]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - block/blk-mq.c
Merge branch 'parisc-4.11-2' of git://git.kernel.org/pub/scm/linux/kernel/git/deller...
[karo-tx-linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-tag.h"
35 #include "blk-stat.h"
36 #include "blk-wbt.h"
37 #include "blk-mq-sched.h"
38
39 static DEFINE_MUTEX(all_q_mutex);
40 static LIST_HEAD(all_q_list);
41
42 /*
43  * Check if any of the ctx's have pending work in this hardware queue
44  */
45 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
46 {
47         return sbitmap_any_bit_set(&hctx->ctx_map) ||
48                         !list_empty_careful(&hctx->dispatch) ||
49                         blk_mq_sched_has_work(hctx);
50 }
51
52 /*
53  * Mark this ctx as having pending work in this hardware queue
54  */
55 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
56                                      struct blk_mq_ctx *ctx)
57 {
58         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
59                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
60 }
61
62 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
63                                       struct blk_mq_ctx *ctx)
64 {
65         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
66 }
67
68 void blk_mq_freeze_queue_start(struct request_queue *q)
69 {
70         int freeze_depth;
71
72         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
73         if (freeze_depth == 1) {
74                 percpu_ref_kill(&q->q_usage_counter);
75                 blk_mq_run_hw_queues(q, false);
76         }
77 }
78 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
79
80 void blk_mq_freeze_queue_wait(struct request_queue *q)
81 {
82         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
83 }
84 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
85
86 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
87                                      unsigned long timeout)
88 {
89         return wait_event_timeout(q->mq_freeze_wq,
90                                         percpu_ref_is_zero(&q->q_usage_counter),
91                                         timeout);
92 }
93 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
94
95 /*
96  * Guarantee no request is in use, so we can change any data structure of
97  * the queue afterward.
98  */
99 void blk_freeze_queue(struct request_queue *q)
100 {
101         /*
102          * In the !blk_mq case we are only calling this to kill the
103          * q_usage_counter, otherwise this increases the freeze depth
104          * and waits for it to return to zero.  For this reason there is
105          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
106          * exported to drivers as the only user for unfreeze is blk_mq.
107          */
108         blk_mq_freeze_queue_start(q);
109         blk_mq_freeze_queue_wait(q);
110 }
111
112 void blk_mq_freeze_queue(struct request_queue *q)
113 {
114         /*
115          * ...just an alias to keep freeze and unfreeze actions balanced
116          * in the blk_mq_* namespace
117          */
118         blk_freeze_queue(q);
119 }
120 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
121
122 void blk_mq_unfreeze_queue(struct request_queue *q)
123 {
124         int freeze_depth;
125
126         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
127         WARN_ON_ONCE(freeze_depth < 0);
128         if (!freeze_depth) {
129                 percpu_ref_reinit(&q->q_usage_counter);
130                 wake_up_all(&q->mq_freeze_wq);
131         }
132 }
133 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
134
135 /**
136  * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
137  * @q: request queue.
138  *
139  * Note: this function does not prevent that the struct request end_io()
140  * callback function is invoked. Additionally, it is not prevented that
141  * new queue_rq() calls occur unless the queue has been stopped first.
142  */
143 void blk_mq_quiesce_queue(struct request_queue *q)
144 {
145         struct blk_mq_hw_ctx *hctx;
146         unsigned int i;
147         bool rcu = false;
148
149         blk_mq_stop_hw_queues(q);
150
151         queue_for_each_hw_ctx(q, hctx, i) {
152                 if (hctx->flags & BLK_MQ_F_BLOCKING)
153                         synchronize_srcu(&hctx->queue_rq_srcu);
154                 else
155                         rcu = true;
156         }
157         if (rcu)
158                 synchronize_rcu();
159 }
160 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
161
162 void blk_mq_wake_waiters(struct request_queue *q)
163 {
164         struct blk_mq_hw_ctx *hctx;
165         unsigned int i;
166
167         queue_for_each_hw_ctx(q, hctx, i)
168                 if (blk_mq_hw_queue_mapped(hctx))
169                         blk_mq_tag_wakeup_all(hctx->tags, true);
170
171         /*
172          * If we are called because the queue has now been marked as
173          * dying, we need to ensure that processes currently waiting on
174          * the queue are notified as well.
175          */
176         wake_up_all(&q->mq_freeze_wq);
177 }
178
179 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
180 {
181         return blk_mq_has_free_tags(hctx->tags);
182 }
183 EXPORT_SYMBOL(blk_mq_can_queue);
184
185 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
186                         struct request *rq, unsigned int op)
187 {
188         INIT_LIST_HEAD(&rq->queuelist);
189         /* csd/requeue_work/fifo_time is initialized before use */
190         rq->q = q;
191         rq->mq_ctx = ctx;
192         rq->cmd_flags = op;
193         if (blk_queue_io_stat(q))
194                 rq->rq_flags |= RQF_IO_STAT;
195         /* do not touch atomic flags, it needs atomic ops against the timer */
196         rq->cpu = -1;
197         INIT_HLIST_NODE(&rq->hash);
198         RB_CLEAR_NODE(&rq->rb_node);
199         rq->rq_disk = NULL;
200         rq->part = NULL;
201         rq->start_time = jiffies;
202 #ifdef CONFIG_BLK_CGROUP
203         rq->rl = NULL;
204         set_start_time_ns(rq);
205         rq->io_start_time_ns = 0;
206 #endif
207         rq->nr_phys_segments = 0;
208 #if defined(CONFIG_BLK_DEV_INTEGRITY)
209         rq->nr_integrity_segments = 0;
210 #endif
211         rq->special = NULL;
212         /* tag was already set */
213         rq->errors = 0;
214         rq->extra_len = 0;
215
216         INIT_LIST_HEAD(&rq->timeout_list);
217         rq->timeout = 0;
218
219         rq->end_io = NULL;
220         rq->end_io_data = NULL;
221         rq->next_rq = NULL;
222
223         ctx->rq_dispatched[op_is_sync(op)]++;
224 }
225 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
226
227 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
228                                        unsigned int op)
229 {
230         struct request *rq;
231         unsigned int tag;
232
233         tag = blk_mq_get_tag(data);
234         if (tag != BLK_MQ_TAG_FAIL) {
235                 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
236
237                 rq = tags->static_rqs[tag];
238
239                 if (data->flags & BLK_MQ_REQ_INTERNAL) {
240                         rq->tag = -1;
241                         rq->internal_tag = tag;
242                 } else {
243                         if (blk_mq_tag_busy(data->hctx)) {
244                                 rq->rq_flags = RQF_MQ_INFLIGHT;
245                                 atomic_inc(&data->hctx->nr_active);
246                         }
247                         rq->tag = tag;
248                         rq->internal_tag = -1;
249                         data->hctx->tags->rqs[rq->tag] = rq;
250                 }
251
252                 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
253                 return rq;
254         }
255
256         return NULL;
257 }
258 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
259
260 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
261                 unsigned int flags)
262 {
263         struct blk_mq_alloc_data alloc_data = { .flags = flags };
264         struct request *rq;
265         int ret;
266
267         ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
268         if (ret)
269                 return ERR_PTR(ret);
270
271         rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
272
273         blk_mq_put_ctx(alloc_data.ctx);
274         blk_queue_exit(q);
275
276         if (!rq)
277                 return ERR_PTR(-EWOULDBLOCK);
278
279         rq->__data_len = 0;
280         rq->__sector = (sector_t) -1;
281         rq->bio = rq->biotail = NULL;
282         return rq;
283 }
284 EXPORT_SYMBOL(blk_mq_alloc_request);
285
286 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
287                 unsigned int flags, unsigned int hctx_idx)
288 {
289         struct blk_mq_alloc_data alloc_data = { .flags = flags };
290         struct request *rq;
291         unsigned int cpu;
292         int ret;
293
294         /*
295          * If the tag allocator sleeps we could get an allocation for a
296          * different hardware context.  No need to complicate the low level
297          * allocator for this for the rare use case of a command tied to
298          * a specific queue.
299          */
300         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
301                 return ERR_PTR(-EINVAL);
302
303         if (hctx_idx >= q->nr_hw_queues)
304                 return ERR_PTR(-EIO);
305
306         ret = blk_queue_enter(q, true);
307         if (ret)
308                 return ERR_PTR(ret);
309
310         /*
311          * Check if the hardware context is actually mapped to anything.
312          * If not tell the caller that it should skip this queue.
313          */
314         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
315         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
316                 blk_queue_exit(q);
317                 return ERR_PTR(-EXDEV);
318         }
319         cpu = cpumask_first(alloc_data.hctx->cpumask);
320         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
321
322         rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
323
324         blk_mq_put_ctx(alloc_data.ctx);
325         blk_queue_exit(q);
326
327         if (!rq)
328                 return ERR_PTR(-EWOULDBLOCK);
329
330         return rq;
331 }
332 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
333
334 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
335                              struct request *rq)
336 {
337         const int sched_tag = rq->internal_tag;
338         struct request_queue *q = rq->q;
339
340         if (rq->rq_flags & RQF_MQ_INFLIGHT)
341                 atomic_dec(&hctx->nr_active);
342
343         wbt_done(q->rq_wb, &rq->issue_stat);
344         rq->rq_flags = 0;
345
346         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
347         clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
348         if (rq->tag != -1)
349                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
350         if (sched_tag != -1)
351                 blk_mq_sched_completed_request(hctx, rq);
352         blk_mq_sched_restart_queues(hctx);
353         blk_queue_exit(q);
354 }
355
356 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
357                                      struct request *rq)
358 {
359         struct blk_mq_ctx *ctx = rq->mq_ctx;
360
361         ctx->rq_completed[rq_is_sync(rq)]++;
362         __blk_mq_finish_request(hctx, ctx, rq);
363 }
364
365 void blk_mq_finish_request(struct request *rq)
366 {
367         blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
368 }
369
370 void blk_mq_free_request(struct request *rq)
371 {
372         blk_mq_sched_put_request(rq);
373 }
374 EXPORT_SYMBOL_GPL(blk_mq_free_request);
375
376 inline void __blk_mq_end_request(struct request *rq, int error)
377 {
378         blk_account_io_done(rq);
379
380         if (rq->end_io) {
381                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
382                 rq->end_io(rq, error);
383         } else {
384                 if (unlikely(blk_bidi_rq(rq)))
385                         blk_mq_free_request(rq->next_rq);
386                 blk_mq_free_request(rq);
387         }
388 }
389 EXPORT_SYMBOL(__blk_mq_end_request);
390
391 void blk_mq_end_request(struct request *rq, int error)
392 {
393         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
394                 BUG();
395         __blk_mq_end_request(rq, error);
396 }
397 EXPORT_SYMBOL(blk_mq_end_request);
398
399 static void __blk_mq_complete_request_remote(void *data)
400 {
401         struct request *rq = data;
402
403         rq->q->softirq_done_fn(rq);
404 }
405
406 static void blk_mq_ipi_complete_request(struct request *rq)
407 {
408         struct blk_mq_ctx *ctx = rq->mq_ctx;
409         bool shared = false;
410         int cpu;
411
412         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
413                 rq->q->softirq_done_fn(rq);
414                 return;
415         }
416
417         cpu = get_cpu();
418         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
419                 shared = cpus_share_cache(cpu, ctx->cpu);
420
421         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
422                 rq->csd.func = __blk_mq_complete_request_remote;
423                 rq->csd.info = rq;
424                 rq->csd.flags = 0;
425                 smp_call_function_single_async(ctx->cpu, &rq->csd);
426         } else {
427                 rq->q->softirq_done_fn(rq);
428         }
429         put_cpu();
430 }
431
432 static void blk_mq_stat_add(struct request *rq)
433 {
434         if (rq->rq_flags & RQF_STATS) {
435                 /*
436                  * We could rq->mq_ctx here, but there's less of a risk
437                  * of races if we have the completion event add the stats
438                  * to the local software queue.
439                  */
440                 struct blk_mq_ctx *ctx;
441
442                 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
443                 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
444         }
445 }
446
447 static void __blk_mq_complete_request(struct request *rq)
448 {
449         struct request_queue *q = rq->q;
450
451         blk_mq_stat_add(rq);
452
453         if (!q->softirq_done_fn)
454                 blk_mq_end_request(rq, rq->errors);
455         else
456                 blk_mq_ipi_complete_request(rq);
457 }
458
459 /**
460  * blk_mq_complete_request - end I/O on a request
461  * @rq:         the request being processed
462  *
463  * Description:
464  *      Ends all I/O on a request. It does not handle partial completions.
465  *      The actual completion happens out-of-order, through a IPI handler.
466  **/
467 void blk_mq_complete_request(struct request *rq, int error)
468 {
469         struct request_queue *q = rq->q;
470
471         if (unlikely(blk_should_fake_timeout(q)))
472                 return;
473         if (!blk_mark_rq_complete(rq)) {
474                 rq->errors = error;
475                 __blk_mq_complete_request(rq);
476         }
477 }
478 EXPORT_SYMBOL(blk_mq_complete_request);
479
480 int blk_mq_request_started(struct request *rq)
481 {
482         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
483 }
484 EXPORT_SYMBOL_GPL(blk_mq_request_started);
485
486 void blk_mq_start_request(struct request *rq)
487 {
488         struct request_queue *q = rq->q;
489
490         blk_mq_sched_started_request(rq);
491
492         trace_block_rq_issue(q, rq);
493
494         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
495                 blk_stat_set_issue_time(&rq->issue_stat);
496                 rq->rq_flags |= RQF_STATS;
497                 wbt_issue(q->rq_wb, &rq->issue_stat);
498         }
499
500         blk_add_timer(rq);
501
502         /*
503          * Ensure that ->deadline is visible before set the started
504          * flag and clear the completed flag.
505          */
506         smp_mb__before_atomic();
507
508         /*
509          * Mark us as started and clear complete. Complete might have been
510          * set if requeue raced with timeout, which then marked it as
511          * complete. So be sure to clear complete again when we start
512          * the request, otherwise we'll ignore the completion event.
513          */
514         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
515                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
516         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
517                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
518
519         if (q->dma_drain_size && blk_rq_bytes(rq)) {
520                 /*
521                  * Make sure space for the drain appears.  We know we can do
522                  * this because max_hw_segments has been adjusted to be one
523                  * fewer than the device can handle.
524                  */
525                 rq->nr_phys_segments++;
526         }
527 }
528 EXPORT_SYMBOL(blk_mq_start_request);
529
530 static void __blk_mq_requeue_request(struct request *rq)
531 {
532         struct request_queue *q = rq->q;
533
534         trace_block_rq_requeue(q, rq);
535         wbt_requeue(q->rq_wb, &rq->issue_stat);
536         blk_mq_sched_requeue_request(rq);
537
538         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
539                 if (q->dma_drain_size && blk_rq_bytes(rq))
540                         rq->nr_phys_segments--;
541         }
542 }
543
544 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
545 {
546         __blk_mq_requeue_request(rq);
547
548         BUG_ON(blk_queued_rq(rq));
549         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
550 }
551 EXPORT_SYMBOL(blk_mq_requeue_request);
552
553 static void blk_mq_requeue_work(struct work_struct *work)
554 {
555         struct request_queue *q =
556                 container_of(work, struct request_queue, requeue_work.work);
557         LIST_HEAD(rq_list);
558         struct request *rq, *next;
559         unsigned long flags;
560
561         spin_lock_irqsave(&q->requeue_lock, flags);
562         list_splice_init(&q->requeue_list, &rq_list);
563         spin_unlock_irqrestore(&q->requeue_lock, flags);
564
565         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
566                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
567                         continue;
568
569                 rq->rq_flags &= ~RQF_SOFTBARRIER;
570                 list_del_init(&rq->queuelist);
571                 blk_mq_sched_insert_request(rq, true, false, false, true);
572         }
573
574         while (!list_empty(&rq_list)) {
575                 rq = list_entry(rq_list.next, struct request, queuelist);
576                 list_del_init(&rq->queuelist);
577                 blk_mq_sched_insert_request(rq, false, false, false, true);
578         }
579
580         blk_mq_run_hw_queues(q, false);
581 }
582
583 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
584                                 bool kick_requeue_list)
585 {
586         struct request_queue *q = rq->q;
587         unsigned long flags;
588
589         /*
590          * We abuse this flag that is otherwise used by the I/O scheduler to
591          * request head insertation from the workqueue.
592          */
593         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
594
595         spin_lock_irqsave(&q->requeue_lock, flags);
596         if (at_head) {
597                 rq->rq_flags |= RQF_SOFTBARRIER;
598                 list_add(&rq->queuelist, &q->requeue_list);
599         } else {
600                 list_add_tail(&rq->queuelist, &q->requeue_list);
601         }
602         spin_unlock_irqrestore(&q->requeue_lock, flags);
603
604         if (kick_requeue_list)
605                 blk_mq_kick_requeue_list(q);
606 }
607 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
608
609 void blk_mq_kick_requeue_list(struct request_queue *q)
610 {
611         kblockd_schedule_delayed_work(&q->requeue_work, 0);
612 }
613 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
614
615 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
616                                     unsigned long msecs)
617 {
618         kblockd_schedule_delayed_work(&q->requeue_work,
619                                       msecs_to_jiffies(msecs));
620 }
621 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
622
623 void blk_mq_abort_requeue_list(struct request_queue *q)
624 {
625         unsigned long flags;
626         LIST_HEAD(rq_list);
627
628         spin_lock_irqsave(&q->requeue_lock, flags);
629         list_splice_init(&q->requeue_list, &rq_list);
630         spin_unlock_irqrestore(&q->requeue_lock, flags);
631
632         while (!list_empty(&rq_list)) {
633                 struct request *rq;
634
635                 rq = list_first_entry(&rq_list, struct request, queuelist);
636                 list_del_init(&rq->queuelist);
637                 rq->errors = -EIO;
638                 blk_mq_end_request(rq, rq->errors);
639         }
640 }
641 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
642
643 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
644 {
645         if (tag < tags->nr_tags) {
646                 prefetch(tags->rqs[tag]);
647                 return tags->rqs[tag];
648         }
649
650         return NULL;
651 }
652 EXPORT_SYMBOL(blk_mq_tag_to_rq);
653
654 struct blk_mq_timeout_data {
655         unsigned long next;
656         unsigned int next_set;
657 };
658
659 void blk_mq_rq_timed_out(struct request *req, bool reserved)
660 {
661         const struct blk_mq_ops *ops = req->q->mq_ops;
662         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
663
664         /*
665          * We know that complete is set at this point. If STARTED isn't set
666          * anymore, then the request isn't active and the "timeout" should
667          * just be ignored. This can happen due to the bitflag ordering.
668          * Timeout first checks if STARTED is set, and if it is, assumes
669          * the request is active. But if we race with completion, then
670          * we both flags will get cleared. So check here again, and ignore
671          * a timeout event with a request that isn't active.
672          */
673         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
674                 return;
675
676         if (ops->timeout)
677                 ret = ops->timeout(req, reserved);
678
679         switch (ret) {
680         case BLK_EH_HANDLED:
681                 __blk_mq_complete_request(req);
682                 break;
683         case BLK_EH_RESET_TIMER:
684                 blk_add_timer(req);
685                 blk_clear_rq_complete(req);
686                 break;
687         case BLK_EH_NOT_HANDLED:
688                 break;
689         default:
690                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
691                 break;
692         }
693 }
694
695 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
696                 struct request *rq, void *priv, bool reserved)
697 {
698         struct blk_mq_timeout_data *data = priv;
699
700         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
701                 /*
702                  * If a request wasn't started before the queue was
703                  * marked dying, kill it here or it'll go unnoticed.
704                  */
705                 if (unlikely(blk_queue_dying(rq->q))) {
706                         rq->errors = -EIO;
707                         blk_mq_end_request(rq, rq->errors);
708                 }
709                 return;
710         }
711
712         if (time_after_eq(jiffies, rq->deadline)) {
713                 if (!blk_mark_rq_complete(rq))
714                         blk_mq_rq_timed_out(rq, reserved);
715         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
716                 data->next = rq->deadline;
717                 data->next_set = 1;
718         }
719 }
720
721 static void blk_mq_timeout_work(struct work_struct *work)
722 {
723         struct request_queue *q =
724                 container_of(work, struct request_queue, timeout_work);
725         struct blk_mq_timeout_data data = {
726                 .next           = 0,
727                 .next_set       = 0,
728         };
729         int i;
730
731         /* A deadlock might occur if a request is stuck requiring a
732          * timeout at the same time a queue freeze is waiting
733          * completion, since the timeout code would not be able to
734          * acquire the queue reference here.
735          *
736          * That's why we don't use blk_queue_enter here; instead, we use
737          * percpu_ref_tryget directly, because we need to be able to
738          * obtain a reference even in the short window between the queue
739          * starting to freeze, by dropping the first reference in
740          * blk_mq_freeze_queue_start, and the moment the last request is
741          * consumed, marked by the instant q_usage_counter reaches
742          * zero.
743          */
744         if (!percpu_ref_tryget(&q->q_usage_counter))
745                 return;
746
747         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
748
749         if (data.next_set) {
750                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
751                 mod_timer(&q->timeout, data.next);
752         } else {
753                 struct blk_mq_hw_ctx *hctx;
754
755                 queue_for_each_hw_ctx(q, hctx, i) {
756                         /* the hctx may be unmapped, so check it here */
757                         if (blk_mq_hw_queue_mapped(hctx))
758                                 blk_mq_tag_idle(hctx);
759                 }
760         }
761         blk_queue_exit(q);
762 }
763
764 /*
765  * Reverse check our software queue for entries that we could potentially
766  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
767  * too much time checking for merges.
768  */
769 static bool blk_mq_attempt_merge(struct request_queue *q,
770                                  struct blk_mq_ctx *ctx, struct bio *bio)
771 {
772         struct request *rq;
773         int checked = 8;
774
775         list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
776                 bool merged = false;
777
778                 if (!checked--)
779                         break;
780
781                 if (!blk_rq_merge_ok(rq, bio))
782                         continue;
783
784                 switch (blk_try_merge(rq, bio)) {
785                 case ELEVATOR_BACK_MERGE:
786                         if (blk_mq_sched_allow_merge(q, rq, bio))
787                                 merged = bio_attempt_back_merge(q, rq, bio);
788                         break;
789                 case ELEVATOR_FRONT_MERGE:
790                         if (blk_mq_sched_allow_merge(q, rq, bio))
791                                 merged = bio_attempt_front_merge(q, rq, bio);
792                         break;
793                 case ELEVATOR_DISCARD_MERGE:
794                         merged = bio_attempt_discard_merge(q, rq, bio);
795                         break;
796                 default:
797                         continue;
798                 }
799
800                 if (merged)
801                         ctx->rq_merged++;
802                 return merged;
803         }
804
805         return false;
806 }
807
808 struct flush_busy_ctx_data {
809         struct blk_mq_hw_ctx *hctx;
810         struct list_head *list;
811 };
812
813 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
814 {
815         struct flush_busy_ctx_data *flush_data = data;
816         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
817         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
818
819         sbitmap_clear_bit(sb, bitnr);
820         spin_lock(&ctx->lock);
821         list_splice_tail_init(&ctx->rq_list, flush_data->list);
822         spin_unlock(&ctx->lock);
823         return true;
824 }
825
826 /*
827  * Process software queues that have been marked busy, splicing them
828  * to the for-dispatch
829  */
830 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
831 {
832         struct flush_busy_ctx_data data = {
833                 .hctx = hctx,
834                 .list = list,
835         };
836
837         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
838 }
839 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
840
841 static inline unsigned int queued_to_index(unsigned int queued)
842 {
843         if (!queued)
844                 return 0;
845
846         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
847 }
848
849 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
850                            bool wait)
851 {
852         struct blk_mq_alloc_data data = {
853                 .q = rq->q,
854                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
855                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
856         };
857
858         if (rq->tag != -1) {
859 done:
860                 if (hctx)
861                         *hctx = data.hctx;
862                 return true;
863         }
864
865         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
866                 data.flags |= BLK_MQ_REQ_RESERVED;
867
868         rq->tag = blk_mq_get_tag(&data);
869         if (rq->tag >= 0) {
870                 if (blk_mq_tag_busy(data.hctx)) {
871                         rq->rq_flags |= RQF_MQ_INFLIGHT;
872                         atomic_inc(&data.hctx->nr_active);
873                 }
874                 data.hctx->tags->rqs[rq->tag] = rq;
875                 goto done;
876         }
877
878         return false;
879 }
880
881 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
882                                     struct request *rq)
883 {
884         blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
885         rq->tag = -1;
886
887         if (rq->rq_flags & RQF_MQ_INFLIGHT) {
888                 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
889                 atomic_dec(&hctx->nr_active);
890         }
891 }
892
893 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
894                                        struct request *rq)
895 {
896         if (rq->tag == -1 || rq->internal_tag == -1)
897                 return;
898
899         __blk_mq_put_driver_tag(hctx, rq);
900 }
901
902 static void blk_mq_put_driver_tag(struct request *rq)
903 {
904         struct blk_mq_hw_ctx *hctx;
905
906         if (rq->tag == -1 || rq->internal_tag == -1)
907                 return;
908
909         hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
910         __blk_mq_put_driver_tag(hctx, rq);
911 }
912
913 /*
914  * If we fail getting a driver tag because all the driver tags are already
915  * assigned and on the dispatch list, BUT the first entry does not have a
916  * tag, then we could deadlock. For that case, move entries with assigned
917  * driver tags to the front, leaving the set of tagged requests in the
918  * same order, and the untagged set in the same order.
919  */
920 static bool reorder_tags_to_front(struct list_head *list)
921 {
922         struct request *rq, *tmp, *first = NULL;
923
924         list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
925                 if (rq == first)
926                         break;
927                 if (rq->tag != -1) {
928                         list_move(&rq->queuelist, list);
929                         if (!first)
930                                 first = rq;
931                 }
932         }
933
934         return first != NULL;
935 }
936
937 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
938                                 void *key)
939 {
940         struct blk_mq_hw_ctx *hctx;
941
942         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
943
944         list_del(&wait->task_list);
945         clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
946         blk_mq_run_hw_queue(hctx, true);
947         return 1;
948 }
949
950 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
951 {
952         struct sbq_wait_state *ws;
953
954         /*
955          * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
956          * The thread which wins the race to grab this bit adds the hardware
957          * queue to the wait queue.
958          */
959         if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
960             test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
961                 return false;
962
963         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
964         ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
965
966         /*
967          * As soon as this returns, it's no longer safe to fiddle with
968          * hctx->dispatch_wait, since a completion can wake up the wait queue
969          * and unlock the bit.
970          */
971         add_wait_queue(&ws->wait, &hctx->dispatch_wait);
972         return true;
973 }
974
975 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
976 {
977         struct request_queue *q = hctx->queue;
978         struct request *rq;
979         LIST_HEAD(driver_list);
980         struct list_head *dptr;
981         int queued, ret = BLK_MQ_RQ_QUEUE_OK;
982
983         /*
984          * Start off with dptr being NULL, so we start the first request
985          * immediately, even if we have more pending.
986          */
987         dptr = NULL;
988
989         /*
990          * Now process all the entries, sending them to the driver.
991          */
992         queued = 0;
993         while (!list_empty(list)) {
994                 struct blk_mq_queue_data bd;
995
996                 rq = list_first_entry(list, struct request, queuelist);
997                 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
998                         if (!queued && reorder_tags_to_front(list))
999                                 continue;
1000
1001                         /*
1002                          * The initial allocation attempt failed, so we need to
1003                          * rerun the hardware queue when a tag is freed.
1004                          */
1005                         if (blk_mq_dispatch_wait_add(hctx)) {
1006                                 /*
1007                                  * It's possible that a tag was freed in the
1008                                  * window between the allocation failure and
1009                                  * adding the hardware queue to the wait queue.
1010                                  */
1011                                 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1012                                         break;
1013                         } else {
1014                                 break;
1015                         }
1016                 }
1017
1018                 list_del_init(&rq->queuelist);
1019
1020                 bd.rq = rq;
1021                 bd.list = dptr;
1022
1023                 /*
1024                  * Flag last if we have no more requests, or if we have more
1025                  * but can't assign a driver tag to it.
1026                  */
1027                 if (list_empty(list))
1028                         bd.last = true;
1029                 else {
1030                         struct request *nxt;
1031
1032                         nxt = list_first_entry(list, struct request, queuelist);
1033                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1034                 }
1035
1036                 ret = q->mq_ops->queue_rq(hctx, &bd);
1037                 switch (ret) {
1038                 case BLK_MQ_RQ_QUEUE_OK:
1039                         queued++;
1040                         break;
1041                 case BLK_MQ_RQ_QUEUE_BUSY:
1042                         blk_mq_put_driver_tag_hctx(hctx, rq);
1043                         list_add(&rq->queuelist, list);
1044                         __blk_mq_requeue_request(rq);
1045                         break;
1046                 default:
1047                         pr_err("blk-mq: bad return on queue: %d\n", ret);
1048                 case BLK_MQ_RQ_QUEUE_ERROR:
1049                         rq->errors = -EIO;
1050                         blk_mq_end_request(rq, rq->errors);
1051                         break;
1052                 }
1053
1054                 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1055                         break;
1056
1057                 /*
1058                  * We've done the first request. If we have more than 1
1059                  * left in the list, set dptr to defer issue.
1060                  */
1061                 if (!dptr && list->next != list->prev)
1062                         dptr = &driver_list;
1063         }
1064
1065         hctx->dispatched[queued_to_index(queued)]++;
1066
1067         /*
1068          * Any items that need requeuing? Stuff them into hctx->dispatch,
1069          * that is where we will continue on next queue run.
1070          */
1071         if (!list_empty(list)) {
1072                 /*
1073                  * If we got a driver tag for the next request already,
1074                  * free it again.
1075                  */
1076                 rq = list_first_entry(list, struct request, queuelist);
1077                 blk_mq_put_driver_tag(rq);
1078
1079                 spin_lock(&hctx->lock);
1080                 list_splice_init(list, &hctx->dispatch);
1081                 spin_unlock(&hctx->lock);
1082
1083                 /*
1084                  * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1085                  * it's possible the queue is stopped and restarted again
1086                  * before this. Queue restart will dispatch requests. And since
1087                  * requests in rq_list aren't added into hctx->dispatch yet,
1088                  * the requests in rq_list might get lost.
1089                  *
1090                  * blk_mq_run_hw_queue() already checks the STOPPED bit
1091                  *
1092                  * If RESTART or TAG_WAITING is set, then let completion restart
1093                  * the queue instead of potentially looping here.
1094                  */
1095                 if (!blk_mq_sched_needs_restart(hctx) &&
1096                     !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1097                         blk_mq_run_hw_queue(hctx, true);
1098         }
1099
1100         return queued != 0;
1101 }
1102
1103 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1104 {
1105         int srcu_idx;
1106
1107         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1108                 cpu_online(hctx->next_cpu));
1109
1110         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1111                 rcu_read_lock();
1112                 blk_mq_sched_dispatch_requests(hctx);
1113                 rcu_read_unlock();
1114         } else {
1115                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1116                 blk_mq_sched_dispatch_requests(hctx);
1117                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1118         }
1119 }
1120
1121 /*
1122  * It'd be great if the workqueue API had a way to pass
1123  * in a mask and had some smarts for more clever placement.
1124  * For now we just round-robin here, switching for every
1125  * BLK_MQ_CPU_WORK_BATCH queued items.
1126  */
1127 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1128 {
1129         if (hctx->queue->nr_hw_queues == 1)
1130                 return WORK_CPU_UNBOUND;
1131
1132         if (--hctx->next_cpu_batch <= 0) {
1133                 int next_cpu;
1134
1135                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1136                 if (next_cpu >= nr_cpu_ids)
1137                         next_cpu = cpumask_first(hctx->cpumask);
1138
1139                 hctx->next_cpu = next_cpu;
1140                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1141         }
1142
1143         return hctx->next_cpu;
1144 }
1145
1146 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1147 {
1148         if (unlikely(blk_mq_hctx_stopped(hctx) ||
1149                      !blk_mq_hw_queue_mapped(hctx)))
1150                 return;
1151
1152         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1153                 int cpu = get_cpu();
1154                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1155                         __blk_mq_run_hw_queue(hctx);
1156                         put_cpu();
1157                         return;
1158                 }
1159
1160                 put_cpu();
1161         }
1162
1163         kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1164 }
1165
1166 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1167 {
1168         struct blk_mq_hw_ctx *hctx;
1169         int i;
1170
1171         queue_for_each_hw_ctx(q, hctx, i) {
1172                 if (!blk_mq_hctx_has_pending(hctx) ||
1173                     blk_mq_hctx_stopped(hctx))
1174                         continue;
1175
1176                 blk_mq_run_hw_queue(hctx, async);
1177         }
1178 }
1179 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1180
1181 /**
1182  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1183  * @q: request queue.
1184  *
1185  * The caller is responsible for serializing this function against
1186  * blk_mq_{start,stop}_hw_queue().
1187  */
1188 bool blk_mq_queue_stopped(struct request_queue *q)
1189 {
1190         struct blk_mq_hw_ctx *hctx;
1191         int i;
1192
1193         queue_for_each_hw_ctx(q, hctx, i)
1194                 if (blk_mq_hctx_stopped(hctx))
1195                         return true;
1196
1197         return false;
1198 }
1199 EXPORT_SYMBOL(blk_mq_queue_stopped);
1200
1201 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1202 {
1203         cancel_work(&hctx->run_work);
1204         cancel_delayed_work(&hctx->delay_work);
1205         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1206 }
1207 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1208
1209 void blk_mq_stop_hw_queues(struct request_queue *q)
1210 {
1211         struct blk_mq_hw_ctx *hctx;
1212         int i;
1213
1214         queue_for_each_hw_ctx(q, hctx, i)
1215                 blk_mq_stop_hw_queue(hctx);
1216 }
1217 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1218
1219 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1220 {
1221         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1222
1223         blk_mq_run_hw_queue(hctx, false);
1224 }
1225 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1226
1227 void blk_mq_start_hw_queues(struct request_queue *q)
1228 {
1229         struct blk_mq_hw_ctx *hctx;
1230         int i;
1231
1232         queue_for_each_hw_ctx(q, hctx, i)
1233                 blk_mq_start_hw_queue(hctx);
1234 }
1235 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1236
1237 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1238 {
1239         if (!blk_mq_hctx_stopped(hctx))
1240                 return;
1241
1242         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1243         blk_mq_run_hw_queue(hctx, async);
1244 }
1245 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1246
1247 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1248 {
1249         struct blk_mq_hw_ctx *hctx;
1250         int i;
1251
1252         queue_for_each_hw_ctx(q, hctx, i)
1253                 blk_mq_start_stopped_hw_queue(hctx, async);
1254 }
1255 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1256
1257 static void blk_mq_run_work_fn(struct work_struct *work)
1258 {
1259         struct blk_mq_hw_ctx *hctx;
1260
1261         hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1262
1263         __blk_mq_run_hw_queue(hctx);
1264 }
1265
1266 static void blk_mq_delay_work_fn(struct work_struct *work)
1267 {
1268         struct blk_mq_hw_ctx *hctx;
1269
1270         hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1271
1272         if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1273                 __blk_mq_run_hw_queue(hctx);
1274 }
1275
1276 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1277 {
1278         if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1279                 return;
1280
1281         blk_mq_stop_hw_queue(hctx);
1282         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1283                         &hctx->delay_work, msecs_to_jiffies(msecs));
1284 }
1285 EXPORT_SYMBOL(blk_mq_delay_queue);
1286
1287 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1288                                             struct request *rq,
1289                                             bool at_head)
1290 {
1291         struct blk_mq_ctx *ctx = rq->mq_ctx;
1292
1293         trace_block_rq_insert(hctx->queue, rq);
1294
1295         if (at_head)
1296                 list_add(&rq->queuelist, &ctx->rq_list);
1297         else
1298                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1299 }
1300
1301 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1302                              bool at_head)
1303 {
1304         struct blk_mq_ctx *ctx = rq->mq_ctx;
1305
1306         __blk_mq_insert_req_list(hctx, rq, at_head);
1307         blk_mq_hctx_mark_pending(hctx, ctx);
1308 }
1309
1310 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1311                             struct list_head *list)
1312
1313 {
1314         /*
1315          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1316          * offline now
1317          */
1318         spin_lock(&ctx->lock);
1319         while (!list_empty(list)) {
1320                 struct request *rq;
1321
1322                 rq = list_first_entry(list, struct request, queuelist);
1323                 BUG_ON(rq->mq_ctx != ctx);
1324                 list_del_init(&rq->queuelist);
1325                 __blk_mq_insert_req_list(hctx, rq, false);
1326         }
1327         blk_mq_hctx_mark_pending(hctx, ctx);
1328         spin_unlock(&ctx->lock);
1329 }
1330
1331 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1332 {
1333         struct request *rqa = container_of(a, struct request, queuelist);
1334         struct request *rqb = container_of(b, struct request, queuelist);
1335
1336         return !(rqa->mq_ctx < rqb->mq_ctx ||
1337                  (rqa->mq_ctx == rqb->mq_ctx &&
1338                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1339 }
1340
1341 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1342 {
1343         struct blk_mq_ctx *this_ctx;
1344         struct request_queue *this_q;
1345         struct request *rq;
1346         LIST_HEAD(list);
1347         LIST_HEAD(ctx_list);
1348         unsigned int depth;
1349
1350         list_splice_init(&plug->mq_list, &list);
1351
1352         list_sort(NULL, &list, plug_ctx_cmp);
1353
1354         this_q = NULL;
1355         this_ctx = NULL;
1356         depth = 0;
1357
1358         while (!list_empty(&list)) {
1359                 rq = list_entry_rq(list.next);
1360                 list_del_init(&rq->queuelist);
1361                 BUG_ON(!rq->q);
1362                 if (rq->mq_ctx != this_ctx) {
1363                         if (this_ctx) {
1364                                 trace_block_unplug(this_q, depth, from_schedule);
1365                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1366                                                                 &ctx_list,
1367                                                                 from_schedule);
1368                         }
1369
1370                         this_ctx = rq->mq_ctx;
1371                         this_q = rq->q;
1372                         depth = 0;
1373                 }
1374
1375                 depth++;
1376                 list_add_tail(&rq->queuelist, &ctx_list);
1377         }
1378
1379         /*
1380          * If 'this_ctx' is set, we know we have entries to complete
1381          * on 'ctx_list'. Do those.
1382          */
1383         if (this_ctx) {
1384                 trace_block_unplug(this_q, depth, from_schedule);
1385                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1386                                                 from_schedule);
1387         }
1388 }
1389
1390 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1391 {
1392         init_request_from_bio(rq, bio);
1393
1394         blk_account_io_start(rq, true);
1395 }
1396
1397 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1398 {
1399         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1400                 !blk_queue_nomerges(hctx->queue);
1401 }
1402
1403 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1404                                          struct blk_mq_ctx *ctx,
1405                                          struct request *rq, struct bio *bio)
1406 {
1407         if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1408                 blk_mq_bio_to_request(rq, bio);
1409                 spin_lock(&ctx->lock);
1410 insert_rq:
1411                 __blk_mq_insert_request(hctx, rq, false);
1412                 spin_unlock(&ctx->lock);
1413                 return false;
1414         } else {
1415                 struct request_queue *q = hctx->queue;
1416
1417                 spin_lock(&ctx->lock);
1418                 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1419                         blk_mq_bio_to_request(rq, bio);
1420                         goto insert_rq;
1421                 }
1422
1423                 spin_unlock(&ctx->lock);
1424                 __blk_mq_finish_request(hctx, ctx, rq);
1425                 return true;
1426         }
1427 }
1428
1429 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1430 {
1431         if (rq->tag != -1)
1432                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1433
1434         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1435 }
1436
1437 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1438                                       bool may_sleep)
1439 {
1440         struct request_queue *q = rq->q;
1441         struct blk_mq_queue_data bd = {
1442                 .rq = rq,
1443                 .list = NULL,
1444                 .last = 1
1445         };
1446         struct blk_mq_hw_ctx *hctx;
1447         blk_qc_t new_cookie;
1448         int ret;
1449
1450         if (q->elevator)
1451                 goto insert;
1452
1453         if (!blk_mq_get_driver_tag(rq, &hctx, false))
1454                 goto insert;
1455
1456         new_cookie = request_to_qc_t(hctx, rq);
1457
1458         /*
1459          * For OK queue, we are done. For error, kill it. Any other
1460          * error (busy), just add it to our list as we previously
1461          * would have done
1462          */
1463         ret = q->mq_ops->queue_rq(hctx, &bd);
1464         if (ret == BLK_MQ_RQ_QUEUE_OK) {
1465                 *cookie = new_cookie;
1466                 return;
1467         }
1468
1469         __blk_mq_requeue_request(rq);
1470
1471         if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1472                 *cookie = BLK_QC_T_NONE;
1473                 rq->errors = -EIO;
1474                 blk_mq_end_request(rq, rq->errors);
1475                 return;
1476         }
1477
1478 insert:
1479         blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1480 }
1481
1482 /*
1483  * Multiple hardware queue variant. This will not use per-process plugs,
1484  * but will attempt to bypass the hctx queueing if we can go straight to
1485  * hardware for SYNC IO.
1486  */
1487 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1488 {
1489         const int is_sync = op_is_sync(bio->bi_opf);
1490         const int is_flush_fua = op_is_flush(bio->bi_opf);
1491         struct blk_mq_alloc_data data = { .flags = 0 };
1492         struct request *rq;
1493         unsigned int request_count = 0, srcu_idx;
1494         struct blk_plug *plug;
1495         struct request *same_queue_rq = NULL;
1496         blk_qc_t cookie;
1497         unsigned int wb_acct;
1498
1499         blk_queue_bounce(q, &bio);
1500
1501         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1502                 bio_io_error(bio);
1503                 return BLK_QC_T_NONE;
1504         }
1505
1506         blk_queue_split(q, &bio, q->bio_split);
1507
1508         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1509             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1510                 return BLK_QC_T_NONE;
1511
1512         if (blk_mq_sched_bio_merge(q, bio))
1513                 return BLK_QC_T_NONE;
1514
1515         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1516
1517         trace_block_getrq(q, bio, bio->bi_opf);
1518
1519         rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1520         if (unlikely(!rq)) {
1521                 __wbt_done(q->rq_wb, wb_acct);
1522                 return BLK_QC_T_NONE;
1523         }
1524
1525         wbt_track(&rq->issue_stat, wb_acct);
1526
1527         cookie = request_to_qc_t(data.hctx, rq);
1528
1529         if (unlikely(is_flush_fua)) {
1530                 if (q->elevator)
1531                         goto elv_insert;
1532                 blk_mq_bio_to_request(rq, bio);
1533                 blk_insert_flush(rq);
1534                 goto run_queue;
1535         }
1536
1537         plug = current->plug;
1538         /*
1539          * If the driver supports defer issued based on 'last', then
1540          * queue it up like normal since we can potentially save some
1541          * CPU this way.
1542          */
1543         if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1544             !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1545                 struct request *old_rq = NULL;
1546
1547                 blk_mq_bio_to_request(rq, bio);
1548
1549                 /*
1550                  * We do limited plugging. If the bio can be merged, do that.
1551                  * Otherwise the existing request in the plug list will be
1552                  * issued. So the plug list will have one request at most
1553                  */
1554                 if (plug) {
1555                         /*
1556                          * The plug list might get flushed before this. If that
1557                          * happens, same_queue_rq is invalid and plug list is
1558                          * empty
1559                          */
1560                         if (same_queue_rq && !list_empty(&plug->mq_list)) {
1561                                 old_rq = same_queue_rq;
1562                                 list_del_init(&old_rq->queuelist);
1563                         }
1564                         list_add_tail(&rq->queuelist, &plug->mq_list);
1565                 } else /* is_sync */
1566                         old_rq = rq;
1567                 blk_mq_put_ctx(data.ctx);
1568                 if (!old_rq)
1569                         goto done;
1570
1571                 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1572                         rcu_read_lock();
1573                         blk_mq_try_issue_directly(old_rq, &cookie, false);
1574                         rcu_read_unlock();
1575                 } else {
1576                         srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1577                         blk_mq_try_issue_directly(old_rq, &cookie, true);
1578                         srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1579                 }
1580                 goto done;
1581         }
1582
1583         if (q->elevator) {
1584 elv_insert:
1585                 blk_mq_put_ctx(data.ctx);
1586                 blk_mq_bio_to_request(rq, bio);
1587                 blk_mq_sched_insert_request(rq, false, true,
1588                                                 !is_sync || is_flush_fua, true);
1589                 goto done;
1590         }
1591         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1592                 /*
1593                  * For a SYNC request, send it to the hardware immediately. For
1594                  * an ASYNC request, just ensure that we run it later on. The
1595                  * latter allows for merging opportunities and more efficient
1596                  * dispatching.
1597                  */
1598 run_queue:
1599                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1600         }
1601         blk_mq_put_ctx(data.ctx);
1602 done:
1603         return cookie;
1604 }
1605
1606 /*
1607  * Single hardware queue variant. This will attempt to use any per-process
1608  * plug for merging and IO deferral.
1609  */
1610 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1611 {
1612         const int is_sync = op_is_sync(bio->bi_opf);
1613         const int is_flush_fua = op_is_flush(bio->bi_opf);
1614         struct blk_plug *plug;
1615         unsigned int request_count = 0;
1616         struct blk_mq_alloc_data data = { .flags = 0 };
1617         struct request *rq;
1618         blk_qc_t cookie;
1619         unsigned int wb_acct;
1620
1621         blk_queue_bounce(q, &bio);
1622
1623         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1624                 bio_io_error(bio);
1625                 return BLK_QC_T_NONE;
1626         }
1627
1628         blk_queue_split(q, &bio, q->bio_split);
1629
1630         if (!is_flush_fua && !blk_queue_nomerges(q)) {
1631                 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1632                         return BLK_QC_T_NONE;
1633         } else
1634                 request_count = blk_plug_queued_count(q);
1635
1636         if (blk_mq_sched_bio_merge(q, bio))
1637                 return BLK_QC_T_NONE;
1638
1639         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1640
1641         trace_block_getrq(q, bio, bio->bi_opf);
1642
1643         rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1644         if (unlikely(!rq)) {
1645                 __wbt_done(q->rq_wb, wb_acct);
1646                 return BLK_QC_T_NONE;
1647         }
1648
1649         wbt_track(&rq->issue_stat, wb_acct);
1650
1651         cookie = request_to_qc_t(data.hctx, rq);
1652
1653         if (unlikely(is_flush_fua)) {
1654                 if (q->elevator)
1655                         goto elv_insert;
1656                 blk_mq_bio_to_request(rq, bio);
1657                 blk_insert_flush(rq);
1658                 goto run_queue;
1659         }
1660
1661         /*
1662          * A task plug currently exists. Since this is completely lockless,
1663          * utilize that to temporarily store requests until the task is
1664          * either done or scheduled away.
1665          */
1666         plug = current->plug;
1667         if (plug) {
1668                 struct request *last = NULL;
1669
1670                 blk_mq_bio_to_request(rq, bio);
1671
1672                 /*
1673                  * @request_count may become stale because of schedule
1674                  * out, so check the list again.
1675                  */
1676                 if (list_empty(&plug->mq_list))
1677                         request_count = 0;
1678                 if (!request_count)
1679                         trace_block_plug(q);
1680                 else
1681                         last = list_entry_rq(plug->mq_list.prev);
1682
1683                 blk_mq_put_ctx(data.ctx);
1684
1685                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1686                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1687                         blk_flush_plug_list(plug, false);
1688                         trace_block_plug(q);
1689                 }
1690
1691                 list_add_tail(&rq->queuelist, &plug->mq_list);
1692                 return cookie;
1693         }
1694
1695         if (q->elevator) {
1696 elv_insert:
1697                 blk_mq_put_ctx(data.ctx);
1698                 blk_mq_bio_to_request(rq, bio);
1699                 blk_mq_sched_insert_request(rq, false, true,
1700                                                 !is_sync || is_flush_fua, true);
1701                 goto done;
1702         }
1703         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1704                 /*
1705                  * For a SYNC request, send it to the hardware immediately. For
1706                  * an ASYNC request, just ensure that we run it later on. The
1707                  * latter allows for merging opportunities and more efficient
1708                  * dispatching.
1709                  */
1710 run_queue:
1711                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1712         }
1713
1714         blk_mq_put_ctx(data.ctx);
1715 done:
1716         return cookie;
1717 }
1718
1719 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1720                      unsigned int hctx_idx)
1721 {
1722         struct page *page;
1723
1724         if (tags->rqs && set->ops->exit_request) {
1725                 int i;
1726
1727                 for (i = 0; i < tags->nr_tags; i++) {
1728                         struct request *rq = tags->static_rqs[i];
1729
1730                         if (!rq)
1731                                 continue;
1732                         set->ops->exit_request(set->driver_data, rq,
1733                                                 hctx_idx, i);
1734                         tags->static_rqs[i] = NULL;
1735                 }
1736         }
1737
1738         while (!list_empty(&tags->page_list)) {
1739                 page = list_first_entry(&tags->page_list, struct page, lru);
1740                 list_del_init(&page->lru);
1741                 /*
1742                  * Remove kmemleak object previously allocated in
1743                  * blk_mq_init_rq_map().
1744                  */
1745                 kmemleak_free(page_address(page));
1746                 __free_pages(page, page->private);
1747         }
1748 }
1749
1750 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1751 {
1752         kfree(tags->rqs);
1753         tags->rqs = NULL;
1754         kfree(tags->static_rqs);
1755         tags->static_rqs = NULL;
1756
1757         blk_mq_free_tags(tags);
1758 }
1759
1760 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1761                                         unsigned int hctx_idx,
1762                                         unsigned int nr_tags,
1763                                         unsigned int reserved_tags)
1764 {
1765         struct blk_mq_tags *tags;
1766         int node;
1767
1768         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1769         if (node == NUMA_NO_NODE)
1770                 node = set->numa_node;
1771
1772         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1773                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1774         if (!tags)
1775                 return NULL;
1776
1777         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1778                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1779                                  node);
1780         if (!tags->rqs) {
1781                 blk_mq_free_tags(tags);
1782                 return NULL;
1783         }
1784
1785         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1786                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1787                                  node);
1788         if (!tags->static_rqs) {
1789                 kfree(tags->rqs);
1790                 blk_mq_free_tags(tags);
1791                 return NULL;
1792         }
1793
1794         return tags;
1795 }
1796
1797 static size_t order_to_size(unsigned int order)
1798 {
1799         return (size_t)PAGE_SIZE << order;
1800 }
1801
1802 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1803                      unsigned int hctx_idx, unsigned int depth)
1804 {
1805         unsigned int i, j, entries_per_page, max_order = 4;
1806         size_t rq_size, left;
1807         int node;
1808
1809         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1810         if (node == NUMA_NO_NODE)
1811                 node = set->numa_node;
1812
1813         INIT_LIST_HEAD(&tags->page_list);
1814
1815         /*
1816          * rq_size is the size of the request plus driver payload, rounded
1817          * to the cacheline size
1818          */
1819         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1820                                 cache_line_size());
1821         left = rq_size * depth;
1822
1823         for (i = 0; i < depth; ) {
1824                 int this_order = max_order;
1825                 struct page *page;
1826                 int to_do;
1827                 void *p;
1828
1829                 while (this_order && left < order_to_size(this_order - 1))
1830                         this_order--;
1831
1832                 do {
1833                         page = alloc_pages_node(node,
1834                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1835                                 this_order);
1836                         if (page)
1837                                 break;
1838                         if (!this_order--)
1839                                 break;
1840                         if (order_to_size(this_order) < rq_size)
1841                                 break;
1842                 } while (1);
1843
1844                 if (!page)
1845                         goto fail;
1846
1847                 page->private = this_order;
1848                 list_add_tail(&page->lru, &tags->page_list);
1849
1850                 p = page_address(page);
1851                 /*
1852                  * Allow kmemleak to scan these pages as they contain pointers
1853                  * to additional allocations like via ops->init_request().
1854                  */
1855                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1856                 entries_per_page = order_to_size(this_order) / rq_size;
1857                 to_do = min(entries_per_page, depth - i);
1858                 left -= to_do * rq_size;
1859                 for (j = 0; j < to_do; j++) {
1860                         struct request *rq = p;
1861
1862                         tags->static_rqs[i] = rq;
1863                         if (set->ops->init_request) {
1864                                 if (set->ops->init_request(set->driver_data,
1865                                                 rq, hctx_idx, i,
1866                                                 node)) {
1867                                         tags->static_rqs[i] = NULL;
1868                                         goto fail;
1869                                 }
1870                         }
1871
1872                         p += rq_size;
1873                         i++;
1874                 }
1875         }
1876         return 0;
1877
1878 fail:
1879         blk_mq_free_rqs(set, tags, hctx_idx);
1880         return -ENOMEM;
1881 }
1882
1883 /*
1884  * 'cpu' is going away. splice any existing rq_list entries from this
1885  * software queue to the hw queue dispatch list, and ensure that it
1886  * gets run.
1887  */
1888 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1889 {
1890         struct blk_mq_hw_ctx *hctx;
1891         struct blk_mq_ctx *ctx;
1892         LIST_HEAD(tmp);
1893
1894         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1895         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1896
1897         spin_lock(&ctx->lock);
1898         if (!list_empty(&ctx->rq_list)) {
1899                 list_splice_init(&ctx->rq_list, &tmp);
1900                 blk_mq_hctx_clear_pending(hctx, ctx);
1901         }
1902         spin_unlock(&ctx->lock);
1903
1904         if (list_empty(&tmp))
1905                 return 0;
1906
1907         spin_lock(&hctx->lock);
1908         list_splice_tail_init(&tmp, &hctx->dispatch);
1909         spin_unlock(&hctx->lock);
1910
1911         blk_mq_run_hw_queue(hctx, true);
1912         return 0;
1913 }
1914
1915 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1916 {
1917         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1918                                             &hctx->cpuhp_dead);
1919 }
1920
1921 /* hctx->ctxs will be freed in queue's release handler */
1922 static void blk_mq_exit_hctx(struct request_queue *q,
1923                 struct blk_mq_tag_set *set,
1924                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1925 {
1926         unsigned flush_start_tag = set->queue_depth;
1927
1928         blk_mq_tag_idle(hctx);
1929
1930         if (set->ops->exit_request)
1931                 set->ops->exit_request(set->driver_data,
1932                                        hctx->fq->flush_rq, hctx_idx,
1933                                        flush_start_tag + hctx_idx);
1934
1935         if (set->ops->exit_hctx)
1936                 set->ops->exit_hctx(hctx, hctx_idx);
1937
1938         if (hctx->flags & BLK_MQ_F_BLOCKING)
1939                 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1940
1941         blk_mq_remove_cpuhp(hctx);
1942         blk_free_flush_queue(hctx->fq);
1943         sbitmap_free(&hctx->ctx_map);
1944 }
1945
1946 static void blk_mq_exit_hw_queues(struct request_queue *q,
1947                 struct blk_mq_tag_set *set, int nr_queue)
1948 {
1949         struct blk_mq_hw_ctx *hctx;
1950         unsigned int i;
1951
1952         queue_for_each_hw_ctx(q, hctx, i) {
1953                 if (i == nr_queue)
1954                         break;
1955                 blk_mq_exit_hctx(q, set, hctx, i);
1956         }
1957 }
1958
1959 static int blk_mq_init_hctx(struct request_queue *q,
1960                 struct blk_mq_tag_set *set,
1961                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1962 {
1963         int node;
1964         unsigned flush_start_tag = set->queue_depth;
1965
1966         node = hctx->numa_node;
1967         if (node == NUMA_NO_NODE)
1968                 node = hctx->numa_node = set->numa_node;
1969
1970         INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1971         INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1972         spin_lock_init(&hctx->lock);
1973         INIT_LIST_HEAD(&hctx->dispatch);
1974         hctx->queue = q;
1975         hctx->queue_num = hctx_idx;
1976         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1977
1978         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1979
1980         hctx->tags = set->tags[hctx_idx];
1981
1982         /*
1983          * Allocate space for all possible cpus to avoid allocation at
1984          * runtime
1985          */
1986         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1987                                         GFP_KERNEL, node);
1988         if (!hctx->ctxs)
1989                 goto unregister_cpu_notifier;
1990
1991         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1992                               node))
1993                 goto free_ctxs;
1994
1995         hctx->nr_ctx = 0;
1996
1997         if (set->ops->init_hctx &&
1998             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1999                 goto free_bitmap;
2000
2001         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2002         if (!hctx->fq)
2003                 goto exit_hctx;
2004
2005         if (set->ops->init_request &&
2006             set->ops->init_request(set->driver_data,
2007                                    hctx->fq->flush_rq, hctx_idx,
2008                                    flush_start_tag + hctx_idx, node))
2009                 goto free_fq;
2010
2011         if (hctx->flags & BLK_MQ_F_BLOCKING)
2012                 init_srcu_struct(&hctx->queue_rq_srcu);
2013
2014         return 0;
2015
2016  free_fq:
2017         kfree(hctx->fq);
2018  exit_hctx:
2019         if (set->ops->exit_hctx)
2020                 set->ops->exit_hctx(hctx, hctx_idx);
2021  free_bitmap:
2022         sbitmap_free(&hctx->ctx_map);
2023  free_ctxs:
2024         kfree(hctx->ctxs);
2025  unregister_cpu_notifier:
2026         blk_mq_remove_cpuhp(hctx);
2027         return -1;
2028 }
2029
2030 static void blk_mq_init_cpu_queues(struct request_queue *q,
2031                                    unsigned int nr_hw_queues)
2032 {
2033         unsigned int i;
2034
2035         for_each_possible_cpu(i) {
2036                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2037                 struct blk_mq_hw_ctx *hctx;
2038
2039                 __ctx->cpu = i;
2040                 spin_lock_init(&__ctx->lock);
2041                 INIT_LIST_HEAD(&__ctx->rq_list);
2042                 __ctx->queue = q;
2043                 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
2044                 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
2045
2046                 /* If the cpu isn't online, the cpu is mapped to first hctx */
2047                 if (!cpu_online(i))
2048                         continue;
2049
2050                 hctx = blk_mq_map_queue(q, i);
2051
2052                 /*
2053                  * Set local node, IFF we have more than one hw queue. If
2054                  * not, we remain on the home node of the device
2055                  */
2056                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2057                         hctx->numa_node = local_memory_node(cpu_to_node(i));
2058         }
2059 }
2060
2061 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2062 {
2063         int ret = 0;
2064
2065         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2066                                         set->queue_depth, set->reserved_tags);
2067         if (!set->tags[hctx_idx])
2068                 return false;
2069
2070         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2071                                 set->queue_depth);
2072         if (!ret)
2073                 return true;
2074
2075         blk_mq_free_rq_map(set->tags[hctx_idx]);
2076         set->tags[hctx_idx] = NULL;
2077         return false;
2078 }
2079
2080 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2081                                          unsigned int hctx_idx)
2082 {
2083         if (set->tags[hctx_idx]) {
2084                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2085                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2086                 set->tags[hctx_idx] = NULL;
2087         }
2088 }
2089
2090 static void blk_mq_map_swqueue(struct request_queue *q,
2091                                const struct cpumask *online_mask)
2092 {
2093         unsigned int i, hctx_idx;
2094         struct blk_mq_hw_ctx *hctx;
2095         struct blk_mq_ctx *ctx;
2096         struct blk_mq_tag_set *set = q->tag_set;
2097
2098         /*
2099          * Avoid others reading imcomplete hctx->cpumask through sysfs
2100          */
2101         mutex_lock(&q->sysfs_lock);
2102
2103         queue_for_each_hw_ctx(q, hctx, i) {
2104                 cpumask_clear(hctx->cpumask);
2105                 hctx->nr_ctx = 0;
2106         }
2107
2108         /*
2109          * Map software to hardware queues
2110          */
2111         for_each_possible_cpu(i) {
2112                 /* If the cpu isn't online, the cpu is mapped to first hctx */
2113                 if (!cpumask_test_cpu(i, online_mask))
2114                         continue;
2115
2116                 hctx_idx = q->mq_map[i];
2117                 /* unmapped hw queue can be remapped after CPU topo changed */
2118                 if (!set->tags[hctx_idx] &&
2119                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2120                         /*
2121                          * If tags initialization fail for some hctx,
2122                          * that hctx won't be brought online.  In this
2123                          * case, remap the current ctx to hctx[0] which
2124                          * is guaranteed to always have tags allocated
2125                          */
2126                         q->mq_map[i] = 0;
2127                 }
2128
2129                 ctx = per_cpu_ptr(q->queue_ctx, i);
2130                 hctx = blk_mq_map_queue(q, i);
2131
2132                 cpumask_set_cpu(i, hctx->cpumask);
2133                 ctx->index_hw = hctx->nr_ctx;
2134                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2135         }
2136
2137         mutex_unlock(&q->sysfs_lock);
2138
2139         queue_for_each_hw_ctx(q, hctx, i) {
2140                 /*
2141                  * If no software queues are mapped to this hardware queue,
2142                  * disable it and free the request entries.
2143                  */
2144                 if (!hctx->nr_ctx) {
2145                         /* Never unmap queue 0.  We need it as a
2146                          * fallback in case of a new remap fails
2147                          * allocation
2148                          */
2149                         if (i && set->tags[i])
2150                                 blk_mq_free_map_and_requests(set, i);
2151
2152                         hctx->tags = NULL;
2153                         continue;
2154                 }
2155
2156                 hctx->tags = set->tags[i];
2157                 WARN_ON(!hctx->tags);
2158
2159                 /*
2160                  * Set the map size to the number of mapped software queues.
2161                  * This is more accurate and more efficient than looping
2162                  * over all possibly mapped software queues.
2163                  */
2164                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2165
2166                 /*
2167                  * Initialize batch roundrobin counts
2168                  */
2169                 hctx->next_cpu = cpumask_first(hctx->cpumask);
2170                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2171         }
2172 }
2173
2174 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2175 {
2176         struct blk_mq_hw_ctx *hctx;
2177         int i;
2178
2179         queue_for_each_hw_ctx(q, hctx, i) {
2180                 if (shared)
2181                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2182                 else
2183                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2184         }
2185 }
2186
2187 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2188 {
2189         struct request_queue *q;
2190
2191         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2192                 blk_mq_freeze_queue(q);
2193                 queue_set_hctx_shared(q, shared);
2194                 blk_mq_unfreeze_queue(q);
2195         }
2196 }
2197
2198 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2199 {
2200         struct blk_mq_tag_set *set = q->tag_set;
2201
2202         mutex_lock(&set->tag_list_lock);
2203         list_del_init(&q->tag_set_list);
2204         if (list_is_singular(&set->tag_list)) {
2205                 /* just transitioned to unshared */
2206                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2207                 /* update existing queue */
2208                 blk_mq_update_tag_set_depth(set, false);
2209         }
2210         mutex_unlock(&set->tag_list_lock);
2211 }
2212
2213 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2214                                      struct request_queue *q)
2215 {
2216         q->tag_set = set;
2217
2218         mutex_lock(&set->tag_list_lock);
2219
2220         /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2221         if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2222                 set->flags |= BLK_MQ_F_TAG_SHARED;
2223                 /* update existing queue */
2224                 blk_mq_update_tag_set_depth(set, true);
2225         }
2226         if (set->flags & BLK_MQ_F_TAG_SHARED)
2227                 queue_set_hctx_shared(q, true);
2228         list_add_tail(&q->tag_set_list, &set->tag_list);
2229
2230         mutex_unlock(&set->tag_list_lock);
2231 }
2232
2233 /*
2234  * It is the actual release handler for mq, but we do it from
2235  * request queue's release handler for avoiding use-after-free
2236  * and headache because q->mq_kobj shouldn't have been introduced,
2237  * but we can't group ctx/kctx kobj without it.
2238  */
2239 void blk_mq_release(struct request_queue *q)
2240 {
2241         struct blk_mq_hw_ctx *hctx;
2242         unsigned int i;
2243
2244         blk_mq_sched_teardown(q);
2245
2246         /* hctx kobj stays in hctx */
2247         queue_for_each_hw_ctx(q, hctx, i) {
2248                 if (!hctx)
2249                         continue;
2250                 kobject_put(&hctx->kobj);
2251         }
2252
2253         q->mq_map = NULL;
2254
2255         kfree(q->queue_hw_ctx);
2256
2257         /*
2258          * release .mq_kobj and sw queue's kobject now because
2259          * both share lifetime with request queue.
2260          */
2261         blk_mq_sysfs_deinit(q);
2262
2263         free_percpu(q->queue_ctx);
2264 }
2265
2266 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2267 {
2268         struct request_queue *uninit_q, *q;
2269
2270         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2271         if (!uninit_q)
2272                 return ERR_PTR(-ENOMEM);
2273
2274         q = blk_mq_init_allocated_queue(set, uninit_q);
2275         if (IS_ERR(q))
2276                 blk_cleanup_queue(uninit_q);
2277
2278         return q;
2279 }
2280 EXPORT_SYMBOL(blk_mq_init_queue);
2281
2282 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2283                                                 struct request_queue *q)
2284 {
2285         int i, j;
2286         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2287
2288         blk_mq_sysfs_unregister(q);
2289         for (i = 0; i < set->nr_hw_queues; i++) {
2290                 int node;
2291
2292                 if (hctxs[i])
2293                         continue;
2294
2295                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2296                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2297                                         GFP_KERNEL, node);
2298                 if (!hctxs[i])
2299                         break;
2300
2301                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2302                                                 node)) {
2303                         kfree(hctxs[i]);
2304                         hctxs[i] = NULL;
2305                         break;
2306                 }
2307
2308                 atomic_set(&hctxs[i]->nr_active, 0);
2309                 hctxs[i]->numa_node = node;
2310                 hctxs[i]->queue_num = i;
2311
2312                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2313                         free_cpumask_var(hctxs[i]->cpumask);
2314                         kfree(hctxs[i]);
2315                         hctxs[i] = NULL;
2316                         break;
2317                 }
2318                 blk_mq_hctx_kobj_init(hctxs[i]);
2319         }
2320         for (j = i; j < q->nr_hw_queues; j++) {
2321                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2322
2323                 if (hctx) {
2324                         if (hctx->tags)
2325                                 blk_mq_free_map_and_requests(set, j);
2326                         blk_mq_exit_hctx(q, set, hctx, j);
2327                         kobject_put(&hctx->kobj);
2328                         hctxs[j] = NULL;
2329
2330                 }
2331         }
2332         q->nr_hw_queues = i;
2333         blk_mq_sysfs_register(q);
2334 }
2335
2336 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2337                                                   struct request_queue *q)
2338 {
2339         /* mark the queue as mq asap */
2340         q->mq_ops = set->ops;
2341
2342         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2343         if (!q->queue_ctx)
2344                 goto err_exit;
2345
2346         /* init q->mq_kobj and sw queues' kobjects */
2347         blk_mq_sysfs_init(q);
2348
2349         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2350                                                 GFP_KERNEL, set->numa_node);
2351         if (!q->queue_hw_ctx)
2352                 goto err_percpu;
2353
2354         q->mq_map = set->mq_map;
2355
2356         blk_mq_realloc_hw_ctxs(set, q);
2357         if (!q->nr_hw_queues)
2358                 goto err_hctxs;
2359
2360         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2361         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2362
2363         q->nr_queues = nr_cpu_ids;
2364
2365         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2366
2367         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2368                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2369
2370         q->sg_reserved_size = INT_MAX;
2371
2372         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2373         INIT_LIST_HEAD(&q->requeue_list);
2374         spin_lock_init(&q->requeue_lock);
2375
2376         if (q->nr_hw_queues > 1)
2377                 blk_queue_make_request(q, blk_mq_make_request);
2378         else
2379                 blk_queue_make_request(q, blk_sq_make_request);
2380
2381         /*
2382          * Do this after blk_queue_make_request() overrides it...
2383          */
2384         q->nr_requests = set->queue_depth;
2385
2386         /*
2387          * Default to classic polling
2388          */
2389         q->poll_nsec = -1;
2390
2391         if (set->ops->complete)
2392                 blk_queue_softirq_done(q, set->ops->complete);
2393
2394         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2395
2396         get_online_cpus();
2397         mutex_lock(&all_q_mutex);
2398
2399         list_add_tail(&q->all_q_node, &all_q_list);
2400         blk_mq_add_queue_tag_set(set, q);
2401         blk_mq_map_swqueue(q, cpu_online_mask);
2402
2403         mutex_unlock(&all_q_mutex);
2404         put_online_cpus();
2405
2406         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2407                 int ret;
2408
2409                 ret = blk_mq_sched_init(q);
2410                 if (ret)
2411                         return ERR_PTR(ret);
2412         }
2413
2414         return q;
2415
2416 err_hctxs:
2417         kfree(q->queue_hw_ctx);
2418 err_percpu:
2419         free_percpu(q->queue_ctx);
2420 err_exit:
2421         q->mq_ops = NULL;
2422         return ERR_PTR(-ENOMEM);
2423 }
2424 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2425
2426 void blk_mq_free_queue(struct request_queue *q)
2427 {
2428         struct blk_mq_tag_set   *set = q->tag_set;
2429
2430         mutex_lock(&all_q_mutex);
2431         list_del_init(&q->all_q_node);
2432         mutex_unlock(&all_q_mutex);
2433
2434         wbt_exit(q);
2435
2436         blk_mq_del_queue_tag_set(q);
2437
2438         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2439 }
2440
2441 /* Basically redo blk_mq_init_queue with queue frozen */
2442 static void blk_mq_queue_reinit(struct request_queue *q,
2443                                 const struct cpumask *online_mask)
2444 {
2445         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2446
2447         blk_mq_sysfs_unregister(q);
2448
2449         /*
2450          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2451          * we should change hctx numa_node according to new topology (this
2452          * involves free and re-allocate memory, worthy doing?)
2453          */
2454
2455         blk_mq_map_swqueue(q, online_mask);
2456
2457         blk_mq_sysfs_register(q);
2458 }
2459
2460 /*
2461  * New online cpumask which is going to be set in this hotplug event.
2462  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2463  * one-by-one and dynamically allocating this could result in a failure.
2464  */
2465 static struct cpumask cpuhp_online_new;
2466
2467 static void blk_mq_queue_reinit_work(void)
2468 {
2469         struct request_queue *q;
2470
2471         mutex_lock(&all_q_mutex);
2472         /*
2473          * We need to freeze and reinit all existing queues.  Freezing
2474          * involves synchronous wait for an RCU grace period and doing it
2475          * one by one may take a long time.  Start freezing all queues in
2476          * one swoop and then wait for the completions so that freezing can
2477          * take place in parallel.
2478          */
2479         list_for_each_entry(q, &all_q_list, all_q_node)
2480                 blk_mq_freeze_queue_start(q);
2481         list_for_each_entry(q, &all_q_list, all_q_node)
2482                 blk_mq_freeze_queue_wait(q);
2483
2484         list_for_each_entry(q, &all_q_list, all_q_node)
2485                 blk_mq_queue_reinit(q, &cpuhp_online_new);
2486
2487         list_for_each_entry(q, &all_q_list, all_q_node)
2488                 blk_mq_unfreeze_queue(q);
2489
2490         mutex_unlock(&all_q_mutex);
2491 }
2492
2493 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2494 {
2495         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2496         blk_mq_queue_reinit_work();
2497         return 0;
2498 }
2499
2500 /*
2501  * Before hotadded cpu starts handling requests, new mappings must be
2502  * established.  Otherwise, these requests in hw queue might never be
2503  * dispatched.
2504  *
2505  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2506  * for CPU0, and ctx1 for CPU1).
2507  *
2508  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2509  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2510  *
2511  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2512  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2513  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2514  * ignored.
2515  */
2516 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2517 {
2518         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2519         cpumask_set_cpu(cpu, &cpuhp_online_new);
2520         blk_mq_queue_reinit_work();
2521         return 0;
2522 }
2523
2524 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2525 {
2526         int i;
2527
2528         for (i = 0; i < set->nr_hw_queues; i++)
2529                 if (!__blk_mq_alloc_rq_map(set, i))
2530                         goto out_unwind;
2531
2532         return 0;
2533
2534 out_unwind:
2535         while (--i >= 0)
2536                 blk_mq_free_rq_map(set->tags[i]);
2537
2538         return -ENOMEM;
2539 }
2540
2541 /*
2542  * Allocate the request maps associated with this tag_set. Note that this
2543  * may reduce the depth asked for, if memory is tight. set->queue_depth
2544  * will be updated to reflect the allocated depth.
2545  */
2546 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2547 {
2548         unsigned int depth;
2549         int err;
2550
2551         depth = set->queue_depth;
2552         do {
2553                 err = __blk_mq_alloc_rq_maps(set);
2554                 if (!err)
2555                         break;
2556
2557                 set->queue_depth >>= 1;
2558                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2559                         err = -ENOMEM;
2560                         break;
2561                 }
2562         } while (set->queue_depth);
2563
2564         if (!set->queue_depth || err) {
2565                 pr_err("blk-mq: failed to allocate request map\n");
2566                 return -ENOMEM;
2567         }
2568
2569         if (depth != set->queue_depth)
2570                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2571                                                 depth, set->queue_depth);
2572
2573         return 0;
2574 }
2575
2576 /*
2577  * Alloc a tag set to be associated with one or more request queues.
2578  * May fail with EINVAL for various error conditions. May adjust the
2579  * requested depth down, if if it too large. In that case, the set
2580  * value will be stored in set->queue_depth.
2581  */
2582 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2583 {
2584         int ret;
2585
2586         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2587
2588         if (!set->nr_hw_queues)
2589                 return -EINVAL;
2590         if (!set->queue_depth)
2591                 return -EINVAL;
2592         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2593                 return -EINVAL;
2594
2595         if (!set->ops->queue_rq)
2596                 return -EINVAL;
2597
2598         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2599                 pr_info("blk-mq: reduced tag depth to %u\n",
2600                         BLK_MQ_MAX_DEPTH);
2601                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2602         }
2603
2604         /*
2605          * If a crashdump is active, then we are potentially in a very
2606          * memory constrained environment. Limit us to 1 queue and
2607          * 64 tags to prevent using too much memory.
2608          */
2609         if (is_kdump_kernel()) {
2610                 set->nr_hw_queues = 1;
2611                 set->queue_depth = min(64U, set->queue_depth);
2612         }
2613         /*
2614          * There is no use for more h/w queues than cpus.
2615          */
2616         if (set->nr_hw_queues > nr_cpu_ids)
2617                 set->nr_hw_queues = nr_cpu_ids;
2618
2619         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2620                                  GFP_KERNEL, set->numa_node);
2621         if (!set->tags)
2622                 return -ENOMEM;
2623
2624         ret = -ENOMEM;
2625         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2626                         GFP_KERNEL, set->numa_node);
2627         if (!set->mq_map)
2628                 goto out_free_tags;
2629
2630         if (set->ops->map_queues)
2631                 ret = set->ops->map_queues(set);
2632         else
2633                 ret = blk_mq_map_queues(set);
2634         if (ret)
2635                 goto out_free_mq_map;
2636
2637         ret = blk_mq_alloc_rq_maps(set);
2638         if (ret)
2639                 goto out_free_mq_map;
2640
2641         mutex_init(&set->tag_list_lock);
2642         INIT_LIST_HEAD(&set->tag_list);
2643
2644         return 0;
2645
2646 out_free_mq_map:
2647         kfree(set->mq_map);
2648         set->mq_map = NULL;
2649 out_free_tags:
2650         kfree(set->tags);
2651         set->tags = NULL;
2652         return ret;
2653 }
2654 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2655
2656 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2657 {
2658         int i;
2659
2660         for (i = 0; i < nr_cpu_ids; i++)
2661                 blk_mq_free_map_and_requests(set, i);
2662
2663         kfree(set->mq_map);
2664         set->mq_map = NULL;
2665
2666         kfree(set->tags);
2667         set->tags = NULL;
2668 }
2669 EXPORT_SYMBOL(blk_mq_free_tag_set);
2670
2671 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2672 {
2673         struct blk_mq_tag_set *set = q->tag_set;
2674         struct blk_mq_hw_ctx *hctx;
2675         int i, ret;
2676
2677         if (!set)
2678                 return -EINVAL;
2679
2680         blk_mq_freeze_queue(q);
2681         blk_mq_quiesce_queue(q);
2682
2683         ret = 0;
2684         queue_for_each_hw_ctx(q, hctx, i) {
2685                 if (!hctx->tags)
2686                         continue;
2687                 /*
2688                  * If we're using an MQ scheduler, just update the scheduler
2689                  * queue depth. This is similar to what the old code would do.
2690                  */
2691                 if (!hctx->sched_tags) {
2692                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2693                                                         min(nr, set->queue_depth),
2694                                                         false);
2695                 } else {
2696                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2697                                                         nr, true);
2698                 }
2699                 if (ret)
2700                         break;
2701         }
2702
2703         if (!ret)
2704                 q->nr_requests = nr;
2705
2706         blk_mq_unfreeze_queue(q);
2707         blk_mq_start_stopped_hw_queues(q, true);
2708
2709         return ret;
2710 }
2711
2712 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2713 {
2714         struct request_queue *q;
2715
2716         if (nr_hw_queues > nr_cpu_ids)
2717                 nr_hw_queues = nr_cpu_ids;
2718         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2719                 return;
2720
2721         list_for_each_entry(q, &set->tag_list, tag_set_list)
2722                 blk_mq_freeze_queue(q);
2723
2724         set->nr_hw_queues = nr_hw_queues;
2725         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2726                 blk_mq_realloc_hw_ctxs(set, q);
2727
2728                 /*
2729                  * Manually set the make_request_fn as blk_queue_make_request
2730                  * resets a lot of the queue settings.
2731                  */
2732                 if (q->nr_hw_queues > 1)
2733                         q->make_request_fn = blk_mq_make_request;
2734                 else
2735                         q->make_request_fn = blk_sq_make_request;
2736
2737                 blk_mq_queue_reinit(q, cpu_online_mask);
2738         }
2739
2740         list_for_each_entry(q, &set->tag_list, tag_set_list)
2741                 blk_mq_unfreeze_queue(q);
2742 }
2743 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2744
2745 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2746                                        struct blk_mq_hw_ctx *hctx,
2747                                        struct request *rq)
2748 {
2749         struct blk_rq_stat stat[2];
2750         unsigned long ret = 0;
2751
2752         /*
2753          * If stats collection isn't on, don't sleep but turn it on for
2754          * future users
2755          */
2756         if (!blk_stat_enable(q))
2757                 return 0;
2758
2759         /*
2760          * We don't have to do this once per IO, should optimize this
2761          * to just use the current window of stats until it changes
2762          */
2763         memset(&stat, 0, sizeof(stat));
2764         blk_hctx_stat_get(hctx, stat);
2765
2766         /*
2767          * As an optimistic guess, use half of the mean service time
2768          * for this type of request. We can (and should) make this smarter.
2769          * For instance, if the completion latencies are tight, we can
2770          * get closer than just half the mean. This is especially
2771          * important on devices where the completion latencies are longer
2772          * than ~10 usec.
2773          */
2774         if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2775                 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2776         else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2777                 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2778
2779         return ret;
2780 }
2781
2782 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2783                                      struct blk_mq_hw_ctx *hctx,
2784                                      struct request *rq)
2785 {
2786         struct hrtimer_sleeper hs;
2787         enum hrtimer_mode mode;
2788         unsigned int nsecs;
2789         ktime_t kt;
2790
2791         if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2792                 return false;
2793
2794         /*
2795          * poll_nsec can be:
2796          *
2797          * -1:  don't ever hybrid sleep
2798          *  0:  use half of prev avg
2799          * >0:  use this specific value
2800          */
2801         if (q->poll_nsec == -1)
2802                 return false;
2803         else if (q->poll_nsec > 0)
2804                 nsecs = q->poll_nsec;
2805         else
2806                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2807
2808         if (!nsecs)
2809                 return false;
2810
2811         set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2812
2813         /*
2814          * This will be replaced with the stats tracking code, using
2815          * 'avg_completion_time / 2' as the pre-sleep target.
2816          */
2817         kt = nsecs;
2818
2819         mode = HRTIMER_MODE_REL;
2820         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2821         hrtimer_set_expires(&hs.timer, kt);
2822
2823         hrtimer_init_sleeper(&hs, current);
2824         do {
2825                 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2826                         break;
2827                 set_current_state(TASK_UNINTERRUPTIBLE);
2828                 hrtimer_start_expires(&hs.timer, mode);
2829                 if (hs.task)
2830                         io_schedule();
2831                 hrtimer_cancel(&hs.timer);
2832                 mode = HRTIMER_MODE_ABS;
2833         } while (hs.task && !signal_pending(current));
2834
2835         __set_current_state(TASK_RUNNING);
2836         destroy_hrtimer_on_stack(&hs.timer);
2837         return true;
2838 }
2839
2840 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2841 {
2842         struct request_queue *q = hctx->queue;
2843         long state;
2844
2845         /*
2846          * If we sleep, have the caller restart the poll loop to reset
2847          * the state. Like for the other success return cases, the
2848          * caller is responsible for checking if the IO completed. If
2849          * the IO isn't complete, we'll get called again and will go
2850          * straight to the busy poll loop.
2851          */
2852         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2853                 return true;
2854
2855         hctx->poll_considered++;
2856
2857         state = current->state;
2858         while (!need_resched()) {
2859                 int ret;
2860
2861                 hctx->poll_invoked++;
2862
2863                 ret = q->mq_ops->poll(hctx, rq->tag);
2864                 if (ret > 0) {
2865                         hctx->poll_success++;
2866                         set_current_state(TASK_RUNNING);
2867                         return true;
2868                 }
2869
2870                 if (signal_pending_state(state, current))
2871                         set_current_state(TASK_RUNNING);
2872
2873                 if (current->state == TASK_RUNNING)
2874                         return true;
2875                 if (ret < 0)
2876                         break;
2877                 cpu_relax();
2878         }
2879
2880         return false;
2881 }
2882
2883 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2884 {
2885         struct blk_mq_hw_ctx *hctx;
2886         struct blk_plug *plug;
2887         struct request *rq;
2888
2889         if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2890             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2891                 return false;
2892
2893         plug = current->plug;
2894         if (plug)
2895                 blk_flush_plug_list(plug, false);
2896
2897         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2898         if (!blk_qc_t_is_internal(cookie))
2899                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2900         else
2901                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2902
2903         return __blk_mq_poll(hctx, rq);
2904 }
2905 EXPORT_SYMBOL_GPL(blk_mq_poll);
2906
2907 void blk_mq_disable_hotplug(void)
2908 {
2909         mutex_lock(&all_q_mutex);
2910 }
2911
2912 void blk_mq_enable_hotplug(void)
2913 {
2914         mutex_unlock(&all_q_mutex);
2915 }
2916
2917 static int __init blk_mq_init(void)
2918 {
2919         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2920                                 blk_mq_hctx_notify_dead);
2921
2922         cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2923                                   blk_mq_queue_reinit_prepare,
2924                                   blk_mq_queue_reinit_dead);
2925         return 0;
2926 }
2927 subsys_initcall(blk_mq_init);