]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - crypto/lrw.c
dt-bindings: mtd: add a common label property to all mtd devices
[karo-tx-linux.git] / crypto / lrw.c
1 /* LRW: as defined by Cyril Guyot in
2  *      http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
3  *
4  * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
5  *
6  * Based on ecb.c
7  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  */
14 /* This implementation is checked against the test vectors in the above
15  * document and by a test vector provided by Ken Buchanan at
16  * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
17  *
18  * The test vectors are included in the testing module tcrypt.[ch] */
19
20 #include <crypto/internal/skcipher.h>
21 #include <crypto/scatterwalk.h>
22 #include <linux/err.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/scatterlist.h>
27 #include <linux/slab.h>
28
29 #include <crypto/b128ops.h>
30 #include <crypto/gf128mul.h>
31 #include <crypto/lrw.h>
32
33 #define LRW_BUFFER_SIZE 128u
34
35 struct priv {
36         struct crypto_skcipher *child;
37         struct lrw_table_ctx table;
38 };
39
40 struct rctx {
41         be128 buf[LRW_BUFFER_SIZE / sizeof(be128)];
42
43         be128 t;
44
45         be128 *ext;
46
47         struct scatterlist srcbuf[2];
48         struct scatterlist dstbuf[2];
49         struct scatterlist *src;
50         struct scatterlist *dst;
51
52         unsigned int left;
53
54         struct skcipher_request subreq;
55 };
56
57 static inline void setbit128_bbe(void *b, int bit)
58 {
59         __set_bit(bit ^ (0x80 -
60 #ifdef __BIG_ENDIAN
61                          BITS_PER_LONG
62 #else
63                          BITS_PER_BYTE
64 #endif
65                         ), b);
66 }
67
68 int lrw_init_table(struct lrw_table_ctx *ctx, const u8 *tweak)
69 {
70         be128 tmp = { 0 };
71         int i;
72
73         if (ctx->table)
74                 gf128mul_free_64k(ctx->table);
75
76         /* initialize multiplication table for Key2 */
77         ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
78         if (!ctx->table)
79                 return -ENOMEM;
80
81         /* initialize optimization table */
82         for (i = 0; i < 128; i++) {
83                 setbit128_bbe(&tmp, i);
84                 ctx->mulinc[i] = tmp;
85                 gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
86         }
87
88         return 0;
89 }
90 EXPORT_SYMBOL_GPL(lrw_init_table);
91
92 void lrw_free_table(struct lrw_table_ctx *ctx)
93 {
94         if (ctx->table)
95                 gf128mul_free_64k(ctx->table);
96 }
97 EXPORT_SYMBOL_GPL(lrw_free_table);
98
99 static int setkey(struct crypto_skcipher *parent, const u8 *key,
100                   unsigned int keylen)
101 {
102         struct priv *ctx = crypto_skcipher_ctx(parent);
103         struct crypto_skcipher *child = ctx->child;
104         int err, bsize = LRW_BLOCK_SIZE;
105         const u8 *tweak = key + keylen - bsize;
106
107         crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
108         crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
109                                          CRYPTO_TFM_REQ_MASK);
110         err = crypto_skcipher_setkey(child, key, keylen - bsize);
111         crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
112                                           CRYPTO_TFM_RES_MASK);
113         if (err)
114                 return err;
115
116         return lrw_init_table(&ctx->table, tweak);
117 }
118
119 static inline void inc(be128 *iv)
120 {
121         be64_add_cpu(&iv->b, 1);
122         if (!iv->b)
123                 be64_add_cpu(&iv->a, 1);
124 }
125
126 /* this returns the number of consequative 1 bits starting
127  * from the right, get_index128(00 00 00 00 00 00 ... 00 00 10 FB) = 2 */
128 static inline int get_index128(be128 *block)
129 {
130         int x;
131         __be32 *p = (__be32 *) block;
132
133         for (p += 3, x = 0; x < 128; p--, x += 32) {
134                 u32 val = be32_to_cpup(p);
135
136                 if (!~val)
137                         continue;
138
139                 return x + ffz(val);
140         }
141
142         return x;
143 }
144
145 static int post_crypt(struct skcipher_request *req)
146 {
147         struct rctx *rctx = skcipher_request_ctx(req);
148         be128 *buf = rctx->ext ?: rctx->buf;
149         struct skcipher_request *subreq;
150         const int bs = LRW_BLOCK_SIZE;
151         struct skcipher_walk w;
152         struct scatterlist *sg;
153         unsigned offset;
154         int err;
155
156         subreq = &rctx->subreq;
157         err = skcipher_walk_virt(&w, subreq, false);
158
159         while (w.nbytes) {
160                 unsigned int avail = w.nbytes;
161                 be128 *wdst;
162
163                 wdst = w.dst.virt.addr;
164
165                 do {
166                         be128_xor(wdst, buf++, wdst);
167                         wdst++;
168                 } while ((avail -= bs) >= bs);
169
170                 err = skcipher_walk_done(&w, avail);
171         }
172
173         rctx->left -= subreq->cryptlen;
174
175         if (err || !rctx->left)
176                 goto out;
177
178         rctx->dst = rctx->dstbuf;
179
180         scatterwalk_done(&w.out, 0, 1);
181         sg = w.out.sg;
182         offset = w.out.offset;
183
184         if (rctx->dst != sg) {
185                 rctx->dst[0] = *sg;
186                 sg_unmark_end(rctx->dst);
187                 scatterwalk_crypto_chain(rctx->dst, sg_next(sg), 0, 2);
188         }
189         rctx->dst[0].length -= offset - sg->offset;
190         rctx->dst[0].offset = offset;
191
192 out:
193         return err;
194 }
195
196 static int pre_crypt(struct skcipher_request *req)
197 {
198         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
199         struct rctx *rctx = skcipher_request_ctx(req);
200         struct priv *ctx = crypto_skcipher_ctx(tfm);
201         be128 *buf = rctx->ext ?: rctx->buf;
202         struct skcipher_request *subreq;
203         const int bs = LRW_BLOCK_SIZE;
204         struct skcipher_walk w;
205         struct scatterlist *sg;
206         unsigned cryptlen;
207         unsigned offset;
208         be128 *iv;
209         bool more;
210         int err;
211
212         subreq = &rctx->subreq;
213         skcipher_request_set_tfm(subreq, tfm);
214
215         cryptlen = subreq->cryptlen;
216         more = rctx->left > cryptlen;
217         if (!more)
218                 cryptlen = rctx->left;
219
220         skcipher_request_set_crypt(subreq, rctx->src, rctx->dst,
221                                    cryptlen, req->iv);
222
223         err = skcipher_walk_virt(&w, subreq, false);
224         iv = w.iv;
225
226         while (w.nbytes) {
227                 unsigned int avail = w.nbytes;
228                 be128 *wsrc;
229                 be128 *wdst;
230
231                 wsrc = w.src.virt.addr;
232                 wdst = w.dst.virt.addr;
233
234                 do {
235                         *buf++ = rctx->t;
236                         be128_xor(wdst++, &rctx->t, wsrc++);
237
238                         /* T <- I*Key2, using the optimization
239                          * discussed in the specification */
240                         be128_xor(&rctx->t, &rctx->t,
241                                   &ctx->table.mulinc[get_index128(iv)]);
242                         inc(iv);
243                 } while ((avail -= bs) >= bs);
244
245                 err = skcipher_walk_done(&w, avail);
246         }
247
248         skcipher_request_set_tfm(subreq, ctx->child);
249         skcipher_request_set_crypt(subreq, rctx->dst, rctx->dst,
250                                    cryptlen, NULL);
251
252         if (err || !more)
253                 goto out;
254
255         rctx->src = rctx->srcbuf;
256
257         scatterwalk_done(&w.in, 0, 1);
258         sg = w.in.sg;
259         offset = w.in.offset;
260
261         if (rctx->src != sg) {
262                 rctx->src[0] = *sg;
263                 sg_unmark_end(rctx->src);
264                 scatterwalk_crypto_chain(rctx->src, sg_next(sg), 0, 2);
265         }
266         rctx->src[0].length -= offset - sg->offset;
267         rctx->src[0].offset = offset;
268
269 out:
270         return err;
271 }
272
273 static int init_crypt(struct skcipher_request *req, crypto_completion_t done)
274 {
275         struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
276         struct rctx *rctx = skcipher_request_ctx(req);
277         struct skcipher_request *subreq;
278         gfp_t gfp;
279
280         subreq = &rctx->subreq;
281         skcipher_request_set_callback(subreq, req->base.flags, done, req);
282
283         gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
284                                                            GFP_ATOMIC;
285         rctx->ext = NULL;
286
287         subreq->cryptlen = LRW_BUFFER_SIZE;
288         if (req->cryptlen > LRW_BUFFER_SIZE) {
289                 subreq->cryptlen = min(req->cryptlen, (unsigned)PAGE_SIZE);
290                 rctx->ext = kmalloc(subreq->cryptlen, gfp);
291         }
292
293         rctx->src = req->src;
294         rctx->dst = req->dst;
295         rctx->left = req->cryptlen;
296
297         /* calculate first value of T */
298         memcpy(&rctx->t, req->iv, sizeof(rctx->t));
299
300         /* T <- I*Key2 */
301         gf128mul_64k_bbe(&rctx->t, ctx->table.table);
302
303         return 0;
304 }
305
306 static void exit_crypt(struct skcipher_request *req)
307 {
308         struct rctx *rctx = skcipher_request_ctx(req);
309
310         rctx->left = 0;
311
312         if (rctx->ext)
313                 kfree(rctx->ext);
314 }
315
316 static int do_encrypt(struct skcipher_request *req, int err)
317 {
318         struct rctx *rctx = skcipher_request_ctx(req);
319         struct skcipher_request *subreq;
320
321         subreq = &rctx->subreq;
322
323         while (!err && rctx->left) {
324                 err = pre_crypt(req) ?:
325                       crypto_skcipher_encrypt(subreq) ?:
326                       post_crypt(req);
327
328                 if (err == -EINPROGRESS ||
329                     (err == -EBUSY &&
330                      req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
331                         return err;
332         }
333
334         exit_crypt(req);
335         return err;
336 }
337
338 static void encrypt_done(struct crypto_async_request *areq, int err)
339 {
340         struct skcipher_request *req = areq->data;
341         struct skcipher_request *subreq;
342         struct rctx *rctx;
343
344         rctx = skcipher_request_ctx(req);
345         subreq = &rctx->subreq;
346         subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG;
347
348         err = do_encrypt(req, err ?: post_crypt(req));
349         if (rctx->left)
350                 return;
351
352         skcipher_request_complete(req, err);
353 }
354
355 static int encrypt(struct skcipher_request *req)
356 {
357         return do_encrypt(req, init_crypt(req, encrypt_done));
358 }
359
360 static int do_decrypt(struct skcipher_request *req, int err)
361 {
362         struct rctx *rctx = skcipher_request_ctx(req);
363         struct skcipher_request *subreq;
364
365         subreq = &rctx->subreq;
366
367         while (!err && rctx->left) {
368                 err = pre_crypt(req) ?:
369                       crypto_skcipher_decrypt(subreq) ?:
370                       post_crypt(req);
371
372                 if (err == -EINPROGRESS ||
373                     (err == -EBUSY &&
374                      req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
375                         return err;
376         }
377
378         exit_crypt(req);
379         return err;
380 }
381
382 static void decrypt_done(struct crypto_async_request *areq, int err)
383 {
384         struct skcipher_request *req = areq->data;
385         struct skcipher_request *subreq;
386         struct rctx *rctx;
387
388         rctx = skcipher_request_ctx(req);
389         subreq = &rctx->subreq;
390         subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG;
391
392         err = do_decrypt(req, err ?: post_crypt(req));
393         if (rctx->left)
394                 return;
395
396         skcipher_request_complete(req, err);
397 }
398
399 static int decrypt(struct skcipher_request *req)
400 {
401         return do_decrypt(req, init_crypt(req, decrypt_done));
402 }
403
404 int lrw_crypt(struct blkcipher_desc *desc, struct scatterlist *sdst,
405               struct scatterlist *ssrc, unsigned int nbytes,
406               struct lrw_crypt_req *req)
407 {
408         const unsigned int bsize = LRW_BLOCK_SIZE;
409         const unsigned int max_blks = req->tbuflen / bsize;
410         struct lrw_table_ctx *ctx = req->table_ctx;
411         struct blkcipher_walk walk;
412         unsigned int nblocks;
413         be128 *iv, *src, *dst, *t;
414         be128 *t_buf = req->tbuf;
415         int err, i;
416
417         BUG_ON(max_blks < 1);
418
419         blkcipher_walk_init(&walk, sdst, ssrc, nbytes);
420
421         err = blkcipher_walk_virt(desc, &walk);
422         nbytes = walk.nbytes;
423         if (!nbytes)
424                 return err;
425
426         nblocks = min(walk.nbytes / bsize, max_blks);
427         src = (be128 *)walk.src.virt.addr;
428         dst = (be128 *)walk.dst.virt.addr;
429
430         /* calculate first value of T */
431         iv = (be128 *)walk.iv;
432         t_buf[0] = *iv;
433
434         /* T <- I*Key2 */
435         gf128mul_64k_bbe(&t_buf[0], ctx->table);
436
437         i = 0;
438         goto first;
439
440         for (;;) {
441                 do {
442                         for (i = 0; i < nblocks; i++) {
443                                 /* T <- I*Key2, using the optimization
444                                  * discussed in the specification */
445                                 be128_xor(&t_buf[i], t,
446                                                 &ctx->mulinc[get_index128(iv)]);
447                                 inc(iv);
448 first:
449                                 t = &t_buf[i];
450
451                                 /* PP <- T xor P */
452                                 be128_xor(dst + i, t, src + i);
453                         }
454
455                         /* CC <- E(Key2,PP) */
456                         req->crypt_fn(req->crypt_ctx, (u8 *)dst,
457                                       nblocks * bsize);
458
459                         /* C <- T xor CC */
460                         for (i = 0; i < nblocks; i++)
461                                 be128_xor(dst + i, dst + i, &t_buf[i]);
462
463                         src += nblocks;
464                         dst += nblocks;
465                         nbytes -= nblocks * bsize;
466                         nblocks = min(nbytes / bsize, max_blks);
467                 } while (nblocks > 0);
468
469                 err = blkcipher_walk_done(desc, &walk, nbytes);
470                 nbytes = walk.nbytes;
471                 if (!nbytes)
472                         break;
473
474                 nblocks = min(nbytes / bsize, max_blks);
475                 src = (be128 *)walk.src.virt.addr;
476                 dst = (be128 *)walk.dst.virt.addr;
477         }
478
479         return err;
480 }
481 EXPORT_SYMBOL_GPL(lrw_crypt);
482
483 static int init_tfm(struct crypto_skcipher *tfm)
484 {
485         struct skcipher_instance *inst = skcipher_alg_instance(tfm);
486         struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
487         struct priv *ctx = crypto_skcipher_ctx(tfm);
488         struct crypto_skcipher *cipher;
489
490         cipher = crypto_spawn_skcipher(spawn);
491         if (IS_ERR(cipher))
492                 return PTR_ERR(cipher);
493
494         ctx->child = cipher;
495
496         crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
497                                          sizeof(struct rctx));
498
499         return 0;
500 }
501
502 static void exit_tfm(struct crypto_skcipher *tfm)
503 {
504         struct priv *ctx = crypto_skcipher_ctx(tfm);
505
506         lrw_free_table(&ctx->table);
507         crypto_free_skcipher(ctx->child);
508 }
509
510 static void free(struct skcipher_instance *inst)
511 {
512         crypto_drop_skcipher(skcipher_instance_ctx(inst));
513         kfree(inst);
514 }
515
516 static int create(struct crypto_template *tmpl, struct rtattr **tb)
517 {
518         struct crypto_skcipher_spawn *spawn;
519         struct skcipher_instance *inst;
520         struct crypto_attr_type *algt;
521         struct skcipher_alg *alg;
522         const char *cipher_name;
523         char ecb_name[CRYPTO_MAX_ALG_NAME];
524         int err;
525
526         algt = crypto_get_attr_type(tb);
527         if (IS_ERR(algt))
528                 return PTR_ERR(algt);
529
530         if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask)
531                 return -EINVAL;
532
533         cipher_name = crypto_attr_alg_name(tb[1]);
534         if (IS_ERR(cipher_name))
535                 return PTR_ERR(cipher_name);
536
537         inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
538         if (!inst)
539                 return -ENOMEM;
540
541         spawn = skcipher_instance_ctx(inst);
542
543         crypto_set_skcipher_spawn(spawn, skcipher_crypto_instance(inst));
544         err = crypto_grab_skcipher(spawn, cipher_name, 0,
545                                    crypto_requires_sync(algt->type,
546                                                         algt->mask));
547         if (err == -ENOENT) {
548                 err = -ENAMETOOLONG;
549                 if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
550                              cipher_name) >= CRYPTO_MAX_ALG_NAME)
551                         goto err_free_inst;
552
553                 err = crypto_grab_skcipher(spawn, ecb_name, 0,
554                                            crypto_requires_sync(algt->type,
555                                                                 algt->mask));
556         }
557
558         if (err)
559                 goto err_free_inst;
560
561         alg = crypto_skcipher_spawn_alg(spawn);
562
563         err = -EINVAL;
564         if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
565                 goto err_drop_spawn;
566
567         if (crypto_skcipher_alg_ivsize(alg))
568                 goto err_drop_spawn;
569
570         err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
571                                   &alg->base);
572         if (err)
573                 goto err_drop_spawn;
574
575         err = -EINVAL;
576         cipher_name = alg->base.cra_name;
577
578         /* Alas we screwed up the naming so we have to mangle the
579          * cipher name.
580          */
581         if (!strncmp(cipher_name, "ecb(", 4)) {
582                 unsigned len;
583
584                 len = strlcpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
585                 if (len < 2 || len >= sizeof(ecb_name))
586                         goto err_drop_spawn;
587
588                 if (ecb_name[len - 1] != ')')
589                         goto err_drop_spawn;
590
591                 ecb_name[len - 1] = 0;
592
593                 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
594                              "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME)
595                         return -ENAMETOOLONG;
596         }
597
598         inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC;
599         inst->alg.base.cra_priority = alg->base.cra_priority;
600         inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
601         inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
602                                        (__alignof__(u64) - 1);
603
604         inst->alg.ivsize = LRW_BLOCK_SIZE;
605         inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) +
606                                 LRW_BLOCK_SIZE;
607         inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) +
608                                 LRW_BLOCK_SIZE;
609
610         inst->alg.base.cra_ctxsize = sizeof(struct priv);
611
612         inst->alg.init = init_tfm;
613         inst->alg.exit = exit_tfm;
614
615         inst->alg.setkey = setkey;
616         inst->alg.encrypt = encrypt;
617         inst->alg.decrypt = decrypt;
618
619         inst->free = free;
620
621         err = skcipher_register_instance(tmpl, inst);
622         if (err)
623                 goto err_drop_spawn;
624
625 out:
626         return err;
627
628 err_drop_spawn:
629         crypto_drop_skcipher(spawn);
630 err_free_inst:
631         kfree(inst);
632         goto out;
633 }
634
635 static struct crypto_template crypto_tmpl = {
636         .name = "lrw",
637         .create = create,
638         .module = THIS_MODULE,
639 };
640
641 static int __init crypto_module_init(void)
642 {
643         return crypto_register_template(&crypto_tmpl);
644 }
645
646 static void __exit crypto_module_exit(void)
647 {
648         crypto_unregister_template(&crypto_tmpl);
649 }
650
651 module_init(crypto_module_init);
652 module_exit(crypto_module_exit);
653
654 MODULE_LICENSE("GPL");
655 MODULE_DESCRIPTION("LRW block cipher mode");
656 MODULE_ALIAS_CRYPTO("lrw");