]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - crypto/lrw.c
test_kmod: fix the lock in register_test_dev_kmod()
[karo-tx-linux.git] / crypto / lrw.c
1 /* LRW: as defined by Cyril Guyot in
2  *      http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
3  *
4  * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
5  *
6  * Based on ecb.c
7  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  */
14 /* This implementation is checked against the test vectors in the above
15  * document and by a test vector provided by Ken Buchanan at
16  * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
17  *
18  * The test vectors are included in the testing module tcrypt.[ch] */
19
20 #include <crypto/internal/skcipher.h>
21 #include <crypto/scatterwalk.h>
22 #include <linux/err.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/scatterlist.h>
27 #include <linux/slab.h>
28
29 #include <crypto/b128ops.h>
30 #include <crypto/gf128mul.h>
31 #include <crypto/lrw.h>
32
33 #define LRW_BUFFER_SIZE 128u
34
35 struct priv {
36         struct crypto_skcipher *child;
37         struct lrw_table_ctx table;
38 };
39
40 struct rctx {
41         be128 buf[LRW_BUFFER_SIZE / sizeof(be128)];
42
43         be128 t;
44
45         be128 *ext;
46
47         struct scatterlist srcbuf[2];
48         struct scatterlist dstbuf[2];
49         struct scatterlist *src;
50         struct scatterlist *dst;
51
52         unsigned int left;
53
54         struct skcipher_request subreq;
55 };
56
57 static inline void setbit128_bbe(void *b, int bit)
58 {
59         __set_bit(bit ^ (0x80 -
60 #ifdef __BIG_ENDIAN
61                          BITS_PER_LONG
62 #else
63                          BITS_PER_BYTE
64 #endif
65                         ), b);
66 }
67
68 int lrw_init_table(struct lrw_table_ctx *ctx, const u8 *tweak)
69 {
70         be128 tmp = { 0 };
71         int i;
72
73         if (ctx->table)
74                 gf128mul_free_64k(ctx->table);
75
76         /* initialize multiplication table for Key2 */
77         ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
78         if (!ctx->table)
79                 return -ENOMEM;
80
81         /* initialize optimization table */
82         for (i = 0; i < 128; i++) {
83                 setbit128_bbe(&tmp, i);
84                 ctx->mulinc[i] = tmp;
85                 gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
86         }
87
88         return 0;
89 }
90 EXPORT_SYMBOL_GPL(lrw_init_table);
91
92 void lrw_free_table(struct lrw_table_ctx *ctx)
93 {
94         if (ctx->table)
95                 gf128mul_free_64k(ctx->table);
96 }
97 EXPORT_SYMBOL_GPL(lrw_free_table);
98
99 static int setkey(struct crypto_skcipher *parent, const u8 *key,
100                   unsigned int keylen)
101 {
102         struct priv *ctx = crypto_skcipher_ctx(parent);
103         struct crypto_skcipher *child = ctx->child;
104         int err, bsize = LRW_BLOCK_SIZE;
105         const u8 *tweak = key + keylen - bsize;
106
107         crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
108         crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
109                                          CRYPTO_TFM_REQ_MASK);
110         err = crypto_skcipher_setkey(child, key, keylen - bsize);
111         crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
112                                           CRYPTO_TFM_RES_MASK);
113         if (err)
114                 return err;
115
116         return lrw_init_table(&ctx->table, tweak);
117 }
118
119 static inline void inc(be128 *iv)
120 {
121         be64_add_cpu(&iv->b, 1);
122         if (!iv->b)
123                 be64_add_cpu(&iv->a, 1);
124 }
125
126 /* this returns the number of consequative 1 bits starting
127  * from the right, get_index128(00 00 00 00 00 00 ... 00 00 10 FB) = 2 */
128 static inline int get_index128(be128 *block)
129 {
130         int x;
131         __be32 *p = (__be32 *) block;
132
133         for (p += 3, x = 0; x < 128; p--, x += 32) {
134                 u32 val = be32_to_cpup(p);
135
136                 if (!~val)
137                         continue;
138
139                 return x + ffz(val);
140         }
141
142         return x;
143 }
144
145 static int post_crypt(struct skcipher_request *req)
146 {
147         struct rctx *rctx = skcipher_request_ctx(req);
148         be128 *buf = rctx->ext ?: rctx->buf;
149         struct skcipher_request *subreq;
150         const int bs = LRW_BLOCK_SIZE;
151         struct skcipher_walk w;
152         struct scatterlist *sg;
153         unsigned offset;
154         int err;
155
156         subreq = &rctx->subreq;
157         err = skcipher_walk_virt(&w, subreq, false);
158
159         while (w.nbytes) {
160                 unsigned int avail = w.nbytes;
161                 be128 *wdst;
162
163                 wdst = w.dst.virt.addr;
164
165                 do {
166                         be128_xor(wdst, buf++, wdst);
167                         wdst++;
168                 } while ((avail -= bs) >= bs);
169
170                 err = skcipher_walk_done(&w, avail);
171         }
172
173         rctx->left -= subreq->cryptlen;
174
175         if (err || !rctx->left)
176                 goto out;
177
178         rctx->dst = rctx->dstbuf;
179
180         scatterwalk_done(&w.out, 0, 1);
181         sg = w.out.sg;
182         offset = w.out.offset;
183
184         if (rctx->dst != sg) {
185                 rctx->dst[0] = *sg;
186                 sg_unmark_end(rctx->dst);
187                 scatterwalk_crypto_chain(rctx->dst, sg_next(sg), 0, 2);
188         }
189         rctx->dst[0].length -= offset - sg->offset;
190         rctx->dst[0].offset = offset;
191
192 out:
193         return err;
194 }
195
196 static int pre_crypt(struct skcipher_request *req)
197 {
198         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
199         struct rctx *rctx = skcipher_request_ctx(req);
200         struct priv *ctx = crypto_skcipher_ctx(tfm);
201         be128 *buf = rctx->ext ?: rctx->buf;
202         struct skcipher_request *subreq;
203         const int bs = LRW_BLOCK_SIZE;
204         struct skcipher_walk w;
205         struct scatterlist *sg;
206         unsigned cryptlen;
207         unsigned offset;
208         be128 *iv;
209         bool more;
210         int err;
211
212         subreq = &rctx->subreq;
213         skcipher_request_set_tfm(subreq, tfm);
214
215         cryptlen = subreq->cryptlen;
216         more = rctx->left > cryptlen;
217         if (!more)
218                 cryptlen = rctx->left;
219
220         skcipher_request_set_crypt(subreq, rctx->src, rctx->dst,
221                                    cryptlen, req->iv);
222
223         err = skcipher_walk_virt(&w, subreq, false);
224         iv = w.iv;
225
226         while (w.nbytes) {
227                 unsigned int avail = w.nbytes;
228                 be128 *wsrc;
229                 be128 *wdst;
230
231                 wsrc = w.src.virt.addr;
232                 wdst = w.dst.virt.addr;
233
234                 do {
235                         *buf++ = rctx->t;
236                         be128_xor(wdst++, &rctx->t, wsrc++);
237
238                         /* T <- I*Key2, using the optimization
239                          * discussed in the specification */
240                         be128_xor(&rctx->t, &rctx->t,
241                                   &ctx->table.mulinc[get_index128(iv)]);
242                         inc(iv);
243                 } while ((avail -= bs) >= bs);
244
245                 err = skcipher_walk_done(&w, avail);
246         }
247
248         skcipher_request_set_tfm(subreq, ctx->child);
249         skcipher_request_set_crypt(subreq, rctx->dst, rctx->dst,
250                                    cryptlen, NULL);
251
252         if (err || !more)
253                 goto out;
254
255         rctx->src = rctx->srcbuf;
256
257         scatterwalk_done(&w.in, 0, 1);
258         sg = w.in.sg;
259         offset = w.in.offset;
260
261         if (rctx->src != sg) {
262                 rctx->src[0] = *sg;
263                 sg_unmark_end(rctx->src);
264                 scatterwalk_crypto_chain(rctx->src, sg_next(sg), 0, 2);
265         }
266         rctx->src[0].length -= offset - sg->offset;
267         rctx->src[0].offset = offset;
268
269 out:
270         return err;
271 }
272
273 static int init_crypt(struct skcipher_request *req, crypto_completion_t done)
274 {
275         struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
276         struct rctx *rctx = skcipher_request_ctx(req);
277         struct skcipher_request *subreq;
278         gfp_t gfp;
279
280         subreq = &rctx->subreq;
281         skcipher_request_set_callback(subreq, req->base.flags, done, req);
282
283         gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
284                                                            GFP_ATOMIC;
285         rctx->ext = NULL;
286
287         subreq->cryptlen = LRW_BUFFER_SIZE;
288         if (req->cryptlen > LRW_BUFFER_SIZE) {
289                 unsigned int n = min(req->cryptlen, (unsigned int)PAGE_SIZE);
290
291                 rctx->ext = kmalloc(n, gfp);
292                 if (rctx->ext)
293                         subreq->cryptlen = n;
294         }
295
296         rctx->src = req->src;
297         rctx->dst = req->dst;
298         rctx->left = req->cryptlen;
299
300         /* calculate first value of T */
301         memcpy(&rctx->t, req->iv, sizeof(rctx->t));
302
303         /* T <- I*Key2 */
304         gf128mul_64k_bbe(&rctx->t, ctx->table.table);
305
306         return 0;
307 }
308
309 static void exit_crypt(struct skcipher_request *req)
310 {
311         struct rctx *rctx = skcipher_request_ctx(req);
312
313         rctx->left = 0;
314
315         if (rctx->ext)
316                 kfree(rctx->ext);
317 }
318
319 static int do_encrypt(struct skcipher_request *req, int err)
320 {
321         struct rctx *rctx = skcipher_request_ctx(req);
322         struct skcipher_request *subreq;
323
324         subreq = &rctx->subreq;
325
326         while (!err && rctx->left) {
327                 err = pre_crypt(req) ?:
328                       crypto_skcipher_encrypt(subreq) ?:
329                       post_crypt(req);
330
331                 if (err == -EINPROGRESS ||
332                     (err == -EBUSY &&
333                      req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
334                         return err;
335         }
336
337         exit_crypt(req);
338         return err;
339 }
340
341 static void encrypt_done(struct crypto_async_request *areq, int err)
342 {
343         struct skcipher_request *req = areq->data;
344         struct skcipher_request *subreq;
345         struct rctx *rctx;
346
347         rctx = skcipher_request_ctx(req);
348
349         if (err == -EINPROGRESS) {
350                 if (rctx->left != req->cryptlen)
351                         return;
352                 goto out;
353         }
354
355         subreq = &rctx->subreq;
356         subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG;
357
358         err = do_encrypt(req, err ?: post_crypt(req));
359         if (rctx->left)
360                 return;
361
362 out:
363         skcipher_request_complete(req, err);
364 }
365
366 static int encrypt(struct skcipher_request *req)
367 {
368         return do_encrypt(req, init_crypt(req, encrypt_done));
369 }
370
371 static int do_decrypt(struct skcipher_request *req, int err)
372 {
373         struct rctx *rctx = skcipher_request_ctx(req);
374         struct skcipher_request *subreq;
375
376         subreq = &rctx->subreq;
377
378         while (!err && rctx->left) {
379                 err = pre_crypt(req) ?:
380                       crypto_skcipher_decrypt(subreq) ?:
381                       post_crypt(req);
382
383                 if (err == -EINPROGRESS ||
384                     (err == -EBUSY &&
385                      req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
386                         return err;
387         }
388
389         exit_crypt(req);
390         return err;
391 }
392
393 static void decrypt_done(struct crypto_async_request *areq, int err)
394 {
395         struct skcipher_request *req = areq->data;
396         struct skcipher_request *subreq;
397         struct rctx *rctx;
398
399         rctx = skcipher_request_ctx(req);
400
401         if (err == -EINPROGRESS) {
402                 if (rctx->left != req->cryptlen)
403                         return;
404                 goto out;
405         }
406
407         subreq = &rctx->subreq;
408         subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG;
409
410         err = do_decrypt(req, err ?: post_crypt(req));
411         if (rctx->left)
412                 return;
413
414 out:
415         skcipher_request_complete(req, err);
416 }
417
418 static int decrypt(struct skcipher_request *req)
419 {
420         return do_decrypt(req, init_crypt(req, decrypt_done));
421 }
422
423 int lrw_crypt(struct blkcipher_desc *desc, struct scatterlist *sdst,
424               struct scatterlist *ssrc, unsigned int nbytes,
425               struct lrw_crypt_req *req)
426 {
427         const unsigned int bsize = LRW_BLOCK_SIZE;
428         const unsigned int max_blks = req->tbuflen / bsize;
429         struct lrw_table_ctx *ctx = req->table_ctx;
430         struct blkcipher_walk walk;
431         unsigned int nblocks;
432         be128 *iv, *src, *dst, *t;
433         be128 *t_buf = req->tbuf;
434         int err, i;
435
436         BUG_ON(max_blks < 1);
437
438         blkcipher_walk_init(&walk, sdst, ssrc, nbytes);
439
440         err = blkcipher_walk_virt(desc, &walk);
441         nbytes = walk.nbytes;
442         if (!nbytes)
443                 return err;
444
445         nblocks = min(walk.nbytes / bsize, max_blks);
446         src = (be128 *)walk.src.virt.addr;
447         dst = (be128 *)walk.dst.virt.addr;
448
449         /* calculate first value of T */
450         iv = (be128 *)walk.iv;
451         t_buf[0] = *iv;
452
453         /* T <- I*Key2 */
454         gf128mul_64k_bbe(&t_buf[0], ctx->table);
455
456         i = 0;
457         goto first;
458
459         for (;;) {
460                 do {
461                         for (i = 0; i < nblocks; i++) {
462                                 /* T <- I*Key2, using the optimization
463                                  * discussed in the specification */
464                                 be128_xor(&t_buf[i], t,
465                                                 &ctx->mulinc[get_index128(iv)]);
466                                 inc(iv);
467 first:
468                                 t = &t_buf[i];
469
470                                 /* PP <- T xor P */
471                                 be128_xor(dst + i, t, src + i);
472                         }
473
474                         /* CC <- E(Key2,PP) */
475                         req->crypt_fn(req->crypt_ctx, (u8 *)dst,
476                                       nblocks * bsize);
477
478                         /* C <- T xor CC */
479                         for (i = 0; i < nblocks; i++)
480                                 be128_xor(dst + i, dst + i, &t_buf[i]);
481
482                         src += nblocks;
483                         dst += nblocks;
484                         nbytes -= nblocks * bsize;
485                         nblocks = min(nbytes / bsize, max_blks);
486                 } while (nblocks > 0);
487
488                 err = blkcipher_walk_done(desc, &walk, nbytes);
489                 nbytes = walk.nbytes;
490                 if (!nbytes)
491                         break;
492
493                 nblocks = min(nbytes / bsize, max_blks);
494                 src = (be128 *)walk.src.virt.addr;
495                 dst = (be128 *)walk.dst.virt.addr;
496         }
497
498         return err;
499 }
500 EXPORT_SYMBOL_GPL(lrw_crypt);
501
502 static int init_tfm(struct crypto_skcipher *tfm)
503 {
504         struct skcipher_instance *inst = skcipher_alg_instance(tfm);
505         struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
506         struct priv *ctx = crypto_skcipher_ctx(tfm);
507         struct crypto_skcipher *cipher;
508
509         cipher = crypto_spawn_skcipher(spawn);
510         if (IS_ERR(cipher))
511                 return PTR_ERR(cipher);
512
513         ctx->child = cipher;
514
515         crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
516                                          sizeof(struct rctx));
517
518         return 0;
519 }
520
521 static void exit_tfm(struct crypto_skcipher *tfm)
522 {
523         struct priv *ctx = crypto_skcipher_ctx(tfm);
524
525         lrw_free_table(&ctx->table);
526         crypto_free_skcipher(ctx->child);
527 }
528
529 static void free(struct skcipher_instance *inst)
530 {
531         crypto_drop_skcipher(skcipher_instance_ctx(inst));
532         kfree(inst);
533 }
534
535 static int create(struct crypto_template *tmpl, struct rtattr **tb)
536 {
537         struct crypto_skcipher_spawn *spawn;
538         struct skcipher_instance *inst;
539         struct crypto_attr_type *algt;
540         struct skcipher_alg *alg;
541         const char *cipher_name;
542         char ecb_name[CRYPTO_MAX_ALG_NAME];
543         int err;
544
545         algt = crypto_get_attr_type(tb);
546         if (IS_ERR(algt))
547                 return PTR_ERR(algt);
548
549         if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask)
550                 return -EINVAL;
551
552         cipher_name = crypto_attr_alg_name(tb[1]);
553         if (IS_ERR(cipher_name))
554                 return PTR_ERR(cipher_name);
555
556         inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
557         if (!inst)
558                 return -ENOMEM;
559
560         spawn = skcipher_instance_ctx(inst);
561
562         crypto_set_skcipher_spawn(spawn, skcipher_crypto_instance(inst));
563         err = crypto_grab_skcipher(spawn, cipher_name, 0,
564                                    crypto_requires_sync(algt->type,
565                                                         algt->mask));
566         if (err == -ENOENT) {
567                 err = -ENAMETOOLONG;
568                 if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
569                              cipher_name) >= CRYPTO_MAX_ALG_NAME)
570                         goto err_free_inst;
571
572                 err = crypto_grab_skcipher(spawn, ecb_name, 0,
573                                            crypto_requires_sync(algt->type,
574                                                                 algt->mask));
575         }
576
577         if (err)
578                 goto err_free_inst;
579
580         alg = crypto_skcipher_spawn_alg(spawn);
581
582         err = -EINVAL;
583         if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
584                 goto err_drop_spawn;
585
586         if (crypto_skcipher_alg_ivsize(alg))
587                 goto err_drop_spawn;
588
589         err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
590                                   &alg->base);
591         if (err)
592                 goto err_drop_spawn;
593
594         err = -EINVAL;
595         cipher_name = alg->base.cra_name;
596
597         /* Alas we screwed up the naming so we have to mangle the
598          * cipher name.
599          */
600         if (!strncmp(cipher_name, "ecb(", 4)) {
601                 unsigned len;
602
603                 len = strlcpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
604                 if (len < 2 || len >= sizeof(ecb_name))
605                         goto err_drop_spawn;
606
607                 if (ecb_name[len - 1] != ')')
608                         goto err_drop_spawn;
609
610                 ecb_name[len - 1] = 0;
611
612                 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
613                              "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME)
614                         return -ENAMETOOLONG;
615         }
616
617         inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC;
618         inst->alg.base.cra_priority = alg->base.cra_priority;
619         inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
620         inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
621                                        (__alignof__(u64) - 1);
622
623         inst->alg.ivsize = LRW_BLOCK_SIZE;
624         inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) +
625                                 LRW_BLOCK_SIZE;
626         inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) +
627                                 LRW_BLOCK_SIZE;
628
629         inst->alg.base.cra_ctxsize = sizeof(struct priv);
630
631         inst->alg.init = init_tfm;
632         inst->alg.exit = exit_tfm;
633
634         inst->alg.setkey = setkey;
635         inst->alg.encrypt = encrypt;
636         inst->alg.decrypt = decrypt;
637
638         inst->free = free;
639
640         err = skcipher_register_instance(tmpl, inst);
641         if (err)
642                 goto err_drop_spawn;
643
644 out:
645         return err;
646
647 err_drop_spawn:
648         crypto_drop_skcipher(spawn);
649 err_free_inst:
650         kfree(inst);
651         goto out;
652 }
653
654 static struct crypto_template crypto_tmpl = {
655         .name = "lrw",
656         .create = create,
657         .module = THIS_MODULE,
658 };
659
660 static int __init crypto_module_init(void)
661 {
662         return crypto_register_template(&crypto_tmpl);
663 }
664
665 static void __exit crypto_module_exit(void)
666 {
667         crypto_unregister_template(&crypto_tmpl);
668 }
669
670 module_init(crypto_module_init);
671 module_exit(crypto_module_exit);
672
673 MODULE_LICENSE("GPL");
674 MODULE_DESCRIPTION("LRW block cipher mode");
675 MODULE_ALIAS_CRYPTO("lrw");