]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/acpi/cppc_acpi.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[karo-tx-linux.git] / drivers / acpi / cppc_acpi.c
1 /*
2  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
3  *
4  * (C) Copyright 2014, 2015 Linaro Ltd.
5  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  *
12  * CPPC describes a few methods for controlling CPU performance using
13  * information from a per CPU table called CPC. This table is described in
14  * the ACPI v5.0+ specification. The table consists of a list of
15  * registers which may be memory mapped or hardware registers and also may
16  * include some static integer values.
17  *
18  * CPU performance is on an abstract continuous scale as against a discretized
19  * P-state scale which is tied to CPU frequency only. In brief, the basic
20  * operation involves:
21  *
22  * - OS makes a CPU performance request. (Can provide min and max bounds)
23  *
24  * - Platform (such as BMC) is free to optimize request within requested bounds
25  *   depending on power/thermal budgets etc.
26  *
27  * - Platform conveys its decision back to OS
28  *
29  * The communication between OS and platform occurs through another medium
30  * called (PCC) Platform Communication Channel. This is a generic mailbox like
31  * mechanism which includes doorbell semantics to indicate register updates.
32  * See drivers/mailbox/pcc.c for details on PCC.
33  *
34  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
35  * above specifications.
36  */
37
38 #define pr_fmt(fmt)     "ACPI CPPC: " fmt
39
40 #include <linux/cpufreq.h>
41 #include <linux/delay.h>
42 #include <linux/ktime.h>
43 #include <linux/rwsem.h>
44 #include <linux/wait.h>
45
46 #include <acpi/cppc_acpi.h>
47
48 struct cppc_pcc_data {
49         struct mbox_chan *pcc_channel;
50         void __iomem *pcc_comm_addr;
51         int pcc_subspace_idx;
52         bool pcc_channel_acquired;
53         ktime_t deadline;
54         unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
55
56         bool pending_pcc_write_cmd;     /* Any pending/batched PCC write cmds? */
57         bool platform_owns_pcc;         /* Ownership of PCC subspace */
58         unsigned int pcc_write_cnt;     /* Running count of PCC write commands */
59
60         /*
61          * Lock to provide controlled access to the PCC channel.
62          *
63          * For performance critical usecases(currently cppc_set_perf)
64          *      We need to take read_lock and check if channel belongs to OSPM
65          * before reading or writing to PCC subspace
66          *      We need to take write_lock before transferring the channel
67          * ownership to the platform via a Doorbell
68          *      This allows us to batch a number of CPPC requests if they happen
69          * to originate in about the same time
70          *
71          * For non-performance critical usecases(init)
72          *      Take write_lock for all purposes which gives exclusive access
73          */
74         struct rw_semaphore pcc_lock;
75
76         /* Wait queue for CPUs whose requests were batched */
77         wait_queue_head_t pcc_write_wait_q;
78 };
79
80 /* Structure to represent the single PCC channel */
81 static struct cppc_pcc_data pcc_data = {
82         .pcc_subspace_idx = -1,
83         .platform_owns_pcc = true,
84 };
85
86 /*
87  * The cpc_desc structure contains the ACPI register details
88  * as described in the per CPU _CPC tables. The details
89  * include the type of register (e.g. PCC, System IO, FFH etc.)
90  * and destination addresses which lets us READ/WRITE CPU performance
91  * information using the appropriate I/O methods.
92  */
93 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
94
95 /* pcc mapped address + header size + offset within PCC subspace */
96 #define GET_PCC_VADDR(offs) (pcc_data.pcc_comm_addr + 0x8 + (offs))
97
98 /* Check if a CPC register is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&             \
100                                 (cpc)->cpc_entry.reg.space_id ==        \
101                                 ACPI_ADR_SPACE_PLATFORM_COMM)
102
103 /* Evalutes to True if reg is a NULL register descriptor */
104 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105                                 (reg)->address == 0 &&                  \
106                                 (reg)->bit_width == 0 &&                \
107                                 (reg)->bit_offset == 0 &&               \
108                                 (reg)->access_width == 0)
109
110 /* Evalutes to True if an optional cpc field is supported */
111 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?          \
112                                 !!(cpc)->cpc_entry.int_value :          \
113                                 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
114 /*
115  * Arbitrary Retries in case the remote processor is slow to respond
116  * to PCC commands. Keeping it high enough to cover emulators where
117  * the processors run painfully slow.
118  */
119 #define NUM_RETRIES 500
120
121 struct cppc_attr {
122         struct attribute attr;
123         ssize_t (*show)(struct kobject *kobj,
124                         struct attribute *attr, char *buf);
125         ssize_t (*store)(struct kobject *kobj,
126                         struct attribute *attr, const char *c, ssize_t count);
127 };
128
129 #define define_one_cppc_ro(_name)               \
130 static struct cppc_attr _name =                 \
131 __ATTR(_name, 0444, show_##_name, NULL)
132
133 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
134
135 #define show_cppc_data(access_fn, struct_name, member_name)             \
136         static ssize_t show_##member_name(struct kobject *kobj,         \
137                                         struct attribute *attr, char *buf) \
138         {                                                               \
139                 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);           \
140                 struct struct_name st_name = {0};                       \
141                 int ret;                                                \
142                                                                         \
143                 ret = access_fn(cpc_ptr->cpu_id, &st_name);             \
144                 if (ret)                                                \
145                         return ret;                                     \
146                                                                         \
147                 return scnprintf(buf, PAGE_SIZE, "%llu\n",              \
148                                 (u64)st_name.member_name);              \
149         }                                                               \
150         define_one_cppc_ro(member_name)
151
152 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
153 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
154 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
155 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
156 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
157 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
158
159 static ssize_t show_feedback_ctrs(struct kobject *kobj,
160                 struct attribute *attr, char *buf)
161 {
162         struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
163         struct cppc_perf_fb_ctrs fb_ctrs = {0};
164         int ret;
165
166         ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
167         if (ret)
168                 return ret;
169
170         return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
171                         fb_ctrs.reference, fb_ctrs.delivered);
172 }
173 define_one_cppc_ro(feedback_ctrs);
174
175 static struct attribute *cppc_attrs[] = {
176         &feedback_ctrs.attr,
177         &reference_perf.attr,
178         &wraparound_time.attr,
179         &highest_perf.attr,
180         &lowest_perf.attr,
181         &lowest_nonlinear_perf.attr,
182         &nominal_perf.attr,
183         NULL
184 };
185
186 static struct kobj_type cppc_ktype = {
187         .sysfs_ops = &kobj_sysfs_ops,
188         .default_attrs = cppc_attrs,
189 };
190
191 static int check_pcc_chan(bool chk_err_bit)
192 {
193         int ret = -EIO, status = 0;
194         struct acpi_pcct_shared_memory __iomem *generic_comm_base = pcc_data.pcc_comm_addr;
195         ktime_t next_deadline = ktime_add(ktime_get(), pcc_data.deadline);
196
197         if (!pcc_data.platform_owns_pcc)
198                 return 0;
199
200         /* Retry in case the remote processor was too slow to catch up. */
201         while (!ktime_after(ktime_get(), next_deadline)) {
202                 /*
203                  * Per spec, prior to boot the PCC space wil be initialized by
204                  * platform and should have set the command completion bit when
205                  * PCC can be used by OSPM
206                  */
207                 status = readw_relaxed(&generic_comm_base->status);
208                 if (status & PCC_CMD_COMPLETE_MASK) {
209                         ret = 0;
210                         if (chk_err_bit && (status & PCC_ERROR_MASK))
211                                 ret = -EIO;
212                         break;
213                 }
214                 /*
215                  * Reducing the bus traffic in case this loop takes longer than
216                  * a few retries.
217                  */
218                 udelay(3);
219         }
220
221         if (likely(!ret))
222                 pcc_data.platform_owns_pcc = false;
223         else
224                 pr_err("PCC check channel failed. Status=%x\n", status);
225
226         return ret;
227 }
228
229 /*
230  * This function transfers the ownership of the PCC to the platform
231  * So it must be called while holding write_lock(pcc_lock)
232  */
233 static int send_pcc_cmd(u16 cmd)
234 {
235         int ret = -EIO, i;
236         struct acpi_pcct_shared_memory *generic_comm_base =
237                 (struct acpi_pcct_shared_memory *) pcc_data.pcc_comm_addr;
238         static ktime_t last_cmd_cmpl_time, last_mpar_reset;
239         static int mpar_count;
240         unsigned int time_delta;
241
242         /*
243          * For CMD_WRITE we know for a fact the caller should have checked
244          * the channel before writing to PCC space
245          */
246         if (cmd == CMD_READ) {
247                 /*
248                  * If there are pending cpc_writes, then we stole the channel
249                  * before write completion, so first send a WRITE command to
250                  * platform
251                  */
252                 if (pcc_data.pending_pcc_write_cmd)
253                         send_pcc_cmd(CMD_WRITE);
254
255                 ret = check_pcc_chan(false);
256                 if (ret)
257                         goto end;
258         } else /* CMD_WRITE */
259                 pcc_data.pending_pcc_write_cmd = FALSE;
260
261         /*
262          * Handle the Minimum Request Turnaround Time(MRTT)
263          * "The minimum amount of time that OSPM must wait after the completion
264          * of a command before issuing the next command, in microseconds"
265          */
266         if (pcc_data.pcc_mrtt) {
267                 time_delta = ktime_us_delta(ktime_get(), last_cmd_cmpl_time);
268                 if (pcc_data.pcc_mrtt > time_delta)
269                         udelay(pcc_data.pcc_mrtt - time_delta);
270         }
271
272         /*
273          * Handle the non-zero Maximum Periodic Access Rate(MPAR)
274          * "The maximum number of periodic requests that the subspace channel can
275          * support, reported in commands per minute. 0 indicates no limitation."
276          *
277          * This parameter should be ideally zero or large enough so that it can
278          * handle maximum number of requests that all the cores in the system can
279          * collectively generate. If it is not, we will follow the spec and just
280          * not send the request to the platform after hitting the MPAR limit in
281          * any 60s window
282          */
283         if (pcc_data.pcc_mpar) {
284                 if (mpar_count == 0) {
285                         time_delta = ktime_ms_delta(ktime_get(), last_mpar_reset);
286                         if (time_delta < 60 * MSEC_PER_SEC) {
287                                 pr_debug("PCC cmd not sent due to MPAR limit");
288                                 ret = -EIO;
289                                 goto end;
290                         }
291                         last_mpar_reset = ktime_get();
292                         mpar_count = pcc_data.pcc_mpar;
293                 }
294                 mpar_count--;
295         }
296
297         /* Write to the shared comm region. */
298         writew_relaxed(cmd, &generic_comm_base->command);
299
300         /* Flip CMD COMPLETE bit */
301         writew_relaxed(0, &generic_comm_base->status);
302
303         pcc_data.platform_owns_pcc = true;
304
305         /* Ring doorbell */
306         ret = mbox_send_message(pcc_data.pcc_channel, &cmd);
307         if (ret < 0) {
308                 pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
309                                 cmd, ret);
310                 goto end;
311         }
312
313         /* wait for completion and check for PCC errro bit */
314         ret = check_pcc_chan(true);
315
316         if (pcc_data.pcc_mrtt)
317                 last_cmd_cmpl_time = ktime_get();
318
319         if (pcc_data.pcc_channel->mbox->txdone_irq)
320                 mbox_chan_txdone(pcc_data.pcc_channel, ret);
321         else
322                 mbox_client_txdone(pcc_data.pcc_channel, ret);
323
324 end:
325         if (cmd == CMD_WRITE) {
326                 if (unlikely(ret)) {
327                         for_each_possible_cpu(i) {
328                                 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
329                                 if (!desc)
330                                         continue;
331
332                                 if (desc->write_cmd_id == pcc_data.pcc_write_cnt)
333                                         desc->write_cmd_status = ret;
334                         }
335                 }
336                 pcc_data.pcc_write_cnt++;
337                 wake_up_all(&pcc_data.pcc_write_wait_q);
338         }
339
340         return ret;
341 }
342
343 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
344 {
345         if (ret < 0)
346                 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
347                                 *(u16 *)msg, ret);
348         else
349                 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
350                                 *(u16 *)msg, ret);
351 }
352
353 struct mbox_client cppc_mbox_cl = {
354         .tx_done = cppc_chan_tx_done,
355         .knows_txdone = true,
356 };
357
358 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
359 {
360         int result = -EFAULT;
361         acpi_status status = AE_OK;
362         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
363         struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
364         struct acpi_buffer state = {0, NULL};
365         union acpi_object  *psd = NULL;
366         struct acpi_psd_package *pdomain;
367
368         status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer,
369                         ACPI_TYPE_PACKAGE);
370         if (ACPI_FAILURE(status))
371                 return -ENODEV;
372
373         psd = buffer.pointer;
374         if (!psd || psd->package.count != 1) {
375                 pr_debug("Invalid _PSD data\n");
376                 goto end;
377         }
378
379         pdomain = &(cpc_ptr->domain_info);
380
381         state.length = sizeof(struct acpi_psd_package);
382         state.pointer = pdomain;
383
384         status = acpi_extract_package(&(psd->package.elements[0]),
385                 &format, &state);
386         if (ACPI_FAILURE(status)) {
387                 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
388                 goto end;
389         }
390
391         if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
392                 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
393                 goto end;
394         }
395
396         if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
397                 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
398                 goto end;
399         }
400
401         if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
402             pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
403             pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
404                 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
405                 goto end;
406         }
407
408         result = 0;
409 end:
410         kfree(buffer.pointer);
411         return result;
412 }
413
414 /**
415  * acpi_get_psd_map - Map the CPUs in a common freq domain.
416  * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
417  *
418  *      Return: 0 for success or negative value for err.
419  */
420 int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
421 {
422         int count_target;
423         int retval = 0;
424         unsigned int i, j;
425         cpumask_var_t covered_cpus;
426         struct cppc_cpudata *pr, *match_pr;
427         struct acpi_psd_package *pdomain;
428         struct acpi_psd_package *match_pdomain;
429         struct cpc_desc *cpc_ptr, *match_cpc_ptr;
430
431         if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
432                 return -ENOMEM;
433
434         /*
435          * Now that we have _PSD data from all CPUs, lets setup P-state
436          * domain info.
437          */
438         for_each_possible_cpu(i) {
439                 pr = all_cpu_data[i];
440                 if (!pr)
441                         continue;
442
443                 if (cpumask_test_cpu(i, covered_cpus))
444                         continue;
445
446                 cpc_ptr = per_cpu(cpc_desc_ptr, i);
447                 if (!cpc_ptr) {
448                         retval = -EFAULT;
449                         goto err_ret;
450                 }
451
452                 pdomain = &(cpc_ptr->domain_info);
453                 cpumask_set_cpu(i, pr->shared_cpu_map);
454                 cpumask_set_cpu(i, covered_cpus);
455                 if (pdomain->num_processors <= 1)
456                         continue;
457
458                 /* Validate the Domain info */
459                 count_target = pdomain->num_processors;
460                 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
461                         pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
462                 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
463                         pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
464                 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
465                         pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
466
467                 for_each_possible_cpu(j) {
468                         if (i == j)
469                                 continue;
470
471                         match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
472                         if (!match_cpc_ptr) {
473                                 retval = -EFAULT;
474                                 goto err_ret;
475                         }
476
477                         match_pdomain = &(match_cpc_ptr->domain_info);
478                         if (match_pdomain->domain != pdomain->domain)
479                                 continue;
480
481                         /* Here i and j are in the same domain */
482                         if (match_pdomain->num_processors != count_target) {
483                                 retval = -EFAULT;
484                                 goto err_ret;
485                         }
486
487                         if (pdomain->coord_type != match_pdomain->coord_type) {
488                                 retval = -EFAULT;
489                                 goto err_ret;
490                         }
491
492                         cpumask_set_cpu(j, covered_cpus);
493                         cpumask_set_cpu(j, pr->shared_cpu_map);
494                 }
495
496                 for_each_possible_cpu(j) {
497                         if (i == j)
498                                 continue;
499
500                         match_pr = all_cpu_data[j];
501                         if (!match_pr)
502                                 continue;
503
504                         match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
505                         if (!match_cpc_ptr) {
506                                 retval = -EFAULT;
507                                 goto err_ret;
508                         }
509
510                         match_pdomain = &(match_cpc_ptr->domain_info);
511                         if (match_pdomain->domain != pdomain->domain)
512                                 continue;
513
514                         match_pr->shared_type = pr->shared_type;
515                         cpumask_copy(match_pr->shared_cpu_map,
516                                      pr->shared_cpu_map);
517                 }
518         }
519
520 err_ret:
521         for_each_possible_cpu(i) {
522                 pr = all_cpu_data[i];
523                 if (!pr)
524                         continue;
525
526                 /* Assume no coordination on any error parsing domain info */
527                 if (retval) {
528                         cpumask_clear(pr->shared_cpu_map);
529                         cpumask_set_cpu(i, pr->shared_cpu_map);
530                         pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
531                 }
532         }
533
534         free_cpumask_var(covered_cpus);
535         return retval;
536 }
537 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
538
539 static int register_pcc_channel(int pcc_subspace_idx)
540 {
541         struct acpi_pcct_hw_reduced *cppc_ss;
542         u64 usecs_lat;
543
544         if (pcc_subspace_idx >= 0) {
545                 pcc_data.pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl,
546                                 pcc_subspace_idx);
547
548                 if (IS_ERR(pcc_data.pcc_channel)) {
549                         pr_err("Failed to find PCC communication channel\n");
550                         return -ENODEV;
551                 }
552
553                 /*
554                  * The PCC mailbox controller driver should
555                  * have parsed the PCCT (global table of all
556                  * PCC channels) and stored pointers to the
557                  * subspace communication region in con_priv.
558                  */
559                 cppc_ss = (pcc_data.pcc_channel)->con_priv;
560
561                 if (!cppc_ss) {
562                         pr_err("No PCC subspace found for CPPC\n");
563                         return -ENODEV;
564                 }
565
566                 /*
567                  * cppc_ss->latency is just a Nominal value. In reality
568                  * the remote processor could be much slower to reply.
569                  * So add an arbitrary amount of wait on top of Nominal.
570                  */
571                 usecs_lat = NUM_RETRIES * cppc_ss->latency;
572                 pcc_data.deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
573                 pcc_data.pcc_mrtt = cppc_ss->min_turnaround_time;
574                 pcc_data.pcc_mpar = cppc_ss->max_access_rate;
575                 pcc_data.pcc_nominal = cppc_ss->latency;
576
577                 pcc_data.pcc_comm_addr = acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
578                 if (!pcc_data.pcc_comm_addr) {
579                         pr_err("Failed to ioremap PCC comm region mem\n");
580                         return -ENOMEM;
581                 }
582
583                 /* Set flag so that we dont come here for each CPU. */
584                 pcc_data.pcc_channel_acquired = true;
585         }
586
587         return 0;
588 }
589
590 /**
591  * cpc_ffh_supported() - check if FFH reading supported
592  *
593  * Check if the architecture has support for functional fixed hardware
594  * read/write capability.
595  *
596  * Return: true for supported, false for not supported
597  */
598 bool __weak cpc_ffh_supported(void)
599 {
600         return false;
601 }
602
603 /*
604  * An example CPC table looks like the following.
605  *
606  *      Name(_CPC, Package()
607  *                      {
608  *                      17,
609  *                      NumEntries
610  *                      1,
611  *                      // Revision
612  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
613  *                      // Highest Performance
614  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
615  *                      // Nominal Performance
616  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
617  *                      // Lowest Nonlinear Performance
618  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
619  *                      // Lowest Performance
620  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
621  *                      // Guaranteed Performance Register
622  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
623  *                      // Desired Performance Register
624  *                      ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
625  *                      ..
626  *                      ..
627  *                      ..
628  *
629  *              }
630  * Each Register() encodes how to access that specific register.
631  * e.g. a sample PCC entry has the following encoding:
632  *
633  *      Register (
634  *              PCC,
635  *              AddressSpaceKeyword
636  *              8,
637  *              //RegisterBitWidth
638  *              8,
639  *              //RegisterBitOffset
640  *              0x30,
641  *              //RegisterAddress
642  *              9
643  *              //AccessSize (subspace ID)
644  *              0
645  *              )
646  *      }
647  */
648
649 /**
650  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
651  * @pr: Ptr to acpi_processor containing this CPUs logical Id.
652  *
653  *      Return: 0 for success or negative value for err.
654  */
655 int acpi_cppc_processor_probe(struct acpi_processor *pr)
656 {
657         struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
658         union acpi_object *out_obj, *cpc_obj;
659         struct cpc_desc *cpc_ptr;
660         struct cpc_reg *gas_t;
661         struct device *cpu_dev;
662         acpi_handle handle = pr->handle;
663         unsigned int num_ent, i, cpc_rev;
664         acpi_status status;
665         int ret = -EFAULT;
666
667         /* Parse the ACPI _CPC table for this cpu. */
668         status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
669                         ACPI_TYPE_PACKAGE);
670         if (ACPI_FAILURE(status)) {
671                 ret = -ENODEV;
672                 goto out_buf_free;
673         }
674
675         out_obj = (union acpi_object *) output.pointer;
676
677         cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
678         if (!cpc_ptr) {
679                 ret = -ENOMEM;
680                 goto out_buf_free;
681         }
682
683         /* First entry is NumEntries. */
684         cpc_obj = &out_obj->package.elements[0];
685         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
686                 num_ent = cpc_obj->integer.value;
687         } else {
688                 pr_debug("Unexpected entry type(%d) for NumEntries\n",
689                                 cpc_obj->type);
690                 goto out_free;
691         }
692
693         /* Only support CPPCv2. Bail otherwise. */
694         if (num_ent != CPPC_NUM_ENT) {
695                 pr_debug("Firmware exports %d entries. Expected: %d\n",
696                                 num_ent, CPPC_NUM_ENT);
697                 goto out_free;
698         }
699
700         cpc_ptr->num_entries = num_ent;
701
702         /* Second entry should be revision. */
703         cpc_obj = &out_obj->package.elements[1];
704         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
705                 cpc_rev = cpc_obj->integer.value;
706         } else {
707                 pr_debug("Unexpected entry type(%d) for Revision\n",
708                                 cpc_obj->type);
709                 goto out_free;
710         }
711
712         if (cpc_rev != CPPC_REV) {
713                 pr_debug("Firmware exports revision:%d. Expected:%d\n",
714                                 cpc_rev, CPPC_REV);
715                 goto out_free;
716         }
717
718         /* Iterate through remaining entries in _CPC */
719         for (i = 2; i < num_ent; i++) {
720                 cpc_obj = &out_obj->package.elements[i];
721
722                 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
723                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
724                         cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
725                 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
726                         gas_t = (struct cpc_reg *)
727                                 cpc_obj->buffer.pointer;
728
729                         /*
730                          * The PCC Subspace index is encoded inside
731                          * the CPC table entries. The same PCC index
732                          * will be used for all the PCC entries,
733                          * so extract it only once.
734                          */
735                         if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
736                                 if (pcc_data.pcc_subspace_idx < 0)
737                                         pcc_data.pcc_subspace_idx = gas_t->access_width;
738                                 else if (pcc_data.pcc_subspace_idx != gas_t->access_width) {
739                                         pr_debug("Mismatched PCC ids.\n");
740                                         goto out_free;
741                                 }
742                         } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
743                                 if (gas_t->address) {
744                                         void __iomem *addr;
745
746                                         addr = ioremap(gas_t->address, gas_t->bit_width/8);
747                                         if (!addr)
748                                                 goto out_free;
749                                         cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
750                                 }
751                         } else {
752                                 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
753                                         /* Support only PCC ,SYS MEM and FFH type regs */
754                                         pr_debug("Unsupported register type: %d\n", gas_t->space_id);
755                                         goto out_free;
756                                 }
757                         }
758
759                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
760                         memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
761                 } else {
762                         pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
763                         goto out_free;
764                 }
765         }
766         /* Store CPU Logical ID */
767         cpc_ptr->cpu_id = pr->id;
768
769         /* Parse PSD data for this CPU */
770         ret = acpi_get_psd(cpc_ptr, handle);
771         if (ret)
772                 goto out_free;
773
774         /* Register PCC channel once for all CPUs. */
775         if (!pcc_data.pcc_channel_acquired) {
776                 ret = register_pcc_channel(pcc_data.pcc_subspace_idx);
777                 if (ret)
778                         goto out_free;
779
780                 init_rwsem(&pcc_data.pcc_lock);
781                 init_waitqueue_head(&pcc_data.pcc_write_wait_q);
782         }
783
784         /* Everything looks okay */
785         pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
786
787         /* Add per logical CPU nodes for reading its feedback counters. */
788         cpu_dev = get_cpu_device(pr->id);
789         if (!cpu_dev) {
790                 ret = -EINVAL;
791                 goto out_free;
792         }
793
794         /* Plug PSD data into this CPUs CPC descriptor. */
795         per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
796
797         ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
798                         "acpi_cppc");
799         if (ret) {
800                 per_cpu(cpc_desc_ptr, pr->id) = NULL;
801                 goto out_free;
802         }
803
804         kfree(output.pointer);
805         return 0;
806
807 out_free:
808         /* Free all the mapped sys mem areas for this CPU */
809         for (i = 2; i < cpc_ptr->num_entries; i++) {
810                 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
811
812                 if (addr)
813                         iounmap(addr);
814         }
815         kfree(cpc_ptr);
816
817 out_buf_free:
818         kfree(output.pointer);
819         return ret;
820 }
821 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
822
823 /**
824  * acpi_cppc_processor_exit - Cleanup CPC structs.
825  * @pr: Ptr to acpi_processor containing this CPUs logical Id.
826  *
827  * Return: Void
828  */
829 void acpi_cppc_processor_exit(struct acpi_processor *pr)
830 {
831         struct cpc_desc *cpc_ptr;
832         unsigned int i;
833         void __iomem *addr;
834
835         cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
836         if (!cpc_ptr)
837                 return;
838
839         /* Free all the mapped sys mem areas for this CPU */
840         for (i = 2; i < cpc_ptr->num_entries; i++) {
841                 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
842                 if (addr)
843                         iounmap(addr);
844         }
845
846         kobject_put(&cpc_ptr->kobj);
847         kfree(cpc_ptr);
848 }
849 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
850
851 /**
852  * cpc_read_ffh() - Read FFH register
853  * @cpunum:     cpu number to read
854  * @reg:        cppc register information
855  * @val:        place holder for return value
856  *
857  * Read bit_width bits from a specified address and bit_offset
858  *
859  * Return: 0 for success and error code
860  */
861 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
862 {
863         return -ENOTSUPP;
864 }
865
866 /**
867  * cpc_write_ffh() - Write FFH register
868  * @cpunum:     cpu number to write
869  * @reg:        cppc register information
870  * @val:        value to write
871  *
872  * Write value of bit_width bits to a specified address and bit_offset
873  *
874  * Return: 0 for success and error code
875  */
876 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
877 {
878         return -ENOTSUPP;
879 }
880
881 /*
882  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
883  * as fast as possible. We have already mapped the PCC subspace during init, so
884  * we can directly write to it.
885  */
886
887 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
888 {
889         int ret_val = 0;
890         void __iomem *vaddr = 0;
891         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
892
893         if (reg_res->type == ACPI_TYPE_INTEGER) {
894                 *val = reg_res->cpc_entry.int_value;
895                 return ret_val;
896         }
897
898         *val = 0;
899         if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
900                 vaddr = GET_PCC_VADDR(reg->address);
901         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
902                 vaddr = reg_res->sys_mem_vaddr;
903         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
904                 return cpc_read_ffh(cpu, reg, val);
905         else
906                 return acpi_os_read_memory((acpi_physical_address)reg->address,
907                                 val, reg->bit_width);
908
909         switch (reg->bit_width) {
910                 case 8:
911                         *val = readb_relaxed(vaddr);
912                         break;
913                 case 16:
914                         *val = readw_relaxed(vaddr);
915                         break;
916                 case 32:
917                         *val = readl_relaxed(vaddr);
918                         break;
919                 case 64:
920                         *val = readq_relaxed(vaddr);
921                         break;
922                 default:
923                         pr_debug("Error: Cannot read %u bit width from PCC\n",
924                                         reg->bit_width);
925                         ret_val = -EFAULT;
926         }
927
928         return ret_val;
929 }
930
931 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
932 {
933         int ret_val = 0;
934         void __iomem *vaddr = 0;
935         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
936
937         if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
938                 vaddr = GET_PCC_VADDR(reg->address);
939         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
940                 vaddr = reg_res->sys_mem_vaddr;
941         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
942                 return cpc_write_ffh(cpu, reg, val);
943         else
944                 return acpi_os_write_memory((acpi_physical_address)reg->address,
945                                 val, reg->bit_width);
946
947         switch (reg->bit_width) {
948                 case 8:
949                         writeb_relaxed(val, vaddr);
950                         break;
951                 case 16:
952                         writew_relaxed(val, vaddr);
953                         break;
954                 case 32:
955                         writel_relaxed(val, vaddr);
956                         break;
957                 case 64:
958                         writeq_relaxed(val, vaddr);
959                         break;
960                 default:
961                         pr_debug("Error: Cannot write %u bit width to PCC\n",
962                                         reg->bit_width);
963                         ret_val = -EFAULT;
964                         break;
965         }
966
967         return ret_val;
968 }
969
970 /**
971  * cppc_get_perf_caps - Get a CPUs performance capabilities.
972  * @cpunum: CPU from which to get capabilities info.
973  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
974  *
975  * Return: 0 for success with perf_caps populated else -ERRNO.
976  */
977 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
978 {
979         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
980         struct cpc_register_resource *highest_reg, *lowest_reg,
981                 *lowest_non_linear_reg, *nominal_reg;
982         u64 high, low, nom, min_nonlinear;
983         int ret = 0, regs_in_pcc = 0;
984
985         if (!cpc_desc) {
986                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
987                 return -ENODEV;
988         }
989
990         highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
991         lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
992         lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
993         nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
994
995         /* Are any of the regs PCC ?*/
996         if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
997                 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg)) {
998                 regs_in_pcc = 1;
999                 down_write(&pcc_data.pcc_lock);
1000                 /* Ring doorbell once to update PCC subspace */
1001                 if (send_pcc_cmd(CMD_READ) < 0) {
1002                         ret = -EIO;
1003                         goto out_err;
1004                 }
1005         }
1006
1007         cpc_read(cpunum, highest_reg, &high);
1008         perf_caps->highest_perf = high;
1009
1010         cpc_read(cpunum, lowest_reg, &low);
1011         perf_caps->lowest_perf = low;
1012
1013         cpc_read(cpunum, nominal_reg, &nom);
1014         perf_caps->nominal_perf = nom;
1015
1016         cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1017         perf_caps->lowest_nonlinear_perf = min_nonlinear;
1018
1019         if (!high || !low || !nom || !min_nonlinear)
1020                 ret = -EFAULT;
1021
1022 out_err:
1023         if (regs_in_pcc)
1024                 up_write(&pcc_data.pcc_lock);
1025         return ret;
1026 }
1027 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1028
1029 /**
1030  * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
1031  * @cpunum: CPU from which to read counters.
1032  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1033  *
1034  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1035  */
1036 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1037 {
1038         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1039         struct cpc_register_resource *delivered_reg, *reference_reg,
1040                 *ref_perf_reg, *ctr_wrap_reg;
1041         u64 delivered, reference, ref_perf, ctr_wrap_time;
1042         int ret = 0, regs_in_pcc = 0;
1043
1044         if (!cpc_desc) {
1045                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1046                 return -ENODEV;
1047         }
1048
1049         delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1050         reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1051         ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1052         ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1053
1054         /*
1055          * If refernce perf register is not supported then we should
1056          * use the nominal perf value
1057          */
1058         if (!CPC_SUPPORTED(ref_perf_reg))
1059                 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1060
1061         /* Are any of the regs PCC ?*/
1062         if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1063                 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1064                 down_write(&pcc_data.pcc_lock);
1065                 regs_in_pcc = 1;
1066                 /* Ring doorbell once to update PCC subspace */
1067                 if (send_pcc_cmd(CMD_READ) < 0) {
1068                         ret = -EIO;
1069                         goto out_err;
1070                 }
1071         }
1072
1073         cpc_read(cpunum, delivered_reg, &delivered);
1074         cpc_read(cpunum, reference_reg, &reference);
1075         cpc_read(cpunum, ref_perf_reg, &ref_perf);
1076
1077         /*
1078          * Per spec, if ctr_wrap_time optional register is unsupported, then the
1079          * performance counters are assumed to never wrap during the lifetime of
1080          * platform
1081          */
1082         ctr_wrap_time = (u64)(~((u64)0));
1083         if (CPC_SUPPORTED(ctr_wrap_reg))
1084                 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1085
1086         if (!delivered || !reference || !ref_perf) {
1087                 ret = -EFAULT;
1088                 goto out_err;
1089         }
1090
1091         perf_fb_ctrs->delivered = delivered;
1092         perf_fb_ctrs->reference = reference;
1093         perf_fb_ctrs->reference_perf = ref_perf;
1094         perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1095 out_err:
1096         if (regs_in_pcc)
1097                 up_write(&pcc_data.pcc_lock);
1098         return ret;
1099 }
1100 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1101
1102 /**
1103  * cppc_set_perf - Set a CPUs performance controls.
1104  * @cpu: CPU for which to set performance controls.
1105  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1106  *
1107  * Return: 0 for success, -ERRNO otherwise.
1108  */
1109 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1110 {
1111         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1112         struct cpc_register_resource *desired_reg;
1113         int ret = 0;
1114
1115         if (!cpc_desc) {
1116                 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1117                 return -ENODEV;
1118         }
1119
1120         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1121
1122         /*
1123          * This is Phase-I where we want to write to CPC registers
1124          * -> We want all CPUs to be able to execute this phase in parallel
1125          *
1126          * Since read_lock can be acquired by multiple CPUs simultaneously we
1127          * achieve that goal here
1128          */
1129         if (CPC_IN_PCC(desired_reg)) {
1130                 down_read(&pcc_data.pcc_lock);  /* BEGIN Phase-I */
1131                 if (pcc_data.platform_owns_pcc) {
1132                         ret = check_pcc_chan(false);
1133                         if (ret) {
1134                                 up_read(&pcc_data.pcc_lock);
1135                                 return ret;
1136                         }
1137                 }
1138                 /*
1139                  * Update the pending_write to make sure a PCC CMD_READ will not
1140                  * arrive and steal the channel during the switch to write lock
1141                  */
1142                 pcc_data.pending_pcc_write_cmd = true;
1143                 cpc_desc->write_cmd_id = pcc_data.pcc_write_cnt;
1144                 cpc_desc->write_cmd_status = 0;
1145         }
1146
1147         /*
1148          * Skip writing MIN/MAX until Linux knows how to come up with
1149          * useful values.
1150          */
1151         cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1152
1153         if (CPC_IN_PCC(desired_reg))
1154                 up_read(&pcc_data.pcc_lock);    /* END Phase-I */
1155         /*
1156          * This is Phase-II where we transfer the ownership of PCC to Platform
1157          *
1158          * Short Summary: Basically if we think of a group of cppc_set_perf
1159          * requests that happened in short overlapping interval. The last CPU to
1160          * come out of Phase-I will enter Phase-II and ring the doorbell.
1161          *
1162          * We have the following requirements for Phase-II:
1163          *     1. We want to execute Phase-II only when there are no CPUs
1164          * currently executing in Phase-I
1165          *     2. Once we start Phase-II we want to avoid all other CPUs from
1166          * entering Phase-I.
1167          *     3. We want only one CPU among all those who went through Phase-I
1168          * to run phase-II
1169          *
1170          * If write_trylock fails to get the lock and doesn't transfer the
1171          * PCC ownership to the platform, then one of the following will be TRUE
1172          *     1. There is at-least one CPU in Phase-I which will later execute
1173          * write_trylock, so the CPUs in Phase-I will be responsible for
1174          * executing the Phase-II.
1175          *     2. Some other CPU has beaten this CPU to successfully execute the
1176          * write_trylock and has already acquired the write_lock. We know for a
1177          * fact it(other CPU acquiring the write_lock) couldn't have happened
1178          * before this CPU's Phase-I as we held the read_lock.
1179          *     3. Some other CPU executing pcc CMD_READ has stolen the
1180          * down_write, in which case, send_pcc_cmd will check for pending
1181          * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1182          * So this CPU can be certain that its request will be delivered
1183          *    So in all cases, this CPU knows that its request will be delivered
1184          * by another CPU and can return
1185          *
1186          * After getting the down_write we still need to check for
1187          * pending_pcc_write_cmd to take care of the following scenario
1188          *    The thread running this code could be scheduled out between
1189          * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1190          * could have delivered the request to Platform by triggering the
1191          * doorbell and transferred the ownership of PCC to platform. So this
1192          * avoids triggering an unnecessary doorbell and more importantly before
1193          * triggering the doorbell it makes sure that the PCC channel ownership
1194          * is still with OSPM.
1195          *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1196          * there was a pcc CMD_READ waiting on down_write and it steals the lock
1197          * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1198          * case during a CMD_READ and if there are pending writes it delivers
1199          * the write command before servicing the read command
1200          */
1201         if (CPC_IN_PCC(desired_reg)) {
1202                 if (down_write_trylock(&pcc_data.pcc_lock)) {   /* BEGIN Phase-II */
1203                         /* Update only if there are pending write commands */
1204                         if (pcc_data.pending_pcc_write_cmd)
1205                                 send_pcc_cmd(CMD_WRITE);
1206                         up_write(&pcc_data.pcc_lock);           /* END Phase-II */
1207                 } else
1208                         /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1209                         wait_event(pcc_data.pcc_write_wait_q,
1210                                 cpc_desc->write_cmd_id != pcc_data.pcc_write_cnt);
1211
1212                 /* send_pcc_cmd updates the status in case of failure */
1213                 ret = cpc_desc->write_cmd_status;
1214         }
1215         return ret;
1216 }
1217 EXPORT_SYMBOL_GPL(cppc_set_perf);
1218
1219 /**
1220  * cppc_get_transition_latency - returns frequency transition latency in ns
1221  *
1222  * ACPI CPPC does not explicitly specifiy how a platform can specify the
1223  * transition latency for perfromance change requests. The closest we have
1224  * is the timing information from the PCCT tables which provides the info
1225  * on the number and frequency of PCC commands the platform can handle.
1226  */
1227 unsigned int cppc_get_transition_latency(int cpu_num)
1228 {
1229         /*
1230          * Expected transition latency is based on the PCCT timing values
1231          * Below are definition from ACPI spec:
1232          * pcc_nominal- Expected latency to process a command, in microseconds
1233          * pcc_mpar   - The maximum number of periodic requests that the subspace
1234          *              channel can support, reported in commands per minute. 0
1235          *              indicates no limitation.
1236          * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1237          *              completion of a command before issuing the next command,
1238          *              in microseconds.
1239          */
1240         unsigned int latency_ns = 0;
1241         struct cpc_desc *cpc_desc;
1242         struct cpc_register_resource *desired_reg;
1243
1244         cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1245         if (!cpc_desc)
1246                 return CPUFREQ_ETERNAL;
1247
1248         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1249         if (!CPC_IN_PCC(desired_reg))
1250                 return CPUFREQ_ETERNAL;
1251
1252         if (pcc_data.pcc_mpar)
1253                 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_data.pcc_mpar);
1254
1255         latency_ns = max(latency_ns, pcc_data.pcc_nominal * 1000);
1256         latency_ns = max(latency_ns, pcc_data.pcc_mrtt * 1000);
1257
1258         return latency_ns;
1259 }
1260 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);