]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/acpi/osl.c
ALSA: usb-audio: add DSD support for new Amanero PID
[karo-tx-linux.git] / drivers / acpi / osl.c
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23  *
24  */
25
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/interrupt.h>
33 #include <linux/kmod.h>
34 #include <linux/delay.h>
35 #include <linux/workqueue.h>
36 #include <linux/nmi.h>
37 #include <linux/acpi.h>
38 #include <linux/efi.h>
39 #include <linux/ioport.h>
40 #include <linux/list.h>
41 #include <linux/jiffies.h>
42 #include <linux/semaphore.h>
43
44 #include <asm/io.h>
45 #include <linux/uaccess.h>
46 #include <linux/io-64-nonatomic-lo-hi.h>
47
48 #include "internal.h"
49
50 #define _COMPONENT              ACPI_OS_SERVICES
51 ACPI_MODULE_NAME("osl");
52
53 struct acpi_os_dpc {
54         acpi_osd_exec_callback function;
55         void *context;
56         struct work_struct work;
57 };
58
59 #ifdef ENABLE_DEBUGGER
60 #include <linux/kdb.h>
61
62 /* stuff for debugger support */
63 int acpi_in_debugger;
64 EXPORT_SYMBOL(acpi_in_debugger);
65 #endif                          /*ENABLE_DEBUGGER */
66
67 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
68                                       u32 pm1b_ctrl);
69 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
70                                       u32 val_b);
71
72 static acpi_osd_handler acpi_irq_handler;
73 static void *acpi_irq_context;
74 static struct workqueue_struct *kacpid_wq;
75 static struct workqueue_struct *kacpi_notify_wq;
76 static struct workqueue_struct *kacpi_hotplug_wq;
77 static bool acpi_os_initialized;
78 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
79 bool acpi_permanent_mmap = false;
80
81 /*
82  * This list of permanent mappings is for memory that may be accessed from
83  * interrupt context, where we can't do the ioremap().
84  */
85 struct acpi_ioremap {
86         struct list_head list;
87         void __iomem *virt;
88         acpi_physical_address phys;
89         acpi_size size;
90         unsigned long refcount;
91 };
92
93 static LIST_HEAD(acpi_ioremaps);
94 static DEFINE_MUTEX(acpi_ioremap_lock);
95
96 static void __init acpi_request_region (struct acpi_generic_address *gas,
97         unsigned int length, char *desc)
98 {
99         u64 addr;
100
101         /* Handle possible alignment issues */
102         memcpy(&addr, &gas->address, sizeof(addr));
103         if (!addr || !length)
104                 return;
105
106         /* Resources are never freed */
107         if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
108                 request_region(addr, length, desc);
109         else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
110                 request_mem_region(addr, length, desc);
111 }
112
113 static int __init acpi_reserve_resources(void)
114 {
115         acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
116                 "ACPI PM1a_EVT_BLK");
117
118         acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
119                 "ACPI PM1b_EVT_BLK");
120
121         acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
122                 "ACPI PM1a_CNT_BLK");
123
124         acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
125                 "ACPI PM1b_CNT_BLK");
126
127         if (acpi_gbl_FADT.pm_timer_length == 4)
128                 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
129
130         acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
131                 "ACPI PM2_CNT_BLK");
132
133         /* Length of GPE blocks must be a non-negative multiple of 2 */
134
135         if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
136                 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
137                                acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
138
139         if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
140                 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
141                                acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
142
143         return 0;
144 }
145 fs_initcall_sync(acpi_reserve_resources);
146
147 void acpi_os_printf(const char *fmt, ...)
148 {
149         va_list args;
150         va_start(args, fmt);
151         acpi_os_vprintf(fmt, args);
152         va_end(args);
153 }
154 EXPORT_SYMBOL(acpi_os_printf);
155
156 void acpi_os_vprintf(const char *fmt, va_list args)
157 {
158         static char buffer[512];
159
160         vsprintf(buffer, fmt, args);
161
162 #ifdef ENABLE_DEBUGGER
163         if (acpi_in_debugger) {
164                 kdb_printf("%s", buffer);
165         } else {
166                 if (printk_get_level(buffer))
167                         printk("%s", buffer);
168                 else
169                         printk(KERN_CONT "%s", buffer);
170         }
171 #else
172         if (acpi_debugger_write_log(buffer) < 0) {
173                 if (printk_get_level(buffer))
174                         printk("%s", buffer);
175                 else
176                         printk(KERN_CONT "%s", buffer);
177         }
178 #endif
179 }
180
181 #ifdef CONFIG_KEXEC
182 static unsigned long acpi_rsdp;
183 static int __init setup_acpi_rsdp(char *arg)
184 {
185         return kstrtoul(arg, 16, &acpi_rsdp);
186 }
187 early_param("acpi_rsdp", setup_acpi_rsdp);
188 #endif
189
190 acpi_physical_address __init acpi_os_get_root_pointer(void)
191 {
192         acpi_physical_address pa = 0;
193
194 #ifdef CONFIG_KEXEC
195         if (acpi_rsdp)
196                 return acpi_rsdp;
197 #endif
198
199         if (efi_enabled(EFI_CONFIG_TABLES)) {
200                 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
201                         return efi.acpi20;
202                 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
203                         return efi.acpi;
204                 pr_err(PREFIX "System description tables not found\n");
205         } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
206                 acpi_find_root_pointer(&pa);
207         }
208
209         return pa;
210 }
211
212 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
213 static struct acpi_ioremap *
214 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
215 {
216         struct acpi_ioremap *map;
217
218         list_for_each_entry_rcu(map, &acpi_ioremaps, list)
219                 if (map->phys <= phys &&
220                     phys + size <= map->phys + map->size)
221                         return map;
222
223         return NULL;
224 }
225
226 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
227 static void __iomem *
228 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
229 {
230         struct acpi_ioremap *map;
231
232         map = acpi_map_lookup(phys, size);
233         if (map)
234                 return map->virt + (phys - map->phys);
235
236         return NULL;
237 }
238
239 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
240 {
241         struct acpi_ioremap *map;
242         void __iomem *virt = NULL;
243
244         mutex_lock(&acpi_ioremap_lock);
245         map = acpi_map_lookup(phys, size);
246         if (map) {
247                 virt = map->virt + (phys - map->phys);
248                 map->refcount++;
249         }
250         mutex_unlock(&acpi_ioremap_lock);
251         return virt;
252 }
253 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
254
255 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
256 static struct acpi_ioremap *
257 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
258 {
259         struct acpi_ioremap *map;
260
261         list_for_each_entry_rcu(map, &acpi_ioremaps, list)
262                 if (map->virt <= virt &&
263                     virt + size <= map->virt + map->size)
264                         return map;
265
266         return NULL;
267 }
268
269 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
270 /* ioremap will take care of cache attributes */
271 #define should_use_kmap(pfn)   0
272 #else
273 #define should_use_kmap(pfn)   page_is_ram(pfn)
274 #endif
275
276 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
277 {
278         unsigned long pfn;
279
280         pfn = pg_off >> PAGE_SHIFT;
281         if (should_use_kmap(pfn)) {
282                 if (pg_sz > PAGE_SIZE)
283                         return NULL;
284                 return (void __iomem __force *)kmap(pfn_to_page(pfn));
285         } else
286                 return acpi_os_ioremap(pg_off, pg_sz);
287 }
288
289 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
290 {
291         unsigned long pfn;
292
293         pfn = pg_off >> PAGE_SHIFT;
294         if (should_use_kmap(pfn))
295                 kunmap(pfn_to_page(pfn));
296         else
297                 iounmap(vaddr);
298 }
299
300 /**
301  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
302  * @phys: Start of the physical address range to map.
303  * @size: Size of the physical address range to map.
304  *
305  * Look up the given physical address range in the list of existing ACPI memory
306  * mappings.  If found, get a reference to it and return a pointer to it (its
307  * virtual address).  If not found, map it, add it to that list and return a
308  * pointer to it.
309  *
310  * During early init (when acpi_permanent_mmap has not been set yet) this
311  * routine simply calls __acpi_map_table() to get the job done.
312  */
313 void __iomem *__ref
314 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
315 {
316         struct acpi_ioremap *map;
317         void __iomem *virt;
318         acpi_physical_address pg_off;
319         acpi_size pg_sz;
320
321         if (phys > ULONG_MAX) {
322                 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
323                 return NULL;
324         }
325
326         if (!acpi_permanent_mmap)
327                 return __acpi_map_table((unsigned long)phys, size);
328
329         mutex_lock(&acpi_ioremap_lock);
330         /* Check if there's a suitable mapping already. */
331         map = acpi_map_lookup(phys, size);
332         if (map) {
333                 map->refcount++;
334                 goto out;
335         }
336
337         map = kzalloc(sizeof(*map), GFP_KERNEL);
338         if (!map) {
339                 mutex_unlock(&acpi_ioremap_lock);
340                 return NULL;
341         }
342
343         pg_off = round_down(phys, PAGE_SIZE);
344         pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
345         virt = acpi_map(pg_off, pg_sz);
346         if (!virt) {
347                 mutex_unlock(&acpi_ioremap_lock);
348                 kfree(map);
349                 return NULL;
350         }
351
352         INIT_LIST_HEAD(&map->list);
353         map->virt = virt;
354         map->phys = pg_off;
355         map->size = pg_sz;
356         map->refcount = 1;
357
358         list_add_tail_rcu(&map->list, &acpi_ioremaps);
359
360 out:
361         mutex_unlock(&acpi_ioremap_lock);
362         return map->virt + (phys - map->phys);
363 }
364 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
365
366 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
367 {
368         return (void *)acpi_os_map_iomem(phys, size);
369 }
370 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
371
372 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
373 {
374         if (!--map->refcount)
375                 list_del_rcu(&map->list);
376 }
377
378 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
379 {
380         if (!map->refcount) {
381                 synchronize_rcu_expedited();
382                 acpi_unmap(map->phys, map->virt);
383                 kfree(map);
384         }
385 }
386
387 /**
388  * acpi_os_unmap_iomem - Drop a memory mapping reference.
389  * @virt: Start of the address range to drop a reference to.
390  * @size: Size of the address range to drop a reference to.
391  *
392  * Look up the given virtual address range in the list of existing ACPI memory
393  * mappings, drop a reference to it and unmap it if there are no more active
394  * references to it.
395  *
396  * During early init (when acpi_permanent_mmap has not been set yet) this
397  * routine simply calls __acpi_unmap_table() to get the job done.  Since
398  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
399  * here.
400  */
401 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
402 {
403         struct acpi_ioremap *map;
404
405         if (!acpi_permanent_mmap) {
406                 __acpi_unmap_table(virt, size);
407                 return;
408         }
409
410         mutex_lock(&acpi_ioremap_lock);
411         map = acpi_map_lookup_virt(virt, size);
412         if (!map) {
413                 mutex_unlock(&acpi_ioremap_lock);
414                 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
415                 return;
416         }
417         acpi_os_drop_map_ref(map);
418         mutex_unlock(&acpi_ioremap_lock);
419
420         acpi_os_map_cleanup(map);
421 }
422 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
423
424 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
425 {
426         return acpi_os_unmap_iomem((void __iomem *)virt, size);
427 }
428 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
429
430 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
431 {
432         u64 addr;
433         void __iomem *virt;
434
435         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
436                 return 0;
437
438         /* Handle possible alignment issues */
439         memcpy(&addr, &gas->address, sizeof(addr));
440         if (!addr || !gas->bit_width)
441                 return -EINVAL;
442
443         virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
444         if (!virt)
445                 return -EIO;
446
447         return 0;
448 }
449 EXPORT_SYMBOL(acpi_os_map_generic_address);
450
451 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
452 {
453         u64 addr;
454         struct acpi_ioremap *map;
455
456         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
457                 return;
458
459         /* Handle possible alignment issues */
460         memcpy(&addr, &gas->address, sizeof(addr));
461         if (!addr || !gas->bit_width)
462                 return;
463
464         mutex_lock(&acpi_ioremap_lock);
465         map = acpi_map_lookup(addr, gas->bit_width / 8);
466         if (!map) {
467                 mutex_unlock(&acpi_ioremap_lock);
468                 return;
469         }
470         acpi_os_drop_map_ref(map);
471         mutex_unlock(&acpi_ioremap_lock);
472
473         acpi_os_map_cleanup(map);
474 }
475 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
476
477 #ifdef ACPI_FUTURE_USAGE
478 acpi_status
479 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
480 {
481         if (!phys || !virt)
482                 return AE_BAD_PARAMETER;
483
484         *phys = virt_to_phys(virt);
485
486         return AE_OK;
487 }
488 #endif
489
490 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
491 static bool acpi_rev_override;
492
493 int __init acpi_rev_override_setup(char *str)
494 {
495         acpi_rev_override = true;
496         return 1;
497 }
498 __setup("acpi_rev_override", acpi_rev_override_setup);
499 #else
500 #define acpi_rev_override       false
501 #endif
502
503 #define ACPI_MAX_OVERRIDE_LEN 100
504
505 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
506
507 acpi_status
508 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
509                             acpi_string *new_val)
510 {
511         if (!init_val || !new_val)
512                 return AE_BAD_PARAMETER;
513
514         *new_val = NULL;
515         if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
516                 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
517                        acpi_os_name);
518                 *new_val = acpi_os_name;
519         }
520
521         if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
522                 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
523                 *new_val = (char *)5;
524         }
525
526         return AE_OK;
527 }
528
529 static irqreturn_t acpi_irq(int irq, void *dev_id)
530 {
531         u32 handled;
532
533         handled = (*acpi_irq_handler) (acpi_irq_context);
534
535         if (handled) {
536                 acpi_irq_handled++;
537                 return IRQ_HANDLED;
538         } else {
539                 acpi_irq_not_handled++;
540                 return IRQ_NONE;
541         }
542 }
543
544 acpi_status
545 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
546                                   void *context)
547 {
548         unsigned int irq;
549
550         acpi_irq_stats_init();
551
552         /*
553          * ACPI interrupts different from the SCI in our copy of the FADT are
554          * not supported.
555          */
556         if (gsi != acpi_gbl_FADT.sci_interrupt)
557                 return AE_BAD_PARAMETER;
558
559         if (acpi_irq_handler)
560                 return AE_ALREADY_ACQUIRED;
561
562         if (acpi_gsi_to_irq(gsi, &irq) < 0) {
563                 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
564                        gsi);
565                 return AE_OK;
566         }
567
568         acpi_irq_handler = handler;
569         acpi_irq_context = context;
570         if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
571                 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
572                 acpi_irq_handler = NULL;
573                 return AE_NOT_ACQUIRED;
574         }
575         acpi_sci_irq = irq;
576
577         return AE_OK;
578 }
579
580 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
581 {
582         if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
583                 return AE_BAD_PARAMETER;
584
585         free_irq(acpi_sci_irq, acpi_irq);
586         acpi_irq_handler = NULL;
587         acpi_sci_irq = INVALID_ACPI_IRQ;
588
589         return AE_OK;
590 }
591
592 /*
593  * Running in interpreter thread context, safe to sleep
594  */
595
596 void acpi_os_sleep(u64 ms)
597 {
598         msleep(ms);
599 }
600
601 void acpi_os_stall(u32 us)
602 {
603         while (us) {
604                 u32 delay = 1000;
605
606                 if (delay > us)
607                         delay = us;
608                 udelay(delay);
609                 touch_nmi_watchdog();
610                 us -= delay;
611         }
612 }
613
614 /*
615  * Support ACPI 3.0 AML Timer operand
616  * Returns 64-bit free-running, monotonically increasing timer
617  * with 100ns granularity
618  */
619 u64 acpi_os_get_timer(void)
620 {
621         u64 time_ns = ktime_to_ns(ktime_get());
622         do_div(time_ns, 100);
623         return time_ns;
624 }
625
626 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
627 {
628         u32 dummy;
629
630         if (!value)
631                 value = &dummy;
632
633         *value = 0;
634         if (width <= 8) {
635                 *(u8 *) value = inb(port);
636         } else if (width <= 16) {
637                 *(u16 *) value = inw(port);
638         } else if (width <= 32) {
639                 *(u32 *) value = inl(port);
640         } else {
641                 BUG();
642         }
643
644         return AE_OK;
645 }
646
647 EXPORT_SYMBOL(acpi_os_read_port);
648
649 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
650 {
651         if (width <= 8) {
652                 outb(value, port);
653         } else if (width <= 16) {
654                 outw(value, port);
655         } else if (width <= 32) {
656                 outl(value, port);
657         } else {
658                 BUG();
659         }
660
661         return AE_OK;
662 }
663
664 EXPORT_SYMBOL(acpi_os_write_port);
665
666 acpi_status
667 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
668 {
669         void __iomem *virt_addr;
670         unsigned int size = width / 8;
671         bool unmap = false;
672         u64 dummy;
673
674         rcu_read_lock();
675         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
676         if (!virt_addr) {
677                 rcu_read_unlock();
678                 virt_addr = acpi_os_ioremap(phys_addr, size);
679                 if (!virt_addr)
680                         return AE_BAD_ADDRESS;
681                 unmap = true;
682         }
683
684         if (!value)
685                 value = &dummy;
686
687         switch (width) {
688         case 8:
689                 *(u8 *) value = readb(virt_addr);
690                 break;
691         case 16:
692                 *(u16 *) value = readw(virt_addr);
693                 break;
694         case 32:
695                 *(u32 *) value = readl(virt_addr);
696                 break;
697         case 64:
698                 *(u64 *) value = readq(virt_addr);
699                 break;
700         default:
701                 BUG();
702         }
703
704         if (unmap)
705                 iounmap(virt_addr);
706         else
707                 rcu_read_unlock();
708
709         return AE_OK;
710 }
711
712 acpi_status
713 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
714 {
715         void __iomem *virt_addr;
716         unsigned int size = width / 8;
717         bool unmap = false;
718
719         rcu_read_lock();
720         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
721         if (!virt_addr) {
722                 rcu_read_unlock();
723                 virt_addr = acpi_os_ioremap(phys_addr, size);
724                 if (!virt_addr)
725                         return AE_BAD_ADDRESS;
726                 unmap = true;
727         }
728
729         switch (width) {
730         case 8:
731                 writeb(value, virt_addr);
732                 break;
733         case 16:
734                 writew(value, virt_addr);
735                 break;
736         case 32:
737                 writel(value, virt_addr);
738                 break;
739         case 64:
740                 writeq(value, virt_addr);
741                 break;
742         default:
743                 BUG();
744         }
745
746         if (unmap)
747                 iounmap(virt_addr);
748         else
749                 rcu_read_unlock();
750
751         return AE_OK;
752 }
753
754 acpi_status
755 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
756                                u64 *value, u32 width)
757 {
758         int result, size;
759         u32 value32;
760
761         if (!value)
762                 return AE_BAD_PARAMETER;
763
764         switch (width) {
765         case 8:
766                 size = 1;
767                 break;
768         case 16:
769                 size = 2;
770                 break;
771         case 32:
772                 size = 4;
773                 break;
774         default:
775                 return AE_ERROR;
776         }
777
778         result = raw_pci_read(pci_id->segment, pci_id->bus,
779                                 PCI_DEVFN(pci_id->device, pci_id->function),
780                                 reg, size, &value32);
781         *value = value32;
782
783         return (result ? AE_ERROR : AE_OK);
784 }
785
786 acpi_status
787 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
788                                 u64 value, u32 width)
789 {
790         int result, size;
791
792         switch (width) {
793         case 8:
794                 size = 1;
795                 break;
796         case 16:
797                 size = 2;
798                 break;
799         case 32:
800                 size = 4;
801                 break;
802         default:
803                 return AE_ERROR;
804         }
805
806         result = raw_pci_write(pci_id->segment, pci_id->bus,
807                                 PCI_DEVFN(pci_id->device, pci_id->function),
808                                 reg, size, value);
809
810         return (result ? AE_ERROR : AE_OK);
811 }
812
813 static void acpi_os_execute_deferred(struct work_struct *work)
814 {
815         struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
816
817         dpc->function(dpc->context);
818         kfree(dpc);
819 }
820
821 #ifdef CONFIG_ACPI_DEBUGGER
822 static struct acpi_debugger acpi_debugger;
823 static bool acpi_debugger_initialized;
824
825 int acpi_register_debugger(struct module *owner,
826                            const struct acpi_debugger_ops *ops)
827 {
828         int ret = 0;
829
830         mutex_lock(&acpi_debugger.lock);
831         if (acpi_debugger.ops) {
832                 ret = -EBUSY;
833                 goto err_lock;
834         }
835
836         acpi_debugger.owner = owner;
837         acpi_debugger.ops = ops;
838
839 err_lock:
840         mutex_unlock(&acpi_debugger.lock);
841         return ret;
842 }
843 EXPORT_SYMBOL(acpi_register_debugger);
844
845 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
846 {
847         mutex_lock(&acpi_debugger.lock);
848         if (ops == acpi_debugger.ops) {
849                 acpi_debugger.ops = NULL;
850                 acpi_debugger.owner = NULL;
851         }
852         mutex_unlock(&acpi_debugger.lock);
853 }
854 EXPORT_SYMBOL(acpi_unregister_debugger);
855
856 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
857 {
858         int ret;
859         int (*func)(acpi_osd_exec_callback, void *);
860         struct module *owner;
861
862         if (!acpi_debugger_initialized)
863                 return -ENODEV;
864         mutex_lock(&acpi_debugger.lock);
865         if (!acpi_debugger.ops) {
866                 ret = -ENODEV;
867                 goto err_lock;
868         }
869         if (!try_module_get(acpi_debugger.owner)) {
870                 ret = -ENODEV;
871                 goto err_lock;
872         }
873         func = acpi_debugger.ops->create_thread;
874         owner = acpi_debugger.owner;
875         mutex_unlock(&acpi_debugger.lock);
876
877         ret = func(function, context);
878
879         mutex_lock(&acpi_debugger.lock);
880         module_put(owner);
881 err_lock:
882         mutex_unlock(&acpi_debugger.lock);
883         return ret;
884 }
885
886 ssize_t acpi_debugger_write_log(const char *msg)
887 {
888         ssize_t ret;
889         ssize_t (*func)(const char *);
890         struct module *owner;
891
892         if (!acpi_debugger_initialized)
893                 return -ENODEV;
894         mutex_lock(&acpi_debugger.lock);
895         if (!acpi_debugger.ops) {
896                 ret = -ENODEV;
897                 goto err_lock;
898         }
899         if (!try_module_get(acpi_debugger.owner)) {
900                 ret = -ENODEV;
901                 goto err_lock;
902         }
903         func = acpi_debugger.ops->write_log;
904         owner = acpi_debugger.owner;
905         mutex_unlock(&acpi_debugger.lock);
906
907         ret = func(msg);
908
909         mutex_lock(&acpi_debugger.lock);
910         module_put(owner);
911 err_lock:
912         mutex_unlock(&acpi_debugger.lock);
913         return ret;
914 }
915
916 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
917 {
918         ssize_t ret;
919         ssize_t (*func)(char *, size_t);
920         struct module *owner;
921
922         if (!acpi_debugger_initialized)
923                 return -ENODEV;
924         mutex_lock(&acpi_debugger.lock);
925         if (!acpi_debugger.ops) {
926                 ret = -ENODEV;
927                 goto err_lock;
928         }
929         if (!try_module_get(acpi_debugger.owner)) {
930                 ret = -ENODEV;
931                 goto err_lock;
932         }
933         func = acpi_debugger.ops->read_cmd;
934         owner = acpi_debugger.owner;
935         mutex_unlock(&acpi_debugger.lock);
936
937         ret = func(buffer, buffer_length);
938
939         mutex_lock(&acpi_debugger.lock);
940         module_put(owner);
941 err_lock:
942         mutex_unlock(&acpi_debugger.lock);
943         return ret;
944 }
945
946 int acpi_debugger_wait_command_ready(void)
947 {
948         int ret;
949         int (*func)(bool, char *, size_t);
950         struct module *owner;
951
952         if (!acpi_debugger_initialized)
953                 return -ENODEV;
954         mutex_lock(&acpi_debugger.lock);
955         if (!acpi_debugger.ops) {
956                 ret = -ENODEV;
957                 goto err_lock;
958         }
959         if (!try_module_get(acpi_debugger.owner)) {
960                 ret = -ENODEV;
961                 goto err_lock;
962         }
963         func = acpi_debugger.ops->wait_command_ready;
964         owner = acpi_debugger.owner;
965         mutex_unlock(&acpi_debugger.lock);
966
967         ret = func(acpi_gbl_method_executing,
968                    acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
969
970         mutex_lock(&acpi_debugger.lock);
971         module_put(owner);
972 err_lock:
973         mutex_unlock(&acpi_debugger.lock);
974         return ret;
975 }
976
977 int acpi_debugger_notify_command_complete(void)
978 {
979         int ret;
980         int (*func)(void);
981         struct module *owner;
982
983         if (!acpi_debugger_initialized)
984                 return -ENODEV;
985         mutex_lock(&acpi_debugger.lock);
986         if (!acpi_debugger.ops) {
987                 ret = -ENODEV;
988                 goto err_lock;
989         }
990         if (!try_module_get(acpi_debugger.owner)) {
991                 ret = -ENODEV;
992                 goto err_lock;
993         }
994         func = acpi_debugger.ops->notify_command_complete;
995         owner = acpi_debugger.owner;
996         mutex_unlock(&acpi_debugger.lock);
997
998         ret = func();
999
1000         mutex_lock(&acpi_debugger.lock);
1001         module_put(owner);
1002 err_lock:
1003         mutex_unlock(&acpi_debugger.lock);
1004         return ret;
1005 }
1006
1007 int __init acpi_debugger_init(void)
1008 {
1009         mutex_init(&acpi_debugger.lock);
1010         acpi_debugger_initialized = true;
1011         return 0;
1012 }
1013 #endif
1014
1015 /*******************************************************************************
1016  *
1017  * FUNCTION:    acpi_os_execute
1018  *
1019  * PARAMETERS:  Type               - Type of the callback
1020  *              Function           - Function to be executed
1021  *              Context            - Function parameters
1022  *
1023  * RETURN:      Status
1024  *
1025  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1026  *              immediately executes function on a separate thread.
1027  *
1028  ******************************************************************************/
1029
1030 acpi_status acpi_os_execute(acpi_execute_type type,
1031                             acpi_osd_exec_callback function, void *context)
1032 {
1033         acpi_status status = AE_OK;
1034         struct acpi_os_dpc *dpc;
1035         struct workqueue_struct *queue;
1036         int ret;
1037         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1038                           "Scheduling function [%p(%p)] for deferred execution.\n",
1039                           function, context));
1040
1041         if (type == OSL_DEBUGGER_MAIN_THREAD) {
1042                 ret = acpi_debugger_create_thread(function, context);
1043                 if (ret) {
1044                         pr_err("Call to kthread_create() failed.\n");
1045                         status = AE_ERROR;
1046                 }
1047                 goto out_thread;
1048         }
1049
1050         /*
1051          * Allocate/initialize DPC structure.  Note that this memory will be
1052          * freed by the callee.  The kernel handles the work_struct list  in a
1053          * way that allows us to also free its memory inside the callee.
1054          * Because we may want to schedule several tasks with different
1055          * parameters we can't use the approach some kernel code uses of
1056          * having a static work_struct.
1057          */
1058
1059         dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1060         if (!dpc)
1061                 return AE_NO_MEMORY;
1062
1063         dpc->function = function;
1064         dpc->context = context;
1065
1066         /*
1067          * To prevent lockdep from complaining unnecessarily, make sure that
1068          * there is a different static lockdep key for each workqueue by using
1069          * INIT_WORK() for each of them separately.
1070          */
1071         if (type == OSL_NOTIFY_HANDLER) {
1072                 queue = kacpi_notify_wq;
1073                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1074         } else if (type == OSL_GPE_HANDLER) {
1075                 queue = kacpid_wq;
1076                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1077         } else {
1078                 pr_err("Unsupported os_execute type %d.\n", type);
1079                 status = AE_ERROR;
1080         }
1081
1082         if (ACPI_FAILURE(status))
1083                 goto err_workqueue;
1084
1085         /*
1086          * On some machines, a software-initiated SMI causes corruption unless
1087          * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1088          * typically it's done in GPE-related methods that are run via
1089          * workqueues, so we can avoid the known corruption cases by always
1090          * queueing on CPU 0.
1091          */
1092         ret = queue_work_on(0, queue, &dpc->work);
1093         if (!ret) {
1094                 printk(KERN_ERR PREFIX
1095                           "Call to queue_work() failed.\n");
1096                 status = AE_ERROR;
1097         }
1098 err_workqueue:
1099         if (ACPI_FAILURE(status))
1100                 kfree(dpc);
1101 out_thread:
1102         return status;
1103 }
1104 EXPORT_SYMBOL(acpi_os_execute);
1105
1106 void acpi_os_wait_events_complete(void)
1107 {
1108         /*
1109          * Make sure the GPE handler or the fixed event handler is not used
1110          * on another CPU after removal.
1111          */
1112         if (acpi_sci_irq_valid())
1113                 synchronize_hardirq(acpi_sci_irq);
1114         flush_workqueue(kacpid_wq);
1115         flush_workqueue(kacpi_notify_wq);
1116 }
1117
1118 struct acpi_hp_work {
1119         struct work_struct work;
1120         struct acpi_device *adev;
1121         u32 src;
1122 };
1123
1124 static void acpi_hotplug_work_fn(struct work_struct *work)
1125 {
1126         struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1127
1128         acpi_os_wait_events_complete();
1129         acpi_device_hotplug(hpw->adev, hpw->src);
1130         kfree(hpw);
1131 }
1132
1133 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1134 {
1135         struct acpi_hp_work *hpw;
1136
1137         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1138                   "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1139                   adev, src));
1140
1141         hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1142         if (!hpw)
1143                 return AE_NO_MEMORY;
1144
1145         INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1146         hpw->adev = adev;
1147         hpw->src = src;
1148         /*
1149          * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1150          * the hotplug code may call driver .remove() functions, which may
1151          * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1152          * these workqueues.
1153          */
1154         if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1155                 kfree(hpw);
1156                 return AE_ERROR;
1157         }
1158         return AE_OK;
1159 }
1160
1161 bool acpi_queue_hotplug_work(struct work_struct *work)
1162 {
1163         return queue_work(kacpi_hotplug_wq, work);
1164 }
1165
1166 acpi_status
1167 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1168 {
1169         struct semaphore *sem = NULL;
1170
1171         sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1172         if (!sem)
1173                 return AE_NO_MEMORY;
1174
1175         sema_init(sem, initial_units);
1176
1177         *handle = (acpi_handle *) sem;
1178
1179         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1180                           *handle, initial_units));
1181
1182         return AE_OK;
1183 }
1184
1185 /*
1186  * TODO: A better way to delete semaphores?  Linux doesn't have a
1187  * 'delete_semaphore()' function -- may result in an invalid
1188  * pointer dereference for non-synchronized consumers.  Should
1189  * we at least check for blocked threads and signal/cancel them?
1190  */
1191
1192 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1193 {
1194         struct semaphore *sem = (struct semaphore *)handle;
1195
1196         if (!sem)
1197                 return AE_BAD_PARAMETER;
1198
1199         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1200
1201         BUG_ON(!list_empty(&sem->wait_list));
1202         kfree(sem);
1203         sem = NULL;
1204
1205         return AE_OK;
1206 }
1207
1208 /*
1209  * TODO: Support for units > 1?
1210  */
1211 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1212 {
1213         acpi_status status = AE_OK;
1214         struct semaphore *sem = (struct semaphore *)handle;
1215         long jiffies;
1216         int ret = 0;
1217
1218         if (!acpi_os_initialized)
1219                 return AE_OK;
1220
1221         if (!sem || (units < 1))
1222                 return AE_BAD_PARAMETER;
1223
1224         if (units > 1)
1225                 return AE_SUPPORT;
1226
1227         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1228                           handle, units, timeout));
1229
1230         if (timeout == ACPI_WAIT_FOREVER)
1231                 jiffies = MAX_SCHEDULE_TIMEOUT;
1232         else
1233                 jiffies = msecs_to_jiffies(timeout);
1234
1235         ret = down_timeout(sem, jiffies);
1236         if (ret)
1237                 status = AE_TIME;
1238
1239         if (ACPI_FAILURE(status)) {
1240                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1241                                   "Failed to acquire semaphore[%p|%d|%d], %s",
1242                                   handle, units, timeout,
1243                                   acpi_format_exception(status)));
1244         } else {
1245                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1246                                   "Acquired semaphore[%p|%d|%d]", handle,
1247                                   units, timeout));
1248         }
1249
1250         return status;
1251 }
1252
1253 /*
1254  * TODO: Support for units > 1?
1255  */
1256 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1257 {
1258         struct semaphore *sem = (struct semaphore *)handle;
1259
1260         if (!acpi_os_initialized)
1261                 return AE_OK;
1262
1263         if (!sem || (units < 1))
1264                 return AE_BAD_PARAMETER;
1265
1266         if (units > 1)
1267                 return AE_SUPPORT;
1268
1269         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1270                           units));
1271
1272         up(sem);
1273
1274         return AE_OK;
1275 }
1276
1277 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1278 {
1279 #ifdef ENABLE_DEBUGGER
1280         if (acpi_in_debugger) {
1281                 u32 chars;
1282
1283                 kdb_read(buffer, buffer_length);
1284
1285                 /* remove the CR kdb includes */
1286                 chars = strlen(buffer) - 1;
1287                 buffer[chars] = '\0';
1288         }
1289 #else
1290         int ret;
1291
1292         ret = acpi_debugger_read_cmd(buffer, buffer_length);
1293         if (ret < 0)
1294                 return AE_ERROR;
1295         if (bytes_read)
1296                 *bytes_read = ret;
1297 #endif
1298
1299         return AE_OK;
1300 }
1301 EXPORT_SYMBOL(acpi_os_get_line);
1302
1303 acpi_status acpi_os_wait_command_ready(void)
1304 {
1305         int ret;
1306
1307         ret = acpi_debugger_wait_command_ready();
1308         if (ret < 0)
1309                 return AE_ERROR;
1310         return AE_OK;
1311 }
1312
1313 acpi_status acpi_os_notify_command_complete(void)
1314 {
1315         int ret;
1316
1317         ret = acpi_debugger_notify_command_complete();
1318         if (ret < 0)
1319                 return AE_ERROR;
1320         return AE_OK;
1321 }
1322
1323 acpi_status acpi_os_signal(u32 function, void *info)
1324 {
1325         switch (function) {
1326         case ACPI_SIGNAL_FATAL:
1327                 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1328                 break;
1329         case ACPI_SIGNAL_BREAKPOINT:
1330                 /*
1331                  * AML Breakpoint
1332                  * ACPI spec. says to treat it as a NOP unless
1333                  * you are debugging.  So if/when we integrate
1334                  * AML debugger into the kernel debugger its
1335                  * hook will go here.  But until then it is
1336                  * not useful to print anything on breakpoints.
1337                  */
1338                 break;
1339         default:
1340                 break;
1341         }
1342
1343         return AE_OK;
1344 }
1345
1346 static int __init acpi_os_name_setup(char *str)
1347 {
1348         char *p = acpi_os_name;
1349         int count = ACPI_MAX_OVERRIDE_LEN - 1;
1350
1351         if (!str || !*str)
1352                 return 0;
1353
1354         for (; count-- && *str; str++) {
1355                 if (isalnum(*str) || *str == ' ' || *str == ':')
1356                         *p++ = *str;
1357                 else if (*str == '\'' || *str == '"')
1358                         continue;
1359                 else
1360                         break;
1361         }
1362         *p = 0;
1363
1364         return 1;
1365
1366 }
1367
1368 __setup("acpi_os_name=", acpi_os_name_setup);
1369
1370 /*
1371  * Disable the auto-serialization of named objects creation methods.
1372  *
1373  * This feature is enabled by default.  It marks the AML control methods
1374  * that contain the opcodes to create named objects as "Serialized".
1375  */
1376 static int __init acpi_no_auto_serialize_setup(char *str)
1377 {
1378         acpi_gbl_auto_serialize_methods = FALSE;
1379         pr_info("ACPI: auto-serialization disabled\n");
1380
1381         return 1;
1382 }
1383
1384 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1385
1386 /* Check of resource interference between native drivers and ACPI
1387  * OperationRegions (SystemIO and System Memory only).
1388  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1389  * in arbitrary AML code and can interfere with legacy drivers.
1390  * acpi_enforce_resources= can be set to:
1391  *
1392  *   - strict (default) (2)
1393  *     -> further driver trying to access the resources will not load
1394  *   - lax              (1)
1395  *     -> further driver trying to access the resources will load, but you
1396  *     get a system message that something might go wrong...
1397  *
1398  *   - no               (0)
1399  *     -> ACPI Operation Region resources will not be registered
1400  *
1401  */
1402 #define ENFORCE_RESOURCES_STRICT 2
1403 #define ENFORCE_RESOURCES_LAX    1
1404 #define ENFORCE_RESOURCES_NO     0
1405
1406 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1407
1408 static int __init acpi_enforce_resources_setup(char *str)
1409 {
1410         if (str == NULL || *str == '\0')
1411                 return 0;
1412
1413         if (!strcmp("strict", str))
1414                 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1415         else if (!strcmp("lax", str))
1416                 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1417         else if (!strcmp("no", str))
1418                 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1419
1420         return 1;
1421 }
1422
1423 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1424
1425 /* Check for resource conflicts between ACPI OperationRegions and native
1426  * drivers */
1427 int acpi_check_resource_conflict(const struct resource *res)
1428 {
1429         acpi_adr_space_type space_id;
1430         acpi_size length;
1431         u8 warn = 0;
1432         int clash = 0;
1433
1434         if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1435                 return 0;
1436         if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1437                 return 0;
1438
1439         if (res->flags & IORESOURCE_IO)
1440                 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1441         else
1442                 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1443
1444         length = resource_size(res);
1445         if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1446                 warn = 1;
1447         clash = acpi_check_address_range(space_id, res->start, length, warn);
1448
1449         if (clash) {
1450                 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1451                         if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1452                                 printk(KERN_NOTICE "ACPI: This conflict may"
1453                                        " cause random problems and system"
1454                                        " instability\n");
1455                         printk(KERN_INFO "ACPI: If an ACPI driver is available"
1456                                " for this device, you should use it instead of"
1457                                " the native driver\n");
1458                 }
1459                 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1460                         return -EBUSY;
1461         }
1462         return 0;
1463 }
1464 EXPORT_SYMBOL(acpi_check_resource_conflict);
1465
1466 int acpi_check_region(resource_size_t start, resource_size_t n,
1467                       const char *name)
1468 {
1469         struct resource res = {
1470                 .start = start,
1471                 .end   = start + n - 1,
1472                 .name  = name,
1473                 .flags = IORESOURCE_IO,
1474         };
1475
1476         return acpi_check_resource_conflict(&res);
1477 }
1478 EXPORT_SYMBOL(acpi_check_region);
1479
1480 /*
1481  * Let drivers know whether the resource checks are effective
1482  */
1483 int acpi_resources_are_enforced(void)
1484 {
1485         return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1486 }
1487 EXPORT_SYMBOL(acpi_resources_are_enforced);
1488
1489 /*
1490  * Deallocate the memory for a spinlock.
1491  */
1492 void acpi_os_delete_lock(acpi_spinlock handle)
1493 {
1494         ACPI_FREE(handle);
1495 }
1496
1497 /*
1498  * Acquire a spinlock.
1499  *
1500  * handle is a pointer to the spinlock_t.
1501  */
1502
1503 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1504 {
1505         acpi_cpu_flags flags;
1506         spin_lock_irqsave(lockp, flags);
1507         return flags;
1508 }
1509
1510 /*
1511  * Release a spinlock. See above.
1512  */
1513
1514 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1515 {
1516         spin_unlock_irqrestore(lockp, flags);
1517 }
1518
1519 #ifndef ACPI_USE_LOCAL_CACHE
1520
1521 /*******************************************************************************
1522  *
1523  * FUNCTION:    acpi_os_create_cache
1524  *
1525  * PARAMETERS:  name      - Ascii name for the cache
1526  *              size      - Size of each cached object
1527  *              depth     - Maximum depth of the cache (in objects) <ignored>
1528  *              cache     - Where the new cache object is returned
1529  *
1530  * RETURN:      status
1531  *
1532  * DESCRIPTION: Create a cache object
1533  *
1534  ******************************************************************************/
1535
1536 acpi_status
1537 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1538 {
1539         *cache = kmem_cache_create(name, size, 0, 0, NULL);
1540         if (*cache == NULL)
1541                 return AE_ERROR;
1542         else
1543                 return AE_OK;
1544 }
1545
1546 /*******************************************************************************
1547  *
1548  * FUNCTION:    acpi_os_purge_cache
1549  *
1550  * PARAMETERS:  Cache           - Handle to cache object
1551  *
1552  * RETURN:      Status
1553  *
1554  * DESCRIPTION: Free all objects within the requested cache.
1555  *
1556  ******************************************************************************/
1557
1558 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1559 {
1560         kmem_cache_shrink(cache);
1561         return (AE_OK);
1562 }
1563
1564 /*******************************************************************************
1565  *
1566  * FUNCTION:    acpi_os_delete_cache
1567  *
1568  * PARAMETERS:  Cache           - Handle to cache object
1569  *
1570  * RETURN:      Status
1571  *
1572  * DESCRIPTION: Free all objects within the requested cache and delete the
1573  *              cache object.
1574  *
1575  ******************************************************************************/
1576
1577 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1578 {
1579         kmem_cache_destroy(cache);
1580         return (AE_OK);
1581 }
1582
1583 /*******************************************************************************
1584  *
1585  * FUNCTION:    acpi_os_release_object
1586  *
1587  * PARAMETERS:  Cache       - Handle to cache object
1588  *              Object      - The object to be released
1589  *
1590  * RETURN:      None
1591  *
1592  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1593  *              the object is deleted.
1594  *
1595  ******************************************************************************/
1596
1597 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1598 {
1599         kmem_cache_free(cache, object);
1600         return (AE_OK);
1601 }
1602 #endif
1603
1604 static int __init acpi_no_static_ssdt_setup(char *s)
1605 {
1606         acpi_gbl_disable_ssdt_table_install = TRUE;
1607         pr_info("ACPI: static SSDT installation disabled\n");
1608
1609         return 0;
1610 }
1611
1612 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1613
1614 static int __init acpi_disable_return_repair(char *s)
1615 {
1616         printk(KERN_NOTICE PREFIX
1617                "ACPI: Predefined validation mechanism disabled\n");
1618         acpi_gbl_disable_auto_repair = TRUE;
1619
1620         return 1;
1621 }
1622
1623 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1624
1625 acpi_status __init acpi_os_initialize(void)
1626 {
1627         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1628         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1629         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1630         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1631         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1632                 /*
1633                  * Use acpi_os_map_generic_address to pre-map the reset
1634                  * register if it's in system memory.
1635                  */
1636                 int rv;
1637
1638                 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1639                 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1640         }
1641         acpi_os_initialized = true;
1642
1643         return AE_OK;
1644 }
1645
1646 acpi_status __init acpi_os_initialize1(void)
1647 {
1648         kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1649         kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1650         kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1651         BUG_ON(!kacpid_wq);
1652         BUG_ON(!kacpi_notify_wq);
1653         BUG_ON(!kacpi_hotplug_wq);
1654         acpi_osi_init();
1655         return AE_OK;
1656 }
1657
1658 acpi_status acpi_os_terminate(void)
1659 {
1660         if (acpi_irq_handler) {
1661                 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1662                                                  acpi_irq_handler);
1663         }
1664
1665         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1666         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1667         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1668         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1669         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1670                 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1671
1672         destroy_workqueue(kacpid_wq);
1673         destroy_workqueue(kacpi_notify_wq);
1674         destroy_workqueue(kacpi_hotplug_wq);
1675
1676         return AE_OK;
1677 }
1678
1679 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1680                                   u32 pm1b_control)
1681 {
1682         int rc = 0;
1683         if (__acpi_os_prepare_sleep)
1684                 rc = __acpi_os_prepare_sleep(sleep_state,
1685                                              pm1a_control, pm1b_control);
1686         if (rc < 0)
1687                 return AE_ERROR;
1688         else if (rc > 0)
1689                 return AE_CTRL_TERMINATE;
1690
1691         return AE_OK;
1692 }
1693
1694 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1695                                u32 pm1a_ctrl, u32 pm1b_ctrl))
1696 {
1697         __acpi_os_prepare_sleep = func;
1698 }
1699
1700 #if (ACPI_REDUCED_HARDWARE)
1701 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1702                                   u32 val_b)
1703 {
1704         int rc = 0;
1705         if (__acpi_os_prepare_extended_sleep)
1706                 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1707                                              val_a, val_b);
1708         if (rc < 0)
1709                 return AE_ERROR;
1710         else if (rc > 0)
1711                 return AE_CTRL_TERMINATE;
1712
1713         return AE_OK;
1714 }
1715 #else
1716 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1717                                   u32 val_b)
1718 {
1719         return AE_OK;
1720 }
1721 #endif
1722
1723 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1724                                u32 val_a, u32 val_b))
1725 {
1726         __acpi_os_prepare_extended_sleep = func;
1727 }
1728
1729 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1730                                 u32 reg_a_value, u32 reg_b_value)
1731 {
1732         acpi_status status;
1733
1734         if (acpi_gbl_reduced_hardware)
1735                 status = acpi_os_prepare_extended_sleep(sleep_state,
1736                                                         reg_a_value,
1737                                                         reg_b_value);
1738         else
1739                 status = acpi_os_prepare_sleep(sleep_state,
1740                                                reg_a_value, reg_b_value);
1741         return status;
1742 }