing aliases out the TLBs, not the
573          * page tables, and Xen will flush the TLB for us if needed.
574          *
575          * To avoid confusing future readers: none of this is necessary
576          * to load the LDT.  The hypervisor only checks this when the
577          * LDT is faulted in due to subsequent descriptor access.
578          */
579
580         for(i = 0; i < entries; i += entries_per_page)
581                 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
582 }
583
584 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
585 {
586         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
587         int i;
588
589         for(i = 0; i < entries; i += entries_per_page)
590                 set_aliased_prot(ldt + i, PAGE_KERNEL);
591 }
592
593 static void xen_set_ldt(const void *addr, unsigned entries)
594 {
595         struct mmuext_op *op;
596         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
597
598         trace_xen_cpu_set_ldt(addr, entries);
599
600         op = mcs.args;
601         op->cmd = MMUEXT_SET_LDT;
602         op->arg1.linear_addr = (unsigned long)addr;
603         op->arg2.nr_ents = entries;
604
605         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
606
607         xen_mc_issue(PARAVIRT_LAZY_CPU);
608 }
609
610 static void xen_load_gdt(const struct desc_ptr *dtr)
611 {
612         unsigned long va = dtr->address;
613         unsigned int size = dtr->size + 1;
614         unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
615         unsigned long frames[pages];
616         int f;
617
618         /*
619          * A GDT can be up to 64k in size, which corresponds to 8192
620          * 8-byte entries, or 16 4k pages..
621          */
622
623         BUG_ON(size > 65536);
624         BUG_ON(va & ~PAGE_MASK);
625
626         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
627                 int level;
628                 pte_t *ptep;
629                 unsigned long pfn, mfn;
630                 void *virt;
631
632                 /*
633                  * The GDT is per-cpu and is in the percpu data area.
634                  * That can be virtually mapped, so we need to do a
635                  * page-walk to get the underlying MFN for the
636                  * hypercall.  The page can also be in the kernel's
637                  * linear range, so we need to RO that mapping too.
638                  */
639                 ptep = lookup_address(va, &level);
640                 BUG_ON(ptep == NULL);
641
642                 pfn = pte_pfn(*ptep);
643                 mfn = pfn_to_mfn(pfn);
644                 virt = __va(PFN_PHYS(pfn));
645
646                 frames[f] = mfn;
647
648                 make_lowmem_page_readonly((void *)va);
649                 make_lowmem_page_readonly(virt);
650         }
651
652         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
653                 BUG();
654 }
655
656 /*
657  * load_gdt for early boot, when the gdt is only mapped once
658  */
659 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
660 {
661         unsigned long va = dtr->address;
662         unsigned int size = dtr->size + 1;
663         unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
664         unsigned long frames[pages];
665         int f;
666
667         /*
668          * A GDT can be up to 64k in size, which corresponds to 8192
669          * 8-byte entries, or 16 4k pages..
670          */
671
672         BUG_ON(size > 65536);
673         BUG_ON(va & ~PAGE_MASK);
674
675         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
676                 pte_t pte;
677                 unsigned long pfn, mfn;
678
679                 pfn = virt_to_pfn(va);
680                 mfn = pfn_to_mfn(pfn);
681
682                 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
683
684                 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
685                         BUG();
686
687                 frames[f] = mfn;
688         }
689
690         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
691                 BUG();
692 }
693
694 static inline bool desc_equal(const struct desc_struct *d1,
695                               const struct desc_struct *d2)
696 {
697         return d1->a == d2->a && d1->b == d2->b;
698 }
699
700 static void load_TLS_descriptor(struct thread_struct *t,
701                                 unsigned int cpu, unsigned int i)
702 {
703         struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
704         struct desc_struct *gdt;
705         xmaddr_t maddr;
706         struct multicall_space mc;
707
708         if (desc_equal(shadow, &t->tls_array[i]))
709                 return;
710
711         *shadow = t->tls_array[i];
712
713         gdt = get_cpu_gdt_table(cpu);
714         maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
715         mc = __xen_mc_entry(0);
716
717         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
718 }
719
720 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
721 {
722         /*
723          * XXX sleazy hack: If we're being called in a lazy-cpu zone
724          * and lazy gs handling is enabled, it means we're in a
725          * context switch, and %gs has just been saved.  This means we
726          * can zero it out to prevent faults on exit from the
727          * hypervisor if the next process has no %gs.  Either way, it
728          * has been saved, and the new value will get loaded properly.
729          * This will go away as soon as Xen has been modified to not
730          * save/restore %gs for normal hypercalls.
731          *
732          * On x86_64, this hack is not used for %gs, because gs points
733          * to KERNEL_GS_BASE (and uses it for PDA references), so we
734          * must not zero %gs on x86_64
735          *
736          * For x86_64, we need to zero %fs, otherwise we may get an
737          * exception between the new %fs descriptor being loaded and
738          * %fs being effectively cleared at __switch_to().
739          */
740         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
741 #ifdef CONFIG_X86_32
742                 lazy_load_gs(0);
743 #else
744                 loadsegment(fs, 0);
745 #endif
746         }
747
748         xen_mc_batch();
749
750         load_TLS_descriptor(t, cpu, 0);
751         load_TLS_descriptor(t, cpu, 1);
752         load_TLS_descriptor(t, cpu, 2);
753
754         xen_mc_issue(PARAVIRT_LAZY_CPU);
755 }
756
757 #ifdef CONFIG_X86_64
758 static void xen_load_gs_index(unsigned int idx)
759 {
760         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
761                 BUG();
762 }
763 #endif
764
765 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
766                                 const void *ptr)
767 {
768         xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
769         u64 entry = *(u64 *)ptr;
770
771         trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
772
773         preempt_disable();
774
775         xen_mc_flush();
776         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
777                 BUG();
778
779         preempt_enable();
780 }
781
782 static int cvt_gate_to_trap(int vector, const gate_desc *val,
783                             struct trap_info *info)
784 {
785         unsigned long addr;
786
787         if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
788                 return 0;
789
790         info->vector = vector;
791
792         addr = gate_offset(*val);
793 #ifdef CONFIG_X86_64
794         /*
795          * Look for known traps using IST, and substitute them
796          * appropriately.  The debugger ones are the only ones we care
797          * about.  Xen will handle faults like double_fault,
798          * so we should never see them.  Warn if
799          * there's an unexpected IST-using fault handler.
800          */
801         if (addr == (unsigned long)debug)
802                 addr = (unsigned long)xen_debug;
803         else if (addr == (unsigned long)int3)
804                 addr = (unsigned long)xen_int3;
805         else if (addr == (unsigned long)stack_segment)
806                 addr = (unsigned long)xen_stack_segment;
807         else if (addr == (unsigned long)double_fault) {
808                 /* Don't need to handle these */
809                 return 0;
810 #ifdef CONFIG_X86_MCE
811         } else if (addr == (unsigned long)machine_check) {
812                 /*
813                  * when xen hypervisor inject vMCE to guest,
814                  * use native mce handler to handle it
815                  */
816                 ;
817 #endif
818         } else if (addr == (unsigned long)nmi)
819                 /*
820                  * Use the native version as well.
821                  */
822                 ;
823         else {
824                 /* Some other trap using IST? */
825                 if (WARN_ON(val->ist != 0))
826                         return 0;
827         }
828 #endif  /* CONFIG_X86_64 */
829         info->address = addr;
830
831         info->cs = gate_segment(*val);
832         info->flags = val->dpl;
833         /* interrupt gates clear IF */
834         if (val->type == GATE_INTERRUPT)
835                 info->flags |= 1 << 2;
836
837         return 1;
838 }
839
840 /* Locations of each CPU's IDT */
841 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
842
843 /* Set an IDT entry.  If the entry is part of the current IDT, then
844    also update Xen. */
845 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
846 {
847         unsigned long p = (unsigned long)&dt[entrynum];
848         unsigned long start, end;
849
850         trace_xen_cpu_write_idt_entry(dt, entrynum, g);
851
852         preempt_disable();
853
854         start = __this_cpu_read(idt_desc.address);
855         end = start + __this_cpu_read(idt_desc.size) + 1;
856
857         xen_mc_flush();
858
859         native_write_idt_entry(dt, entrynum, g);
860
861         if (p >= start && (p + 8) <= end) {
862                 struct trap_info info[2];
863
864                 info[1].address = 0;
865
866                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
867                         if (HYPERVISOR_set_trap_table(info))
868                                 BUG();
869         }
870
871         preempt_enable();
872 }
873
874 static void xen_convert_trap_info(const struct desc_ptr *desc,
875                                   struct trap_info *traps)
876 {
877         unsigned in, out, count;
878
879         count = (desc->size+1) / sizeof(gate_desc);
880         BUG_ON(count > 256);
881
882         for (in = out = 0; in < count; in++) {
883                 gate_desc *entry = (gate_desc*)(desc->address) + in;
884
885                 if (cvt_gate_to_trap(in, entry, &traps[out]))
886                         out++;
887         }
888         traps[out].address = 0;
889 }
890
891 void xen_copy_trap_info(struct trap_info *traps)
892 {
893         const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
894
895         xen_convert_trap_info(desc, traps);
896 }
897
898 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
899    hold a spinlock to protect the static traps[] array (static because
900    it avoids allocation, and saves stack space). */
901 static void xen_load_idt(const struct desc_ptr *desc)
902 {
903         static DEFINE_SPINLOCK(lock);
904         static struct trap_info traps[257];
905
906         trace_xen_cpu_load_idt(desc);
907
908         spin_lock(&lock);
909
910         memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
911
912         xen_convert_trap_info(desc, traps);
913
914         xen_mc_flush();
915         if (HYPERVISOR_set_trap_table(traps))
916                 BUG();
917
918         spin_unlock(&lock);
919 }
920
921 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
922    they're handled differently. */
923 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
924                                 const void *desc, int type)
925 {
926         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
927
928         preempt_disable();
929
930         switch (type) {
931         case DESC_LDT:
932         case DESC_TSS:
933                 /* ignore */
934                 break;
935
936         default: {
937                 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
938
939                 xen_mc_flush();
940                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
941                         BUG();
942         }
943
944         }
945
946         preempt_enable();
947 }
948
949 /*
950  * Version of write_gdt_entry for use at early boot-time needed to
951  * update an entry as simply as possible.
952  */
953 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
954                                             const void *desc, int type)
955 {
956         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
957
958         switch (type) {
959         case DESC_LDT:
960         case DESC_TSS:
961                 /* ignore */
962                 break;
963
964         default: {
965                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
966
967                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
968                         dt[entry] = *(struct desc_struct *)desc;
969         }
970
971         }
972 }
973
974 static void xen_load_sp0(struct tss_struct *tss,
975                          struct thread_struct *thread)
976 {
977         struct multicall_space mcs;
978
979         mcs = xen_mc_entry(0);
980         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
981         xen_mc_issue(PARAVIRT_LAZY_CPU);
982         tss->x86_tss.sp0 = thread->sp0;
983 }
984
985 void xen_set_iopl_mask(unsigned mask)
986 {
987         struct physdev_set_iopl set_iopl;
988
989         /* Force the change at ring 0. */
990         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
991         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
992 }
993
994 static void xen_io_delay(void)
995 {
996 }
997
998 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
999
1000 static unsigned long xen_read_cr0(void)
1001 {
1002         unsigned long cr0 = this_cpu_read(xen_cr0_value);
1003
1004         if (unlikely(cr0 == 0)) {
1005                 cr0 = native_read_cr0();
1006                 this_cpu_write(xen_cr0_value, cr0);
1007         }
1008
1009         return cr0;
1010 }
1011
1012 static void xen_write_cr0(unsigned long cr0)
1013 {
1014         struct multicall_space mcs;
1015
1016         this_cpu_write(xen_cr0_value, cr0);
1017
1018         /* Only pay attention to cr0.TS; everything else is
1019            ignored. */
1020         mcs = xen_mc_entry(0);
1021
1022         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1023
1024         xen_mc_issue(PARAVIRT_LAZY_CPU);
1025 }
1026
1027 static void xen_write_cr4(unsigned long cr4)
1028 {
1029         cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
1030
1031         native_write_cr4(cr4);
1032 }
1033 #ifdef CONFIG_X86_64
1034 static inline unsigned long xen_read_cr8(void)
1035 {
1036         return 0;
1037 }
1038 static inline void xen_write_cr8(unsigned long val)
1039 {
1040         BUG_ON(val);
1041 }
1042 #endif
1043
1044 static u64 xen_read_msr_safe(unsigned int msr, int *err)
1045 {
1046         u64 val;
1047
1048         if (pmu_msr_read(msr, &val, err))
1049                 return val;
1050
1051         val = native_read_msr_safe(msr, err);
1052         switch (msr) {
1053         case MSR_IA32_APICBASE:
1054 #ifdef CONFIG_X86_X2APIC
1055                 if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
1056 #endif
1057                         val &= ~X2APIC_ENABLE;
1058                 break;
1059         }
1060         return val;
1061 }
1062
1063 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1064 {
1065         int ret;
1066
1067         ret = 0;
1068
1069         switch (msr) {
1070 #ifdef CONFIG_X86_64
1071                 unsigned which;
1072                 u64 base;
1073
1074         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
1075         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
1076         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
1077
1078         set:
1079                 base = ((u64)high << 32) | low;
1080                 if (HYPERVISOR_set_segment_base(which, base) != 0)
1081                         ret = -EIO;
1082                 break;
1083 #endif
1084
1085         case MSR_STAR:
1086         case MSR_CSTAR:
1087         case MSR_LSTAR:
1088         case MSR_SYSCALL_MASK:
1089         case MSR_IA32_SYSENTER_CS:
1090         case MSR_IA32_SYSENTER_ESP:
1091         case MSR_IA32_SYSENTER_EIP:
1092                 /* Fast syscall setup is all done in hypercalls, so
1093                    these are all ignored.  Stub them out here to stop
1094                    Xen console noise. */
1095                 break;
1096
1097         default:
1098                 if (!pmu_msr_write(msr, low, high, &ret))
1099                         ret = native_write_msr_safe(msr, low, high);
1100         }
1101
1102         return ret;
1103 }
1104
1105 static u64 xen_read_msr(unsigned int msr)
1106 {
1107         /*
1108          * This will silently swallow a #GP from RDMSR.  It may be worth
1109          * changing that.
1110          */
1111         int err;
1112
1113         return xen_read_msr_safe(msr, &err);
1114 }
1115
1116 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
1117 {
1118         /*
1119          * This will silently swallow a #GP from WRMSR.  It may be worth
1120          * changing that.
1121          */
1122         xen_write_msr_safe(msr, low, high);
1123 }
1124
1125 void xen_setup_shared_info(void)
1126 {
1127         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1128                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1129                            xen_start_info->shared_info);
1130
1131                 HYPERVISOR_shared_info =
1132                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1133         } else
1134                 HYPERVISOR_shared_info =
1135                         (struct shared_info *)__va(xen_start_info->shared_info);
1136
1137 #ifndef CONFIG_SMP
1138         /* In UP this is as good a place as any to set up shared info */
1139         xen_setup_vcpu_info_placement();
1140 #endif
1141
1142         xen_setup_mfn_list_list();
1143 }
1144
1145 /* This is called once we have the cpu_possible_mask */
1146 void xen_setup_vcpu_info_placement(void)
1147 {
1148         int cpu;
1149
1150         for_each_possible_cpu(cpu) {
1151                 /* Set up direct vCPU id mapping for PV guests. */
1152                 per_cpu(xen_vcpu_id, cpu) = cpu;
1153                 xen_vcpu_setup(cpu);
1154         }
1155
1156         /*
1157          * xen_vcpu_setup managed to place the vcpu_info within the
1158          * percpu area for all cpus, so make use of it.
1159          */
1160         if (have_vcpu_info_placement) {
1161                 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1162                 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1163                 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1164                 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1165                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1166         }
1167 }
1168
1169 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1170                           unsigned long addr, unsigned len)
1171 {
1172         char *start, *end, *reloc;
1173         unsigned ret;
1174
1175         start = end = reloc = NULL;
1176
1177 #define SITE(op, x)                                                     \
1178         case PARAVIRT_PATCH(op.x):                                      \
1179         if (have_vcpu_info_placement) {                                 \
1180                 start = (char *)xen_##x##_direct;                       \
1181                 end = xen_##x##_direct_end;                             \
1182                 reloc = xen_##x##_direct_reloc;                         \
1183         }                                                               \
1184         goto patch_site
1185
1186         switch (type) {
1187                 SITE(pv_irq_ops, irq_enable);
1188                 SITE(pv_irq_ops, irq_disable);
1189                 SITE(pv_irq_ops, save_fl);
1190                 SITE(pv_irq_ops, restore_fl);
1191 #undef SITE
1192
1193         patch_site:
1194                 if (start == NULL || (end-start) > len)
1195                         goto default_patch;
1196
1197                 ret = paravirt_patch_insns(insnbuf, len, start, end);
1198
1199                 /* Note: because reloc is assigned from something that
1200                    appears to be an array, gcc assumes it's non-null,
1201                    but doesn't know its relationship with start and
1202                    end. */
1203                 if (reloc > start && reloc < end) {
1204                         int reloc_off = reloc - start;
1205                         long *relocp = (long *)(insnbuf + reloc_off);
1206                         long delta = start - (char *)addr;
1207
1208                         *relocp += delta;
1209                 }
1210                 break;
1211
1212         default_patch:
1213         default:
1214                 ret = paravirt_patch_default(type, clobbers, insnbuf,
1215                                              addr, len);
1216                 break;
1217         }
1218
1219         return ret;
1220 }
1221
1222 static const struct pv_info xen_info __initconst = {
1223         .shared_kernel_pmd = 0,
1224
1225 #ifdef CONFIG_X86_64
1226         .extra_user_64bit_cs = FLAT_USER_CS64,
1227 #endif
1228         .name = "Xen",
1229 };
1230
1231 static const struct pv_init_ops xen_init_ops __initconst = {
1232         .patch = xen_patch,
1233 };
1234
1235 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1236         .cpuid = xen_cpuid,
1237
1238         .set_debugreg = xen_set_debugreg,
1239         .get_debugreg = xen_get_debugreg,
1240
1241         .read_cr0 = xen_read_cr0,
1242         .write_cr0 = xen_write_cr0,
1243
1244         .read_cr4 = native_read_cr4,
1245         .write_cr4 = xen_write_cr4,
1246
1247 #ifdef CONFIG_X86_64
1248         .read_cr8 = xen_read_cr8,
1249         .write_cr8 = xen_write_cr8,
1250 #endif
1251
1252         .wbinvd = native_wbinvd,
1253
1254         .read_msr = xen_read_msr,
1255         .write_msr = xen_write_msr,
1256
1257         .read_msr_safe = xen_read_msr_safe,
1258         .write_msr_safe = xen_write_msr_safe,
1259
1260         .read_pmc = xen_read_pmc,
1261
1262         .iret = xen_iret,
1263 #ifdef CONFIG_X86_64
1264         .usergs_sysret64 = xen_sysret64,
1265 #endif
1266
1267         .load_tr_desc = paravirt_nop,
1268         .set_ldt = xen_set_ldt,
1269         .load_gdt = xen_load_gdt,
1270         .load_idt = xen_load_idt,
1271         .load_tls = xen_load_tls,
1272 #ifdef CONFIG_X86_64
1273         .load_gs_index = xen_load_gs_index,
1274 #endif
1275
1276         .alloc_ldt = xen_alloc_ldt,
1277         .free_ldt = xen_free_ldt,
1278
1279         .store_idt = native_store_idt,
1280         .store_tr = xen_store_tr,
1281
1282         .write_ldt_entry = xen_write_ldt_entry,
1283         .write_gdt_entry = xen_write_gdt_entry,
1284         .write_idt_entry = xen_write_idt_entry,
1285         .load_sp0 = xen_load_sp0,
1286
1287         .set_iopl_mask = xen_set_iopl_mask,
1288         .io_delay = xen_io_delay,
1289
1290         /* Xen takes care of %gs when switching to usermode for us */
1291         .swapgs = paravirt_nop,
1292
1293         .start_context_switch = paravirt_start_context_switch,
1294         .end_context_switch = xen_end_context_switch,
1295 };
1296
1297 static void xen_reboot(int reason)
1298 {
1299         struct sched_shutdown r = { .reason = reason };
1300         int cpu;
1301
1302         for_each_online_cpu(cpu)
1303                 xen_pmu_finish(cpu);
1304
1305         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1306                 BUG();
1307 }
1308
1309 static void xen_restart(char *msg)
1310 {
1311         xen_reboot(SHUTDOWN_reboot);
1312 }
1313
1314 static void xen_emergency_restart(void)
1315 {
1316         xen_reboot(SHUTDOWN_reboot);
1317 }
1318
1319 static void xen_machine_halt(void)
1320 {
1321         xen_reboot(SHUTDOWN_poweroff);
1322 }
1323
1324 static void xen_machine_power_off(void)
1325 {
1326         if (pm_power_off)
1327                 pm_power_off();
1328         xen_reboot(SHUTDOWN_poweroff);
1329 }
1330
1331 static void xen_crash_shutdown(struct pt_regs *regs)
1332 {
1333         xen_reboot(SHUTDOWN_crash);
1334 }
1335
1336 static int
1337 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1338 {
1339         if (!kexec_crash_loaded())
1340                 xen_reboot(SHUTDOWN_crash);
1341         return NOTIFY_DONE;
1342 }
1343
1344 static struct notifier_block xen_panic_block = {
1345         .notifier_call= xen_panic_event,
1346         .priority = INT_MIN
1347 };
1348
1349 int xen_panic_handler_init(void)
1350 {
1351         atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1352         return 0;
1353 }
1354
1355 static const struct machine_ops xen_machine_ops __initconst = {
1356         .restart = xen_restart,
1357         .halt = xen_machine_halt,
1358         .power_off = xen_machine_power_off,
1359         .shutdown = xen_machine_halt,
1360         .crash_shutdown = xen_crash_shutdown,
1361         .emergency_restart = xen_emergency_restart,
1362 };
1363
1364 static unsigned char xen_get_nmi_reason(void)
1365 {
1366         unsigned char reason = 0;
1367
1368         /* Construct a value which looks like it came from port 0x61. */
1369         if (test_bit(_XEN_NMIREASON_io_error,
1370                      &HYPERVISOR_shared_info->arch.nmi_reason))
1371                 reason |= NMI_REASON_IOCHK;
1372         if (test_bit(_XEN_NMIREASON_pci_serr,
1373                      &HYPERVISOR_shared_info->arch.nmi_reason))
1374                 reason |= NMI_REASON_SERR;
1375
1376         return reason;
1377 }
1378
1379 static void __init xen_boot_params_init_edd(void)
1380 {
1381 #if IS_ENABLED(CONFIG_EDD)
1382         struct xen_platform_op op;
1383         struct edd_info *edd_info;
1384         u32 *mbr_signature;
1385         unsigned nr;
1386         int ret;
1387
1388         edd_info = boot_params.eddbuf;
1389         mbr_signature = boot_params.edd_mbr_sig_buffer;
1390
1391         op.cmd = XENPF_firmware_info;
1392
1393         op.u.firmware_info.type = XEN_FW_DISK_INFO;
1394         for (nr = 0; nr < EDDMAXNR; nr++) {
1395                 struct edd_info *info = edd_info + nr;
1396
1397                 op.u.firmware_info.index = nr;
1398                 info->params.length = sizeof(info->params);
1399                 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1400                                      &info->params);
1401                 ret = HYPERVISOR_platform_op(&op);
1402                 if (ret)
1403                         break;
1404
1405 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1406                 C(device);
1407                 C(version);
1408                 C(interface_support);
1409                 C(legacy_max_cylinder);
1410                 C(legacy_max_head);
1411                 C(legacy_sectors_per_track);
1412 #undef C
1413         }
1414         boot_params.eddbuf_entries = nr;
1415
1416         op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1417         for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1418                 op.u.firmware_info.index = nr;
1419                 ret = HYPERVISOR_platform_op(&op);
1420                 if (ret)
1421                         break;
1422                 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1423         }
1424         boot_params.edd_mbr_sig_buf_entries = nr;
1425 #endif
1426 }
1427
1428 /*
1429  * Set up the GDT and segment registers for -fstack-protector.  Until
1430  * we do this, we have to be careful not to call any stack-protected
1431  * function, which is most of the kernel.
1432  */
1433 static void xen_setup_gdt(int cpu)
1434 {
1435         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1436         pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1437
1438         setup_stack_canary_segment(0);
1439         switch_to_new_gdt(0);
1440
1441         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1442         pv_cpu_ops.load_gdt = xen_load_gdt;
1443 }
1444
1445 static void __init xen_dom0_set_legacy_features(void)
1446 {
1447         x86_platform.legacy.rtc = 1;
1448 }
1449
1450 static int xen_cpuhp_setup(void)
1451 {
1452         int rc;
1453
1454         rc = cpuhp_setup_state_nocalls(CPUHP_XEN_PREPARE,
1455                                        "x86/xen/hvm_guest:prepare",
1456                                        xen_cpu_up_prepare, xen_cpu_dead);
1457         if (rc >= 0) {
1458                 rc = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
1459                                                "x86/xen/hvm_guest:online",
1460                                                xen_cpu_up_online, NULL);
1461                 if (rc < 0)
1462                         cpuhp_remove_state_nocalls(CPUHP_XEN_PREPARE);
1463         }
1464
1465         return rc >= 0 ? 0 : rc;
1466 }
1467
1468 /* First C function to be called on Xen boot */
1469 asmlinkage __visible void __init xen_start_kernel(void)
1470 {
1471         struct physdev_set_iopl set_iopl;
1472         unsigned long initrd_start = 0;
1473         int rc;
1474
1475         if (!xen_start_info)
1476                 return;
1477
1478         xen_domain_type = XEN_PV_DOMAIN;
1479
1480         xen_setup_features();
1481
1482         xen_setup_machphys_mapping();
1483
1484         /* Install Xen paravirt ops */
1485         pv_info = xen_info;
1486         pv_init_ops = xen_init_ops;
1487         pv_cpu_ops = xen_cpu_ops;
1488
1489         x86_platform.get_nmi_reason = xen_get_nmi_reason;
1490
1491         x86_init.resources.memory_setup = xen_memory_setup;
1492         x86_init.oem.arch_setup = xen_arch_setup;
1493         x86_init.oem.banner = xen_banner;
1494
1495         xen_init_time_ops();
1496
1497         /*
1498          * Set up some pagetable state before starting to set any ptes.
1499          */
1500
1501         xen_init_mmu_ops();
1502
1503         /* Prevent unwanted bits from being set in PTEs. */
1504         __supported_pte_mask &= ~_PAGE_GLOBAL;
1505
1506         /*
1507          * Prevent page tables from being allocated in highmem, even
1508          * if CONFIG_HIGHPTE is enabled.
1509          */
1510         __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1511
1512         /* Work out if we support NX */
1513         x86_configure_nx();
1514
1515         /* Get mfn list */
1516         xen_build_dynamic_phys_to_machine();
1517
1518         /*
1519          * Set up kernel GDT and segment registers, mainly so that
1520          * -fstack-protector code can be executed.
1521          */
1522         xen_setup_gdt(0);
1523
1524         xen_init_irq_ops();
1525         xen_init_cpuid_mask();
1526
1527 #ifdef CONFIG_X86_LOCAL_APIC
1528         /*
1529          * set up the basic apic ops.
1530          */
1531         xen_init_apic();
1532 #endif
1533
1534         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1535                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1536                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1537         }
1538
1539         machine_ops = xen_machine_ops;
1540
1541         /*
1542          * The only reliable way to retain the initial address of the
1543          * percpu gdt_page is to remember it here, so we can go and
1544          * mark it RW later, when the initial percpu area is freed.
1545          */
1546         xen_initial_gdt = &per_cpu(gdt_page, 0);
1547
1548         xen_smp_init();
1549
1550 #ifdef CONFIG_ACPI_NUMA
1551         /*
1552          * The pages we from Xen are not related to machine pages, so
1553          * any NUMA information the kernel tries to get from ACPI will
1554          * be meaningless.  Prevent it from trying.
1555          */
1556         acpi_numa = -1;
1557 #endif
1558         /* Don't do the full vcpu_info placement stuff until we have a
1559            possible map and a non-dummy shared_info. */
1560         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1561
1562         WARN_ON(xen_cpuhp_setup());
1563
1564         local_irq_disable();
1565         early_boot_irqs_disabled = true;
1566
1567         xen_raw_console_write("mapping kernel into physical memory\n");
1568         xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1569                                    xen_start_info->nr_pages);
1570         xen_reserve_special_pages();
1571
1572         /* keep using Xen gdt for now; no urgent need to change it */
1573
1574 #ifdef CONFIG_X86_32
1575         pv_info.kernel_rpl = 1;
1576         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1577                 pv_info.kernel_rpl = 0;
1578 #else
1579         pv_info.kernel_rpl = 0;
1580 #endif
1581         /* set the limit of our address space */
1582         xen_reserve_top();
1583
1584         /*
1585          * We used to do this in xen_arch_setup, but that is too late
1586          * on AMD were early_cpu_init (run before ->arch_setup()) calls
1587          * early_amd_init which pokes 0xcf8 port.
1588          */
1589         set_iopl.iopl = 1;
1590         rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1591         if (rc != 0)
1592                 xen_raw_printk("physdev_op failed %d\n", rc);
1593
1594 #ifdef CONFIG_X86_32
1595         /* set up basic CPUID stuff */
1596         cpu_detect(&new_cpu_data);
1597         set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1598         new_cpu_data.wp_works_ok = 1;
1599         new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1600 #endif
1601
1602         if (xen_start_info->mod_start) {
1603             if (xen_start_info->flags & SIF_MOD_START_PFN)
1604                 initrd_start = PFN_PHYS(xen_start_info->mod_start);
1605             else
1606                 initrd_start = __pa(xen_start_info->mod_start);
1607         }
1608
1609         /* Poke various useful things into boot_params */
1610         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1611         boot_params.hdr.ramdisk_image = initrd_start;
1612         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1613         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1614         boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1615
1616         if (!xen_initial_domain()) {
1617                 add_preferred_console("xenboot", 0, NULL);
1618                 add_preferred_console("tty", 0, NULL);
1619                 add_preferred_console("hvc", 0, NULL);
1620                 if (pci_xen)
1621                         x86_init.pci.arch_init = pci_xen_init;
1622         } else {
1623                 const struct dom0_vga_console_info *info =
1624                         (void *)((char *)xen_start_info +
1625                                  xen_start_info->console.dom0.info_off);
1626                 struct xen_platform_op op = {
1627                         .cmd = XENPF_firmware_info,
1628                         .interface_version = XENPF_INTERFACE_VERSION,
1629                         .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1630                 };
1631
1632                 x86_platform.set_legacy_features =
1633                                 xen_dom0_set_legacy_features;
1634                 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1635                 xen_start_info->console.domU.mfn = 0;
1636                 xen_start_info->console.domU.evtchn = 0;
1637
1638                 if (HYPERVISOR_platform_op(&op) == 0)
1639                         boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1640
1641                 /* Make sure ACS will be enabled */
1642                 pci_request_acs();
1643
1644                 xen_acpi_sleep_register();
1645
1646                 /* Avoid searching for BIOS MP tables */
1647                 x86_init.mpparse.find_smp_config = x86_init_noop;
1648                 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1649
1650                 xen_boot_params_init_edd();
1651         }
1652 #ifdef CONFIG_PCI
1653         /* PCI BIOS service won't work from a PV guest. */
1654         pci_probe &= ~PCI_PROBE_BIOS;
1655 #endif
1656         xen_raw_console_write("about to get started...\n");
1657
1658         /* Let's presume PV guests always boot on vCPU with id 0. */
1659         per_cpu(xen_vcpu_id, 0) = 0;
1660
1661         xen_setup_runstate_info(0);
1662
1663         xen_efi_init();
1664
1665         /* Start the world */
1666 #ifdef CONFIG_X86_32
1667         i386_start_kernel();
1668 #else
1669         cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1670         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1671 #endif
1672 }
1673
1674 #ifdef CONFIG_XEN_PVH
1675
1676 static void xen_pvh_arch_setup(void)
1677 {
1678 #ifdef CONFIG_ACPI
1679         /* Make sure we don't fall back to (default) ACPI_IRQ_MODEL_PIC. */
1680         if (nr_ioapics == 0)
1681                 acpi_irq_model = ACPI_IRQ_MODEL_PLATFORM;
1682 #endif
1683 }
1684
1685 static void __init init_pvh_bootparams(void)
1686 {
1687         struct xen_memory_map memmap;
1688         unsigned int i;
1689         int rc;
1690
1691         memset(&pvh_bootparams, 0, sizeof(pvh_bootparams));
1692
1693         memmap.nr_entries = ARRAY_SIZE(pvh_bootparams.e820_map);
1694         set_xen_guest_handle(memmap.buffer, pvh_bootparams.e820_map);
1695         rc = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap);
1696         if (rc) {
1697                 xen_raw_printk("XENMEM_memory_map failed (%d)\n", rc);
1698                 BUG();
1699         }
1700
1701         if (memmap.nr_entries < E820MAX - 1) {
1702                 pvh_bootparams.e820_map[memmap.nr_entries].addr =
1703                         ISA_START_ADDRESS;
1704                 pvh_bootparams.e820_map[memmap.nr_entries].size =
1705                         ISA_END_ADDRESS - ISA_START_ADDRESS;
1706                 pvh_bootparams.e820_map[memmap.nr_entries].type =
1707                         E820_RESERVED;
1708                 memmap.nr_entries++;
1709         } else
1710                 xen_raw_printk("Warning: Can fit ISA range into e820\n");
1711
1712         sanitize_e820_map(pvh_bootparams.e820_map,
1713                           ARRAY_SIZE(pvh_bootparams.e820_map),
1714                           &memmap.nr_entries);
1715
1716         pvh_bootparams.e820_entries = memmap.nr_entries;
1717         for (i = 0; i < pvh_bootparams.e820_entries; i++)
1718                 e820_add_region(pvh_bootparams.e820_map[i].addr,
1719                                 pvh_bootparams.e820_map[i].size,
1720                                 pvh_bootparams.e820_map[i].type);
1721
1722         pvh_bootparams.hdr.cmd_line_ptr =
1723                 pvh_start_info.cmdline_paddr;
1724
1725         /* The first module is always ramdisk. */
1726         if (pvh_start_info.nr_modules) {
1727                 struct hvm_modlist_entry *modaddr =
1728                         __va(pvh_start_info.modlist_paddr);
1729                 pvh_bootparams.hdr.ramdisk_image = modaddr->paddr;
1730                 pvh_bootparams.hdr.ramdisk_size = modaddr->size;
1731         }
1732
1733         /*
1734          * See Documentation/x86/boot.txt.
1735          *
1736          * Version 2.12 supports Xen entry point but we will use default x86/PC
1737          * environment (i.e. hardware_subarch 0).
1738          */
1739         pvh_bootparams.hdr.version = 0x212;
1740         pvh_bootparams.hdr.type_of_loader = (9 << 4) | 0; /* Xen loader */
1741 }
1742
1743 /*
1744  * This routine (and those that it might call) should not use
1745  * anything that lives in .bss since that segment will be cleared later.
1746  */
1747 void __init xen_prepare_pvh(void)
1748 {
1749         u32 msr;
1750         u64 pfn;
1751
1752         if (pvh_start_info.magic != XEN_HVM_START_MAGIC_VALUE) {
1753                 xen_raw_printk("Error: Unexpected magic value (0x%08x)\n",
1754                                 pvh_start_info.magic);
1755                 BUG();
1756         }
1757
1758         xen_pvh = 1;
1759
1760         msr = cpuid_ebx(xen_cpuid_base() + 2);
1761         pfn = __pa(hypercall_page);
1762         wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1763
1764         init_pvh_bootparams();
1765
1766         x86_init.oem.arch_setup = xen_pvh_arch_setup;
1767 }
1768 #endif
1769
1770 void __ref xen_hvm_init_shared_info(void)
1771 {
1772         int cpu;
1773         struct xen_add_to_physmap xatp;
1774         static struct shared_info *shared_info_page = 0;
1775
1776         if (!shared_info_page)
1777                 shared_info_page = (struct shared_info *)
1778                         extend_brk(PAGE_SIZE, PAGE_SIZE);
1779         xatp.domid = DOMID_SELF;
1780         xatp.idx = 0;
1781         xatp.space = XENMAPSPACE_shared_info;
1782         xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1783         if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1784                 BUG();
1785
1786         HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1787
1788         /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1789          * page, we use it in the event channel upcall and in some pvclock
1790          * related functions. We don't need the vcpu_info placement
1791          * optimizations because we don't use any pv_mmu or pv_irq op on
1792          * HVM.
1793          * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1794          * online but xen_hvm_init_shared_info is run at resume time too and
1795          * in that case multiple vcpus might be online. */
1796         for_each_online_cpu(cpu) {
1797                 /* Leave it to be NULL. */
1798                 if (xen_vcpu_nr(cpu) >= MAX_VIRT_CPUS)
1799                         continue;
1800                 per_cpu(xen_vcpu, cpu) =
1801                         &HYPERVISOR_shared_info->vcpu_info[xen_vcpu_nr(cpu)];
1802         }
1803 }
1804
1805 #ifdef CONFIG_XEN_PVHVM
1806 static void __init init_hvm_pv_info(void)
1807 {
1808         int major, minor;
1809         uint32_t eax, ebx, ecx, edx, base;
1810
1811         base = xen_cpuid_base();
1812         eax = cpuid_eax(base + 1);
1813
1814         major = eax >> 16;
1815         minor = eax & 0xffff;
1816         printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1817
1818         xen_domain_type = XEN_HVM_DOMAIN;
1819
1820         /* PVH set up hypercall page in xen_prepare_pvh(). */
1821         if (xen_pvh_domain())
1822                 pv_info.name = "Xen PVH";
1823         else {
1824                 u64 pfn;
1825                 uint32_t msr;
1826
1827                 pv_info.name = "Xen HVM";
1828                 msr = cpuid_ebx(base + 2);
1829                 pfn = __pa(hypercall_page);
1830                 wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1831         }
1832
1833         xen_setup_features();
1834
1835         cpuid(base + 4, &eax, &ebx, &ecx, &edx);
1836         if (eax & XEN_HVM_CPUID_VCPU_ID_PRESENT)
1837                 this_cpu_write(xen_vcpu_id, ebx);
1838         else
1839                 this_cpu_write(xen_vcpu_id, smp_processor_id());
1840 }
1841 #endif
1842
1843 static int xen_cpu_up_prepare(unsigned int cpu)
1844 {
1845         int rc;
1846
1847         if (xen_hvm_domain()) {
1848                 /*
1849                  * This can happen if CPU was offlined earlier and
1850                  * offlining timed out in common_cpu_die().
1851                  */
1852                 if (cpu_report_state(cpu) == CPU_DEAD_FROZEN) {
1853                         xen_smp_intr_free(cpu);
1854                         xen_uninit_lock_cpu(cpu);
1855                 }
1856
1857                 if (cpu_acpi_id(cpu) != U32_MAX)
1858                         per_cpu(xen_vcpu_id, cpu) = cpu_acpi_id(cpu);
1859                 else
1860                         per_cpu(xen_vcpu_id, cpu) = cpu;
1861                 xen_vcpu_setup(cpu);
1862         }
1863
1864         if (xen_pv_domain() || xen_feature(XENFEAT_hvm_safe_pvclock))
1865                 xen_setup_timer(cpu);
1866
1867         rc = xen_smp_intr_init(cpu);
1868         if (rc) {
1869                 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1870                      cpu, rc);
1871                 return rc;
1872         }
1873         return 0;
1874 }
1875
1876 static int xen_cpu_dead(unsigned int cpu)
1877 {
1878         xen_smp_intr_free(cpu);
1879
1880         if (xen_pv_domain() || xen_feature(XENFEAT_hvm_safe_pvclock))
1881                 xen_teardown_timer(cpu);
1882
1883         return 0;
1884 }
1885
1886 static int xen_cpu_up_online(unsigned int cpu)
1887 {
1888         xen_init_lock_cpu(cpu);
1889         return 0;
1890 }
1891
1892 #ifdef CONFIG_XEN_PVHVM
1893 #ifdef CONFIG_KEXEC_CORE
1894 static void xen_hvm_shutdown(void)
1895 {
1896         native_machine_shutdown();
1897         if (kexec_in_progress)
1898                 xen_reboot(SHUTDOWN_soft_reset);
1899 }
1900
1901 static void xen_hvm_crash_shutdown(struct pt_regs *regs)
1902 {
1903         native_machine_crash_shutdown(regs);
1904         xen_reboot(SHUTDOWN_soft_reset);
1905 }
1906 #endif
1907
1908 static void __init xen_hvm_guest_init(void)
1909 {
1910         if (xen_pv_domain())
1911                 return;
1912
1913         init_hvm_pv_info();
1914
1915         xen_hvm_init_shared_info();
1916
1917         xen_panic_handler_init();
1918
1919         BUG_ON(!xen_feature(XENFEAT_hvm_callback_vector));
1920
1921         xen_hvm_smp_init();
1922         WARN_ON(xen_cpuhp_setup());
1923         xen_unplug_emulated_devices();
1924         x86_init.irqs.intr_init = xen_init_IRQ;
1925         xen_hvm_init_time_ops();
1926         xen_hvm_init_mmu_ops();
1927
1928         if (xen_pvh_domain())
1929                 machine_ops.emergency_restart = xen_emergency_restart;
1930 #ifdef CONFIG_KEXEC_CORE
1931         machine_ops.shutdown = xen_hvm_shutdown;
1932         machine_ops.crash_shutdown = xen_hvm_crash_shutdown;
1933 #endif
1934 }
1935 #endif
1936
1937 static bool xen_nopv = false;
1938 static __init int xen_parse_nopv(char *arg)
1939 {
1940        xen_nopv = true;
1941        return 0;
1942 }
1943 early_param("xen_nopv", xen_parse_nopv);
1944
1945 static uint32_t __init xen_platform(void)
1946 {
1947         if (xen_nopv)
1948                 return 0;
1949
1950         return xen_cpuid_base();
1951 }
1952
1953 bool xen_hvm_need_lapic(void)
1954 {
1955         if (xen_nopv)
1956                 return false;
1957         if (xen_pv_domain())
1958                 return false;
1959         if (!xen_hvm_domain())
1960                 return false;
1961         if (xen_feature(XENFEAT_hvm_pirqs))
1962                 return false;
1963         return true;
1964 }
1965 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1966
1967 static void xen_set_cpu_features(struct cpuinfo_x86 *c)
1968 {
1969         if (xen_pv_domain()) {
1970                 clear_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
1971                 set_cpu_cap(c, X86_FEATURE_XENPV);
1972         }
1973 }
1974
1975 static void xen_pin_vcpu(int cpu)
1976 {
1977         static bool disable_pinning;
1978         struct sched_pin_override pin_override;
1979         int ret;
1980
1981         if (disable_pinning)
1982                 return;
1983
1984         pin_override.pcpu = cpu;
1985         ret = HYPERVISOR_sched_op(SCHEDOP_pin_override, &pin_override);
1986
1987         /* Ignore errors when removing override. */
1988         if (cpu < 0)
1989                 return;
1990
1991         switch (ret) {
1992         case -ENOSYS:
1993                 pr_warn("Unable to pin on physical cpu %d. In case of problems consider vcpu pinning.\n",
1994                         cpu);
1995                 disable_pinning = true;
1996                 break;
1997         case -EPERM:
1998                 WARN(1, "Trying to pin vcpu without having privilege to do so\n");
1999                 disable_pinning = true;
2000                 break;
2001         case -EINVAL:
2002         case -EBUSY:
2003                 pr_warn("Physical cpu %d not available for pinning. Check Xen cpu configuration.\n",
2004                         cpu);
2005                 break;
2006         case 0:
2007                 break;
2008         default:
2009                 WARN(1, "rc %d while trying to pin vcpu\n", ret);
2010                 disable_pinning = true;
2011         }
2012 }
2013
2014 const struct hypervisor_x86 x86_hyper_xen = {
2015         .name                   = "Xen",
2016         .detect                 = xen_platform,
2017 #ifdef CONFIG_XEN_PVHVM
2018         .init_platform          = xen_hvm_guest_init,
2019 #endif
2020         .x2apic_available       = xen_x2apic_para_available,
2021         .set_cpu_features       = xen_set_cpu_features,
2022         .pin_vcpu               = xen_pin_vcpu,
2023 };
2024 EXPORT_SYMBOL(x86_hyper_xen);
2025
2026 #ifdef CONFIG_HOTPLUG_CPU
2027 void xen_arch_register_cpu(int num)
2028 {
2029         arch_register_cpu(num);
2030 }
2031 EXPORT_SYMBOL(xen_arch_register_cpu);
2032
2033 void xen_arch_unregister_cpu(int num)
2034 {
2035         arch_unregister_cpu(num);
2036 }
2037 EXPORT_SYMBOL(xen_arch_unregister_cpu);
2038 #endif