]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - block/kyber-iosched.c
Merge branches 'for-4.13/multitouch', 'for-4.13/retrode', 'for-4.13/transport-open...
[karo-tx-linux.git] / block / kyber-iosched.c
1 /*
2  * The Kyber I/O scheduler. Controls latency by throttling queue depths using
3  * scalable techniques.
4  *
5  * Copyright (C) 2017 Facebook
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public
9  * License v2 as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <https://www.gnu.org/licenses/>.
18  */
19
20 #include <linux/kernel.h>
21 #include <linux/blkdev.h>
22 #include <linux/blk-mq.h>
23 #include <linux/elevator.h>
24 #include <linux/module.h>
25 #include <linux/sbitmap.h>
26
27 #include "blk.h"
28 #include "blk-mq.h"
29 #include "blk-mq-debugfs.h"
30 #include "blk-mq-sched.h"
31 #include "blk-mq-tag.h"
32 #include "blk-stat.h"
33
34 /* Scheduling domains. */
35 enum {
36         KYBER_READ,
37         KYBER_SYNC_WRITE,
38         KYBER_OTHER, /* Async writes, discard, etc. */
39         KYBER_NUM_DOMAINS,
40 };
41
42 enum {
43         KYBER_MIN_DEPTH = 256,
44
45         /*
46          * In order to prevent starvation of synchronous requests by a flood of
47          * asynchronous requests, we reserve 25% of requests for synchronous
48          * operations.
49          */
50         KYBER_ASYNC_PERCENT = 75,
51 };
52
53 /*
54  * Initial device-wide depths for each scheduling domain.
55  *
56  * Even for fast devices with lots of tags like NVMe, you can saturate
57  * the device with only a fraction of the maximum possible queue depth.
58  * So, we cap these to a reasonable value.
59  */
60 static const unsigned int kyber_depth[] = {
61         [KYBER_READ] = 256,
62         [KYBER_SYNC_WRITE] = 128,
63         [KYBER_OTHER] = 64,
64 };
65
66 /*
67  * Scheduling domain batch sizes. We favor reads.
68  */
69 static const unsigned int kyber_batch_size[] = {
70         [KYBER_READ] = 16,
71         [KYBER_SYNC_WRITE] = 8,
72         [KYBER_OTHER] = 8,
73 };
74
75 struct kyber_queue_data {
76         struct request_queue *q;
77
78         struct blk_stat_callback *cb;
79
80         /*
81          * The device is divided into multiple scheduling domains based on the
82          * request type. Each domain has a fixed number of in-flight requests of
83          * that type device-wide, limited by these tokens.
84          */
85         struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
86
87         /*
88          * Async request percentage, converted to per-word depth for
89          * sbitmap_get_shallow().
90          */
91         unsigned int async_depth;
92
93         /* Target latencies in nanoseconds. */
94         u64 read_lat_nsec, write_lat_nsec;
95 };
96
97 struct kyber_hctx_data {
98         spinlock_t lock;
99         struct list_head rqs[KYBER_NUM_DOMAINS];
100         unsigned int cur_domain;
101         unsigned int batching;
102         wait_queue_t domain_wait[KYBER_NUM_DOMAINS];
103         atomic_t wait_index[KYBER_NUM_DOMAINS];
104 };
105
106 static int rq_sched_domain(const struct request *rq)
107 {
108         unsigned int op = rq->cmd_flags;
109
110         if ((op & REQ_OP_MASK) == REQ_OP_READ)
111                 return KYBER_READ;
112         else if ((op & REQ_OP_MASK) == REQ_OP_WRITE && op_is_sync(op))
113                 return KYBER_SYNC_WRITE;
114         else
115                 return KYBER_OTHER;
116 }
117
118 enum {
119         NONE = 0,
120         GOOD = 1,
121         GREAT = 2,
122         BAD = -1,
123         AWFUL = -2,
124 };
125
126 #define IS_GOOD(status) ((status) > 0)
127 #define IS_BAD(status) ((status) < 0)
128
129 static int kyber_lat_status(struct blk_stat_callback *cb,
130                             unsigned int sched_domain, u64 target)
131 {
132         u64 latency;
133
134         if (!cb->stat[sched_domain].nr_samples)
135                 return NONE;
136
137         latency = cb->stat[sched_domain].mean;
138         if (latency >= 2 * target)
139                 return AWFUL;
140         else if (latency > target)
141                 return BAD;
142         else if (latency <= target / 2)
143                 return GREAT;
144         else /* (latency <= target) */
145                 return GOOD;
146 }
147
148 /*
149  * Adjust the read or synchronous write depth given the status of reads and
150  * writes. The goal is that the latencies of the two domains are fair (i.e., if
151  * one is good, then the other is good).
152  */
153 static void kyber_adjust_rw_depth(struct kyber_queue_data *kqd,
154                                   unsigned int sched_domain, int this_status,
155                                   int other_status)
156 {
157         unsigned int orig_depth, depth;
158
159         /*
160          * If this domain had no samples, or reads and writes are both good or
161          * both bad, don't adjust the depth.
162          */
163         if (this_status == NONE ||
164             (IS_GOOD(this_status) && IS_GOOD(other_status)) ||
165             (IS_BAD(this_status) && IS_BAD(other_status)))
166                 return;
167
168         orig_depth = depth = kqd->domain_tokens[sched_domain].sb.depth;
169
170         if (other_status == NONE) {
171                 depth++;
172         } else {
173                 switch (this_status) {
174                 case GOOD:
175                         if (other_status == AWFUL)
176                                 depth -= max(depth / 4, 1U);
177                         else
178                                 depth -= max(depth / 8, 1U);
179                         break;
180                 case GREAT:
181                         if (other_status == AWFUL)
182                                 depth /= 2;
183                         else
184                                 depth -= max(depth / 4, 1U);
185                         break;
186                 case BAD:
187                         depth++;
188                         break;
189                 case AWFUL:
190                         if (other_status == GREAT)
191                                 depth += 2;
192                         else
193                                 depth++;
194                         break;
195                 }
196         }
197
198         depth = clamp(depth, 1U, kyber_depth[sched_domain]);
199         if (depth != orig_depth)
200                 sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
201 }
202
203 /*
204  * Adjust the depth of other requests given the status of reads and synchronous
205  * writes. As long as either domain is doing fine, we don't throttle, but if
206  * both domains are doing badly, we throttle heavily.
207  */
208 static void kyber_adjust_other_depth(struct kyber_queue_data *kqd,
209                                      int read_status, int write_status,
210                                      bool have_samples)
211 {
212         unsigned int orig_depth, depth;
213         int status;
214
215         orig_depth = depth = kqd->domain_tokens[KYBER_OTHER].sb.depth;
216
217         if (read_status == NONE && write_status == NONE) {
218                 depth += 2;
219         } else if (have_samples) {
220                 if (read_status == NONE)
221                         status = write_status;
222                 else if (write_status == NONE)
223                         status = read_status;
224                 else
225                         status = max(read_status, write_status);
226                 switch (status) {
227                 case GREAT:
228                         depth += 2;
229                         break;
230                 case GOOD:
231                         depth++;
232                         break;
233                 case BAD:
234                         depth -= max(depth / 4, 1U);
235                         break;
236                 case AWFUL:
237                         depth /= 2;
238                         break;
239                 }
240         }
241
242         depth = clamp(depth, 1U, kyber_depth[KYBER_OTHER]);
243         if (depth != orig_depth)
244                 sbitmap_queue_resize(&kqd->domain_tokens[KYBER_OTHER], depth);
245 }
246
247 /*
248  * Apply heuristics for limiting queue depths based on gathered latency
249  * statistics.
250  */
251 static void kyber_stat_timer_fn(struct blk_stat_callback *cb)
252 {
253         struct kyber_queue_data *kqd = cb->data;
254         int read_status, write_status;
255
256         read_status = kyber_lat_status(cb, KYBER_READ, kqd->read_lat_nsec);
257         write_status = kyber_lat_status(cb, KYBER_SYNC_WRITE, kqd->write_lat_nsec);
258
259         kyber_adjust_rw_depth(kqd, KYBER_READ, read_status, write_status);
260         kyber_adjust_rw_depth(kqd, KYBER_SYNC_WRITE, write_status, read_status);
261         kyber_adjust_other_depth(kqd, read_status, write_status,
262                                  cb->stat[KYBER_OTHER].nr_samples != 0);
263
264         /*
265          * Continue monitoring latencies if we aren't hitting the targets or
266          * we're still throttling other requests.
267          */
268         if (!blk_stat_is_active(kqd->cb) &&
269             ((IS_BAD(read_status) || IS_BAD(write_status) ||
270               kqd->domain_tokens[KYBER_OTHER].sb.depth < kyber_depth[KYBER_OTHER])))
271                 blk_stat_activate_msecs(kqd->cb, 100);
272 }
273
274 static unsigned int kyber_sched_tags_shift(struct kyber_queue_data *kqd)
275 {
276         /*
277          * All of the hardware queues have the same depth, so we can just grab
278          * the shift of the first one.
279          */
280         return kqd->q->queue_hw_ctx[0]->sched_tags->bitmap_tags.sb.shift;
281 }
282
283 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
284 {
285         struct kyber_queue_data *kqd;
286         unsigned int max_tokens;
287         unsigned int shift;
288         int ret = -ENOMEM;
289         int i;
290
291         kqd = kmalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
292         if (!kqd)
293                 goto err;
294         kqd->q = q;
295
296         kqd->cb = blk_stat_alloc_callback(kyber_stat_timer_fn, rq_sched_domain,
297                                           KYBER_NUM_DOMAINS, kqd);
298         if (!kqd->cb)
299                 goto err_kqd;
300
301         /*
302          * The maximum number of tokens for any scheduling domain is at least
303          * the queue depth of a single hardware queue. If the hardware doesn't
304          * have many tags, still provide a reasonable number.
305          */
306         max_tokens = max_t(unsigned int, q->tag_set->queue_depth,
307                            KYBER_MIN_DEPTH);
308         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
309                 WARN_ON(!kyber_depth[i]);
310                 WARN_ON(!kyber_batch_size[i]);
311                 ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
312                                               max_tokens, -1, false, GFP_KERNEL,
313                                               q->node);
314                 if (ret) {
315                         while (--i >= 0)
316                                 sbitmap_queue_free(&kqd->domain_tokens[i]);
317                         goto err_cb;
318                 }
319                 sbitmap_queue_resize(&kqd->domain_tokens[i], kyber_depth[i]);
320         }
321
322         shift = kyber_sched_tags_shift(kqd);
323         kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
324
325         kqd->read_lat_nsec = 2000000ULL;
326         kqd->write_lat_nsec = 10000000ULL;
327
328         return kqd;
329
330 err_cb:
331         blk_stat_free_callback(kqd->cb);
332 err_kqd:
333         kfree(kqd);
334 err:
335         return ERR_PTR(ret);
336 }
337
338 static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
339 {
340         struct kyber_queue_data *kqd;
341         struct elevator_queue *eq;
342
343         eq = elevator_alloc(q, e);
344         if (!eq)
345                 return -ENOMEM;
346
347         kqd = kyber_queue_data_alloc(q);
348         if (IS_ERR(kqd)) {
349                 kobject_put(&eq->kobj);
350                 return PTR_ERR(kqd);
351         }
352
353         eq->elevator_data = kqd;
354         q->elevator = eq;
355
356         blk_stat_add_callback(q, kqd->cb);
357
358         return 0;
359 }
360
361 static void kyber_exit_sched(struct elevator_queue *e)
362 {
363         struct kyber_queue_data *kqd = e->elevator_data;
364         struct request_queue *q = kqd->q;
365         int i;
366
367         blk_stat_remove_callback(q, kqd->cb);
368
369         for (i = 0; i < KYBER_NUM_DOMAINS; i++)
370                 sbitmap_queue_free(&kqd->domain_tokens[i]);
371         blk_stat_free_callback(kqd->cb);
372         kfree(kqd);
373 }
374
375 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
376 {
377         struct kyber_hctx_data *khd;
378         int i;
379
380         khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
381         if (!khd)
382                 return -ENOMEM;
383
384         spin_lock_init(&khd->lock);
385
386         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
387                 INIT_LIST_HEAD(&khd->rqs[i]);
388                 INIT_LIST_HEAD(&khd->domain_wait[i].task_list);
389                 atomic_set(&khd->wait_index[i], 0);
390         }
391
392         khd->cur_domain = 0;
393         khd->batching = 0;
394
395         hctx->sched_data = khd;
396
397         return 0;
398 }
399
400 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
401 {
402         kfree(hctx->sched_data);
403 }
404
405 static int rq_get_domain_token(struct request *rq)
406 {
407         return (long)rq->elv.priv[0];
408 }
409
410 static void rq_set_domain_token(struct request *rq, int token)
411 {
412         rq->elv.priv[0] = (void *)(long)token;
413 }
414
415 static void rq_clear_domain_token(struct kyber_queue_data *kqd,
416                                   struct request *rq)
417 {
418         unsigned int sched_domain;
419         int nr;
420
421         nr = rq_get_domain_token(rq);
422         if (nr != -1) {
423                 sched_domain = rq_sched_domain(rq);
424                 sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
425                                     rq->mq_ctx->cpu);
426         }
427 }
428
429 static struct request *kyber_get_request(struct request_queue *q,
430                                          unsigned int op,
431                                          struct blk_mq_alloc_data *data)
432 {
433         struct kyber_queue_data *kqd = q->elevator->elevator_data;
434         struct request *rq;
435
436         /*
437          * We use the scheduler tags as per-hardware queue queueing tokens.
438          * Async requests can be limited at this stage.
439          */
440         if (!op_is_sync(op))
441                 data->shallow_depth = kqd->async_depth;
442
443         rq = __blk_mq_alloc_request(data, op);
444         if (rq)
445                 rq_set_domain_token(rq, -1);
446         return rq;
447 }
448
449 static void kyber_put_request(struct request *rq)
450 {
451         struct request_queue *q = rq->q;
452         struct kyber_queue_data *kqd = q->elevator->elevator_data;
453
454         rq_clear_domain_token(kqd, rq);
455         blk_mq_finish_request(rq);
456 }
457
458 static void kyber_completed_request(struct request *rq)
459 {
460         struct request_queue *q = rq->q;
461         struct kyber_queue_data *kqd = q->elevator->elevator_data;
462         unsigned int sched_domain;
463         u64 now, latency, target;
464
465         /*
466          * Check if this request met our latency goal. If not, quickly gather
467          * some statistics and start throttling.
468          */
469         sched_domain = rq_sched_domain(rq);
470         switch (sched_domain) {
471         case KYBER_READ:
472                 target = kqd->read_lat_nsec;
473                 break;
474         case KYBER_SYNC_WRITE:
475                 target = kqd->write_lat_nsec;
476                 break;
477         default:
478                 return;
479         }
480
481         /* If we are already monitoring latencies, don't check again. */
482         if (blk_stat_is_active(kqd->cb))
483                 return;
484
485         now = __blk_stat_time(ktime_to_ns(ktime_get()));
486         if (now < blk_stat_time(&rq->issue_stat))
487                 return;
488
489         latency = now - blk_stat_time(&rq->issue_stat);
490
491         if (latency > target)
492                 blk_stat_activate_msecs(kqd->cb, 10);
493 }
494
495 static void kyber_flush_busy_ctxs(struct kyber_hctx_data *khd,
496                                   struct blk_mq_hw_ctx *hctx)
497 {
498         LIST_HEAD(rq_list);
499         struct request *rq, *next;
500
501         blk_mq_flush_busy_ctxs(hctx, &rq_list);
502         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
503                 unsigned int sched_domain;
504
505                 sched_domain = rq_sched_domain(rq);
506                 list_move_tail(&rq->queuelist, &khd->rqs[sched_domain]);
507         }
508 }
509
510 static int kyber_domain_wake(wait_queue_t *wait, unsigned mode, int flags,
511                              void *key)
512 {
513         struct blk_mq_hw_ctx *hctx = READ_ONCE(wait->private);
514
515         list_del_init(&wait->task_list);
516         blk_mq_run_hw_queue(hctx, true);
517         return 1;
518 }
519
520 static int kyber_get_domain_token(struct kyber_queue_data *kqd,
521                                   struct kyber_hctx_data *khd,
522                                   struct blk_mq_hw_ctx *hctx)
523 {
524         unsigned int sched_domain = khd->cur_domain;
525         struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
526         wait_queue_t *wait = &khd->domain_wait[sched_domain];
527         struct sbq_wait_state *ws;
528         int nr;
529
530         nr = __sbitmap_queue_get(domain_tokens);
531         if (nr >= 0)
532                 return nr;
533
534         /*
535          * If we failed to get a domain token, make sure the hardware queue is
536          * run when one becomes available. Note that this is serialized on
537          * khd->lock, but we still need to be careful about the waker.
538          */
539         if (list_empty_careful(&wait->task_list)) {
540                 init_waitqueue_func_entry(wait, kyber_domain_wake);
541                 wait->private = hctx;
542                 ws = sbq_wait_ptr(domain_tokens,
543                                   &khd->wait_index[sched_domain]);
544                 add_wait_queue(&ws->wait, wait);
545
546                 /*
547                  * Try again in case a token was freed before we got on the wait
548                  * queue.
549                  */
550                 nr = __sbitmap_queue_get(domain_tokens);
551         }
552         return nr;
553 }
554
555 static struct request *
556 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
557                           struct kyber_hctx_data *khd,
558                           struct blk_mq_hw_ctx *hctx,
559                           bool *flushed)
560 {
561         struct list_head *rqs;
562         struct request *rq;
563         int nr;
564
565         rqs = &khd->rqs[khd->cur_domain];
566         rq = list_first_entry_or_null(rqs, struct request, queuelist);
567
568         /*
569          * If there wasn't already a pending request and we haven't flushed the
570          * software queues yet, flush the software queues and check again.
571          */
572         if (!rq && !*flushed) {
573                 kyber_flush_busy_ctxs(khd, hctx);
574                 *flushed = true;
575                 rq = list_first_entry_or_null(rqs, struct request, queuelist);
576         }
577
578         if (rq) {
579                 nr = kyber_get_domain_token(kqd, khd, hctx);
580                 if (nr >= 0) {
581                         khd->batching++;
582                         rq_set_domain_token(rq, nr);
583                         list_del_init(&rq->queuelist);
584                         return rq;
585                 }
586         }
587
588         /* There were either no pending requests or no tokens. */
589         return NULL;
590 }
591
592 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
593 {
594         struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
595         struct kyber_hctx_data *khd = hctx->sched_data;
596         bool flushed = false;
597         struct request *rq;
598         int i;
599
600         spin_lock(&khd->lock);
601
602         /*
603          * First, if we are still entitled to batch, try to dispatch a request
604          * from the batch.
605          */
606         if (khd->batching < kyber_batch_size[khd->cur_domain]) {
607                 rq = kyber_dispatch_cur_domain(kqd, khd, hctx, &flushed);
608                 if (rq)
609                         goto out;
610         }
611
612         /*
613          * Either,
614          * 1. We were no longer entitled to a batch.
615          * 2. The domain we were batching didn't have any requests.
616          * 3. The domain we were batching was out of tokens.
617          *
618          * Start another batch. Note that this wraps back around to the original
619          * domain if no other domains have requests or tokens.
620          */
621         khd->batching = 0;
622         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
623                 if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
624                         khd->cur_domain = 0;
625                 else
626                         khd->cur_domain++;
627
628                 rq = kyber_dispatch_cur_domain(kqd, khd, hctx, &flushed);
629                 if (rq)
630                         goto out;
631         }
632
633         rq = NULL;
634 out:
635         spin_unlock(&khd->lock);
636         return rq;
637 }
638
639 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
640 {
641         struct kyber_hctx_data *khd = hctx->sched_data;
642         int i;
643
644         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
645                 if (!list_empty_careful(&khd->rqs[i]))
646                         return true;
647         }
648         return false;
649 }
650
651 #define KYBER_LAT_SHOW_STORE(op)                                        \
652 static ssize_t kyber_##op##_lat_show(struct elevator_queue *e,          \
653                                      char *page)                        \
654 {                                                                       \
655         struct kyber_queue_data *kqd = e->elevator_data;                \
656                                                                         \
657         return sprintf(page, "%llu\n", kqd->op##_lat_nsec);             \
658 }                                                                       \
659                                                                         \
660 static ssize_t kyber_##op##_lat_store(struct elevator_queue *e,         \
661                                       const char *page, size_t count)   \
662 {                                                                       \
663         struct kyber_queue_data *kqd = e->elevator_data;                \
664         unsigned long long nsec;                                        \
665         int ret;                                                        \
666                                                                         \
667         ret = kstrtoull(page, 10, &nsec);                               \
668         if (ret)                                                        \
669                 return ret;                                             \
670                                                                         \
671         kqd->op##_lat_nsec = nsec;                                      \
672                                                                         \
673         return count;                                                   \
674 }
675 KYBER_LAT_SHOW_STORE(read);
676 KYBER_LAT_SHOW_STORE(write);
677 #undef KYBER_LAT_SHOW_STORE
678
679 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
680 static struct elv_fs_entry kyber_sched_attrs[] = {
681         KYBER_LAT_ATTR(read),
682         KYBER_LAT_ATTR(write),
683         __ATTR_NULL
684 };
685 #undef KYBER_LAT_ATTR
686
687 #ifdef CONFIG_BLK_DEBUG_FS
688 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)                        \
689 static int kyber_##name##_tokens_show(void *data, struct seq_file *m)   \
690 {                                                                       \
691         struct request_queue *q = data;                                 \
692         struct kyber_queue_data *kqd = q->elevator->elevator_data;      \
693                                                                         \
694         sbitmap_queue_show(&kqd->domain_tokens[domain], m);             \
695         return 0;                                                       \
696 }                                                                       \
697                                                                         \
698 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)  \
699         __acquires(&khd->lock)                                          \
700 {                                                                       \
701         struct blk_mq_hw_ctx *hctx = m->private;                        \
702         struct kyber_hctx_data *khd = hctx->sched_data;                 \
703                                                                         \
704         spin_lock(&khd->lock);                                          \
705         return seq_list_start(&khd->rqs[domain], *pos);                 \
706 }                                                                       \
707                                                                         \
708 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,       \
709                                      loff_t *pos)                       \
710 {                                                                       \
711         struct blk_mq_hw_ctx *hctx = m->private;                        \
712         struct kyber_hctx_data *khd = hctx->sched_data;                 \
713                                                                         \
714         return seq_list_next(v, &khd->rqs[domain], pos);                \
715 }                                                                       \
716                                                                         \
717 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)        \
718         __releases(&khd->lock)                                          \
719 {                                                                       \
720         struct blk_mq_hw_ctx *hctx = m->private;                        \
721         struct kyber_hctx_data *khd = hctx->sched_data;                 \
722                                                                         \
723         spin_unlock(&khd->lock);                                        \
724 }                                                                       \
725                                                                         \
726 static const struct seq_operations kyber_##name##_rqs_seq_ops = {       \
727         .start  = kyber_##name##_rqs_start,                             \
728         .next   = kyber_##name##_rqs_next,                              \
729         .stop   = kyber_##name##_rqs_stop,                              \
730         .show   = blk_mq_debugfs_rq_show,                               \
731 };                                                                      \
732                                                                         \
733 static int kyber_##name##_waiting_show(void *data, struct seq_file *m)  \
734 {                                                                       \
735         struct blk_mq_hw_ctx *hctx = data;                              \
736         struct kyber_hctx_data *khd = hctx->sched_data;                 \
737         wait_queue_t *wait = &khd->domain_wait[domain];                 \
738                                                                         \
739         seq_printf(m, "%d\n", !list_empty_careful(&wait->task_list));   \
740         return 0;                                                       \
741 }
742 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
743 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_SYNC_WRITE, sync_write)
744 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
745 #undef KYBER_DEBUGFS_DOMAIN_ATTRS
746
747 static int kyber_async_depth_show(void *data, struct seq_file *m)
748 {
749         struct request_queue *q = data;
750         struct kyber_queue_data *kqd = q->elevator->elevator_data;
751
752         seq_printf(m, "%u\n", kqd->async_depth);
753         return 0;
754 }
755
756 static int kyber_cur_domain_show(void *data, struct seq_file *m)
757 {
758         struct blk_mq_hw_ctx *hctx = data;
759         struct kyber_hctx_data *khd = hctx->sched_data;
760
761         switch (khd->cur_domain) {
762         case KYBER_READ:
763                 seq_puts(m, "READ\n");
764                 break;
765         case KYBER_SYNC_WRITE:
766                 seq_puts(m, "SYNC_WRITE\n");
767                 break;
768         case KYBER_OTHER:
769                 seq_puts(m, "OTHER\n");
770                 break;
771         default:
772                 seq_printf(m, "%u\n", khd->cur_domain);
773                 break;
774         }
775         return 0;
776 }
777
778 static int kyber_batching_show(void *data, struct seq_file *m)
779 {
780         struct blk_mq_hw_ctx *hctx = data;
781         struct kyber_hctx_data *khd = hctx->sched_data;
782
783         seq_printf(m, "%u\n", khd->batching);
784         return 0;
785 }
786
787 #define KYBER_QUEUE_DOMAIN_ATTRS(name)  \
788         {#name "_tokens", 0400, kyber_##name##_tokens_show}
789 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
790         KYBER_QUEUE_DOMAIN_ATTRS(read),
791         KYBER_QUEUE_DOMAIN_ATTRS(sync_write),
792         KYBER_QUEUE_DOMAIN_ATTRS(other),
793         {"async_depth", 0400, kyber_async_depth_show},
794         {},
795 };
796 #undef KYBER_QUEUE_DOMAIN_ATTRS
797
798 #define KYBER_HCTX_DOMAIN_ATTRS(name)                                   \
799         {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},   \
800         {#name "_waiting", 0400, kyber_##name##_waiting_show}
801 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
802         KYBER_HCTX_DOMAIN_ATTRS(read),
803         KYBER_HCTX_DOMAIN_ATTRS(sync_write),
804         KYBER_HCTX_DOMAIN_ATTRS(other),
805         {"cur_domain", 0400, kyber_cur_domain_show},
806         {"batching", 0400, kyber_batching_show},
807         {},
808 };
809 #undef KYBER_HCTX_DOMAIN_ATTRS
810 #endif
811
812 static struct elevator_type kyber_sched = {
813         .ops.mq = {
814                 .init_sched = kyber_init_sched,
815                 .exit_sched = kyber_exit_sched,
816                 .init_hctx = kyber_init_hctx,
817                 .exit_hctx = kyber_exit_hctx,
818                 .get_request = kyber_get_request,
819                 .put_request = kyber_put_request,
820                 .completed_request = kyber_completed_request,
821                 .dispatch_request = kyber_dispatch_request,
822                 .has_work = kyber_has_work,
823         },
824         .uses_mq = true,
825 #ifdef CONFIG_BLK_DEBUG_FS
826         .queue_debugfs_attrs = kyber_queue_debugfs_attrs,
827         .hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
828 #endif
829         .elevator_attrs = kyber_sched_attrs,
830         .elevator_name = "kyber",
831         .elevator_owner = THIS_MODULE,
832 };
833
834 static int __init kyber_init(void)
835 {
836         return elv_register(&kyber_sched);
837 }
838
839 static void __exit kyber_exit(void)
840 {
841         elv_unregister(&kyber_sched);
842 }
843
844 module_init(kyber_init);
845 module_exit(kyber_exit);
846
847 MODULE_AUTHOR("Omar Sandoval");
848 MODULE_LICENSE("GPL");
849 MODULE_DESCRIPTION("Kyber I/O scheduler");