]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - block/blk-mq.c
Merge tag 'armsoc-soc' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[karo-tx-linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static DEFINE_MUTEX(all_q_mutex);
41 static LIST_HEAD(all_q_list);
42
43 static void blk_mq_poll_stats_start(struct request_queue *q);
44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45 static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync);
46
47 static int blk_mq_poll_stats_bkt(const struct request *rq)
48 {
49         int ddir, bytes, bucket;
50
51         ddir = rq_data_dir(rq);
52         bytes = blk_rq_bytes(rq);
53
54         bucket = ddir + 2*(ilog2(bytes) - 9);
55
56         if (bucket < 0)
57                 return -1;
58         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
59                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
60
61         return bucket;
62 }
63
64 /*
65  * Check if any of the ctx's have pending work in this hardware queue
66  */
67 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
68 {
69         return sbitmap_any_bit_set(&hctx->ctx_map) ||
70                         !list_empty_careful(&hctx->dispatch) ||
71                         blk_mq_sched_has_work(hctx);
72 }
73
74 /*
75  * Mark this ctx as having pending work in this hardware queue
76  */
77 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
78                                      struct blk_mq_ctx *ctx)
79 {
80         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
81                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
82 }
83
84 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
85                                       struct blk_mq_ctx *ctx)
86 {
87         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
88 }
89
90 void blk_freeze_queue_start(struct request_queue *q)
91 {
92         int freeze_depth;
93
94         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
95         if (freeze_depth == 1) {
96                 percpu_ref_kill(&q->q_usage_counter);
97                 blk_mq_run_hw_queues(q, false);
98         }
99 }
100 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
101
102 void blk_mq_freeze_queue_wait(struct request_queue *q)
103 {
104         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
105 }
106 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
107
108 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
109                                      unsigned long timeout)
110 {
111         return wait_event_timeout(q->mq_freeze_wq,
112                                         percpu_ref_is_zero(&q->q_usage_counter),
113                                         timeout);
114 }
115 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
116
117 /*
118  * Guarantee no request is in use, so we can change any data structure of
119  * the queue afterward.
120  */
121 void blk_freeze_queue(struct request_queue *q)
122 {
123         /*
124          * In the !blk_mq case we are only calling this to kill the
125          * q_usage_counter, otherwise this increases the freeze depth
126          * and waits for it to return to zero.  For this reason there is
127          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
128          * exported to drivers as the only user for unfreeze is blk_mq.
129          */
130         blk_freeze_queue_start(q);
131         blk_mq_freeze_queue_wait(q);
132 }
133
134 void blk_mq_freeze_queue(struct request_queue *q)
135 {
136         /*
137          * ...just an alias to keep freeze and unfreeze actions balanced
138          * in the blk_mq_* namespace
139          */
140         blk_freeze_queue(q);
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
143
144 void blk_mq_unfreeze_queue(struct request_queue *q)
145 {
146         int freeze_depth;
147
148         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
149         WARN_ON_ONCE(freeze_depth < 0);
150         if (!freeze_depth) {
151                 percpu_ref_reinit(&q->q_usage_counter);
152                 wake_up_all(&q->mq_freeze_wq);
153         }
154 }
155 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
156
157 /**
158  * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
159  * @q: request queue.
160  *
161  * Note: this function does not prevent that the struct request end_io()
162  * callback function is invoked. Additionally, it is not prevented that
163  * new queue_rq() calls occur unless the queue has been stopped first.
164  */
165 void blk_mq_quiesce_queue(struct request_queue *q)
166 {
167         struct blk_mq_hw_ctx *hctx;
168         unsigned int i;
169         bool rcu = false;
170
171         __blk_mq_stop_hw_queues(q, true);
172
173         queue_for_each_hw_ctx(q, hctx, i) {
174                 if (hctx->flags & BLK_MQ_F_BLOCKING)
175                         synchronize_srcu(&hctx->queue_rq_srcu);
176                 else
177                         rcu = true;
178         }
179         if (rcu)
180                 synchronize_rcu();
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
183
184 void blk_mq_wake_waiters(struct request_queue *q)
185 {
186         struct blk_mq_hw_ctx *hctx;
187         unsigned int i;
188
189         queue_for_each_hw_ctx(q, hctx, i)
190                 if (blk_mq_hw_queue_mapped(hctx))
191                         blk_mq_tag_wakeup_all(hctx->tags, true);
192
193         /*
194          * If we are called because the queue has now been marked as
195          * dying, we need to ensure that processes currently waiting on
196          * the queue are notified as well.
197          */
198         wake_up_all(&q->mq_freeze_wq);
199 }
200
201 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
202 {
203         return blk_mq_has_free_tags(hctx->tags);
204 }
205 EXPORT_SYMBOL(blk_mq_can_queue);
206
207 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
208                         struct request *rq, unsigned int op)
209 {
210         INIT_LIST_HEAD(&rq->queuelist);
211         /* csd/requeue_work/fifo_time is initialized before use */
212         rq->q = q;
213         rq->mq_ctx = ctx;
214         rq->cmd_flags = op;
215         if (blk_queue_io_stat(q))
216                 rq->rq_flags |= RQF_IO_STAT;
217         /* do not touch atomic flags, it needs atomic ops against the timer */
218         rq->cpu = -1;
219         INIT_HLIST_NODE(&rq->hash);
220         RB_CLEAR_NODE(&rq->rb_node);
221         rq->rq_disk = NULL;
222         rq->part = NULL;
223         rq->start_time = jiffies;
224 #ifdef CONFIG_BLK_CGROUP
225         rq->rl = NULL;
226         set_start_time_ns(rq);
227         rq->io_start_time_ns = 0;
228 #endif
229         rq->nr_phys_segments = 0;
230 #if defined(CONFIG_BLK_DEV_INTEGRITY)
231         rq->nr_integrity_segments = 0;
232 #endif
233         rq->special = NULL;
234         /* tag was already set */
235         rq->extra_len = 0;
236
237         INIT_LIST_HEAD(&rq->timeout_list);
238         rq->timeout = 0;
239
240         rq->end_io = NULL;
241         rq->end_io_data = NULL;
242         rq->next_rq = NULL;
243
244         ctx->rq_dispatched[op_is_sync(op)]++;
245 }
246 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
247
248 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
249                                        unsigned int op)
250 {
251         struct request *rq;
252         unsigned int tag;
253
254         tag = blk_mq_get_tag(data);
255         if (tag != BLK_MQ_TAG_FAIL) {
256                 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
257
258                 rq = tags->static_rqs[tag];
259
260                 if (data->flags & BLK_MQ_REQ_INTERNAL) {
261                         rq->tag = -1;
262                         rq->internal_tag = tag;
263                 } else {
264                         if (blk_mq_tag_busy(data->hctx)) {
265                                 rq->rq_flags = RQF_MQ_INFLIGHT;
266                                 atomic_inc(&data->hctx->nr_active);
267                         }
268                         rq->tag = tag;
269                         rq->internal_tag = -1;
270                         data->hctx->tags->rqs[rq->tag] = rq;
271                 }
272
273                 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
274                 return rq;
275         }
276
277         return NULL;
278 }
279 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
280
281 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
282                 unsigned int flags)
283 {
284         struct blk_mq_alloc_data alloc_data = { .flags = flags };
285         struct request *rq;
286         int ret;
287
288         ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
289         if (ret)
290                 return ERR_PTR(ret);
291
292         rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
293
294         blk_mq_put_ctx(alloc_data.ctx);
295         blk_queue_exit(q);
296
297         if (!rq)
298                 return ERR_PTR(-EWOULDBLOCK);
299
300         rq->__data_len = 0;
301         rq->__sector = (sector_t) -1;
302         rq->bio = rq->biotail = NULL;
303         return rq;
304 }
305 EXPORT_SYMBOL(blk_mq_alloc_request);
306
307 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
308                 unsigned int flags, unsigned int hctx_idx)
309 {
310         struct blk_mq_alloc_data alloc_data = { .flags = flags };
311         struct request *rq;
312         unsigned int cpu;
313         int ret;
314
315         /*
316          * If the tag allocator sleeps we could get an allocation for a
317          * different hardware context.  No need to complicate the low level
318          * allocator for this for the rare use case of a command tied to
319          * a specific queue.
320          */
321         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
322                 return ERR_PTR(-EINVAL);
323
324         if (hctx_idx >= q->nr_hw_queues)
325                 return ERR_PTR(-EIO);
326
327         ret = blk_queue_enter(q, true);
328         if (ret)
329                 return ERR_PTR(ret);
330
331         /*
332          * Check if the hardware context is actually mapped to anything.
333          * If not tell the caller that it should skip this queue.
334          */
335         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
336         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
337                 blk_queue_exit(q);
338                 return ERR_PTR(-EXDEV);
339         }
340         cpu = cpumask_first(alloc_data.hctx->cpumask);
341         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
342
343         rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
344
345         blk_queue_exit(q);
346
347         if (!rq)
348                 return ERR_PTR(-EWOULDBLOCK);
349
350         return rq;
351 }
352 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
353
354 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
355                              struct request *rq)
356 {
357         const int sched_tag = rq->internal_tag;
358         struct request_queue *q = rq->q;
359
360         if (rq->rq_flags & RQF_MQ_INFLIGHT)
361                 atomic_dec(&hctx->nr_active);
362
363         wbt_done(q->rq_wb, &rq->issue_stat);
364         rq->rq_flags = 0;
365
366         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
367         clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
368         if (rq->tag != -1)
369                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
370         if (sched_tag != -1)
371                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
372         blk_mq_sched_restart(hctx);
373         blk_queue_exit(q);
374 }
375
376 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
377                                      struct request *rq)
378 {
379         struct blk_mq_ctx *ctx = rq->mq_ctx;
380
381         ctx->rq_completed[rq_is_sync(rq)]++;
382         __blk_mq_finish_request(hctx, ctx, rq);
383 }
384
385 void blk_mq_finish_request(struct request *rq)
386 {
387         blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
388 }
389 EXPORT_SYMBOL_GPL(blk_mq_finish_request);
390
391 void blk_mq_free_request(struct request *rq)
392 {
393         blk_mq_sched_put_request(rq);
394 }
395 EXPORT_SYMBOL_GPL(blk_mq_free_request);
396
397 inline void __blk_mq_end_request(struct request *rq, int error)
398 {
399         blk_account_io_done(rq);
400
401         if (rq->end_io) {
402                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
403                 rq->end_io(rq, error);
404         } else {
405                 if (unlikely(blk_bidi_rq(rq)))
406                         blk_mq_free_request(rq->next_rq);
407                 blk_mq_free_request(rq);
408         }
409 }
410 EXPORT_SYMBOL(__blk_mq_end_request);
411
412 void blk_mq_end_request(struct request *rq, int error)
413 {
414         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
415                 BUG();
416         __blk_mq_end_request(rq, error);
417 }
418 EXPORT_SYMBOL(blk_mq_end_request);
419
420 static void __blk_mq_complete_request_remote(void *data)
421 {
422         struct request *rq = data;
423
424         rq->q->softirq_done_fn(rq);
425 }
426
427 static void __blk_mq_complete_request(struct request *rq)
428 {
429         struct blk_mq_ctx *ctx = rq->mq_ctx;
430         bool shared = false;
431         int cpu;
432
433         if (rq->internal_tag != -1)
434                 blk_mq_sched_completed_request(rq);
435         if (rq->rq_flags & RQF_STATS) {
436                 blk_mq_poll_stats_start(rq->q);
437                 blk_stat_add(rq);
438         }
439
440         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
441                 rq->q->softirq_done_fn(rq);
442                 return;
443         }
444
445         cpu = get_cpu();
446         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
447                 shared = cpus_share_cache(cpu, ctx->cpu);
448
449         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
450                 rq->csd.func = __blk_mq_complete_request_remote;
451                 rq->csd.info = rq;
452                 rq->csd.flags = 0;
453                 smp_call_function_single_async(ctx->cpu, &rq->csd);
454         } else {
455                 rq->q->softirq_done_fn(rq);
456         }
457         put_cpu();
458 }
459
460 /**
461  * blk_mq_complete_request - end I/O on a request
462  * @rq:         the request being processed
463  *
464  * Description:
465  *      Ends all I/O on a request. It does not handle partial completions.
466  *      The actual completion happens out-of-order, through a IPI handler.
467  **/
468 void blk_mq_complete_request(struct request *rq)
469 {
470         struct request_queue *q = rq->q;
471
472         if (unlikely(blk_should_fake_timeout(q)))
473                 return;
474         if (!blk_mark_rq_complete(rq))
475                 __blk_mq_complete_request(rq);
476 }
477 EXPORT_SYMBOL(blk_mq_complete_request);
478
479 int blk_mq_request_started(struct request *rq)
480 {
481         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
482 }
483 EXPORT_SYMBOL_GPL(blk_mq_request_started);
484
485 void blk_mq_start_request(struct request *rq)
486 {
487         struct request_queue *q = rq->q;
488
489         blk_mq_sched_started_request(rq);
490
491         trace_block_rq_issue(q, rq);
492
493         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
494                 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
495                 rq->rq_flags |= RQF_STATS;
496                 wbt_issue(q->rq_wb, &rq->issue_stat);
497         }
498
499         blk_add_timer(rq);
500
501         /*
502          * Ensure that ->deadline is visible before set the started
503          * flag and clear the completed flag.
504          */
505         smp_mb__before_atomic();
506
507         /*
508          * Mark us as started and clear complete. Complete might have been
509          * set if requeue raced with timeout, which then marked it as
510          * complete. So be sure to clear complete again when we start
511          * the request, otherwise we'll ignore the completion event.
512          */
513         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
514                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
515         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
516                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
517
518         if (q->dma_drain_size && blk_rq_bytes(rq)) {
519                 /*
520                  * Make sure space for the drain appears.  We know we can do
521                  * this because max_hw_segments has been adjusted to be one
522                  * fewer than the device can handle.
523                  */
524                 rq->nr_phys_segments++;
525         }
526 }
527 EXPORT_SYMBOL(blk_mq_start_request);
528
529 /*
530  * When we reach here because queue is busy, REQ_ATOM_COMPLETE
531  * flag isn't set yet, so there may be race with timeout handler,
532  * but given rq->deadline is just set in .queue_rq() under
533  * this situation, the race won't be possible in reality because
534  * rq->timeout should be set as big enough to cover the window
535  * between blk_mq_start_request() called from .queue_rq() and
536  * clearing REQ_ATOM_STARTED here.
537  */
538 static void __blk_mq_requeue_request(struct request *rq)
539 {
540         struct request_queue *q = rq->q;
541
542         trace_block_rq_requeue(q, rq);
543         wbt_requeue(q->rq_wb, &rq->issue_stat);
544         blk_mq_sched_requeue_request(rq);
545
546         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
547                 if (q->dma_drain_size && blk_rq_bytes(rq))
548                         rq->nr_phys_segments--;
549         }
550 }
551
552 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
553 {
554         __blk_mq_requeue_request(rq);
555
556         BUG_ON(blk_queued_rq(rq));
557         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
558 }
559 EXPORT_SYMBOL(blk_mq_requeue_request);
560
561 static void blk_mq_requeue_work(struct work_struct *work)
562 {
563         struct request_queue *q =
564                 container_of(work, struct request_queue, requeue_work.work);
565         LIST_HEAD(rq_list);
566         struct request *rq, *next;
567         unsigned long flags;
568
569         spin_lock_irqsave(&q->requeue_lock, flags);
570         list_splice_init(&q->requeue_list, &rq_list);
571         spin_unlock_irqrestore(&q->requeue_lock, flags);
572
573         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
574                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
575                         continue;
576
577                 rq->rq_flags &= ~RQF_SOFTBARRIER;
578                 list_del_init(&rq->queuelist);
579                 blk_mq_sched_insert_request(rq, true, false, false, true);
580         }
581
582         while (!list_empty(&rq_list)) {
583                 rq = list_entry(rq_list.next, struct request, queuelist);
584                 list_del_init(&rq->queuelist);
585                 blk_mq_sched_insert_request(rq, false, false, false, true);
586         }
587
588         blk_mq_run_hw_queues(q, false);
589 }
590
591 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
592                                 bool kick_requeue_list)
593 {
594         struct request_queue *q = rq->q;
595         unsigned long flags;
596
597         /*
598          * We abuse this flag that is otherwise used by the I/O scheduler to
599          * request head insertation from the workqueue.
600          */
601         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
602
603         spin_lock_irqsave(&q->requeue_lock, flags);
604         if (at_head) {
605                 rq->rq_flags |= RQF_SOFTBARRIER;
606                 list_add(&rq->queuelist, &q->requeue_list);
607         } else {
608                 list_add_tail(&rq->queuelist, &q->requeue_list);
609         }
610         spin_unlock_irqrestore(&q->requeue_lock, flags);
611
612         if (kick_requeue_list)
613                 blk_mq_kick_requeue_list(q);
614 }
615 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
616
617 void blk_mq_kick_requeue_list(struct request_queue *q)
618 {
619         kblockd_schedule_delayed_work(&q->requeue_work, 0);
620 }
621 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
622
623 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
624                                     unsigned long msecs)
625 {
626         kblockd_schedule_delayed_work(&q->requeue_work,
627                                       msecs_to_jiffies(msecs));
628 }
629 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
630
631 void blk_mq_abort_requeue_list(struct request_queue *q)
632 {
633         unsigned long flags;
634         LIST_HEAD(rq_list);
635
636         spin_lock_irqsave(&q->requeue_lock, flags);
637         list_splice_init(&q->requeue_list, &rq_list);
638         spin_unlock_irqrestore(&q->requeue_lock, flags);
639
640         while (!list_empty(&rq_list)) {
641                 struct request *rq;
642
643                 rq = list_first_entry(&rq_list, struct request, queuelist);
644                 list_del_init(&rq->queuelist);
645                 blk_mq_end_request(rq, -EIO);
646         }
647 }
648 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
649
650 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
651 {
652         if (tag < tags->nr_tags) {
653                 prefetch(tags->rqs[tag]);
654                 return tags->rqs[tag];
655         }
656
657         return NULL;
658 }
659 EXPORT_SYMBOL(blk_mq_tag_to_rq);
660
661 struct blk_mq_timeout_data {
662         unsigned long next;
663         unsigned int next_set;
664 };
665
666 void blk_mq_rq_timed_out(struct request *req, bool reserved)
667 {
668         const struct blk_mq_ops *ops = req->q->mq_ops;
669         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
670
671         /*
672          * We know that complete is set at this point. If STARTED isn't set
673          * anymore, then the request isn't active and the "timeout" should
674          * just be ignored. This can happen due to the bitflag ordering.
675          * Timeout first checks if STARTED is set, and if it is, assumes
676          * the request is active. But if we race with completion, then
677          * both flags will get cleared. So check here again, and ignore
678          * a timeout event with a request that isn't active.
679          */
680         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
681                 return;
682
683         if (ops->timeout)
684                 ret = ops->timeout(req, reserved);
685
686         switch (ret) {
687         case BLK_EH_HANDLED:
688                 __blk_mq_complete_request(req);
689                 break;
690         case BLK_EH_RESET_TIMER:
691                 blk_add_timer(req);
692                 blk_clear_rq_complete(req);
693                 break;
694         case BLK_EH_NOT_HANDLED:
695                 break;
696         default:
697                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
698                 break;
699         }
700 }
701
702 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
703                 struct request *rq, void *priv, bool reserved)
704 {
705         struct blk_mq_timeout_data *data = priv;
706
707         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
708                 return;
709
710         /*
711          * The rq being checked may have been freed and reallocated
712          * out already here, we avoid this race by checking rq->deadline
713          * and REQ_ATOM_COMPLETE flag together:
714          *
715          * - if rq->deadline is observed as new value because of
716          *   reusing, the rq won't be timed out because of timing.
717          * - if rq->deadline is observed as previous value,
718          *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
719          *   because we put a barrier between setting rq->deadline
720          *   and clearing the flag in blk_mq_start_request(), so
721          *   this rq won't be timed out too.
722          */
723         if (time_after_eq(jiffies, rq->deadline)) {
724                 if (!blk_mark_rq_complete(rq))
725                         blk_mq_rq_timed_out(rq, reserved);
726         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
727                 data->next = rq->deadline;
728                 data->next_set = 1;
729         }
730 }
731
732 static void blk_mq_timeout_work(struct work_struct *work)
733 {
734         struct request_queue *q =
735                 container_of(work, struct request_queue, timeout_work);
736         struct blk_mq_timeout_data data = {
737                 .next           = 0,
738                 .next_set       = 0,
739         };
740         int i;
741
742         /* A deadlock might occur if a request is stuck requiring a
743          * timeout at the same time a queue freeze is waiting
744          * completion, since the timeout code would not be able to
745          * acquire the queue reference here.
746          *
747          * That's why we don't use blk_queue_enter here; instead, we use
748          * percpu_ref_tryget directly, because we need to be able to
749          * obtain a reference even in the short window between the queue
750          * starting to freeze, by dropping the first reference in
751          * blk_freeze_queue_start, and the moment the last request is
752          * consumed, marked by the instant q_usage_counter reaches
753          * zero.
754          */
755         if (!percpu_ref_tryget(&q->q_usage_counter))
756                 return;
757
758         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
759
760         if (data.next_set) {
761                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
762                 mod_timer(&q->timeout, data.next);
763         } else {
764                 struct blk_mq_hw_ctx *hctx;
765
766                 queue_for_each_hw_ctx(q, hctx, i) {
767                         /* the hctx may be unmapped, so check it here */
768                         if (blk_mq_hw_queue_mapped(hctx))
769                                 blk_mq_tag_idle(hctx);
770                 }
771         }
772         blk_queue_exit(q);
773 }
774
775 /*
776  * Reverse check our software queue for entries that we could potentially
777  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
778  * too much time checking for merges.
779  */
780 static bool blk_mq_attempt_merge(struct request_queue *q,
781                                  struct blk_mq_ctx *ctx, struct bio *bio)
782 {
783         struct request *rq;
784         int checked = 8;
785
786         list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
787                 bool merged = false;
788
789                 if (!checked--)
790                         break;
791
792                 if (!blk_rq_merge_ok(rq, bio))
793                         continue;
794
795                 switch (blk_try_merge(rq, bio)) {
796                 case ELEVATOR_BACK_MERGE:
797                         if (blk_mq_sched_allow_merge(q, rq, bio))
798                                 merged = bio_attempt_back_merge(q, rq, bio);
799                         break;
800                 case ELEVATOR_FRONT_MERGE:
801                         if (blk_mq_sched_allow_merge(q, rq, bio))
802                                 merged = bio_attempt_front_merge(q, rq, bio);
803                         break;
804                 case ELEVATOR_DISCARD_MERGE:
805                         merged = bio_attempt_discard_merge(q, rq, bio);
806                         break;
807                 default:
808                         continue;
809                 }
810
811                 if (merged)
812                         ctx->rq_merged++;
813                 return merged;
814         }
815
816         return false;
817 }
818
819 struct flush_busy_ctx_data {
820         struct blk_mq_hw_ctx *hctx;
821         struct list_head *list;
822 };
823
824 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
825 {
826         struct flush_busy_ctx_data *flush_data = data;
827         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
828         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
829
830         sbitmap_clear_bit(sb, bitnr);
831         spin_lock(&ctx->lock);
832         list_splice_tail_init(&ctx->rq_list, flush_data->list);
833         spin_unlock(&ctx->lock);
834         return true;
835 }
836
837 /*
838  * Process software queues that have been marked busy, splicing them
839  * to the for-dispatch
840  */
841 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
842 {
843         struct flush_busy_ctx_data data = {
844                 .hctx = hctx,
845                 .list = list,
846         };
847
848         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
849 }
850 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
851
852 static inline unsigned int queued_to_index(unsigned int queued)
853 {
854         if (!queued)
855                 return 0;
856
857         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
858 }
859
860 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
861                            bool wait)
862 {
863         struct blk_mq_alloc_data data = {
864                 .q = rq->q,
865                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
866                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
867         };
868
869         might_sleep_if(wait);
870
871         if (rq->tag != -1)
872                 goto done;
873
874         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
875                 data.flags |= BLK_MQ_REQ_RESERVED;
876
877         rq->tag = blk_mq_get_tag(&data);
878         if (rq->tag >= 0) {
879                 if (blk_mq_tag_busy(data.hctx)) {
880                         rq->rq_flags |= RQF_MQ_INFLIGHT;
881                         atomic_inc(&data.hctx->nr_active);
882                 }
883                 data.hctx->tags->rqs[rq->tag] = rq;
884         }
885
886 done:
887         if (hctx)
888                 *hctx = data.hctx;
889         return rq->tag != -1;
890 }
891
892 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
893                                     struct request *rq)
894 {
895         blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
896         rq->tag = -1;
897
898         if (rq->rq_flags & RQF_MQ_INFLIGHT) {
899                 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
900                 atomic_dec(&hctx->nr_active);
901         }
902 }
903
904 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
905                                        struct request *rq)
906 {
907         if (rq->tag == -1 || rq->internal_tag == -1)
908                 return;
909
910         __blk_mq_put_driver_tag(hctx, rq);
911 }
912
913 static void blk_mq_put_driver_tag(struct request *rq)
914 {
915         struct blk_mq_hw_ctx *hctx;
916
917         if (rq->tag == -1 || rq->internal_tag == -1)
918                 return;
919
920         hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
921         __blk_mq_put_driver_tag(hctx, rq);
922 }
923
924 /*
925  * If we fail getting a driver tag because all the driver tags are already
926  * assigned and on the dispatch list, BUT the first entry does not have a
927  * tag, then we could deadlock. For that case, move entries with assigned
928  * driver tags to the front, leaving the set of tagged requests in the
929  * same order, and the untagged set in the same order.
930  */
931 static bool reorder_tags_to_front(struct list_head *list)
932 {
933         struct request *rq, *tmp, *first = NULL;
934
935         list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
936                 if (rq == first)
937                         break;
938                 if (rq->tag != -1) {
939                         list_move(&rq->queuelist, list);
940                         if (!first)
941                                 first = rq;
942                 }
943         }
944
945         return first != NULL;
946 }
947
948 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
949                                 void *key)
950 {
951         struct blk_mq_hw_ctx *hctx;
952
953         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
954
955         list_del(&wait->task_list);
956         clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
957         blk_mq_run_hw_queue(hctx, true);
958         return 1;
959 }
960
961 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
962 {
963         struct sbq_wait_state *ws;
964
965         /*
966          * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
967          * The thread which wins the race to grab this bit adds the hardware
968          * queue to the wait queue.
969          */
970         if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
971             test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
972                 return false;
973
974         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
975         ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
976
977         /*
978          * As soon as this returns, it's no longer safe to fiddle with
979          * hctx->dispatch_wait, since a completion can wake up the wait queue
980          * and unlock the bit.
981          */
982         add_wait_queue(&ws->wait, &hctx->dispatch_wait);
983         return true;
984 }
985
986 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
987 {
988         struct blk_mq_hw_ctx *hctx;
989         struct request *rq;
990         int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
991
992         if (list_empty(list))
993                 return false;
994
995         /*
996          * Now process all the entries, sending them to the driver.
997          */
998         errors = queued = 0;
999         do {
1000                 struct blk_mq_queue_data bd;
1001
1002                 rq = list_first_entry(list, struct request, queuelist);
1003                 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1004                         if (!queued && reorder_tags_to_front(list))
1005                                 continue;
1006
1007                         /*
1008                          * The initial allocation attempt failed, so we need to
1009                          * rerun the hardware queue when a tag is freed.
1010                          */
1011                         if (!blk_mq_dispatch_wait_add(hctx))
1012                                 break;
1013
1014                         /*
1015                          * It's possible that a tag was freed in the window
1016                          * between the allocation failure and adding the
1017                          * hardware queue to the wait queue.
1018                          */
1019                         if (!blk_mq_get_driver_tag(rq, &hctx, false))
1020                                 break;
1021                 }
1022
1023                 list_del_init(&rq->queuelist);
1024
1025                 bd.rq = rq;
1026
1027                 /*
1028                  * Flag last if we have no more requests, or if we have more
1029                  * but can't assign a driver tag to it.
1030                  */
1031                 if (list_empty(list))
1032                         bd.last = true;
1033                 else {
1034                         struct request *nxt;
1035
1036                         nxt = list_first_entry(list, struct request, queuelist);
1037                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1038                 }
1039
1040                 ret = q->mq_ops->queue_rq(hctx, &bd);
1041                 switch (ret) {
1042                 case BLK_MQ_RQ_QUEUE_OK:
1043                         queued++;
1044                         break;
1045                 case BLK_MQ_RQ_QUEUE_BUSY:
1046                         blk_mq_put_driver_tag_hctx(hctx, rq);
1047                         list_add(&rq->queuelist, list);
1048                         __blk_mq_requeue_request(rq);
1049                         break;
1050                 default:
1051                         pr_err("blk-mq: bad return on queue: %d\n", ret);
1052                 case BLK_MQ_RQ_QUEUE_ERROR:
1053                         errors++;
1054                         blk_mq_end_request(rq, -EIO);
1055                         break;
1056                 }
1057
1058                 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1059                         break;
1060         } while (!list_empty(list));
1061
1062         hctx->dispatched[queued_to_index(queued)]++;
1063
1064         /*
1065          * Any items that need requeuing? Stuff them into hctx->dispatch,
1066          * that is where we will continue on next queue run.
1067          */
1068         if (!list_empty(list)) {
1069                 /*
1070                  * If an I/O scheduler has been configured and we got a driver
1071                  * tag for the next request already, free it again.
1072                  */
1073                 rq = list_first_entry(list, struct request, queuelist);
1074                 blk_mq_put_driver_tag(rq);
1075
1076                 spin_lock(&hctx->lock);
1077                 list_splice_init(list, &hctx->dispatch);
1078                 spin_unlock(&hctx->lock);
1079
1080                 /*
1081                  * If SCHED_RESTART was set by the caller of this function and
1082                  * it is no longer set that means that it was cleared by another
1083                  * thread and hence that a queue rerun is needed.
1084                  *
1085                  * If TAG_WAITING is set that means that an I/O scheduler has
1086                  * been configured and another thread is waiting for a driver
1087                  * tag. To guarantee fairness, do not rerun this hardware queue
1088                  * but let the other thread grab the driver tag.
1089                  *
1090                  * If no I/O scheduler has been configured it is possible that
1091                  * the hardware queue got stopped and restarted before requests
1092                  * were pushed back onto the dispatch list. Rerun the queue to
1093                  * avoid starvation. Notes:
1094                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1095                  *   been stopped before rerunning a queue.
1096                  * - Some but not all block drivers stop a queue before
1097                  *   returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq
1098                  *   and dm-rq.
1099                  */
1100                 if (!blk_mq_sched_needs_restart(hctx) &&
1101                     !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1102                         blk_mq_run_hw_queue(hctx, true);
1103         }
1104
1105         return (queued + errors) != 0;
1106 }
1107
1108 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1109 {
1110         int srcu_idx;
1111
1112         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1113                 cpu_online(hctx->next_cpu));
1114
1115         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1116                 rcu_read_lock();
1117                 blk_mq_sched_dispatch_requests(hctx);
1118                 rcu_read_unlock();
1119         } else {
1120                 might_sleep();
1121
1122                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1123                 blk_mq_sched_dispatch_requests(hctx);
1124                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1125         }
1126 }
1127
1128 /*
1129  * It'd be great if the workqueue API had a way to pass
1130  * in a mask and had some smarts for more clever placement.
1131  * For now we just round-robin here, switching for every
1132  * BLK_MQ_CPU_WORK_BATCH queued items.
1133  */
1134 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1135 {
1136         if (hctx->queue->nr_hw_queues == 1)
1137                 return WORK_CPU_UNBOUND;
1138
1139         if (--hctx->next_cpu_batch <= 0) {
1140                 int next_cpu;
1141
1142                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1143                 if (next_cpu >= nr_cpu_ids)
1144                         next_cpu = cpumask_first(hctx->cpumask);
1145
1146                 hctx->next_cpu = next_cpu;
1147                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1148         }
1149
1150         return hctx->next_cpu;
1151 }
1152
1153 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1154                                         unsigned long msecs)
1155 {
1156         if (unlikely(blk_mq_hctx_stopped(hctx) ||
1157                      !blk_mq_hw_queue_mapped(hctx)))
1158                 return;
1159
1160         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1161                 int cpu = get_cpu();
1162                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1163                         __blk_mq_run_hw_queue(hctx);
1164                         put_cpu();
1165                         return;
1166                 }
1167
1168                 put_cpu();
1169         }
1170
1171         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1172                                          &hctx->run_work,
1173                                          msecs_to_jiffies(msecs));
1174 }
1175
1176 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1177 {
1178         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1179 }
1180 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1181
1182 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1183 {
1184         __blk_mq_delay_run_hw_queue(hctx, async, 0);
1185 }
1186 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1187
1188 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1189 {
1190         struct blk_mq_hw_ctx *hctx;
1191         int i;
1192
1193         queue_for_each_hw_ctx(q, hctx, i) {
1194                 if (!blk_mq_hctx_has_pending(hctx) ||
1195                     blk_mq_hctx_stopped(hctx))
1196                         continue;
1197
1198                 blk_mq_run_hw_queue(hctx, async);
1199         }
1200 }
1201 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1202
1203 /**
1204  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1205  * @q: request queue.
1206  *
1207  * The caller is responsible for serializing this function against
1208  * blk_mq_{start,stop}_hw_queue().
1209  */
1210 bool blk_mq_queue_stopped(struct request_queue *q)
1211 {
1212         struct blk_mq_hw_ctx *hctx;
1213         int i;
1214
1215         queue_for_each_hw_ctx(q, hctx, i)
1216                 if (blk_mq_hctx_stopped(hctx))
1217                         return true;
1218
1219         return false;
1220 }
1221 EXPORT_SYMBOL(blk_mq_queue_stopped);
1222
1223 static void __blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx, bool sync)
1224 {
1225         if (sync)
1226                 cancel_delayed_work_sync(&hctx->run_work);
1227         else
1228                 cancel_delayed_work(&hctx->run_work);
1229
1230         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1231 }
1232
1233 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1234 {
1235         __blk_mq_stop_hw_queue(hctx, false);
1236 }
1237 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1238
1239 void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync)
1240 {
1241         struct blk_mq_hw_ctx *hctx;
1242         int i;
1243
1244         queue_for_each_hw_ctx(q, hctx, i)
1245                 __blk_mq_stop_hw_queue(hctx, sync);
1246 }
1247
1248 void blk_mq_stop_hw_queues(struct request_queue *q)
1249 {
1250         __blk_mq_stop_hw_queues(q, false);
1251 }
1252 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1253
1254 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1255 {
1256         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1257
1258         blk_mq_run_hw_queue(hctx, false);
1259 }
1260 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1261
1262 void blk_mq_start_hw_queues(struct request_queue *q)
1263 {
1264         struct blk_mq_hw_ctx *hctx;
1265         int i;
1266
1267         queue_for_each_hw_ctx(q, hctx, i)
1268                 blk_mq_start_hw_queue(hctx);
1269 }
1270 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1271
1272 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1273 {
1274         if (!blk_mq_hctx_stopped(hctx))
1275                 return;
1276
1277         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1278         blk_mq_run_hw_queue(hctx, async);
1279 }
1280 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1281
1282 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1283 {
1284         struct blk_mq_hw_ctx *hctx;
1285         int i;
1286
1287         queue_for_each_hw_ctx(q, hctx, i)
1288                 blk_mq_start_stopped_hw_queue(hctx, async);
1289 }
1290 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1291
1292 static void blk_mq_run_work_fn(struct work_struct *work)
1293 {
1294         struct blk_mq_hw_ctx *hctx;
1295
1296         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1297
1298         /*
1299          * If we are stopped, don't run the queue. The exception is if
1300          * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1301          * the STOPPED bit and run it.
1302          */
1303         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1304                 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1305                         return;
1306
1307                 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1308                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1309         }
1310
1311         __blk_mq_run_hw_queue(hctx);
1312 }
1313
1314
1315 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1316 {
1317         if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1318                 return;
1319
1320         /*
1321          * Stop the hw queue, then modify currently delayed work.
1322          * This should prevent us from running the queue prematurely.
1323          * Mark the queue as auto-clearing STOPPED when it runs.
1324          */
1325         blk_mq_stop_hw_queue(hctx);
1326         set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1327         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1328                                         &hctx->run_work,
1329                                         msecs_to_jiffies(msecs));
1330 }
1331 EXPORT_SYMBOL(blk_mq_delay_queue);
1332
1333 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1334                                             struct request *rq,
1335                                             bool at_head)
1336 {
1337         struct blk_mq_ctx *ctx = rq->mq_ctx;
1338
1339         trace_block_rq_insert(hctx->queue, rq);
1340
1341         if (at_head)
1342                 list_add(&rq->queuelist, &ctx->rq_list);
1343         else
1344                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1345 }
1346
1347 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1348                              bool at_head)
1349 {
1350         struct blk_mq_ctx *ctx = rq->mq_ctx;
1351
1352         __blk_mq_insert_req_list(hctx, rq, at_head);
1353         blk_mq_hctx_mark_pending(hctx, ctx);
1354 }
1355
1356 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1357                             struct list_head *list)
1358
1359 {
1360         /*
1361          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1362          * offline now
1363          */
1364         spin_lock(&ctx->lock);
1365         while (!list_empty(list)) {
1366                 struct request *rq;
1367
1368                 rq = list_first_entry(list, struct request, queuelist);
1369                 BUG_ON(rq->mq_ctx != ctx);
1370                 list_del_init(&rq->queuelist);
1371                 __blk_mq_insert_req_list(hctx, rq, false);
1372         }
1373         blk_mq_hctx_mark_pending(hctx, ctx);
1374         spin_unlock(&ctx->lock);
1375 }
1376
1377 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1378 {
1379         struct request *rqa = container_of(a, struct request, queuelist);
1380         struct request *rqb = container_of(b, struct request, queuelist);
1381
1382         return !(rqa->mq_ctx < rqb->mq_ctx ||
1383                  (rqa->mq_ctx == rqb->mq_ctx &&
1384                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1385 }
1386
1387 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1388 {
1389         struct blk_mq_ctx *this_ctx;
1390         struct request_queue *this_q;
1391         struct request *rq;
1392         LIST_HEAD(list);
1393         LIST_HEAD(ctx_list);
1394         unsigned int depth;
1395
1396         list_splice_init(&plug->mq_list, &list);
1397
1398         list_sort(NULL, &list, plug_ctx_cmp);
1399
1400         this_q = NULL;
1401         this_ctx = NULL;
1402         depth = 0;
1403
1404         while (!list_empty(&list)) {
1405                 rq = list_entry_rq(list.next);
1406                 list_del_init(&rq->queuelist);
1407                 BUG_ON(!rq->q);
1408                 if (rq->mq_ctx != this_ctx) {
1409                         if (this_ctx) {
1410                                 trace_block_unplug(this_q, depth, from_schedule);
1411                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1412                                                                 &ctx_list,
1413                                                                 from_schedule);
1414                         }
1415
1416                         this_ctx = rq->mq_ctx;
1417                         this_q = rq->q;
1418                         depth = 0;
1419                 }
1420
1421                 depth++;
1422                 list_add_tail(&rq->queuelist, &ctx_list);
1423         }
1424
1425         /*
1426          * If 'this_ctx' is set, we know we have entries to complete
1427          * on 'ctx_list'. Do those.
1428          */
1429         if (this_ctx) {
1430                 trace_block_unplug(this_q, depth, from_schedule);
1431                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1432                                                 from_schedule);
1433         }
1434 }
1435
1436 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1437 {
1438         blk_init_request_from_bio(rq, bio);
1439
1440         blk_account_io_start(rq, true);
1441 }
1442
1443 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1444 {
1445         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1446                 !blk_queue_nomerges(hctx->queue);
1447 }
1448
1449 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1450                                          struct blk_mq_ctx *ctx,
1451                                          struct request *rq, struct bio *bio)
1452 {
1453         if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1454                 blk_mq_bio_to_request(rq, bio);
1455                 spin_lock(&ctx->lock);
1456 insert_rq:
1457                 __blk_mq_insert_request(hctx, rq, false);
1458                 spin_unlock(&ctx->lock);
1459                 return false;
1460         } else {
1461                 struct request_queue *q = hctx->queue;
1462
1463                 spin_lock(&ctx->lock);
1464                 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1465                         blk_mq_bio_to_request(rq, bio);
1466                         goto insert_rq;
1467                 }
1468
1469                 spin_unlock(&ctx->lock);
1470                 __blk_mq_finish_request(hctx, ctx, rq);
1471                 return true;
1472         }
1473 }
1474
1475 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1476 {
1477         if (rq->tag != -1)
1478                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1479
1480         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1481 }
1482
1483 static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1484                                       bool may_sleep)
1485 {
1486         struct request_queue *q = rq->q;
1487         struct blk_mq_queue_data bd = {
1488                 .rq = rq,
1489                 .last = true,
1490         };
1491         struct blk_mq_hw_ctx *hctx;
1492         blk_qc_t new_cookie;
1493         int ret;
1494
1495         if (q->elevator)
1496                 goto insert;
1497
1498         if (!blk_mq_get_driver_tag(rq, &hctx, false))
1499                 goto insert;
1500
1501         new_cookie = request_to_qc_t(hctx, rq);
1502
1503         /*
1504          * For OK queue, we are done. For error, kill it. Any other
1505          * error (busy), just add it to our list as we previously
1506          * would have done
1507          */
1508         ret = q->mq_ops->queue_rq(hctx, &bd);
1509         if (ret == BLK_MQ_RQ_QUEUE_OK) {
1510                 *cookie = new_cookie;
1511                 return;
1512         }
1513
1514         if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1515                 *cookie = BLK_QC_T_NONE;
1516                 blk_mq_end_request(rq, -EIO);
1517                 return;
1518         }
1519
1520         __blk_mq_requeue_request(rq);
1521 insert:
1522         blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1523 }
1524
1525 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1526                 struct request *rq, blk_qc_t *cookie)
1527 {
1528         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1529                 rcu_read_lock();
1530                 __blk_mq_try_issue_directly(rq, cookie, false);
1531                 rcu_read_unlock();
1532         } else {
1533                 unsigned int srcu_idx;
1534
1535                 might_sleep();
1536
1537                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1538                 __blk_mq_try_issue_directly(rq, cookie, true);
1539                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1540         }
1541 }
1542
1543 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1544 {
1545         const int is_sync = op_is_sync(bio->bi_opf);
1546         const int is_flush_fua = op_is_flush(bio->bi_opf);
1547         struct blk_mq_alloc_data data = { .flags = 0 };
1548         struct request *rq;
1549         unsigned int request_count = 0;
1550         struct blk_plug *plug;
1551         struct request *same_queue_rq = NULL;
1552         blk_qc_t cookie;
1553         unsigned int wb_acct;
1554
1555         blk_queue_bounce(q, &bio);
1556
1557         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1558                 bio_io_error(bio);
1559                 return BLK_QC_T_NONE;
1560         }
1561
1562         blk_queue_split(q, &bio, q->bio_split);
1563
1564         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1565             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1566                 return BLK_QC_T_NONE;
1567
1568         if (blk_mq_sched_bio_merge(q, bio))
1569                 return BLK_QC_T_NONE;
1570
1571         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1572
1573         trace_block_getrq(q, bio, bio->bi_opf);
1574
1575         rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1576         if (unlikely(!rq)) {
1577                 __wbt_done(q->rq_wb, wb_acct);
1578                 return BLK_QC_T_NONE;
1579         }
1580
1581         wbt_track(&rq->issue_stat, wb_acct);
1582
1583         cookie = request_to_qc_t(data.hctx, rq);
1584
1585         plug = current->plug;
1586         if (unlikely(is_flush_fua)) {
1587                 blk_mq_put_ctx(data.ctx);
1588                 blk_mq_bio_to_request(rq, bio);
1589                 if (q->elevator) {
1590                         blk_mq_sched_insert_request(rq, false, true, true,
1591                                         true);
1592                 } else {
1593                         blk_insert_flush(rq);
1594                         blk_mq_run_hw_queue(data.hctx, true);
1595                 }
1596         } else if (plug && q->nr_hw_queues == 1) {
1597                 struct request *last = NULL;
1598
1599                 blk_mq_put_ctx(data.ctx);
1600                 blk_mq_bio_to_request(rq, bio);
1601
1602                 /*
1603                  * @request_count may become stale because of schedule
1604                  * out, so check the list again.
1605                  */
1606                 if (list_empty(&plug->mq_list))
1607                         request_count = 0;
1608                 else if (blk_queue_nomerges(q))
1609                         request_count = blk_plug_queued_count(q);
1610
1611                 if (!request_count)
1612                         trace_block_plug(q);
1613                 else
1614                         last = list_entry_rq(plug->mq_list.prev);
1615
1616                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1617                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1618                         blk_flush_plug_list(plug, false);
1619                         trace_block_plug(q);
1620                 }
1621
1622                 list_add_tail(&rq->queuelist, &plug->mq_list);
1623         } else if (plug && !blk_queue_nomerges(q)) {
1624                 blk_mq_bio_to_request(rq, bio);
1625
1626                 /*
1627                  * We do limited plugging. If the bio can be merged, do that.
1628                  * Otherwise the existing request in the plug list will be
1629                  * issued. So the plug list will have one request at most
1630                  * The plug list might get flushed before this. If that happens,
1631                  * the plug list is empty, and same_queue_rq is invalid.
1632                  */
1633                 if (list_empty(&plug->mq_list))
1634                         same_queue_rq = NULL;
1635                 if (same_queue_rq)
1636                         list_del_init(&same_queue_rq->queuelist);
1637                 list_add_tail(&rq->queuelist, &plug->mq_list);
1638
1639                 blk_mq_put_ctx(data.ctx);
1640
1641                 if (same_queue_rq)
1642                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1643                                         &cookie);
1644         } else if (q->nr_hw_queues > 1 && is_sync) {
1645                 blk_mq_put_ctx(data.ctx);
1646                 blk_mq_bio_to_request(rq, bio);
1647                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1648         } else if (q->elevator) {
1649                 blk_mq_put_ctx(data.ctx);
1650                 blk_mq_bio_to_request(rq, bio);
1651                 blk_mq_sched_insert_request(rq, false, true, true, true);
1652         } else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1653                 blk_mq_put_ctx(data.ctx);
1654                 blk_mq_run_hw_queue(data.hctx, true);
1655         } else
1656                 blk_mq_put_ctx(data.ctx);
1657
1658         return cookie;
1659 }
1660
1661 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1662                      unsigned int hctx_idx)
1663 {
1664         struct page *page;
1665
1666         if (tags->rqs && set->ops->exit_request) {
1667                 int i;
1668
1669                 for (i = 0; i < tags->nr_tags; i++) {
1670                         struct request *rq = tags->static_rqs[i];
1671
1672                         if (!rq)
1673                                 continue;
1674                         set->ops->exit_request(set, rq, hctx_idx);
1675                         tags->static_rqs[i] = NULL;
1676                 }
1677         }
1678
1679         while (!list_empty(&tags->page_list)) {
1680                 page = list_first_entry(&tags->page_list, struct page, lru);
1681                 list_del_init(&page->lru);
1682                 /*
1683                  * Remove kmemleak object previously allocated in
1684                  * blk_mq_init_rq_map().
1685                  */
1686                 kmemleak_free(page_address(page));
1687                 __free_pages(page, page->private);
1688         }
1689 }
1690
1691 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1692 {
1693         kfree(tags->rqs);
1694         tags->rqs = NULL;
1695         kfree(tags->static_rqs);
1696         tags->static_rqs = NULL;
1697
1698         blk_mq_free_tags(tags);
1699 }
1700
1701 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1702                                         unsigned int hctx_idx,
1703                                         unsigned int nr_tags,
1704                                         unsigned int reserved_tags)
1705 {
1706         struct blk_mq_tags *tags;
1707         int node;
1708
1709         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1710         if (node == NUMA_NO_NODE)
1711                 node = set->numa_node;
1712
1713         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1714                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1715         if (!tags)
1716                 return NULL;
1717
1718         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1719                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1720                                  node);
1721         if (!tags->rqs) {
1722                 blk_mq_free_tags(tags);
1723                 return NULL;
1724         }
1725
1726         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1727                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1728                                  node);
1729         if (!tags->static_rqs) {
1730                 kfree(tags->rqs);
1731                 blk_mq_free_tags(tags);
1732                 return NULL;
1733         }
1734
1735         return tags;
1736 }
1737
1738 static size_t order_to_size(unsigned int order)
1739 {
1740         return (size_t)PAGE_SIZE << order;
1741 }
1742
1743 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1744                      unsigned int hctx_idx, unsigned int depth)
1745 {
1746         unsigned int i, j, entries_per_page, max_order = 4;
1747         size_t rq_size, left;
1748         int node;
1749
1750         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1751         if (node == NUMA_NO_NODE)
1752                 node = set->numa_node;
1753
1754         INIT_LIST_HEAD(&tags->page_list);
1755
1756         /*
1757          * rq_size is the size of the request plus driver payload, rounded
1758          * to the cacheline size
1759          */
1760         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1761                                 cache_line_size());
1762         left = rq_size * depth;
1763
1764         for (i = 0; i < depth; ) {
1765                 int this_order = max_order;
1766                 struct page *page;
1767                 int to_do;
1768                 void *p;
1769
1770                 while (this_order && left < order_to_size(this_order - 1))
1771                         this_order--;
1772
1773                 do {
1774                         page = alloc_pages_node(node,
1775                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1776                                 this_order);
1777                         if (page)
1778                                 break;
1779                         if (!this_order--)
1780                                 break;
1781                         if (order_to_size(this_order) < rq_size)
1782                                 break;
1783                 } while (1);
1784
1785                 if (!page)
1786                         goto fail;
1787
1788                 page->private = this_order;
1789                 list_add_tail(&page->lru, &tags->page_list);
1790
1791                 p = page_address(page);
1792                 /*
1793                  * Allow kmemleak to scan these pages as they contain pointers
1794                  * to additional allocations like via ops->init_request().
1795                  */
1796                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1797                 entries_per_page = order_to_size(this_order) / rq_size;
1798                 to_do = min(entries_per_page, depth - i);
1799                 left -= to_do * rq_size;
1800                 for (j = 0; j < to_do; j++) {
1801                         struct request *rq = p;
1802
1803                         tags->static_rqs[i] = rq;
1804                         if (set->ops->init_request) {
1805                                 if (set->ops->init_request(set, rq, hctx_idx,
1806                                                 node)) {
1807                                         tags->static_rqs[i] = NULL;
1808                                         goto fail;
1809                                 }
1810                         }
1811
1812                         p += rq_size;
1813                         i++;
1814                 }
1815         }
1816         return 0;
1817
1818 fail:
1819         blk_mq_free_rqs(set, tags, hctx_idx);
1820         return -ENOMEM;
1821 }
1822
1823 /*
1824  * 'cpu' is going away. splice any existing rq_list entries from this
1825  * software queue to the hw queue dispatch list, and ensure that it
1826  * gets run.
1827  */
1828 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1829 {
1830         struct blk_mq_hw_ctx *hctx;
1831         struct blk_mq_ctx *ctx;
1832         LIST_HEAD(tmp);
1833
1834         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1835         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1836
1837         spin_lock(&ctx->lock);
1838         if (!list_empty(&ctx->rq_list)) {
1839                 list_splice_init(&ctx->rq_list, &tmp);
1840                 blk_mq_hctx_clear_pending(hctx, ctx);
1841         }
1842         spin_unlock(&ctx->lock);
1843
1844         if (list_empty(&tmp))
1845                 return 0;
1846
1847         spin_lock(&hctx->lock);
1848         list_splice_tail_init(&tmp, &hctx->dispatch);
1849         spin_unlock(&hctx->lock);
1850
1851         blk_mq_run_hw_queue(hctx, true);
1852         return 0;
1853 }
1854
1855 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1856 {
1857         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1858                                             &hctx->cpuhp_dead);
1859 }
1860
1861 /* hctx->ctxs will be freed in queue's release handler */
1862 static void blk_mq_exit_hctx(struct request_queue *q,
1863                 struct blk_mq_tag_set *set,
1864                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1865 {
1866         blk_mq_debugfs_unregister_hctx(hctx);
1867
1868         blk_mq_tag_idle(hctx);
1869
1870         if (set->ops->exit_request)
1871                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1872
1873         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1874
1875         if (set->ops->exit_hctx)
1876                 set->ops->exit_hctx(hctx, hctx_idx);
1877
1878         if (hctx->flags & BLK_MQ_F_BLOCKING)
1879                 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1880
1881         blk_mq_remove_cpuhp(hctx);
1882         blk_free_flush_queue(hctx->fq);
1883         sbitmap_free(&hctx->ctx_map);
1884 }
1885
1886 static void blk_mq_exit_hw_queues(struct request_queue *q,
1887                 struct blk_mq_tag_set *set, int nr_queue)
1888 {
1889         struct blk_mq_hw_ctx *hctx;
1890         unsigned int i;
1891
1892         queue_for_each_hw_ctx(q, hctx, i) {
1893                 if (i == nr_queue)
1894                         break;
1895                 blk_mq_exit_hctx(q, set, hctx, i);
1896         }
1897 }
1898
1899 static int blk_mq_init_hctx(struct request_queue *q,
1900                 struct blk_mq_tag_set *set,
1901                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1902 {
1903         int node;
1904
1905         node = hctx->numa_node;
1906         if (node == NUMA_NO_NODE)
1907                 node = hctx->numa_node = set->numa_node;
1908
1909         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1910         spin_lock_init(&hctx->lock);
1911         INIT_LIST_HEAD(&hctx->dispatch);
1912         hctx->queue = q;
1913         hctx->queue_num = hctx_idx;
1914         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1915
1916         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1917
1918         hctx->tags = set->tags[hctx_idx];
1919
1920         /*
1921          * Allocate space for all possible cpus to avoid allocation at
1922          * runtime
1923          */
1924         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1925                                         GFP_KERNEL, node);
1926         if (!hctx->ctxs)
1927                 goto unregister_cpu_notifier;
1928
1929         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1930                               node))
1931                 goto free_ctxs;
1932
1933         hctx->nr_ctx = 0;
1934
1935         if (set->ops->init_hctx &&
1936             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1937                 goto free_bitmap;
1938
1939         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1940                 goto exit_hctx;
1941
1942         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1943         if (!hctx->fq)
1944                 goto sched_exit_hctx;
1945
1946         if (set->ops->init_request &&
1947             set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1948                                    node))
1949                 goto free_fq;
1950
1951         if (hctx->flags & BLK_MQ_F_BLOCKING)
1952                 init_srcu_struct(&hctx->queue_rq_srcu);
1953
1954         blk_mq_debugfs_register_hctx(q, hctx);
1955
1956         return 0;
1957
1958  free_fq:
1959         kfree(hctx->fq);
1960  sched_exit_hctx:
1961         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1962  exit_hctx:
1963         if (set->ops->exit_hctx)
1964                 set->ops->exit_hctx(hctx, hctx_idx);
1965  free_bitmap:
1966         sbitmap_free(&hctx->ctx_map);
1967  free_ctxs:
1968         kfree(hctx->ctxs);
1969  unregister_cpu_notifier:
1970         blk_mq_remove_cpuhp(hctx);
1971         return -1;
1972 }
1973
1974 static void blk_mq_init_cpu_queues(struct request_queue *q,
1975                                    unsigned int nr_hw_queues)
1976 {
1977         unsigned int i;
1978
1979         for_each_possible_cpu(i) {
1980                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1981                 struct blk_mq_hw_ctx *hctx;
1982
1983                 __ctx->cpu = i;
1984                 spin_lock_init(&__ctx->lock);
1985                 INIT_LIST_HEAD(&__ctx->rq_list);
1986                 __ctx->queue = q;
1987
1988                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1989                 if (!cpu_online(i))
1990                         continue;
1991
1992                 hctx = blk_mq_map_queue(q, i);
1993
1994                 /*
1995                  * Set local node, IFF we have more than one hw queue. If
1996                  * not, we remain on the home node of the device
1997                  */
1998                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1999                         hctx->numa_node = local_memory_node(cpu_to_node(i));
2000         }
2001 }
2002
2003 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2004 {
2005         int ret = 0;
2006
2007         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2008                                         set->queue_depth, set->reserved_tags);
2009         if (!set->tags[hctx_idx])
2010                 return false;
2011
2012         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2013                                 set->queue_depth);
2014         if (!ret)
2015                 return true;
2016
2017         blk_mq_free_rq_map(set->tags[hctx_idx]);
2018         set->tags[hctx_idx] = NULL;
2019         return false;
2020 }
2021
2022 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2023                                          unsigned int hctx_idx)
2024 {
2025         if (set->tags[hctx_idx]) {
2026                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2027                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2028                 set->tags[hctx_idx] = NULL;
2029         }
2030 }
2031
2032 static void blk_mq_map_swqueue(struct request_queue *q,
2033                                const struct cpumask *online_mask)
2034 {
2035         unsigned int i, hctx_idx;
2036         struct blk_mq_hw_ctx *hctx;
2037         struct blk_mq_ctx *ctx;
2038         struct blk_mq_tag_set *set = q->tag_set;
2039
2040         /*
2041          * Avoid others reading imcomplete hctx->cpumask through sysfs
2042          */
2043         mutex_lock(&q->sysfs_lock);
2044
2045         queue_for_each_hw_ctx(q, hctx, i) {
2046                 cpumask_clear(hctx->cpumask);
2047                 hctx->nr_ctx = 0;
2048         }
2049
2050         /*
2051          * Map software to hardware queues
2052          */
2053         for_each_possible_cpu(i) {
2054                 /* If the cpu isn't online, the cpu is mapped to first hctx */
2055                 if (!cpumask_test_cpu(i, online_mask))
2056                         continue;
2057
2058                 hctx_idx = q->mq_map[i];
2059                 /* unmapped hw queue can be remapped after CPU topo changed */
2060                 if (!set->tags[hctx_idx] &&
2061                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2062                         /*
2063                          * If tags initialization fail for some hctx,
2064                          * that hctx won't be brought online.  In this
2065                          * case, remap the current ctx to hctx[0] which
2066                          * is guaranteed to always have tags allocated
2067                          */
2068                         q->mq_map[i] = 0;
2069                 }
2070
2071                 ctx = per_cpu_ptr(q->queue_ctx, i);
2072                 hctx = blk_mq_map_queue(q, i);
2073
2074                 cpumask_set_cpu(i, hctx->cpumask);
2075                 ctx->index_hw = hctx->nr_ctx;
2076                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2077         }
2078
2079         mutex_unlock(&q->sysfs_lock);
2080
2081         queue_for_each_hw_ctx(q, hctx, i) {
2082                 /*
2083                  * If no software queues are mapped to this hardware queue,
2084                  * disable it and free the request entries.
2085                  */
2086                 if (!hctx->nr_ctx) {
2087                         /* Never unmap queue 0.  We need it as a
2088                          * fallback in case of a new remap fails
2089                          * allocation
2090                          */
2091                         if (i && set->tags[i])
2092                                 blk_mq_free_map_and_requests(set, i);
2093
2094                         hctx->tags = NULL;
2095                         continue;
2096                 }
2097
2098                 hctx->tags = set->tags[i];
2099                 WARN_ON(!hctx->tags);
2100
2101                 /*
2102                  * Set the map size to the number of mapped software queues.
2103                  * This is more accurate and more efficient than looping
2104                  * over all possibly mapped software queues.
2105                  */
2106                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2107
2108                 /*
2109                  * Initialize batch roundrobin counts
2110                  */
2111                 hctx->next_cpu = cpumask_first(hctx->cpumask);
2112                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2113         }
2114 }
2115
2116 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2117 {
2118         struct blk_mq_hw_ctx *hctx;
2119         int i;
2120
2121         queue_for_each_hw_ctx(q, hctx, i) {
2122                 if (shared)
2123                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2124                 else
2125                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2126         }
2127 }
2128
2129 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2130 {
2131         struct request_queue *q;
2132
2133         lockdep_assert_held(&set->tag_list_lock);
2134
2135         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2136                 blk_mq_freeze_queue(q);
2137                 queue_set_hctx_shared(q, shared);
2138                 blk_mq_unfreeze_queue(q);
2139         }
2140 }
2141
2142 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2143 {
2144         struct blk_mq_tag_set *set = q->tag_set;
2145
2146         mutex_lock(&set->tag_list_lock);
2147         list_del_rcu(&q->tag_set_list);
2148         INIT_LIST_HEAD(&q->tag_set_list);
2149         if (list_is_singular(&set->tag_list)) {
2150                 /* just transitioned to unshared */
2151                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2152                 /* update existing queue */
2153                 blk_mq_update_tag_set_depth(set, false);
2154         }
2155         mutex_unlock(&set->tag_list_lock);
2156
2157         synchronize_rcu();
2158 }
2159
2160 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2161                                      struct request_queue *q)
2162 {
2163         q->tag_set = set;
2164
2165         mutex_lock(&set->tag_list_lock);
2166
2167         /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2168         if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2169                 set->flags |= BLK_MQ_F_TAG_SHARED;
2170                 /* update existing queue */
2171                 blk_mq_update_tag_set_depth(set, true);
2172         }
2173         if (set->flags & BLK_MQ_F_TAG_SHARED)
2174                 queue_set_hctx_shared(q, true);
2175         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2176
2177         mutex_unlock(&set->tag_list_lock);
2178 }
2179
2180 /*
2181  * It is the actual release handler for mq, but we do it from
2182  * request queue's release handler for avoiding use-after-free
2183  * and headache because q->mq_kobj shouldn't have been introduced,
2184  * but we can't group ctx/kctx kobj without it.
2185  */
2186 void blk_mq_release(struct request_queue *q)
2187 {
2188         struct blk_mq_hw_ctx *hctx;
2189         unsigned int i;
2190
2191         /* hctx kobj stays in hctx */
2192         queue_for_each_hw_ctx(q, hctx, i) {
2193                 if (!hctx)
2194                         continue;
2195                 kobject_put(&hctx->kobj);
2196         }
2197
2198         q->mq_map = NULL;
2199
2200         kfree(q->queue_hw_ctx);
2201
2202         /*
2203          * release .mq_kobj and sw queue's kobject now because
2204          * both share lifetime with request queue.
2205          */
2206         blk_mq_sysfs_deinit(q);
2207
2208         free_percpu(q->queue_ctx);
2209 }
2210
2211 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2212 {
2213         struct request_queue *uninit_q, *q;
2214
2215         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2216         if (!uninit_q)
2217                 return ERR_PTR(-ENOMEM);
2218
2219         q = blk_mq_init_allocated_queue(set, uninit_q);
2220         if (IS_ERR(q))
2221                 blk_cleanup_queue(uninit_q);
2222
2223         return q;
2224 }
2225 EXPORT_SYMBOL(blk_mq_init_queue);
2226
2227 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2228                                                 struct request_queue *q)
2229 {
2230         int i, j;
2231         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2232
2233         blk_mq_sysfs_unregister(q);
2234         for (i = 0; i < set->nr_hw_queues; i++) {
2235                 int node;
2236
2237                 if (hctxs[i])
2238                         continue;
2239
2240                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2241                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2242                                         GFP_KERNEL, node);
2243                 if (!hctxs[i])
2244                         break;
2245
2246                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2247                                                 node)) {
2248                         kfree(hctxs[i]);
2249                         hctxs[i] = NULL;
2250                         break;
2251                 }
2252
2253                 atomic_set(&hctxs[i]->nr_active, 0);
2254                 hctxs[i]->numa_node = node;
2255                 hctxs[i]->queue_num = i;
2256
2257                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2258                         free_cpumask_var(hctxs[i]->cpumask);
2259                         kfree(hctxs[i]);
2260                         hctxs[i] = NULL;
2261                         break;
2262                 }
2263                 blk_mq_hctx_kobj_init(hctxs[i]);
2264         }
2265         for (j = i; j < q->nr_hw_queues; j++) {
2266                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2267
2268                 if (hctx) {
2269                         if (hctx->tags)
2270                                 blk_mq_free_map_and_requests(set, j);
2271                         blk_mq_exit_hctx(q, set, hctx, j);
2272                         kobject_put(&hctx->kobj);
2273                         hctxs[j] = NULL;
2274
2275                 }
2276         }
2277         q->nr_hw_queues = i;
2278         blk_mq_sysfs_register(q);
2279 }
2280
2281 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2282                                                   struct request_queue *q)
2283 {
2284         /* mark the queue as mq asap */
2285         q->mq_ops = set->ops;
2286
2287         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2288                                              blk_mq_poll_stats_bkt,
2289                                              BLK_MQ_POLL_STATS_BKTS, q);
2290         if (!q->poll_cb)
2291                 goto err_exit;
2292
2293         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2294         if (!q->queue_ctx)
2295                 goto err_exit;
2296
2297         /* init q->mq_kobj and sw queues' kobjects */
2298         blk_mq_sysfs_init(q);
2299
2300         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2301                                                 GFP_KERNEL, set->numa_node);
2302         if (!q->queue_hw_ctx)
2303                 goto err_percpu;
2304
2305         q->mq_map = set->mq_map;
2306
2307         blk_mq_realloc_hw_ctxs(set, q);
2308         if (!q->nr_hw_queues)
2309                 goto err_hctxs;
2310
2311         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2312         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2313
2314         q->nr_queues = nr_cpu_ids;
2315
2316         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2317
2318         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2319                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2320
2321         q->sg_reserved_size = INT_MAX;
2322
2323         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2324         INIT_LIST_HEAD(&q->requeue_list);
2325         spin_lock_init(&q->requeue_lock);
2326
2327         blk_queue_make_request(q, blk_mq_make_request);
2328
2329         /*
2330          * Do this after blk_queue_make_request() overrides it...
2331          */
2332         q->nr_requests = set->queue_depth;
2333
2334         /*
2335          * Default to classic polling
2336          */
2337         q->poll_nsec = -1;
2338
2339         if (set->ops->complete)
2340                 blk_queue_softirq_done(q, set->ops->complete);
2341
2342         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2343
2344         mutex_lock(&all_q_mutex);
2345         get_online_cpus();
2346
2347         list_add_tail(&q->all_q_node, &all_q_list);
2348         blk_mq_add_queue_tag_set(set, q);
2349         blk_mq_map_swqueue(q, cpu_online_mask);
2350
2351         put_online_cpus();
2352         mutex_unlock(&all_q_mutex);
2353
2354         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2355                 int ret;
2356
2357                 ret = blk_mq_sched_init(q);
2358                 if (ret)
2359                         return ERR_PTR(ret);
2360         }
2361
2362         return q;
2363
2364 err_hctxs:
2365         kfree(q->queue_hw_ctx);
2366 err_percpu:
2367         free_percpu(q->queue_ctx);
2368 err_exit:
2369         q->mq_ops = NULL;
2370         return ERR_PTR(-ENOMEM);
2371 }
2372 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2373
2374 void blk_mq_free_queue(struct request_queue *q)
2375 {
2376         struct blk_mq_tag_set   *set = q->tag_set;
2377
2378         mutex_lock(&all_q_mutex);
2379         list_del_init(&q->all_q_node);
2380         mutex_unlock(&all_q_mutex);
2381
2382         blk_mq_del_queue_tag_set(q);
2383
2384         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2385 }
2386
2387 /* Basically redo blk_mq_init_queue with queue frozen */
2388 static void blk_mq_queue_reinit(struct request_queue *q,
2389                                 const struct cpumask *online_mask)
2390 {
2391         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2392
2393         blk_mq_debugfs_unregister_hctxs(q);
2394         blk_mq_sysfs_unregister(q);
2395
2396         /*
2397          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2398          * we should change hctx numa_node according to new topology (this
2399          * involves free and re-allocate memory, worthy doing?)
2400          */
2401
2402         blk_mq_map_swqueue(q, online_mask);
2403
2404         blk_mq_sysfs_register(q);
2405         blk_mq_debugfs_register_hctxs(q);
2406 }
2407
2408 /*
2409  * New online cpumask which is going to be set in this hotplug event.
2410  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2411  * one-by-one and dynamically allocating this could result in a failure.
2412  */
2413 static struct cpumask cpuhp_online_new;
2414
2415 static void blk_mq_queue_reinit_work(void)
2416 {
2417         struct request_queue *q;
2418
2419         mutex_lock(&all_q_mutex);
2420         /*
2421          * We need to freeze and reinit all existing queues.  Freezing
2422          * involves synchronous wait for an RCU grace period and doing it
2423          * one by one may take a long time.  Start freezing all queues in
2424          * one swoop and then wait for the completions so that freezing can
2425          * take place in parallel.
2426          */
2427         list_for_each_entry(q, &all_q_list, all_q_node)
2428                 blk_freeze_queue_start(q);
2429         list_for_each_entry(q, &all_q_list, all_q_node)
2430                 blk_mq_freeze_queue_wait(q);
2431
2432         list_for_each_entry(q, &all_q_list, all_q_node)
2433                 blk_mq_queue_reinit(q, &cpuhp_online_new);
2434
2435         list_for_each_entry(q, &all_q_list, all_q_node)
2436                 blk_mq_unfreeze_queue(q);
2437
2438         mutex_unlock(&all_q_mutex);
2439 }
2440
2441 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2442 {
2443         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2444         blk_mq_queue_reinit_work();
2445         return 0;
2446 }
2447
2448 /*
2449  * Before hotadded cpu starts handling requests, new mappings must be
2450  * established.  Otherwise, these requests in hw queue might never be
2451  * dispatched.
2452  *
2453  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2454  * for CPU0, and ctx1 for CPU1).
2455  *
2456  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2457  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2458  *
2459  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2460  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2461  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2462  * ignored.
2463  */
2464 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2465 {
2466         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2467         cpumask_set_cpu(cpu, &cpuhp_online_new);
2468         blk_mq_queue_reinit_work();
2469         return 0;
2470 }
2471
2472 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2473 {
2474         int i;
2475
2476         for (i = 0; i < set->nr_hw_queues; i++)
2477                 if (!__blk_mq_alloc_rq_map(set, i))
2478                         goto out_unwind;
2479
2480         return 0;
2481
2482 out_unwind:
2483         while (--i >= 0)
2484                 blk_mq_free_rq_map(set->tags[i]);
2485
2486         return -ENOMEM;
2487 }
2488
2489 /*
2490  * Allocate the request maps associated with this tag_set. Note that this
2491  * may reduce the depth asked for, if memory is tight. set->queue_depth
2492  * will be updated to reflect the allocated depth.
2493  */
2494 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2495 {
2496         unsigned int depth;
2497         int err;
2498
2499         depth = set->queue_depth;
2500         do {
2501                 err = __blk_mq_alloc_rq_maps(set);
2502                 if (!err)
2503                         break;
2504
2505                 set->queue_depth >>= 1;
2506                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2507                         err = -ENOMEM;
2508                         break;
2509                 }
2510         } while (set->queue_depth);
2511
2512         if (!set->queue_depth || err) {
2513                 pr_err("blk-mq: failed to allocate request map\n");
2514                 return -ENOMEM;
2515         }
2516
2517         if (depth != set->queue_depth)
2518                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2519                                                 depth, set->queue_depth);
2520
2521         return 0;
2522 }
2523
2524 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2525 {
2526         if (set->ops->map_queues)
2527                 return set->ops->map_queues(set);
2528         else
2529                 return blk_mq_map_queues(set);
2530 }
2531
2532 /*
2533  * Alloc a tag set to be associated with one or more request queues.
2534  * May fail with EINVAL for various error conditions. May adjust the
2535  * requested depth down, if if it too large. In that case, the set
2536  * value will be stored in set->queue_depth.
2537  */
2538 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2539 {
2540         int ret;
2541
2542         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2543
2544         if (!set->nr_hw_queues)
2545                 return -EINVAL;
2546         if (!set->queue_depth)
2547                 return -EINVAL;
2548         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2549                 return -EINVAL;
2550
2551         if (!set->ops->queue_rq)
2552                 return -EINVAL;
2553
2554         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2555                 pr_info("blk-mq: reduced tag depth to %u\n",
2556                         BLK_MQ_MAX_DEPTH);
2557                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2558         }
2559
2560         /*
2561          * If a crashdump is active, then we are potentially in a very
2562          * memory constrained environment. Limit us to 1 queue and
2563          * 64 tags to prevent using too much memory.
2564          */
2565         if (is_kdump_kernel()) {
2566                 set->nr_hw_queues = 1;
2567                 set->queue_depth = min(64U, set->queue_depth);
2568         }
2569         /*
2570          * There is no use for more h/w queues than cpus.
2571          */
2572         if (set->nr_hw_queues > nr_cpu_ids)
2573                 set->nr_hw_queues = nr_cpu_ids;
2574
2575         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2576                                  GFP_KERNEL, set->numa_node);
2577         if (!set->tags)
2578                 return -ENOMEM;
2579
2580         ret = -ENOMEM;
2581         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2582                         GFP_KERNEL, set->numa_node);
2583         if (!set->mq_map)
2584                 goto out_free_tags;
2585
2586         ret = blk_mq_update_queue_map(set);
2587         if (ret)
2588                 goto out_free_mq_map;
2589
2590         ret = blk_mq_alloc_rq_maps(set);
2591         if (ret)
2592                 goto out_free_mq_map;
2593
2594         mutex_init(&set->tag_list_lock);
2595         INIT_LIST_HEAD(&set->tag_list);
2596
2597         return 0;
2598
2599 out_free_mq_map:
2600         kfree(set->mq_map);
2601         set->mq_map = NULL;
2602 out_free_tags:
2603         kfree(set->tags);
2604         set->tags = NULL;
2605         return ret;
2606 }
2607 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2608
2609 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2610 {
2611         int i;
2612
2613         for (i = 0; i < nr_cpu_ids; i++)
2614                 blk_mq_free_map_and_requests(set, i);
2615
2616         kfree(set->mq_map);
2617         set->mq_map = NULL;
2618
2619         kfree(set->tags);
2620         set->tags = NULL;
2621 }
2622 EXPORT_SYMBOL(blk_mq_free_tag_set);
2623
2624 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2625 {
2626         struct blk_mq_tag_set *set = q->tag_set;
2627         struct blk_mq_hw_ctx *hctx;
2628         int i, ret;
2629
2630         if (!set)
2631                 return -EINVAL;
2632
2633         blk_mq_freeze_queue(q);
2634
2635         ret = 0;
2636         queue_for_each_hw_ctx(q, hctx, i) {
2637                 if (!hctx->tags)
2638                         continue;
2639                 /*
2640                  * If we're using an MQ scheduler, just update the scheduler
2641                  * queue depth. This is similar to what the old code would do.
2642                  */
2643                 if (!hctx->sched_tags) {
2644                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2645                                                         min(nr, set->queue_depth),
2646                                                         false);
2647                 } else {
2648                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2649                                                         nr, true);
2650                 }
2651                 if (ret)
2652                         break;
2653         }
2654
2655         if (!ret)
2656                 q->nr_requests = nr;
2657
2658         blk_mq_unfreeze_queue(q);
2659
2660         return ret;
2661 }
2662
2663 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2664 {
2665         struct request_queue *q;
2666
2667         lockdep_assert_held(&set->tag_list_lock);
2668
2669         if (nr_hw_queues > nr_cpu_ids)
2670                 nr_hw_queues = nr_cpu_ids;
2671         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2672                 return;
2673
2674         list_for_each_entry(q, &set->tag_list, tag_set_list)
2675                 blk_mq_freeze_queue(q);
2676
2677         set->nr_hw_queues = nr_hw_queues;
2678         blk_mq_update_queue_map(set);
2679         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2680                 blk_mq_realloc_hw_ctxs(set, q);
2681                 blk_mq_queue_reinit(q, cpu_online_mask);
2682         }
2683
2684         list_for_each_entry(q, &set->tag_list, tag_set_list)
2685                 blk_mq_unfreeze_queue(q);
2686 }
2687 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2688
2689 /* Enable polling stats and return whether they were already enabled. */
2690 static bool blk_poll_stats_enable(struct request_queue *q)
2691 {
2692         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2693             test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2694                 return true;
2695         blk_stat_add_callback(q, q->poll_cb);
2696         return false;
2697 }
2698
2699 static void blk_mq_poll_stats_start(struct request_queue *q)
2700 {
2701         /*
2702          * We don't arm the callback if polling stats are not enabled or the
2703          * callback is already active.
2704          */
2705         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2706             blk_stat_is_active(q->poll_cb))
2707                 return;
2708
2709         blk_stat_activate_msecs(q->poll_cb, 100);
2710 }
2711
2712 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2713 {
2714         struct request_queue *q = cb->data;
2715         int bucket;
2716
2717         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2718                 if (cb->stat[bucket].nr_samples)
2719                         q->poll_stat[bucket] = cb->stat[bucket];
2720         }
2721 }
2722
2723 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2724                                        struct blk_mq_hw_ctx *hctx,
2725                                        struct request *rq)
2726 {
2727         unsigned long ret = 0;
2728         int bucket;
2729
2730         /*
2731          * If stats collection isn't on, don't sleep but turn it on for
2732          * future users
2733          */
2734         if (!blk_poll_stats_enable(q))
2735                 return 0;
2736
2737         /*
2738          * As an optimistic guess, use half of the mean service time
2739          * for this type of request. We can (and should) make this smarter.
2740          * For instance, if the completion latencies are tight, we can
2741          * get closer than just half the mean. This is especially
2742          * important on devices where the completion latencies are longer
2743          * than ~10 usec. We do use the stats for the relevant IO size
2744          * if available which does lead to better estimates.
2745          */
2746         bucket = blk_mq_poll_stats_bkt(rq);
2747         if (bucket < 0)
2748                 return ret;
2749
2750         if (q->poll_stat[bucket].nr_samples)
2751                 ret = (q->poll_stat[bucket].mean + 1) / 2;
2752
2753         return ret;
2754 }
2755
2756 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2757                                      struct blk_mq_hw_ctx *hctx,
2758                                      struct request *rq)
2759 {
2760         struct hrtimer_sleeper hs;
2761         enum hrtimer_mode mode;
2762         unsigned int nsecs;
2763         ktime_t kt;
2764
2765         if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2766                 return false;
2767
2768         /*
2769          * poll_nsec can be:
2770          *
2771          * -1:  don't ever hybrid sleep
2772          *  0:  use half of prev avg
2773          * >0:  use this specific value
2774          */
2775         if (q->poll_nsec == -1)
2776                 return false;
2777         else if (q->poll_nsec > 0)
2778                 nsecs = q->poll_nsec;
2779         else
2780                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2781
2782         if (!nsecs)
2783                 return false;
2784
2785         set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2786
2787         /*
2788          * This will be replaced with the stats tracking code, using
2789          * 'avg_completion_time / 2' as the pre-sleep target.
2790          */
2791         kt = nsecs;
2792
2793         mode = HRTIMER_MODE_REL;
2794         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2795         hrtimer_set_expires(&hs.timer, kt);
2796
2797         hrtimer_init_sleeper(&hs, current);
2798         do {
2799                 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2800                         break;
2801                 set_current_state(TASK_UNINTERRUPTIBLE);
2802                 hrtimer_start_expires(&hs.timer, mode);
2803                 if (hs.task)
2804                         io_schedule();
2805                 hrtimer_cancel(&hs.timer);
2806                 mode = HRTIMER_MODE_ABS;
2807         } while (hs.task && !signal_pending(current));
2808
2809         __set_current_state(TASK_RUNNING);
2810         destroy_hrtimer_on_stack(&hs.timer);
2811         return true;
2812 }
2813
2814 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2815 {
2816         struct request_queue *q = hctx->queue;
2817         long state;
2818
2819         /*
2820          * If we sleep, have the caller restart the poll loop to reset
2821          * the state. Like for the other success return cases, the
2822          * caller is responsible for checking if the IO completed. If
2823          * the IO isn't complete, we'll get called again and will go
2824          * straight to the busy poll loop.
2825          */
2826         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2827                 return true;
2828
2829         hctx->poll_considered++;
2830
2831         state = current->state;
2832         while (!need_resched()) {
2833                 int ret;
2834
2835                 hctx->poll_invoked++;
2836
2837                 ret = q->mq_ops->poll(hctx, rq->tag);
2838                 if (ret > 0) {
2839                         hctx->poll_success++;
2840                         set_current_state(TASK_RUNNING);
2841                         return true;
2842                 }
2843
2844                 if (signal_pending_state(state, current))
2845                         set_current_state(TASK_RUNNING);
2846
2847                 if (current->state == TASK_RUNNING)
2848                         return true;
2849                 if (ret < 0)
2850                         break;
2851                 cpu_relax();
2852         }
2853
2854         return false;
2855 }
2856
2857 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2858 {
2859         struct blk_mq_hw_ctx *hctx;
2860         struct blk_plug *plug;
2861         struct request *rq;
2862
2863         if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2864             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2865                 return false;
2866
2867         plug = current->plug;
2868         if (plug)
2869                 blk_flush_plug_list(plug, false);
2870
2871         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2872         if (!blk_qc_t_is_internal(cookie))
2873                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2874         else {
2875                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2876                 /*
2877                  * With scheduling, if the request has completed, we'll
2878                  * get a NULL return here, as we clear the sched tag when
2879                  * that happens. The request still remains valid, like always,
2880                  * so we should be safe with just the NULL check.
2881                  */
2882                 if (!rq)
2883                         return false;
2884         }
2885
2886         return __blk_mq_poll(hctx, rq);
2887 }
2888 EXPORT_SYMBOL_GPL(blk_mq_poll);
2889
2890 void blk_mq_disable_hotplug(void)
2891 {
2892         mutex_lock(&all_q_mutex);
2893 }
2894
2895 void blk_mq_enable_hotplug(void)
2896 {
2897         mutex_unlock(&all_q_mutex);
2898 }
2899
2900 static int __init blk_mq_init(void)
2901 {
2902         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2903                                 blk_mq_hctx_notify_dead);
2904
2905         cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2906                                   blk_mq_queue_reinit_prepare,
2907                                   blk_mq_queue_reinit_dead);
2908         return 0;
2909 }
2910 subsys_initcall(blk_mq_init);