]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/block/rbd.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[karo-tx-linux.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG       /* Activate rbd_assert() calls */
48
49 /*
50  * The basic unit of block I/O is a sector.  It is interpreted in a
51  * number of contexts in Linux (blk, bio, genhd), but the default is
52  * universally 512 bytes.  These symbols are just slightly more
53  * meaningful than the bare numbers they represent.
54  */
55 #define SECTOR_SHIFT    9
56 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
57
58 /*
59  * Increment the given counter and return its updated value.
60  * If the counter is already 0 it will not be incremented.
61  * If the counter is already at its maximum value returns
62  * -EINVAL without updating it.
63  */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66         unsigned int counter;
67
68         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69         if (counter <= (unsigned int)INT_MAX)
70                 return (int)counter;
71
72         atomic_dec(v);
73
74         return -EINVAL;
75 }
76
77 /* Decrement the counter.  Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80         int counter;
81
82         counter = atomic_dec_return(v);
83         if (counter >= 0)
84                 return counter;
85
86         atomic_inc(v);
87
88         return -EINVAL;
89 }
90
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93
94 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
95
96 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
97 #define RBD_MAX_SNAP_NAME_LEN   \
98                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99
100 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
101
102 #define RBD_SNAP_HEAD_NAME      "-"
103
104 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
105
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX    64
109
110 #define RBD_OBJ_PREFIX_LEN_MAX  64
111
112 /* Feature bits */
113
114 #define RBD_FEATURE_LAYERING    (1<<0)
115 #define RBD_FEATURE_STRIPINGV2  (1<<1)
116 #define RBD_FEATURES_ALL \
117             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118
119 /* Features supported by this (client software) implementation. */
120
121 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
122
123 /*
124  * An RBD device name will be "rbd#", where the "rbd" comes from
125  * RBD_DRV_NAME above, and # is a unique integer identifier.
126  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127  * enough to hold all possible device names.
128  */
129 #define DEV_NAME_LEN            32
130 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
131
132 /*
133  * block device image metadata (in-memory version)
134  */
135 struct rbd_image_header {
136         /* These six fields never change for a given rbd image */
137         char *object_prefix;
138         __u8 obj_order;
139         __u8 crypt_type;
140         __u8 comp_type;
141         u64 stripe_unit;
142         u64 stripe_count;
143         u64 features;           /* Might be changeable someday? */
144
145         /* The remaining fields need to be updated occasionally */
146         u64 image_size;
147         struct ceph_snap_context *snapc;
148         char *snap_names;       /* format 1 only */
149         u64 *snap_sizes;        /* format 1 only */
150 };
151
152 /*
153  * An rbd image specification.
154  *
155  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156  * identify an image.  Each rbd_dev structure includes a pointer to
157  * an rbd_spec structure that encapsulates this identity.
158  *
159  * Each of the id's in an rbd_spec has an associated name.  For a
160  * user-mapped image, the names are supplied and the id's associated
161  * with them are looked up.  For a layered image, a parent image is
162  * defined by the tuple, and the names are looked up.
163  *
164  * An rbd_dev structure contains a parent_spec pointer which is
165  * non-null if the image it represents is a child in a layered
166  * image.  This pointer will refer to the rbd_spec structure used
167  * by the parent rbd_dev for its own identity (i.e., the structure
168  * is shared between the parent and child).
169  *
170  * Since these structures are populated once, during the discovery
171  * phase of image construction, they are effectively immutable so
172  * we make no effort to synchronize access to them.
173  *
174  * Note that code herein does not assume the image name is known (it
175  * could be a null pointer).
176  */
177 struct rbd_spec {
178         u64             pool_id;
179         const char      *pool_name;
180
181         const char      *image_id;
182         const char      *image_name;
183
184         u64             snap_id;
185         const char      *snap_name;
186
187         struct kref     kref;
188 };
189
190 /*
191  * an instance of the client.  multiple devices may share an rbd client.
192  */
193 struct rbd_client {
194         struct ceph_client      *client;
195         struct kref             kref;
196         struct list_head        node;
197 };
198
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201
202 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
203
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206
207 enum obj_request_type {
208         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210
211 enum obj_req_flags {
212         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
213         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
214         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
215         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
216 };
217
218 struct rbd_obj_request {
219         const char              *object_name;
220         u64                     offset;         /* object start byte */
221         u64                     length;         /* bytes from offset */
222         unsigned long           flags;
223
224         /*
225          * An object request associated with an image will have its
226          * img_data flag set; a standalone object request will not.
227          *
228          * A standalone object request will have which == BAD_WHICH
229          * and a null obj_request pointer.
230          *
231          * An object request initiated in support of a layered image
232          * object (to check for its existence before a write) will
233          * have which == BAD_WHICH and a non-null obj_request pointer.
234          *
235          * Finally, an object request for rbd image data will have
236          * which != BAD_WHICH, and will have a non-null img_request
237          * pointer.  The value of which will be in the range
238          * 0..(img_request->obj_request_count-1).
239          */
240         union {
241                 struct rbd_obj_request  *obj_request;   /* STAT op */
242                 struct {
243                         struct rbd_img_request  *img_request;
244                         u64                     img_offset;
245                         /* links for img_request->obj_requests list */
246                         struct list_head        links;
247                 };
248         };
249         u32                     which;          /* posn image request list */
250
251         enum obj_request_type   type;
252         union {
253                 struct bio      *bio_list;
254                 struct {
255                         struct page     **pages;
256                         u32             page_count;
257                 };
258         };
259         struct page             **copyup_pages;
260         u32                     copyup_page_count;
261
262         struct ceph_osd_request *osd_req;
263
264         u64                     xferred;        /* bytes transferred */
265         int                     result;
266
267         rbd_obj_callback_t      callback;
268         struct completion       completion;
269
270         struct kref             kref;
271 };
272
273 enum img_req_flags {
274         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
275         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
276         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
277 };
278
279 struct rbd_img_request {
280         struct rbd_device       *rbd_dev;
281         u64                     offset; /* starting image byte offset */
282         u64                     length; /* byte count from offset */
283         unsigned long           flags;
284         union {
285                 u64                     snap_id;        /* for reads */
286                 struct ceph_snap_context *snapc;        /* for writes */
287         };
288         union {
289                 struct request          *rq;            /* block request */
290                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
291         };
292         struct page             **copyup_pages;
293         u32                     copyup_page_count;
294         spinlock_t              completion_lock;/* protects next_completion */
295         u32                     next_completion;
296         rbd_img_callback_t      callback;
297         u64                     xferred;/* aggregate bytes transferred */
298         int                     result; /* first nonzero obj_request result */
299
300         u32                     obj_request_count;
301         struct list_head        obj_requests;   /* rbd_obj_request structs */
302
303         struct kref             kref;
304 };
305
306 #define for_each_obj_request(ireq, oreq) \
307         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312
313 struct rbd_mapping {
314         u64                     size;
315         u64                     features;
316         bool                    read_only;
317 };
318
319 /*
320  * a single device
321  */
322 struct rbd_device {
323         int                     dev_id;         /* blkdev unique id */
324
325         int                     major;          /* blkdev assigned major */
326         struct gendisk          *disk;          /* blkdev's gendisk and rq */
327
328         u32                     image_format;   /* Either 1 or 2 */
329         struct rbd_client       *rbd_client;
330
331         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332
333         spinlock_t              lock;           /* queue, flags, open_count */
334
335         struct rbd_image_header header;
336         unsigned long           flags;          /* possibly lock protected */
337         struct rbd_spec         *spec;
338
339         char                    *header_name;
340
341         struct ceph_file_layout layout;
342
343         struct ceph_osd_event   *watch_event;
344         struct rbd_obj_request  *watch_request;
345
346         struct rbd_spec         *parent_spec;
347         u64                     parent_overlap;
348         atomic_t                parent_ref;
349         struct rbd_device       *parent;
350
351         /* protects updating the header */
352         struct rw_semaphore     header_rwsem;
353
354         struct rbd_mapping      mapping;
355
356         struct list_head        node;
357
358         /* sysfs related */
359         struct device           dev;
360         unsigned long           open_count;     /* protected by lock */
361 };
362
363 /*
364  * Flag bits for rbd_dev->flags.  If atomicity is required,
365  * rbd_dev->lock is used to protect access.
366  *
367  * Currently, only the "removing" flag (which is coupled with the
368  * "open_count" field) requires atomic access.
369  */
370 enum rbd_dev_flags {
371         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
372         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
373 };
374
375 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
376
377 static LIST_HEAD(rbd_dev_list);    /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379
380 static LIST_HEAD(rbd_client_list);              /* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382
383 /* Slab caches for frequently-allocated structures */
384
385 static struct kmem_cache        *rbd_img_request_cache;
386 static struct kmem_cache        *rbd_obj_request_cache;
387 static struct kmem_cache        *rbd_segment_name_cache;
388
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390
391 static void rbd_dev_device_release(struct device *dev);
392
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394                        size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396                           size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399
400 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
401 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
402
403 static struct attribute *rbd_bus_attrs[] = {
404         &bus_attr_add.attr,
405         &bus_attr_remove.attr,
406         NULL,
407 };
408 ATTRIBUTE_GROUPS(rbd_bus);
409
410 static struct bus_type rbd_bus_type = {
411         .name           = "rbd",
412         .bus_groups     = rbd_bus_groups,
413 };
414
415 static void rbd_root_dev_release(struct device *dev)
416 {
417 }
418
419 static struct device rbd_root_dev = {
420         .init_name =    "rbd",
421         .release =      rbd_root_dev_release,
422 };
423
424 static __printf(2, 3)
425 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
426 {
427         struct va_format vaf;
428         va_list args;
429
430         va_start(args, fmt);
431         vaf.fmt = fmt;
432         vaf.va = &args;
433
434         if (!rbd_dev)
435                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
436         else if (rbd_dev->disk)
437                 printk(KERN_WARNING "%s: %s: %pV\n",
438                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
439         else if (rbd_dev->spec && rbd_dev->spec->image_name)
440                 printk(KERN_WARNING "%s: image %s: %pV\n",
441                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
442         else if (rbd_dev->spec && rbd_dev->spec->image_id)
443                 printk(KERN_WARNING "%s: id %s: %pV\n",
444                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
445         else    /* punt */
446                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
447                         RBD_DRV_NAME, rbd_dev, &vaf);
448         va_end(args);
449 }
450
451 #ifdef RBD_DEBUG
452 #define rbd_assert(expr)                                                \
453                 if (unlikely(!(expr))) {                                \
454                         printk(KERN_ERR "\nAssertion failure in %s() "  \
455                                                 "at line %d:\n\n"       \
456                                         "\trbd_assert(%s);\n\n",        \
457                                         __func__, __LINE__, #expr);     \
458                         BUG();                                          \
459                 }
460 #else /* !RBD_DEBUG */
461 #  define rbd_assert(expr)      ((void) 0)
462 #endif /* !RBD_DEBUG */
463
464 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
465 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
466 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
467
468 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
469 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
470 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
471 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
472                                         u64 snap_id);
473 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
474                                 u8 *order, u64 *snap_size);
475 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
476                 u64 *snap_features);
477 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
478
479 static int rbd_open(struct block_device *bdev, fmode_t mode)
480 {
481         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
482         bool removing = false;
483
484         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
485                 return -EROFS;
486
487         spin_lock_irq(&rbd_dev->lock);
488         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
489                 removing = true;
490         else
491                 rbd_dev->open_count++;
492         spin_unlock_irq(&rbd_dev->lock);
493         if (removing)
494                 return -ENOENT;
495
496         (void) get_device(&rbd_dev->dev);
497         set_device_ro(bdev, rbd_dev->mapping.read_only);
498
499         return 0;
500 }
501
502 static void rbd_release(struct gendisk *disk, fmode_t mode)
503 {
504         struct rbd_device *rbd_dev = disk->private_data;
505         unsigned long open_count_before;
506
507         spin_lock_irq(&rbd_dev->lock);
508         open_count_before = rbd_dev->open_count--;
509         spin_unlock_irq(&rbd_dev->lock);
510         rbd_assert(open_count_before > 0);
511
512         put_device(&rbd_dev->dev);
513 }
514
515 static const struct block_device_operations rbd_bd_ops = {
516         .owner                  = THIS_MODULE,
517         .open                   = rbd_open,
518         .release                = rbd_release,
519 };
520
521 /*
522  * Initialize an rbd client instance.  Success or not, this function
523  * consumes ceph_opts.  Caller holds client_mutex.
524  */
525 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
526 {
527         struct rbd_client *rbdc;
528         int ret = -ENOMEM;
529
530         dout("%s:\n", __func__);
531         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
532         if (!rbdc)
533                 goto out_opt;
534
535         kref_init(&rbdc->kref);
536         INIT_LIST_HEAD(&rbdc->node);
537
538         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
539         if (IS_ERR(rbdc->client))
540                 goto out_rbdc;
541         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
542
543         ret = ceph_open_session(rbdc->client);
544         if (ret < 0)
545                 goto out_client;
546
547         spin_lock(&rbd_client_list_lock);
548         list_add_tail(&rbdc->node, &rbd_client_list);
549         spin_unlock(&rbd_client_list_lock);
550
551         dout("%s: rbdc %p\n", __func__, rbdc);
552
553         return rbdc;
554 out_client:
555         ceph_destroy_client(rbdc->client);
556 out_rbdc:
557         kfree(rbdc);
558 out_opt:
559         if (ceph_opts)
560                 ceph_destroy_options(ceph_opts);
561         dout("%s: error %d\n", __func__, ret);
562
563         return ERR_PTR(ret);
564 }
565
566 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
567 {
568         kref_get(&rbdc->kref);
569
570         return rbdc;
571 }
572
573 /*
574  * Find a ceph client with specific addr and configuration.  If
575  * found, bump its reference count.
576  */
577 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
578 {
579         struct rbd_client *client_node;
580         bool found = false;
581
582         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
583                 return NULL;
584
585         spin_lock(&rbd_client_list_lock);
586         list_for_each_entry(client_node, &rbd_client_list, node) {
587                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
588                         __rbd_get_client(client_node);
589
590                         found = true;
591                         break;
592                 }
593         }
594         spin_unlock(&rbd_client_list_lock);
595
596         return found ? client_node : NULL;
597 }
598
599 /*
600  * mount options
601  */
602 enum {
603         Opt_last_int,
604         /* int args above */
605         Opt_last_string,
606         /* string args above */
607         Opt_read_only,
608         Opt_read_write,
609         /* Boolean args above */
610         Opt_last_bool,
611 };
612
613 static match_table_t rbd_opts_tokens = {
614         /* int args above */
615         /* string args above */
616         {Opt_read_only, "read_only"},
617         {Opt_read_only, "ro"},          /* Alternate spelling */
618         {Opt_read_write, "read_write"},
619         {Opt_read_write, "rw"},         /* Alternate spelling */
620         /* Boolean args above */
621         {-1, NULL}
622 };
623
624 struct rbd_options {
625         bool    read_only;
626 };
627
628 #define RBD_READ_ONLY_DEFAULT   false
629
630 static int parse_rbd_opts_token(char *c, void *private)
631 {
632         struct rbd_options *rbd_opts = private;
633         substring_t argstr[MAX_OPT_ARGS];
634         int token, intval, ret;
635
636         token = match_token(c, rbd_opts_tokens, argstr);
637         if (token < 0)
638                 return -EINVAL;
639
640         if (token < Opt_last_int) {
641                 ret = match_int(&argstr[0], &intval);
642                 if (ret < 0) {
643                         pr_err("bad mount option arg (not int) "
644                                "at '%s'\n", c);
645                         return ret;
646                 }
647                 dout("got int token %d val %d\n", token, intval);
648         } else if (token > Opt_last_int && token < Opt_last_string) {
649                 dout("got string token %d val %s\n", token,
650                      argstr[0].from);
651         } else if (token > Opt_last_string && token < Opt_last_bool) {
652                 dout("got Boolean token %d\n", token);
653         } else {
654                 dout("got token %d\n", token);
655         }
656
657         switch (token) {
658         case Opt_read_only:
659                 rbd_opts->read_only = true;
660                 break;
661         case Opt_read_write:
662                 rbd_opts->read_only = false;
663                 break;
664         default:
665                 rbd_assert(false);
666                 break;
667         }
668         return 0;
669 }
670
671 /*
672  * Get a ceph client with specific addr and configuration, if one does
673  * not exist create it.  Either way, ceph_opts is consumed by this
674  * function.
675  */
676 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
677 {
678         struct rbd_client *rbdc;
679
680         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
681         rbdc = rbd_client_find(ceph_opts);
682         if (rbdc)       /* using an existing client */
683                 ceph_destroy_options(ceph_opts);
684         else
685                 rbdc = rbd_client_create(ceph_opts);
686         mutex_unlock(&client_mutex);
687
688         return rbdc;
689 }
690
691 /*
692  * Destroy ceph client
693  *
694  * Caller must hold rbd_client_list_lock.
695  */
696 static void rbd_client_release(struct kref *kref)
697 {
698         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
699
700         dout("%s: rbdc %p\n", __func__, rbdc);
701         spin_lock(&rbd_client_list_lock);
702         list_del(&rbdc->node);
703         spin_unlock(&rbd_client_list_lock);
704
705         ceph_destroy_client(rbdc->client);
706         kfree(rbdc);
707 }
708
709 /*
710  * Drop reference to ceph client node. If it's not referenced anymore, release
711  * it.
712  */
713 static void rbd_put_client(struct rbd_client *rbdc)
714 {
715         if (rbdc)
716                 kref_put(&rbdc->kref, rbd_client_release);
717 }
718
719 static bool rbd_image_format_valid(u32 image_format)
720 {
721         return image_format == 1 || image_format == 2;
722 }
723
724 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
725 {
726         size_t size;
727         u32 snap_count;
728
729         /* The header has to start with the magic rbd header text */
730         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
731                 return false;
732
733         /* The bio layer requires at least sector-sized I/O */
734
735         if (ondisk->options.order < SECTOR_SHIFT)
736                 return false;
737
738         /* If we use u64 in a few spots we may be able to loosen this */
739
740         if (ondisk->options.order > 8 * sizeof (int) - 1)
741                 return false;
742
743         /*
744          * The size of a snapshot header has to fit in a size_t, and
745          * that limits the number of snapshots.
746          */
747         snap_count = le32_to_cpu(ondisk->snap_count);
748         size = SIZE_MAX - sizeof (struct ceph_snap_context);
749         if (snap_count > size / sizeof (__le64))
750                 return false;
751
752         /*
753          * Not only that, but the size of the entire the snapshot
754          * header must also be representable in a size_t.
755          */
756         size -= snap_count * sizeof (__le64);
757         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
758                 return false;
759
760         return true;
761 }
762
763 /*
764  * Fill an rbd image header with information from the given format 1
765  * on-disk header.
766  */
767 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
768                                  struct rbd_image_header_ondisk *ondisk)
769 {
770         struct rbd_image_header *header = &rbd_dev->header;
771         bool first_time = header->object_prefix == NULL;
772         struct ceph_snap_context *snapc;
773         char *object_prefix = NULL;
774         char *snap_names = NULL;
775         u64 *snap_sizes = NULL;
776         u32 snap_count;
777         size_t size;
778         int ret = -ENOMEM;
779         u32 i;
780
781         /* Allocate this now to avoid having to handle failure below */
782
783         if (first_time) {
784                 size_t len;
785
786                 len = strnlen(ondisk->object_prefix,
787                                 sizeof (ondisk->object_prefix));
788                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
789                 if (!object_prefix)
790                         return -ENOMEM;
791                 memcpy(object_prefix, ondisk->object_prefix, len);
792                 object_prefix[len] = '\0';
793         }
794
795         /* Allocate the snapshot context and fill it in */
796
797         snap_count = le32_to_cpu(ondisk->snap_count);
798         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
799         if (!snapc)
800                 goto out_err;
801         snapc->seq = le64_to_cpu(ondisk->snap_seq);
802         if (snap_count) {
803                 struct rbd_image_snap_ondisk *snaps;
804                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
805
806                 /* We'll keep a copy of the snapshot names... */
807
808                 if (snap_names_len > (u64)SIZE_MAX)
809                         goto out_2big;
810                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
811                 if (!snap_names)
812                         goto out_err;
813
814                 /* ...as well as the array of their sizes. */
815
816                 size = snap_count * sizeof (*header->snap_sizes);
817                 snap_sizes = kmalloc(size, GFP_KERNEL);
818                 if (!snap_sizes)
819                         goto out_err;
820
821                 /*
822                  * Copy the names, and fill in each snapshot's id
823                  * and size.
824                  *
825                  * Note that rbd_dev_v1_header_info() guarantees the
826                  * ondisk buffer we're working with has
827                  * snap_names_len bytes beyond the end of the
828                  * snapshot id array, this memcpy() is safe.
829                  */
830                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
831                 snaps = ondisk->snaps;
832                 for (i = 0; i < snap_count; i++) {
833                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
834                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
835                 }
836         }
837
838         /* We won't fail any more, fill in the header */
839
840         if (first_time) {
841                 header->object_prefix = object_prefix;
842                 header->obj_order = ondisk->options.order;
843                 header->crypt_type = ondisk->options.crypt_type;
844                 header->comp_type = ondisk->options.comp_type;
845                 /* The rest aren't used for format 1 images */
846                 header->stripe_unit = 0;
847                 header->stripe_count = 0;
848                 header->features = 0;
849         } else {
850                 ceph_put_snap_context(header->snapc);
851                 kfree(header->snap_names);
852                 kfree(header->snap_sizes);
853         }
854
855         /* The remaining fields always get updated (when we refresh) */
856
857         header->image_size = le64_to_cpu(ondisk->image_size);
858         header->snapc = snapc;
859         header->snap_names = snap_names;
860         header->snap_sizes = snap_sizes;
861
862         /* Make sure mapping size is consistent with header info */
863
864         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
865                 if (rbd_dev->mapping.size != header->image_size)
866                         rbd_dev->mapping.size = header->image_size;
867
868         return 0;
869 out_2big:
870         ret = -EIO;
871 out_err:
872         kfree(snap_sizes);
873         kfree(snap_names);
874         ceph_put_snap_context(snapc);
875         kfree(object_prefix);
876
877         return ret;
878 }
879
880 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
881 {
882         const char *snap_name;
883
884         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
885
886         /* Skip over names until we find the one we are looking for */
887
888         snap_name = rbd_dev->header.snap_names;
889         while (which--)
890                 snap_name += strlen(snap_name) + 1;
891
892         return kstrdup(snap_name, GFP_KERNEL);
893 }
894
895 /*
896  * Snapshot id comparison function for use with qsort()/bsearch().
897  * Note that result is for snapshots in *descending* order.
898  */
899 static int snapid_compare_reverse(const void *s1, const void *s2)
900 {
901         u64 snap_id1 = *(u64 *)s1;
902         u64 snap_id2 = *(u64 *)s2;
903
904         if (snap_id1 < snap_id2)
905                 return 1;
906         return snap_id1 == snap_id2 ? 0 : -1;
907 }
908
909 /*
910  * Search a snapshot context to see if the given snapshot id is
911  * present.
912  *
913  * Returns the position of the snapshot id in the array if it's found,
914  * or BAD_SNAP_INDEX otherwise.
915  *
916  * Note: The snapshot array is in kept sorted (by the osd) in
917  * reverse order, highest snapshot id first.
918  */
919 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
920 {
921         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
922         u64 *found;
923
924         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
925                                 sizeof (snap_id), snapid_compare_reverse);
926
927         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
928 }
929
930 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
931                                         u64 snap_id)
932 {
933         u32 which;
934         const char *snap_name;
935
936         which = rbd_dev_snap_index(rbd_dev, snap_id);
937         if (which == BAD_SNAP_INDEX)
938                 return ERR_PTR(-ENOENT);
939
940         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
941         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
942 }
943
944 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
945 {
946         if (snap_id == CEPH_NOSNAP)
947                 return RBD_SNAP_HEAD_NAME;
948
949         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
950         if (rbd_dev->image_format == 1)
951                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
952
953         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
954 }
955
956 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
957                                 u64 *snap_size)
958 {
959         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
960         if (snap_id == CEPH_NOSNAP) {
961                 *snap_size = rbd_dev->header.image_size;
962         } else if (rbd_dev->image_format == 1) {
963                 u32 which;
964
965                 which = rbd_dev_snap_index(rbd_dev, snap_id);
966                 if (which == BAD_SNAP_INDEX)
967                         return -ENOENT;
968
969                 *snap_size = rbd_dev->header.snap_sizes[which];
970         } else {
971                 u64 size = 0;
972                 int ret;
973
974                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
975                 if (ret)
976                         return ret;
977
978                 *snap_size = size;
979         }
980         return 0;
981 }
982
983 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
984                         u64 *snap_features)
985 {
986         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
987         if (snap_id == CEPH_NOSNAP) {
988                 *snap_features = rbd_dev->header.features;
989         } else if (rbd_dev->image_format == 1) {
990                 *snap_features = 0;     /* No features for format 1 */
991         } else {
992                 u64 features = 0;
993                 int ret;
994
995                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
996                 if (ret)
997                         return ret;
998
999                 *snap_features = features;
1000         }
1001         return 0;
1002 }
1003
1004 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1005 {
1006         u64 snap_id = rbd_dev->spec->snap_id;
1007         u64 size = 0;
1008         u64 features = 0;
1009         int ret;
1010
1011         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1012         if (ret)
1013                 return ret;
1014         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1015         if (ret)
1016                 return ret;
1017
1018         rbd_dev->mapping.size = size;
1019         rbd_dev->mapping.features = features;
1020
1021         return 0;
1022 }
1023
1024 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1025 {
1026         rbd_dev->mapping.size = 0;
1027         rbd_dev->mapping.features = 0;
1028 }
1029
1030 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1031 {
1032         char *name;
1033         u64 segment;
1034         int ret;
1035         char *name_format;
1036
1037         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1038         if (!name)
1039                 return NULL;
1040         segment = offset >> rbd_dev->header.obj_order;
1041         name_format = "%s.%012llx";
1042         if (rbd_dev->image_format == 2)
1043                 name_format = "%s.%016llx";
1044         ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, name_format,
1045                         rbd_dev->header.object_prefix, segment);
1046         if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1047                 pr_err("error formatting segment name for #%llu (%d)\n",
1048                         segment, ret);
1049                 kfree(name);
1050                 name = NULL;
1051         }
1052
1053         return name;
1054 }
1055
1056 static void rbd_segment_name_free(const char *name)
1057 {
1058         /* The explicit cast here is needed to drop the const qualifier */
1059
1060         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1061 }
1062
1063 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1064 {
1065         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1066
1067         return offset & (segment_size - 1);
1068 }
1069
1070 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1071                                 u64 offset, u64 length)
1072 {
1073         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1074
1075         offset &= segment_size - 1;
1076
1077         rbd_assert(length <= U64_MAX - offset);
1078         if (offset + length > segment_size)
1079                 length = segment_size - offset;
1080
1081         return length;
1082 }
1083
1084 /*
1085  * returns the size of an object in the image
1086  */
1087 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1088 {
1089         return 1 << header->obj_order;
1090 }
1091
1092 /*
1093  * bio helpers
1094  */
1095
1096 static void bio_chain_put(struct bio *chain)
1097 {
1098         struct bio *tmp;
1099
1100         while (chain) {
1101                 tmp = chain;
1102                 chain = chain->bi_next;
1103                 bio_put(tmp);
1104         }
1105 }
1106
1107 /*
1108  * zeros a bio chain, starting at specific offset
1109  */
1110 static void zero_bio_chain(struct bio *chain, int start_ofs)
1111 {
1112         struct bio_vec *bv;
1113         unsigned long flags;
1114         void *buf;
1115         int i;
1116         int pos = 0;
1117
1118         while (chain) {
1119                 bio_for_each_segment(bv, chain, i) {
1120                         if (pos + bv->bv_len > start_ofs) {
1121                                 int remainder = max(start_ofs - pos, 0);
1122                                 buf = bvec_kmap_irq(bv, &flags);
1123                                 memset(buf + remainder, 0,
1124                                        bv->bv_len - remainder);
1125                                 flush_dcache_page(bv->bv_page);
1126                                 bvec_kunmap_irq(buf, &flags);
1127                         }
1128                         pos += bv->bv_len;
1129                 }
1130
1131                 chain = chain->bi_next;
1132         }
1133 }
1134
1135 /*
1136  * similar to zero_bio_chain(), zeros data defined by a page array,
1137  * starting at the given byte offset from the start of the array and
1138  * continuing up to the given end offset.  The pages array is
1139  * assumed to be big enough to hold all bytes up to the end.
1140  */
1141 static void zero_pages(struct page **pages, u64 offset, u64 end)
1142 {
1143         struct page **page = &pages[offset >> PAGE_SHIFT];
1144
1145         rbd_assert(end > offset);
1146         rbd_assert(end - offset <= (u64)SIZE_MAX);
1147         while (offset < end) {
1148                 size_t page_offset;
1149                 size_t length;
1150                 unsigned long flags;
1151                 void *kaddr;
1152
1153                 page_offset = offset & ~PAGE_MASK;
1154                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1155                 local_irq_save(flags);
1156                 kaddr = kmap_atomic(*page);
1157                 memset(kaddr + page_offset, 0, length);
1158                 flush_dcache_page(*page);
1159                 kunmap_atomic(kaddr);
1160                 local_irq_restore(flags);
1161
1162                 offset += length;
1163                 page++;
1164         }
1165 }
1166
1167 /*
1168  * Clone a portion of a bio, starting at the given byte offset
1169  * and continuing for the number of bytes indicated.
1170  */
1171 static struct bio *bio_clone_range(struct bio *bio_src,
1172                                         unsigned int offset,
1173                                         unsigned int len,
1174                                         gfp_t gfpmask)
1175 {
1176         struct bio_vec *bv;
1177         unsigned int resid;
1178         unsigned short idx;
1179         unsigned int voff;
1180         unsigned short end_idx;
1181         unsigned short vcnt;
1182         struct bio *bio;
1183
1184         /* Handle the easy case for the caller */
1185
1186         if (!offset && len == bio_src->bi_size)
1187                 return bio_clone(bio_src, gfpmask);
1188
1189         if (WARN_ON_ONCE(!len))
1190                 return NULL;
1191         if (WARN_ON_ONCE(len > bio_src->bi_size))
1192                 return NULL;
1193         if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1194                 return NULL;
1195
1196         /* Find first affected segment... */
1197
1198         resid = offset;
1199         bio_for_each_segment(bv, bio_src, idx) {
1200                 if (resid < bv->bv_len)
1201                         break;
1202                 resid -= bv->bv_len;
1203         }
1204         voff = resid;
1205
1206         /* ...and the last affected segment */
1207
1208         resid += len;
1209         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1210                 if (resid <= bv->bv_len)
1211                         break;
1212                 resid -= bv->bv_len;
1213         }
1214         vcnt = end_idx - idx + 1;
1215
1216         /* Build the clone */
1217
1218         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1219         if (!bio)
1220                 return NULL;    /* ENOMEM */
1221
1222         bio->bi_bdev = bio_src->bi_bdev;
1223         bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1224         bio->bi_rw = bio_src->bi_rw;
1225         bio->bi_flags |= 1 << BIO_CLONED;
1226
1227         /*
1228          * Copy over our part of the bio_vec, then update the first
1229          * and last (or only) entries.
1230          */
1231         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1232                         vcnt * sizeof (struct bio_vec));
1233         bio->bi_io_vec[0].bv_offset += voff;
1234         if (vcnt > 1) {
1235                 bio->bi_io_vec[0].bv_len -= voff;
1236                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1237         } else {
1238                 bio->bi_io_vec[0].bv_len = len;
1239         }
1240
1241         bio->bi_vcnt = vcnt;
1242         bio->bi_size = len;
1243         bio->bi_idx = 0;
1244
1245         return bio;
1246 }
1247
1248 /*
1249  * Clone a portion of a bio chain, starting at the given byte offset
1250  * into the first bio in the source chain and continuing for the
1251  * number of bytes indicated.  The result is another bio chain of
1252  * exactly the given length, or a null pointer on error.
1253  *
1254  * The bio_src and offset parameters are both in-out.  On entry they
1255  * refer to the first source bio and the offset into that bio where
1256  * the start of data to be cloned is located.
1257  *
1258  * On return, bio_src is updated to refer to the bio in the source
1259  * chain that contains first un-cloned byte, and *offset will
1260  * contain the offset of that byte within that bio.
1261  */
1262 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1263                                         unsigned int *offset,
1264                                         unsigned int len,
1265                                         gfp_t gfpmask)
1266 {
1267         struct bio *bi = *bio_src;
1268         unsigned int off = *offset;
1269         struct bio *chain = NULL;
1270         struct bio **end;
1271
1272         /* Build up a chain of clone bios up to the limit */
1273
1274         if (!bi || off >= bi->bi_size || !len)
1275                 return NULL;            /* Nothing to clone */
1276
1277         end = &chain;
1278         while (len) {
1279                 unsigned int bi_size;
1280                 struct bio *bio;
1281
1282                 if (!bi) {
1283                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1284                         goto out_err;   /* EINVAL; ran out of bio's */
1285                 }
1286                 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1287                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1288                 if (!bio)
1289                         goto out_err;   /* ENOMEM */
1290
1291                 *end = bio;
1292                 end = &bio->bi_next;
1293
1294                 off += bi_size;
1295                 if (off == bi->bi_size) {
1296                         bi = bi->bi_next;
1297                         off = 0;
1298                 }
1299                 len -= bi_size;
1300         }
1301         *bio_src = bi;
1302         *offset = off;
1303
1304         return chain;
1305 out_err:
1306         bio_chain_put(chain);
1307
1308         return NULL;
1309 }
1310
1311 /*
1312  * The default/initial value for all object request flags is 0.  For
1313  * each flag, once its value is set to 1 it is never reset to 0
1314  * again.
1315  */
1316 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1317 {
1318         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1319                 struct rbd_device *rbd_dev;
1320
1321                 rbd_dev = obj_request->img_request->rbd_dev;
1322                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1323                         obj_request);
1324         }
1325 }
1326
1327 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1328 {
1329         smp_mb();
1330         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1331 }
1332
1333 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1334 {
1335         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1336                 struct rbd_device *rbd_dev = NULL;
1337
1338                 if (obj_request_img_data_test(obj_request))
1339                         rbd_dev = obj_request->img_request->rbd_dev;
1340                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1341                         obj_request);
1342         }
1343 }
1344
1345 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1346 {
1347         smp_mb();
1348         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1349 }
1350
1351 /*
1352  * This sets the KNOWN flag after (possibly) setting the EXISTS
1353  * flag.  The latter is set based on the "exists" value provided.
1354  *
1355  * Note that for our purposes once an object exists it never goes
1356  * away again.  It's possible that the response from two existence
1357  * checks are separated by the creation of the target object, and
1358  * the first ("doesn't exist") response arrives *after* the second
1359  * ("does exist").  In that case we ignore the second one.
1360  */
1361 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1362                                 bool exists)
1363 {
1364         if (exists)
1365                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1366         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1367         smp_mb();
1368 }
1369
1370 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1371 {
1372         smp_mb();
1373         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1374 }
1375
1376 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1377 {
1378         smp_mb();
1379         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1380 }
1381
1382 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1383 {
1384         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1385                 atomic_read(&obj_request->kref.refcount));
1386         kref_get(&obj_request->kref);
1387 }
1388
1389 static void rbd_obj_request_destroy(struct kref *kref);
1390 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1391 {
1392         rbd_assert(obj_request != NULL);
1393         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1394                 atomic_read(&obj_request->kref.refcount));
1395         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1396 }
1397
1398 static bool img_request_child_test(struct rbd_img_request *img_request);
1399 static void rbd_parent_request_destroy(struct kref *kref);
1400 static void rbd_img_request_destroy(struct kref *kref);
1401 static void rbd_img_request_put(struct rbd_img_request *img_request)
1402 {
1403         rbd_assert(img_request != NULL);
1404         dout("%s: img %p (was %d)\n", __func__, img_request,
1405                 atomic_read(&img_request->kref.refcount));
1406         if (img_request_child_test(img_request))
1407                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1408         else
1409                 kref_put(&img_request->kref, rbd_img_request_destroy);
1410 }
1411
1412 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1413                                         struct rbd_obj_request *obj_request)
1414 {
1415         rbd_assert(obj_request->img_request == NULL);
1416
1417         /* Image request now owns object's original reference */
1418         obj_request->img_request = img_request;
1419         obj_request->which = img_request->obj_request_count;
1420         rbd_assert(!obj_request_img_data_test(obj_request));
1421         obj_request_img_data_set(obj_request);
1422         rbd_assert(obj_request->which != BAD_WHICH);
1423         img_request->obj_request_count++;
1424         list_add_tail(&obj_request->links, &img_request->obj_requests);
1425         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1426                 obj_request->which);
1427 }
1428
1429 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1430                                         struct rbd_obj_request *obj_request)
1431 {
1432         rbd_assert(obj_request->which != BAD_WHICH);
1433
1434         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1435                 obj_request->which);
1436         list_del(&obj_request->links);
1437         rbd_assert(img_request->obj_request_count > 0);
1438         img_request->obj_request_count--;
1439         rbd_assert(obj_request->which == img_request->obj_request_count);
1440         obj_request->which = BAD_WHICH;
1441         rbd_assert(obj_request_img_data_test(obj_request));
1442         rbd_assert(obj_request->img_request == img_request);
1443         obj_request->img_request = NULL;
1444         obj_request->callback = NULL;
1445         rbd_obj_request_put(obj_request);
1446 }
1447
1448 static bool obj_request_type_valid(enum obj_request_type type)
1449 {
1450         switch (type) {
1451         case OBJ_REQUEST_NODATA:
1452         case OBJ_REQUEST_BIO:
1453         case OBJ_REQUEST_PAGES:
1454                 return true;
1455         default:
1456                 return false;
1457         }
1458 }
1459
1460 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1461                                 struct rbd_obj_request *obj_request)
1462 {
1463         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1464
1465         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1466 }
1467
1468 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1469 {
1470
1471         dout("%s: img %p\n", __func__, img_request);
1472
1473         /*
1474          * If no error occurred, compute the aggregate transfer
1475          * count for the image request.  We could instead use
1476          * atomic64_cmpxchg() to update it as each object request
1477          * completes; not clear which way is better off hand.
1478          */
1479         if (!img_request->result) {
1480                 struct rbd_obj_request *obj_request;
1481                 u64 xferred = 0;
1482
1483                 for_each_obj_request(img_request, obj_request)
1484                         xferred += obj_request->xferred;
1485                 img_request->xferred = xferred;
1486         }
1487
1488         if (img_request->callback)
1489                 img_request->callback(img_request);
1490         else
1491                 rbd_img_request_put(img_request);
1492 }
1493
1494 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1495
1496 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1497 {
1498         dout("%s: obj %p\n", __func__, obj_request);
1499
1500         return wait_for_completion_interruptible(&obj_request->completion);
1501 }
1502
1503 /*
1504  * The default/initial value for all image request flags is 0.  Each
1505  * is conditionally set to 1 at image request initialization time
1506  * and currently never change thereafter.
1507  */
1508 static void img_request_write_set(struct rbd_img_request *img_request)
1509 {
1510         set_bit(IMG_REQ_WRITE, &img_request->flags);
1511         smp_mb();
1512 }
1513
1514 static bool img_request_write_test(struct rbd_img_request *img_request)
1515 {
1516         smp_mb();
1517         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1518 }
1519
1520 static void img_request_child_set(struct rbd_img_request *img_request)
1521 {
1522         set_bit(IMG_REQ_CHILD, &img_request->flags);
1523         smp_mb();
1524 }
1525
1526 static void img_request_child_clear(struct rbd_img_request *img_request)
1527 {
1528         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1529         smp_mb();
1530 }
1531
1532 static bool img_request_child_test(struct rbd_img_request *img_request)
1533 {
1534         smp_mb();
1535         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1536 }
1537
1538 static void img_request_layered_set(struct rbd_img_request *img_request)
1539 {
1540         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1541         smp_mb();
1542 }
1543
1544 static void img_request_layered_clear(struct rbd_img_request *img_request)
1545 {
1546         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1547         smp_mb();
1548 }
1549
1550 static bool img_request_layered_test(struct rbd_img_request *img_request)
1551 {
1552         smp_mb();
1553         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1554 }
1555
1556 static void
1557 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1558 {
1559         u64 xferred = obj_request->xferred;
1560         u64 length = obj_request->length;
1561
1562         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1563                 obj_request, obj_request->img_request, obj_request->result,
1564                 xferred, length);
1565         /*
1566          * ENOENT means a hole in the image.  We zero-fill the entire
1567          * length of the request.  A short read also implies zero-fill
1568          * to the end of the request.  An error requires the whole
1569          * length of the request to be reported finished with an error
1570          * to the block layer.  In each case we update the xferred
1571          * count to indicate the whole request was satisfied.
1572          */
1573         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1574         if (obj_request->result == -ENOENT) {
1575                 if (obj_request->type == OBJ_REQUEST_BIO)
1576                         zero_bio_chain(obj_request->bio_list, 0);
1577                 else
1578                         zero_pages(obj_request->pages, 0, length);
1579                 obj_request->result = 0;
1580         } else if (xferred < length && !obj_request->result) {
1581                 if (obj_request->type == OBJ_REQUEST_BIO)
1582                         zero_bio_chain(obj_request->bio_list, xferred);
1583                 else
1584                         zero_pages(obj_request->pages, xferred, length);
1585         }
1586         obj_request->xferred = length;
1587         obj_request_done_set(obj_request);
1588 }
1589
1590 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1591 {
1592         dout("%s: obj %p cb %p\n", __func__, obj_request,
1593                 obj_request->callback);
1594         if (obj_request->callback)
1595                 obj_request->callback(obj_request);
1596         else
1597                 complete_all(&obj_request->completion);
1598 }
1599
1600 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1601 {
1602         dout("%s: obj %p\n", __func__, obj_request);
1603         obj_request_done_set(obj_request);
1604 }
1605
1606 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1607 {
1608         struct rbd_img_request *img_request = NULL;
1609         struct rbd_device *rbd_dev = NULL;
1610         bool layered = false;
1611
1612         if (obj_request_img_data_test(obj_request)) {
1613                 img_request = obj_request->img_request;
1614                 layered = img_request && img_request_layered_test(img_request);
1615                 rbd_dev = img_request->rbd_dev;
1616         }
1617
1618         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1619                 obj_request, img_request, obj_request->result,
1620                 obj_request->xferred, obj_request->length);
1621         if (layered && obj_request->result == -ENOENT &&
1622                         obj_request->img_offset < rbd_dev->parent_overlap)
1623                 rbd_img_parent_read(obj_request);
1624         else if (img_request)
1625                 rbd_img_obj_request_read_callback(obj_request);
1626         else
1627                 obj_request_done_set(obj_request);
1628 }
1629
1630 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1631 {
1632         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1633                 obj_request->result, obj_request->length);
1634         /*
1635          * There is no such thing as a successful short write.  Set
1636          * it to our originally-requested length.
1637          */
1638         obj_request->xferred = obj_request->length;
1639         obj_request_done_set(obj_request);
1640 }
1641
1642 /*
1643  * For a simple stat call there's nothing to do.  We'll do more if
1644  * this is part of a write sequence for a layered image.
1645  */
1646 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1647 {
1648         dout("%s: obj %p\n", __func__, obj_request);
1649         obj_request_done_set(obj_request);
1650 }
1651
1652 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1653                                 struct ceph_msg *msg)
1654 {
1655         struct rbd_obj_request *obj_request = osd_req->r_priv;
1656         u16 opcode;
1657
1658         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1659         rbd_assert(osd_req == obj_request->osd_req);
1660         if (obj_request_img_data_test(obj_request)) {
1661                 rbd_assert(obj_request->img_request);
1662                 rbd_assert(obj_request->which != BAD_WHICH);
1663         } else {
1664                 rbd_assert(obj_request->which == BAD_WHICH);
1665         }
1666
1667         if (osd_req->r_result < 0)
1668                 obj_request->result = osd_req->r_result;
1669
1670         BUG_ON(osd_req->r_num_ops > 2);
1671
1672         /*
1673          * We support a 64-bit length, but ultimately it has to be
1674          * passed to blk_end_request(), which takes an unsigned int.
1675          */
1676         obj_request->xferred = osd_req->r_reply_op_len[0];
1677         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1678         opcode = osd_req->r_ops[0].op;
1679         switch (opcode) {
1680         case CEPH_OSD_OP_READ:
1681                 rbd_osd_read_callback(obj_request);
1682                 break;
1683         case CEPH_OSD_OP_WRITE:
1684                 rbd_osd_write_callback(obj_request);
1685                 break;
1686         case CEPH_OSD_OP_STAT:
1687                 rbd_osd_stat_callback(obj_request);
1688                 break;
1689         case CEPH_OSD_OP_CALL:
1690         case CEPH_OSD_OP_NOTIFY_ACK:
1691         case CEPH_OSD_OP_WATCH:
1692                 rbd_osd_trivial_callback(obj_request);
1693                 break;
1694         default:
1695                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1696                         obj_request->object_name, (unsigned short) opcode);
1697                 break;
1698         }
1699
1700         if (obj_request_done_test(obj_request))
1701                 rbd_obj_request_complete(obj_request);
1702 }
1703
1704 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1705 {
1706         struct rbd_img_request *img_request = obj_request->img_request;
1707         struct ceph_osd_request *osd_req = obj_request->osd_req;
1708         u64 snap_id;
1709
1710         rbd_assert(osd_req != NULL);
1711
1712         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1713         ceph_osdc_build_request(osd_req, obj_request->offset,
1714                         NULL, snap_id, NULL);
1715 }
1716
1717 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1718 {
1719         struct rbd_img_request *img_request = obj_request->img_request;
1720         struct ceph_osd_request *osd_req = obj_request->osd_req;
1721         struct ceph_snap_context *snapc;
1722         struct timespec mtime = CURRENT_TIME;
1723
1724         rbd_assert(osd_req != NULL);
1725
1726         snapc = img_request ? img_request->snapc : NULL;
1727         ceph_osdc_build_request(osd_req, obj_request->offset,
1728                         snapc, CEPH_NOSNAP, &mtime);
1729 }
1730
1731 static struct ceph_osd_request *rbd_osd_req_create(
1732                                         struct rbd_device *rbd_dev,
1733                                         bool write_request,
1734                                         struct rbd_obj_request *obj_request)
1735 {
1736         struct ceph_snap_context *snapc = NULL;
1737         struct ceph_osd_client *osdc;
1738         struct ceph_osd_request *osd_req;
1739
1740         if (obj_request_img_data_test(obj_request)) {
1741                 struct rbd_img_request *img_request = obj_request->img_request;
1742
1743                 rbd_assert(write_request ==
1744                                 img_request_write_test(img_request));
1745                 if (write_request)
1746                         snapc = img_request->snapc;
1747         }
1748
1749         /* Allocate and initialize the request, for the single op */
1750
1751         osdc = &rbd_dev->rbd_client->client->osdc;
1752         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1753         if (!osd_req)
1754                 return NULL;    /* ENOMEM */
1755
1756         if (write_request)
1757                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1758         else
1759                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1760
1761         osd_req->r_callback = rbd_osd_req_callback;
1762         osd_req->r_priv = obj_request;
1763
1764         osd_req->r_oid_len = strlen(obj_request->object_name);
1765         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1766         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1767
1768         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1769
1770         return osd_req;
1771 }
1772
1773 /*
1774  * Create a copyup osd request based on the information in the
1775  * object request supplied.  A copyup request has two osd ops,
1776  * a copyup method call, and a "normal" write request.
1777  */
1778 static struct ceph_osd_request *
1779 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1780 {
1781         struct rbd_img_request *img_request;
1782         struct ceph_snap_context *snapc;
1783         struct rbd_device *rbd_dev;
1784         struct ceph_osd_client *osdc;
1785         struct ceph_osd_request *osd_req;
1786
1787         rbd_assert(obj_request_img_data_test(obj_request));
1788         img_request = obj_request->img_request;
1789         rbd_assert(img_request);
1790         rbd_assert(img_request_write_test(img_request));
1791
1792         /* Allocate and initialize the request, for the two ops */
1793
1794         snapc = img_request->snapc;
1795         rbd_dev = img_request->rbd_dev;
1796         osdc = &rbd_dev->rbd_client->client->osdc;
1797         osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1798         if (!osd_req)
1799                 return NULL;    /* ENOMEM */
1800
1801         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1802         osd_req->r_callback = rbd_osd_req_callback;
1803         osd_req->r_priv = obj_request;
1804
1805         osd_req->r_oid_len = strlen(obj_request->object_name);
1806         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1807         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1808
1809         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1810
1811         return osd_req;
1812 }
1813
1814
1815 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1816 {
1817         ceph_osdc_put_request(osd_req);
1818 }
1819
1820 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1821
1822 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1823                                                 u64 offset, u64 length,
1824                                                 enum obj_request_type type)
1825 {
1826         struct rbd_obj_request *obj_request;
1827         size_t size;
1828         char *name;
1829
1830         rbd_assert(obj_request_type_valid(type));
1831
1832         size = strlen(object_name) + 1;
1833         name = kmalloc(size, GFP_KERNEL);
1834         if (!name)
1835                 return NULL;
1836
1837         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1838         if (!obj_request) {
1839                 kfree(name);
1840                 return NULL;
1841         }
1842
1843         obj_request->object_name = memcpy(name, object_name, size);
1844         obj_request->offset = offset;
1845         obj_request->length = length;
1846         obj_request->flags = 0;
1847         obj_request->which = BAD_WHICH;
1848         obj_request->type = type;
1849         INIT_LIST_HEAD(&obj_request->links);
1850         init_completion(&obj_request->completion);
1851         kref_init(&obj_request->kref);
1852
1853         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1854                 offset, length, (int)type, obj_request);
1855
1856         return obj_request;
1857 }
1858
1859 static void rbd_obj_request_destroy(struct kref *kref)
1860 {
1861         struct rbd_obj_request *obj_request;
1862
1863         obj_request = container_of(kref, struct rbd_obj_request, kref);
1864
1865         dout("%s: obj %p\n", __func__, obj_request);
1866
1867         rbd_assert(obj_request->img_request == NULL);
1868         rbd_assert(obj_request->which == BAD_WHICH);
1869
1870         if (obj_request->osd_req)
1871                 rbd_osd_req_destroy(obj_request->osd_req);
1872
1873         rbd_assert(obj_request_type_valid(obj_request->type));
1874         switch (obj_request->type) {
1875         case OBJ_REQUEST_NODATA:
1876                 break;          /* Nothing to do */
1877         case OBJ_REQUEST_BIO:
1878                 if (obj_request->bio_list)
1879                         bio_chain_put(obj_request->bio_list);
1880                 break;
1881         case OBJ_REQUEST_PAGES:
1882                 if (obj_request->pages)
1883                         ceph_release_page_vector(obj_request->pages,
1884                                                 obj_request->page_count);
1885                 break;
1886         }
1887
1888         kfree(obj_request->object_name);
1889         obj_request->object_name = NULL;
1890         kmem_cache_free(rbd_obj_request_cache, obj_request);
1891 }
1892
1893 /* It's OK to call this for a device with no parent */
1894
1895 static void rbd_spec_put(struct rbd_spec *spec);
1896 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1897 {
1898         rbd_dev_remove_parent(rbd_dev);
1899         rbd_spec_put(rbd_dev->parent_spec);
1900         rbd_dev->parent_spec = NULL;
1901         rbd_dev->parent_overlap = 0;
1902 }
1903
1904 /*
1905  * Parent image reference counting is used to determine when an
1906  * image's parent fields can be safely torn down--after there are no
1907  * more in-flight requests to the parent image.  When the last
1908  * reference is dropped, cleaning them up is safe.
1909  */
1910 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1911 {
1912         int counter;
1913
1914         if (!rbd_dev->parent_spec)
1915                 return;
1916
1917         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1918         if (counter > 0)
1919                 return;
1920
1921         /* Last reference; clean up parent data structures */
1922
1923         if (!counter)
1924                 rbd_dev_unparent(rbd_dev);
1925         else
1926                 rbd_warn(rbd_dev, "parent reference underflow\n");
1927 }
1928
1929 /*
1930  * If an image has a non-zero parent overlap, get a reference to its
1931  * parent.
1932  *
1933  * We must get the reference before checking for the overlap to
1934  * coordinate properly with zeroing the parent overlap in
1935  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1936  * drop it again if there is no overlap.
1937  *
1938  * Returns true if the rbd device has a parent with a non-zero
1939  * overlap and a reference for it was successfully taken, or
1940  * false otherwise.
1941  */
1942 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1943 {
1944         int counter;
1945
1946         if (!rbd_dev->parent_spec)
1947                 return false;
1948
1949         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1950         if (counter > 0 && rbd_dev->parent_overlap)
1951                 return true;
1952
1953         /* Image was flattened, but parent is not yet torn down */
1954
1955         if (counter < 0)
1956                 rbd_warn(rbd_dev, "parent reference overflow\n");
1957
1958         return false;
1959 }
1960
1961 /*
1962  * Caller is responsible for filling in the list of object requests
1963  * that comprises the image request, and the Linux request pointer
1964  * (if there is one).
1965  */
1966 static struct rbd_img_request *rbd_img_request_create(
1967                                         struct rbd_device *rbd_dev,
1968                                         u64 offset, u64 length,
1969                                         bool write_request)
1970 {
1971         struct rbd_img_request *img_request;
1972
1973         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1974         if (!img_request)
1975                 return NULL;
1976
1977         if (write_request) {
1978                 down_read(&rbd_dev->header_rwsem);
1979                 ceph_get_snap_context(rbd_dev->header.snapc);
1980                 up_read(&rbd_dev->header_rwsem);
1981         }
1982
1983         img_request->rq = NULL;
1984         img_request->rbd_dev = rbd_dev;
1985         img_request->offset = offset;
1986         img_request->length = length;
1987         img_request->flags = 0;
1988         if (write_request) {
1989                 img_request_write_set(img_request);
1990                 img_request->snapc = rbd_dev->header.snapc;
1991         } else {
1992                 img_request->snap_id = rbd_dev->spec->snap_id;
1993         }
1994         if (rbd_dev_parent_get(rbd_dev))
1995                 img_request_layered_set(img_request);
1996         spin_lock_init(&img_request->completion_lock);
1997         img_request->next_completion = 0;
1998         img_request->callback = NULL;
1999         img_request->result = 0;
2000         img_request->obj_request_count = 0;
2001         INIT_LIST_HEAD(&img_request->obj_requests);
2002         kref_init(&img_request->kref);
2003
2004         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2005                 write_request ? "write" : "read", offset, length,
2006                 img_request);
2007
2008         return img_request;
2009 }
2010
2011 static void rbd_img_request_destroy(struct kref *kref)
2012 {
2013         struct rbd_img_request *img_request;
2014         struct rbd_obj_request *obj_request;
2015         struct rbd_obj_request *next_obj_request;
2016
2017         img_request = container_of(kref, struct rbd_img_request, kref);
2018
2019         dout("%s: img %p\n", __func__, img_request);
2020
2021         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2022                 rbd_img_obj_request_del(img_request, obj_request);
2023         rbd_assert(img_request->obj_request_count == 0);
2024
2025         if (img_request_layered_test(img_request)) {
2026                 img_request_layered_clear(img_request);
2027                 rbd_dev_parent_put(img_request->rbd_dev);
2028         }
2029
2030         if (img_request_write_test(img_request))
2031                 ceph_put_snap_context(img_request->snapc);
2032
2033         kmem_cache_free(rbd_img_request_cache, img_request);
2034 }
2035
2036 static struct rbd_img_request *rbd_parent_request_create(
2037                                         struct rbd_obj_request *obj_request,
2038                                         u64 img_offset, u64 length)
2039 {
2040         struct rbd_img_request *parent_request;
2041         struct rbd_device *rbd_dev;
2042
2043         rbd_assert(obj_request->img_request);
2044         rbd_dev = obj_request->img_request->rbd_dev;
2045
2046         parent_request = rbd_img_request_create(rbd_dev->parent,
2047                                                 img_offset, length, false);
2048         if (!parent_request)
2049                 return NULL;
2050
2051         img_request_child_set(parent_request);
2052         rbd_obj_request_get(obj_request);
2053         parent_request->obj_request = obj_request;
2054
2055         return parent_request;
2056 }
2057
2058 static void rbd_parent_request_destroy(struct kref *kref)
2059 {
2060         struct rbd_img_request *parent_request;
2061         struct rbd_obj_request *orig_request;
2062
2063         parent_request = container_of(kref, struct rbd_img_request, kref);
2064         orig_request = parent_request->obj_request;
2065
2066         parent_request->obj_request = NULL;
2067         rbd_obj_request_put(orig_request);
2068         img_request_child_clear(parent_request);
2069
2070         rbd_img_request_destroy(kref);
2071 }
2072
2073 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2074 {
2075         struct rbd_img_request *img_request;
2076         unsigned int xferred;
2077         int result;
2078         bool more;
2079
2080         rbd_assert(obj_request_img_data_test(obj_request));
2081         img_request = obj_request->img_request;
2082
2083         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2084         xferred = (unsigned int)obj_request->xferred;
2085         result = obj_request->result;
2086         if (result) {
2087                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2088
2089                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2090                         img_request_write_test(img_request) ? "write" : "read",
2091                         obj_request->length, obj_request->img_offset,
2092                         obj_request->offset);
2093                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2094                         result, xferred);
2095                 if (!img_request->result)
2096                         img_request->result = result;
2097         }
2098
2099         /* Image object requests don't own their page array */
2100
2101         if (obj_request->type == OBJ_REQUEST_PAGES) {
2102                 obj_request->pages = NULL;
2103                 obj_request->page_count = 0;
2104         }
2105
2106         if (img_request_child_test(img_request)) {
2107                 rbd_assert(img_request->obj_request != NULL);
2108                 more = obj_request->which < img_request->obj_request_count - 1;
2109         } else {
2110                 rbd_assert(img_request->rq != NULL);
2111                 more = blk_end_request(img_request->rq, result, xferred);
2112         }
2113
2114         return more;
2115 }
2116
2117 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2118 {
2119         struct rbd_img_request *img_request;
2120         u32 which = obj_request->which;
2121         bool more = true;
2122
2123         rbd_assert(obj_request_img_data_test(obj_request));
2124         img_request = obj_request->img_request;
2125
2126         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2127         rbd_assert(img_request != NULL);
2128         rbd_assert(img_request->obj_request_count > 0);
2129         rbd_assert(which != BAD_WHICH);
2130         rbd_assert(which < img_request->obj_request_count);
2131         rbd_assert(which >= img_request->next_completion);
2132
2133         spin_lock_irq(&img_request->completion_lock);
2134         if (which != img_request->next_completion)
2135                 goto out;
2136
2137         for_each_obj_request_from(img_request, obj_request) {
2138                 rbd_assert(more);
2139                 rbd_assert(which < img_request->obj_request_count);
2140
2141                 if (!obj_request_done_test(obj_request))
2142                         break;
2143                 more = rbd_img_obj_end_request(obj_request);
2144                 which++;
2145         }
2146
2147         rbd_assert(more ^ (which == img_request->obj_request_count));
2148         img_request->next_completion = which;
2149 out:
2150         spin_unlock_irq(&img_request->completion_lock);
2151
2152         if (!more)
2153                 rbd_img_request_complete(img_request);
2154 }
2155
2156 /*
2157  * Split up an image request into one or more object requests, each
2158  * to a different object.  The "type" parameter indicates whether
2159  * "data_desc" is the pointer to the head of a list of bio
2160  * structures, or the base of a page array.  In either case this
2161  * function assumes data_desc describes memory sufficient to hold
2162  * all data described by the image request.
2163  */
2164 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2165                                         enum obj_request_type type,
2166                                         void *data_desc)
2167 {
2168         struct rbd_device *rbd_dev = img_request->rbd_dev;
2169         struct rbd_obj_request *obj_request = NULL;
2170         struct rbd_obj_request *next_obj_request;
2171         bool write_request = img_request_write_test(img_request);
2172         struct bio *bio_list = NULL;
2173         unsigned int bio_offset = 0;
2174         struct page **pages = NULL;
2175         u64 img_offset;
2176         u64 resid;
2177         u16 opcode;
2178
2179         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2180                 (int)type, data_desc);
2181
2182         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2183         img_offset = img_request->offset;
2184         resid = img_request->length;
2185         rbd_assert(resid > 0);
2186
2187         if (type == OBJ_REQUEST_BIO) {
2188                 bio_list = data_desc;
2189                 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2190         } else {
2191                 rbd_assert(type == OBJ_REQUEST_PAGES);
2192                 pages = data_desc;
2193         }
2194
2195         while (resid) {
2196                 struct ceph_osd_request *osd_req;
2197                 const char *object_name;
2198                 u64 offset;
2199                 u64 length;
2200
2201                 object_name = rbd_segment_name(rbd_dev, img_offset);
2202                 if (!object_name)
2203                         goto out_unwind;
2204                 offset = rbd_segment_offset(rbd_dev, img_offset);
2205                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2206                 obj_request = rbd_obj_request_create(object_name,
2207                                                 offset, length, type);
2208                 /* object request has its own copy of the object name */
2209                 rbd_segment_name_free(object_name);
2210                 if (!obj_request)
2211                         goto out_unwind;
2212                 /*
2213                  * set obj_request->img_request before creating the
2214                  * osd_request so that it gets the right snapc
2215                  */
2216                 rbd_img_obj_request_add(img_request, obj_request);
2217
2218                 if (type == OBJ_REQUEST_BIO) {
2219                         unsigned int clone_size;
2220
2221                         rbd_assert(length <= (u64)UINT_MAX);
2222                         clone_size = (unsigned int)length;
2223                         obj_request->bio_list =
2224                                         bio_chain_clone_range(&bio_list,
2225                                                                 &bio_offset,
2226                                                                 clone_size,
2227                                                                 GFP_ATOMIC);
2228                         if (!obj_request->bio_list)
2229                                 goto out_partial;
2230                 } else {
2231                         unsigned int page_count;
2232
2233                         obj_request->pages = pages;
2234                         page_count = (u32)calc_pages_for(offset, length);
2235                         obj_request->page_count = page_count;
2236                         if ((offset + length) & ~PAGE_MASK)
2237                                 page_count--;   /* more on last page */
2238                         pages += page_count;
2239                 }
2240
2241                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2242                                                 obj_request);
2243                 if (!osd_req)
2244                         goto out_partial;
2245                 obj_request->osd_req = osd_req;
2246                 obj_request->callback = rbd_img_obj_callback;
2247
2248                 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2249                                                 0, 0);
2250                 if (type == OBJ_REQUEST_BIO)
2251                         osd_req_op_extent_osd_data_bio(osd_req, 0,
2252                                         obj_request->bio_list, length);
2253                 else
2254                         osd_req_op_extent_osd_data_pages(osd_req, 0,
2255                                         obj_request->pages, length,
2256                                         offset & ~PAGE_MASK, false, false);
2257
2258                 if (write_request)
2259                         rbd_osd_req_format_write(obj_request);
2260                 else
2261                         rbd_osd_req_format_read(obj_request);
2262
2263                 obj_request->img_offset = img_offset;
2264
2265                 img_offset += length;
2266                 resid -= length;
2267         }
2268
2269         return 0;
2270
2271 out_partial:
2272         rbd_obj_request_put(obj_request);
2273 out_unwind:
2274         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2275                 rbd_obj_request_put(obj_request);
2276
2277         return -ENOMEM;
2278 }
2279
2280 static void
2281 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2282 {
2283         struct rbd_img_request *img_request;
2284         struct rbd_device *rbd_dev;
2285         struct page **pages;
2286         u32 page_count;
2287
2288         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2289         rbd_assert(obj_request_img_data_test(obj_request));
2290         img_request = obj_request->img_request;
2291         rbd_assert(img_request);
2292
2293         rbd_dev = img_request->rbd_dev;
2294         rbd_assert(rbd_dev);
2295
2296         pages = obj_request->copyup_pages;
2297         rbd_assert(pages != NULL);
2298         obj_request->copyup_pages = NULL;
2299         page_count = obj_request->copyup_page_count;
2300         rbd_assert(page_count);
2301         obj_request->copyup_page_count = 0;
2302         ceph_release_page_vector(pages, page_count);
2303
2304         /*
2305          * We want the transfer count to reflect the size of the
2306          * original write request.  There is no such thing as a
2307          * successful short write, so if the request was successful
2308          * we can just set it to the originally-requested length.
2309          */
2310         if (!obj_request->result)
2311                 obj_request->xferred = obj_request->length;
2312
2313         /* Finish up with the normal image object callback */
2314
2315         rbd_img_obj_callback(obj_request);
2316 }
2317
2318 static void
2319 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2320 {
2321         struct rbd_obj_request *orig_request;
2322         struct ceph_osd_request *osd_req;
2323         struct ceph_osd_client *osdc;
2324         struct rbd_device *rbd_dev;
2325         struct page **pages;
2326         u32 page_count;
2327         int img_result;
2328         u64 parent_length;
2329         u64 offset;
2330         u64 length;
2331
2332         rbd_assert(img_request_child_test(img_request));
2333
2334         /* First get what we need from the image request */
2335
2336         pages = img_request->copyup_pages;
2337         rbd_assert(pages != NULL);
2338         img_request->copyup_pages = NULL;
2339         page_count = img_request->copyup_page_count;
2340         rbd_assert(page_count);
2341         img_request->copyup_page_count = 0;
2342
2343         orig_request = img_request->obj_request;
2344         rbd_assert(orig_request != NULL);
2345         rbd_assert(obj_request_type_valid(orig_request->type));
2346         img_result = img_request->result;
2347         parent_length = img_request->length;
2348         rbd_assert(parent_length == img_request->xferred);
2349         rbd_img_request_put(img_request);
2350
2351         rbd_assert(orig_request->img_request);
2352         rbd_dev = orig_request->img_request->rbd_dev;
2353         rbd_assert(rbd_dev);
2354
2355         /*
2356          * If the overlap has become 0 (most likely because the
2357          * image has been flattened) we need to free the pages
2358          * and re-submit the original write request.
2359          */
2360         if (!rbd_dev->parent_overlap) {
2361                 struct ceph_osd_client *osdc;
2362
2363                 ceph_release_page_vector(pages, page_count);
2364                 osdc = &rbd_dev->rbd_client->client->osdc;
2365                 img_result = rbd_obj_request_submit(osdc, orig_request);
2366                 if (!img_result)
2367                         return;
2368         }
2369
2370         if (img_result)
2371                 goto out_err;
2372
2373         /*
2374          * The original osd request is of no use to use any more.
2375          * We need a new one that can hold the two ops in a copyup
2376          * request.  Allocate the new copyup osd request for the
2377          * original request, and release the old one.
2378          */
2379         img_result = -ENOMEM;
2380         osd_req = rbd_osd_req_create_copyup(orig_request);
2381         if (!osd_req)
2382                 goto out_err;
2383         rbd_osd_req_destroy(orig_request->osd_req);
2384         orig_request->osd_req = osd_req;
2385         orig_request->copyup_pages = pages;
2386         orig_request->copyup_page_count = page_count;
2387
2388         /* Initialize the copyup op */
2389
2390         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2391         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2392                                                 false, false);
2393
2394         /* Then the original write request op */
2395
2396         offset = orig_request->offset;
2397         length = orig_request->length;
2398         osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2399                                         offset, length, 0, 0);
2400         if (orig_request->type == OBJ_REQUEST_BIO)
2401                 osd_req_op_extent_osd_data_bio(osd_req, 1,
2402                                         orig_request->bio_list, length);
2403         else
2404                 osd_req_op_extent_osd_data_pages(osd_req, 1,
2405                                         orig_request->pages, length,
2406                                         offset & ~PAGE_MASK, false, false);
2407
2408         rbd_osd_req_format_write(orig_request);
2409
2410         /* All set, send it off. */
2411
2412         orig_request->callback = rbd_img_obj_copyup_callback;
2413         osdc = &rbd_dev->rbd_client->client->osdc;
2414         img_result = rbd_obj_request_submit(osdc, orig_request);
2415         if (!img_result)
2416                 return;
2417 out_err:
2418         /* Record the error code and complete the request */
2419
2420         orig_request->result = img_result;
2421         orig_request->xferred = 0;
2422         obj_request_done_set(orig_request);
2423         rbd_obj_request_complete(orig_request);
2424 }
2425
2426 /*
2427  * Read from the parent image the range of data that covers the
2428  * entire target of the given object request.  This is used for
2429  * satisfying a layered image write request when the target of an
2430  * object request from the image request does not exist.
2431  *
2432  * A page array big enough to hold the returned data is allocated
2433  * and supplied to rbd_img_request_fill() as the "data descriptor."
2434  * When the read completes, this page array will be transferred to
2435  * the original object request for the copyup operation.
2436  *
2437  * If an error occurs, record it as the result of the original
2438  * object request and mark it done so it gets completed.
2439  */
2440 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2441 {
2442         struct rbd_img_request *img_request = NULL;
2443         struct rbd_img_request *parent_request = NULL;
2444         struct rbd_device *rbd_dev;
2445         u64 img_offset;
2446         u64 length;
2447         struct page **pages = NULL;
2448         u32 page_count;
2449         int result;
2450
2451         rbd_assert(obj_request_img_data_test(obj_request));
2452         rbd_assert(obj_request_type_valid(obj_request->type));
2453
2454         img_request = obj_request->img_request;
2455         rbd_assert(img_request != NULL);
2456         rbd_dev = img_request->rbd_dev;
2457         rbd_assert(rbd_dev->parent != NULL);
2458
2459         /*
2460          * Determine the byte range covered by the object in the
2461          * child image to which the original request was to be sent.
2462          */
2463         img_offset = obj_request->img_offset - obj_request->offset;
2464         length = (u64)1 << rbd_dev->header.obj_order;
2465
2466         /*
2467          * There is no defined parent data beyond the parent
2468          * overlap, so limit what we read at that boundary if
2469          * necessary.
2470          */
2471         if (img_offset + length > rbd_dev->parent_overlap) {
2472                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2473                 length = rbd_dev->parent_overlap - img_offset;
2474         }
2475
2476         /*
2477          * Allocate a page array big enough to receive the data read
2478          * from the parent.
2479          */
2480         page_count = (u32)calc_pages_for(0, length);
2481         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2482         if (IS_ERR(pages)) {
2483                 result = PTR_ERR(pages);
2484                 pages = NULL;
2485                 goto out_err;
2486         }
2487
2488         result = -ENOMEM;
2489         parent_request = rbd_parent_request_create(obj_request,
2490                                                 img_offset, length);
2491         if (!parent_request)
2492                 goto out_err;
2493
2494         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2495         if (result)
2496                 goto out_err;
2497         parent_request->copyup_pages = pages;
2498         parent_request->copyup_page_count = page_count;
2499
2500         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2501         result = rbd_img_request_submit(parent_request);
2502         if (!result)
2503                 return 0;
2504
2505         parent_request->copyup_pages = NULL;
2506         parent_request->copyup_page_count = 0;
2507         parent_request->obj_request = NULL;
2508         rbd_obj_request_put(obj_request);
2509 out_err:
2510         if (pages)
2511                 ceph_release_page_vector(pages, page_count);
2512         if (parent_request)
2513                 rbd_img_request_put(parent_request);
2514         obj_request->result = result;
2515         obj_request->xferred = 0;
2516         obj_request_done_set(obj_request);
2517
2518         return result;
2519 }
2520
2521 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2522 {
2523         struct rbd_obj_request *orig_request;
2524         struct rbd_device *rbd_dev;
2525         int result;
2526
2527         rbd_assert(!obj_request_img_data_test(obj_request));
2528
2529         /*
2530          * All we need from the object request is the original
2531          * request and the result of the STAT op.  Grab those, then
2532          * we're done with the request.
2533          */
2534         orig_request = obj_request->obj_request;
2535         obj_request->obj_request = NULL;
2536         rbd_obj_request_put(orig_request);
2537         rbd_assert(orig_request);
2538         rbd_assert(orig_request->img_request);
2539
2540         result = obj_request->result;
2541         obj_request->result = 0;
2542
2543         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2544                 obj_request, orig_request, result,
2545                 obj_request->xferred, obj_request->length);
2546         rbd_obj_request_put(obj_request);
2547
2548         /*
2549          * If the overlap has become 0 (most likely because the
2550          * image has been flattened) we need to free the pages
2551          * and re-submit the original write request.
2552          */
2553         rbd_dev = orig_request->img_request->rbd_dev;
2554         if (!rbd_dev->parent_overlap) {
2555                 struct ceph_osd_client *osdc;
2556
2557                 osdc = &rbd_dev->rbd_client->client->osdc;
2558                 result = rbd_obj_request_submit(osdc, orig_request);
2559                 if (!result)
2560                         return;
2561         }
2562
2563         /*
2564          * Our only purpose here is to determine whether the object
2565          * exists, and we don't want to treat the non-existence as
2566          * an error.  If something else comes back, transfer the
2567          * error to the original request and complete it now.
2568          */
2569         if (!result) {
2570                 obj_request_existence_set(orig_request, true);
2571         } else if (result == -ENOENT) {
2572                 obj_request_existence_set(orig_request, false);
2573         } else if (result) {
2574                 orig_request->result = result;
2575                 goto out;
2576         }
2577
2578         /*
2579          * Resubmit the original request now that we have recorded
2580          * whether the target object exists.
2581          */
2582         orig_request->result = rbd_img_obj_request_submit(orig_request);
2583 out:
2584         if (orig_request->result)
2585                 rbd_obj_request_complete(orig_request);
2586 }
2587
2588 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2589 {
2590         struct rbd_obj_request *stat_request;
2591         struct rbd_device *rbd_dev;
2592         struct ceph_osd_client *osdc;
2593         struct page **pages = NULL;
2594         u32 page_count;
2595         size_t size;
2596         int ret;
2597
2598         /*
2599          * The response data for a STAT call consists of:
2600          *     le64 length;
2601          *     struct {
2602          *         le32 tv_sec;
2603          *         le32 tv_nsec;
2604          *     } mtime;
2605          */
2606         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2607         page_count = (u32)calc_pages_for(0, size);
2608         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2609         if (IS_ERR(pages))
2610                 return PTR_ERR(pages);
2611
2612         ret = -ENOMEM;
2613         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2614                                                         OBJ_REQUEST_PAGES);
2615         if (!stat_request)
2616                 goto out;
2617
2618         rbd_obj_request_get(obj_request);
2619         stat_request->obj_request = obj_request;
2620         stat_request->pages = pages;
2621         stat_request->page_count = page_count;
2622
2623         rbd_assert(obj_request->img_request);
2624         rbd_dev = obj_request->img_request->rbd_dev;
2625         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2626                                                 stat_request);
2627         if (!stat_request->osd_req)
2628                 goto out;
2629         stat_request->callback = rbd_img_obj_exists_callback;
2630
2631         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2632         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2633                                         false, false);
2634         rbd_osd_req_format_read(stat_request);
2635
2636         osdc = &rbd_dev->rbd_client->client->osdc;
2637         ret = rbd_obj_request_submit(osdc, stat_request);
2638 out:
2639         if (ret)
2640                 rbd_obj_request_put(obj_request);
2641
2642         return ret;
2643 }
2644
2645 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2646 {
2647         struct rbd_img_request *img_request;
2648         struct rbd_device *rbd_dev;
2649         bool known;
2650
2651         rbd_assert(obj_request_img_data_test(obj_request));
2652
2653         img_request = obj_request->img_request;
2654         rbd_assert(img_request);
2655         rbd_dev = img_request->rbd_dev;
2656
2657         /*
2658          * Only writes to layered images need special handling.
2659          * Reads and non-layered writes are simple object requests.
2660          * Layered writes that start beyond the end of the overlap
2661          * with the parent have no parent data, so they too are
2662          * simple object requests.  Finally, if the target object is
2663          * known to already exist, its parent data has already been
2664          * copied, so a write to the object can also be handled as a
2665          * simple object request.
2666          */
2667         if (!img_request_write_test(img_request) ||
2668                 !img_request_layered_test(img_request) ||
2669                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2670                 ((known = obj_request_known_test(obj_request)) &&
2671                         obj_request_exists_test(obj_request))) {
2672
2673                 struct rbd_device *rbd_dev;
2674                 struct ceph_osd_client *osdc;
2675
2676                 rbd_dev = obj_request->img_request->rbd_dev;
2677                 osdc = &rbd_dev->rbd_client->client->osdc;
2678
2679                 return rbd_obj_request_submit(osdc, obj_request);
2680         }
2681
2682         /*
2683          * It's a layered write.  The target object might exist but
2684          * we may not know that yet.  If we know it doesn't exist,
2685          * start by reading the data for the full target object from
2686          * the parent so we can use it for a copyup to the target.
2687          */
2688         if (known)
2689                 return rbd_img_obj_parent_read_full(obj_request);
2690
2691         /* We don't know whether the target exists.  Go find out. */
2692
2693         return rbd_img_obj_exists_submit(obj_request);
2694 }
2695
2696 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2697 {
2698         struct rbd_obj_request *obj_request;
2699         struct rbd_obj_request *next_obj_request;
2700
2701         dout("%s: img %p\n", __func__, img_request);
2702         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2703                 int ret;
2704
2705                 ret = rbd_img_obj_request_submit(obj_request);
2706                 if (ret)
2707                         return ret;
2708         }
2709
2710         return 0;
2711 }
2712
2713 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2714 {
2715         struct rbd_obj_request *obj_request;
2716         struct rbd_device *rbd_dev;
2717         u64 obj_end;
2718         u64 img_xferred;
2719         int img_result;
2720
2721         rbd_assert(img_request_child_test(img_request));
2722
2723         /* First get what we need from the image request and release it */
2724
2725         obj_request = img_request->obj_request;
2726         img_xferred = img_request->xferred;
2727         img_result = img_request->result;
2728         rbd_img_request_put(img_request);
2729
2730         /*
2731          * If the overlap has become 0 (most likely because the
2732          * image has been flattened) we need to re-submit the
2733          * original request.
2734          */
2735         rbd_assert(obj_request);
2736         rbd_assert(obj_request->img_request);
2737         rbd_dev = obj_request->img_request->rbd_dev;
2738         if (!rbd_dev->parent_overlap) {
2739                 struct ceph_osd_client *osdc;
2740
2741                 osdc = &rbd_dev->rbd_client->client->osdc;
2742                 img_result = rbd_obj_request_submit(osdc, obj_request);
2743                 if (!img_result)
2744                         return;
2745         }
2746
2747         obj_request->result = img_result;
2748         if (obj_request->result)
2749                 goto out;
2750
2751         /*
2752          * We need to zero anything beyond the parent overlap
2753          * boundary.  Since rbd_img_obj_request_read_callback()
2754          * will zero anything beyond the end of a short read, an
2755          * easy way to do this is to pretend the data from the
2756          * parent came up short--ending at the overlap boundary.
2757          */
2758         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2759         obj_end = obj_request->img_offset + obj_request->length;
2760         if (obj_end > rbd_dev->parent_overlap) {
2761                 u64 xferred = 0;
2762
2763                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2764                         xferred = rbd_dev->parent_overlap -
2765                                         obj_request->img_offset;
2766
2767                 obj_request->xferred = min(img_xferred, xferred);
2768         } else {
2769                 obj_request->xferred = img_xferred;
2770         }
2771 out:
2772         rbd_img_obj_request_read_callback(obj_request);
2773         rbd_obj_request_complete(obj_request);
2774 }
2775
2776 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2777 {
2778         struct rbd_img_request *img_request;
2779         int result;
2780
2781         rbd_assert(obj_request_img_data_test(obj_request));
2782         rbd_assert(obj_request->img_request != NULL);
2783         rbd_assert(obj_request->result == (s32) -ENOENT);
2784         rbd_assert(obj_request_type_valid(obj_request->type));
2785
2786         /* rbd_read_finish(obj_request, obj_request->length); */
2787         img_request = rbd_parent_request_create(obj_request,
2788                                                 obj_request->img_offset,
2789                                                 obj_request->length);
2790         result = -ENOMEM;
2791         if (!img_request)
2792                 goto out_err;
2793
2794         if (obj_request->type == OBJ_REQUEST_BIO)
2795                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2796                                                 obj_request->bio_list);
2797         else
2798                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2799                                                 obj_request->pages);
2800         if (result)
2801                 goto out_err;
2802
2803         img_request->callback = rbd_img_parent_read_callback;
2804         result = rbd_img_request_submit(img_request);
2805         if (result)
2806                 goto out_err;
2807
2808         return;
2809 out_err:
2810         if (img_request)
2811                 rbd_img_request_put(img_request);
2812         obj_request->result = result;
2813         obj_request->xferred = 0;
2814         obj_request_done_set(obj_request);
2815 }
2816
2817 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2818 {
2819         struct rbd_obj_request *obj_request;
2820         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2821         int ret;
2822
2823         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2824                                                         OBJ_REQUEST_NODATA);
2825         if (!obj_request)
2826                 return -ENOMEM;
2827
2828         ret = -ENOMEM;
2829         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2830         if (!obj_request->osd_req)
2831                 goto out;
2832
2833         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2834                                         notify_id, 0, 0);
2835         rbd_osd_req_format_read(obj_request);
2836
2837         ret = rbd_obj_request_submit(osdc, obj_request);
2838         if (ret)
2839                 goto out;
2840         ret = rbd_obj_request_wait(obj_request);
2841 out:
2842         rbd_obj_request_put(obj_request);
2843
2844         return ret;
2845 }
2846
2847 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2848 {
2849         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2850         int ret;
2851
2852         if (!rbd_dev)
2853                 return;
2854
2855         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2856                 rbd_dev->header_name, (unsigned long long)notify_id,
2857                 (unsigned int)opcode);
2858         ret = rbd_dev_refresh(rbd_dev);
2859         if (ret)
2860                 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2861
2862         rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2863 }
2864
2865 /*
2866  * Request sync osd watch/unwatch.  The value of "start" determines
2867  * whether a watch request is being initiated or torn down.
2868  */
2869 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2870 {
2871         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2872         struct rbd_obj_request *obj_request;
2873         int ret;
2874
2875         rbd_assert(start ^ !!rbd_dev->watch_event);
2876         rbd_assert(start ^ !!rbd_dev->watch_request);
2877
2878         if (start) {
2879                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2880                                                 &rbd_dev->watch_event);
2881                 if (ret < 0)
2882                         return ret;
2883                 rbd_assert(rbd_dev->watch_event != NULL);
2884         }
2885
2886         ret = -ENOMEM;
2887         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2888                                                         OBJ_REQUEST_NODATA);
2889         if (!obj_request)
2890                 goto out_cancel;
2891
2892         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2893         if (!obj_request->osd_req)
2894                 goto out_cancel;
2895
2896         if (start)
2897                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2898         else
2899                 ceph_osdc_unregister_linger_request(osdc,
2900                                         rbd_dev->watch_request->osd_req);
2901
2902         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2903                                 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2904         rbd_osd_req_format_write(obj_request);
2905
2906         ret = rbd_obj_request_submit(osdc, obj_request);
2907         if (ret)
2908                 goto out_cancel;
2909         ret = rbd_obj_request_wait(obj_request);
2910         if (ret)
2911                 goto out_cancel;
2912         ret = obj_request->result;
2913         if (ret)
2914                 goto out_cancel;
2915
2916         /*
2917          * A watch request is set to linger, so the underlying osd
2918          * request won't go away until we unregister it.  We retain
2919          * a pointer to the object request during that time (in
2920          * rbd_dev->watch_request), so we'll keep a reference to
2921          * it.  We'll drop that reference (below) after we've
2922          * unregistered it.
2923          */
2924         if (start) {
2925                 rbd_dev->watch_request = obj_request;
2926
2927                 return 0;
2928         }
2929
2930         /* We have successfully torn down the watch request */
2931
2932         rbd_obj_request_put(rbd_dev->watch_request);
2933         rbd_dev->watch_request = NULL;
2934 out_cancel:
2935         /* Cancel the event if we're tearing down, or on error */
2936         ceph_osdc_cancel_event(rbd_dev->watch_event);
2937         rbd_dev->watch_event = NULL;
2938         if (obj_request)
2939                 rbd_obj_request_put(obj_request);
2940
2941         return ret;
2942 }
2943
2944 /*
2945  * Synchronous osd object method call.  Returns the number of bytes
2946  * returned in the outbound buffer, or a negative error code.
2947  */
2948 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2949                              const char *object_name,
2950                              const char *class_name,
2951                              const char *method_name,
2952                              const void *outbound,
2953                              size_t outbound_size,
2954                              void *inbound,
2955                              size_t inbound_size)
2956 {
2957         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2958         struct rbd_obj_request *obj_request;
2959         struct page **pages;
2960         u32 page_count;
2961         int ret;
2962
2963         /*
2964          * Method calls are ultimately read operations.  The result
2965          * should placed into the inbound buffer provided.  They
2966          * also supply outbound data--parameters for the object
2967          * method.  Currently if this is present it will be a
2968          * snapshot id.
2969          */
2970         page_count = (u32)calc_pages_for(0, inbound_size);
2971         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2972         if (IS_ERR(pages))
2973                 return PTR_ERR(pages);
2974
2975         ret = -ENOMEM;
2976         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2977                                                         OBJ_REQUEST_PAGES);
2978         if (!obj_request)
2979                 goto out;
2980
2981         obj_request->pages = pages;
2982         obj_request->page_count = page_count;
2983
2984         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2985         if (!obj_request->osd_req)
2986                 goto out;
2987
2988         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2989                                         class_name, method_name);
2990         if (outbound_size) {
2991                 struct ceph_pagelist *pagelist;
2992
2993                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2994                 if (!pagelist)
2995                         goto out;
2996
2997                 ceph_pagelist_init(pagelist);
2998                 ceph_pagelist_append(pagelist, outbound, outbound_size);
2999                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3000                                                 pagelist);
3001         }
3002         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3003                                         obj_request->pages, inbound_size,
3004                                         0, false, false);
3005         rbd_osd_req_format_read(obj_request);
3006
3007         ret = rbd_obj_request_submit(osdc, obj_request);
3008         if (ret)
3009                 goto out;
3010         ret = rbd_obj_request_wait(obj_request);
3011         if (ret)
3012                 goto out;
3013
3014         ret = obj_request->result;
3015         if (ret < 0)
3016                 goto out;
3017
3018         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3019         ret = (int)obj_request->xferred;
3020         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3021 out:
3022         if (obj_request)
3023                 rbd_obj_request_put(obj_request);
3024         else
3025                 ceph_release_page_vector(pages, page_count);
3026
3027         return ret;
3028 }
3029
3030 static void rbd_request_fn(struct request_queue *q)
3031                 __releases(q->queue_lock) __acquires(q->queue_lock)
3032 {
3033         struct rbd_device *rbd_dev = q->queuedata;
3034         bool read_only = rbd_dev->mapping.read_only;
3035         struct request *rq;
3036         int result;
3037
3038         while ((rq = blk_fetch_request(q))) {
3039                 bool write_request = rq_data_dir(rq) == WRITE;
3040                 struct rbd_img_request *img_request;
3041                 u64 offset;
3042                 u64 length;
3043
3044                 /* Ignore any non-FS requests that filter through. */
3045
3046                 if (rq->cmd_type != REQ_TYPE_FS) {
3047                         dout("%s: non-fs request type %d\n", __func__,
3048                                 (int) rq->cmd_type);
3049                         __blk_end_request_all(rq, 0);
3050                         continue;
3051                 }
3052
3053                 /* Ignore/skip any zero-length requests */
3054
3055                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3056                 length = (u64) blk_rq_bytes(rq);
3057
3058                 if (!length) {
3059                         dout("%s: zero-length request\n", __func__);
3060                         __blk_end_request_all(rq, 0);
3061                         continue;
3062                 }
3063
3064                 spin_unlock_irq(q->queue_lock);
3065
3066                 /* Disallow writes to a read-only device */
3067
3068                 if (write_request) {
3069                         result = -EROFS;
3070                         if (read_only)
3071                                 goto end_request;
3072                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3073                 }
3074
3075                 /*
3076                  * Quit early if the mapped snapshot no longer
3077                  * exists.  It's still possible the snapshot will
3078                  * have disappeared by the time our request arrives
3079                  * at the osd, but there's no sense in sending it if
3080                  * we already know.
3081                  */
3082                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3083                         dout("request for non-existent snapshot");
3084                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3085                         result = -ENXIO;
3086                         goto end_request;
3087                 }
3088
3089                 result = -EINVAL;
3090                 if (offset && length > U64_MAX - offset + 1) {
3091                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3092                                 offset, length);
3093                         goto end_request;       /* Shouldn't happen */
3094                 }
3095
3096                 result = -EIO;
3097                 if (offset + length > rbd_dev->mapping.size) {
3098                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3099                                 offset, length, rbd_dev->mapping.size);
3100                         goto end_request;
3101                 }
3102
3103                 result = -ENOMEM;
3104                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3105                                                         write_request);
3106                 if (!img_request)
3107                         goto end_request;
3108
3109                 img_request->rq = rq;
3110
3111                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3112                                                 rq->bio);
3113                 if (!result)
3114                         result = rbd_img_request_submit(img_request);
3115                 if (result)
3116                         rbd_img_request_put(img_request);
3117 end_request:
3118                 spin_lock_irq(q->queue_lock);
3119                 if (result < 0) {
3120                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3121                                 write_request ? "write" : "read",
3122                                 length, offset, result);
3123
3124                         __blk_end_request_all(rq, result);
3125                 }
3126         }
3127 }
3128
3129 /*
3130  * a queue callback. Makes sure that we don't create a bio that spans across
3131  * multiple osd objects. One exception would be with a single page bios,
3132  * which we handle later at bio_chain_clone_range()
3133  */
3134 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3135                           struct bio_vec *bvec)
3136 {
3137         struct rbd_device *rbd_dev = q->queuedata;
3138         sector_t sector_offset;
3139         sector_t sectors_per_obj;
3140         sector_t obj_sector_offset;
3141         int ret;
3142
3143         /*
3144          * Find how far into its rbd object the partition-relative
3145          * bio start sector is to offset relative to the enclosing
3146          * device.
3147          */
3148         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3149         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3150         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3151
3152         /*
3153          * Compute the number of bytes from that offset to the end
3154          * of the object.  Account for what's already used by the bio.
3155          */
3156         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3157         if (ret > bmd->bi_size)
3158                 ret -= bmd->bi_size;
3159         else
3160                 ret = 0;
3161
3162         /*
3163          * Don't send back more than was asked for.  And if the bio
3164          * was empty, let the whole thing through because:  "Note
3165          * that a block device *must* allow a single page to be
3166          * added to an empty bio."
3167          */
3168         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3169         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3170                 ret = (int) bvec->bv_len;
3171
3172         return ret;
3173 }
3174
3175 static void rbd_free_disk(struct rbd_device *rbd_dev)
3176 {
3177         struct gendisk *disk = rbd_dev->disk;
3178
3179         if (!disk)
3180                 return;
3181
3182         rbd_dev->disk = NULL;
3183         if (disk->flags & GENHD_FL_UP) {
3184                 del_gendisk(disk);
3185                 if (disk->queue)
3186                         blk_cleanup_queue(disk->queue);
3187         }
3188         put_disk(disk);
3189 }
3190
3191 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3192                                 const char *object_name,
3193                                 u64 offset, u64 length, void *buf)
3194
3195 {
3196         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3197         struct rbd_obj_request *obj_request;
3198         struct page **pages = NULL;
3199         u32 page_count;
3200         size_t size;
3201         int ret;
3202
3203         page_count = (u32) calc_pages_for(offset, length);
3204         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3205         if (IS_ERR(pages))
3206                 ret = PTR_ERR(pages);
3207
3208         ret = -ENOMEM;
3209         obj_request = rbd_obj_request_create(object_name, offset, length,
3210                                                         OBJ_REQUEST_PAGES);
3211         if (!obj_request)
3212                 goto out;
3213
3214         obj_request->pages = pages;
3215         obj_request->page_count = page_count;
3216
3217         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3218         if (!obj_request->osd_req)
3219                 goto out;
3220
3221         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3222                                         offset, length, 0, 0);
3223         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3224                                         obj_request->pages,
3225                                         obj_request->length,
3226                                         obj_request->offset & ~PAGE_MASK,
3227                                         false, false);
3228         rbd_osd_req_format_read(obj_request);
3229
3230         ret = rbd_obj_request_submit(osdc, obj_request);
3231         if (ret)
3232                 goto out;
3233         ret = rbd_obj_request_wait(obj_request);
3234         if (ret)
3235                 goto out;
3236
3237         ret = obj_request->result;
3238         if (ret < 0)
3239                 goto out;
3240
3241         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3242         size = (size_t) obj_request->xferred;
3243         ceph_copy_from_page_vector(pages, buf, 0, size);
3244         rbd_assert(size <= (size_t)INT_MAX);
3245         ret = (int)size;
3246 out:
3247         if (obj_request)
3248                 rbd_obj_request_put(obj_request);
3249         else
3250                 ceph_release_page_vector(pages, page_count);
3251
3252         return ret;
3253 }
3254
3255 /*
3256  * Read the complete header for the given rbd device.  On successful
3257  * return, the rbd_dev->header field will contain up-to-date
3258  * information about the image.
3259  */
3260 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3261 {
3262         struct rbd_image_header_ondisk *ondisk = NULL;
3263         u32 snap_count = 0;
3264         u64 names_size = 0;
3265         u32 want_count;
3266         int ret;
3267
3268         /*
3269          * The complete header will include an array of its 64-bit
3270          * snapshot ids, followed by the names of those snapshots as
3271          * a contiguous block of NUL-terminated strings.  Note that
3272          * the number of snapshots could change by the time we read
3273          * it in, in which case we re-read it.
3274          */
3275         do {
3276                 size_t size;
3277
3278                 kfree(ondisk);
3279
3280                 size = sizeof (*ondisk);
3281                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3282                 size += names_size;
3283                 ondisk = kmalloc(size, GFP_KERNEL);
3284                 if (!ondisk)
3285                         return -ENOMEM;
3286
3287                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3288                                        0, size, ondisk);
3289                 if (ret < 0)
3290                         goto out;
3291                 if ((size_t)ret < size) {
3292                         ret = -ENXIO;
3293                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3294                                 size, ret);
3295                         goto out;
3296                 }
3297                 if (!rbd_dev_ondisk_valid(ondisk)) {
3298                         ret = -ENXIO;
3299                         rbd_warn(rbd_dev, "invalid header");
3300                         goto out;
3301                 }
3302
3303                 names_size = le64_to_cpu(ondisk->snap_names_len);
3304                 want_count = snap_count;
3305                 snap_count = le32_to_cpu(ondisk->snap_count);
3306         } while (snap_count != want_count);
3307
3308         ret = rbd_header_from_disk(rbd_dev, ondisk);
3309 out:
3310         kfree(ondisk);
3311
3312         return ret;
3313 }
3314
3315 /*
3316  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3317  * has disappeared from the (just updated) snapshot context.
3318  */
3319 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3320 {
3321         u64 snap_id;
3322
3323         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3324                 return;
3325
3326         snap_id = rbd_dev->spec->snap_id;
3327         if (snap_id == CEPH_NOSNAP)
3328                 return;
3329
3330         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3331                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3332 }
3333
3334 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3335 {
3336         sector_t size;
3337         bool removing;
3338
3339         /*
3340          * Don't hold the lock while doing disk operations,
3341          * or lock ordering will conflict with the bdev mutex via:
3342          * rbd_add() -> blkdev_get() -> rbd_open()
3343          */
3344         spin_lock_irq(&rbd_dev->lock);
3345         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3346         spin_unlock_irq(&rbd_dev->lock);
3347         /*
3348          * If the device is being removed, rbd_dev->disk has
3349          * been destroyed, so don't try to update its size
3350          */
3351         if (!removing) {
3352                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3353                 dout("setting size to %llu sectors", (unsigned long long)size);
3354                 set_capacity(rbd_dev->disk, size);
3355                 revalidate_disk(rbd_dev->disk);
3356         }
3357 }
3358
3359 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3360 {
3361         u64 mapping_size;
3362         int ret;
3363
3364         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3365         down_write(&rbd_dev->header_rwsem);
3366         mapping_size = rbd_dev->mapping.size;
3367         if (rbd_dev->image_format == 1)
3368                 ret = rbd_dev_v1_header_info(rbd_dev);
3369         else
3370                 ret = rbd_dev_v2_header_info(rbd_dev);
3371
3372         /* If it's a mapped snapshot, validate its EXISTS flag */
3373
3374         rbd_exists_validate(rbd_dev);
3375         up_write(&rbd_dev->header_rwsem);
3376
3377         if (mapping_size != rbd_dev->mapping.size) {
3378                 rbd_dev_update_size(rbd_dev);
3379         }
3380
3381         return ret;
3382 }
3383
3384 static int rbd_init_disk(struct rbd_device *rbd_dev)
3385 {
3386         struct gendisk *disk;
3387         struct request_queue *q;
3388         u64 segment_size;
3389
3390         /* create gendisk info */
3391         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3392         if (!disk)
3393                 return -ENOMEM;
3394
3395         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3396                  rbd_dev->dev_id);
3397         disk->major = rbd_dev->major;
3398         disk->first_minor = 0;
3399         disk->fops = &rbd_bd_ops;
3400         disk->private_data = rbd_dev;
3401
3402         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3403         if (!q)
3404                 goto out_disk;
3405
3406         /* We use the default size, but let's be explicit about it. */
3407         blk_queue_physical_block_size(q, SECTOR_SIZE);
3408
3409         /* set io sizes to object size */
3410         segment_size = rbd_obj_bytes(&rbd_dev->header);
3411         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3412         blk_queue_max_segment_size(q, segment_size);
3413         blk_queue_io_min(q, segment_size);
3414         blk_queue_io_opt(q, segment_size);
3415
3416         blk_queue_merge_bvec(q, rbd_merge_bvec);
3417         disk->queue = q;
3418
3419         q->queuedata = rbd_dev;
3420
3421         rbd_dev->disk = disk;
3422
3423         return 0;
3424 out_disk:
3425         put_disk(disk);
3426
3427         return -ENOMEM;
3428 }
3429
3430 /*
3431   sysfs
3432 */
3433
3434 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3435 {
3436         return container_of(dev, struct rbd_device, dev);
3437 }
3438
3439 static ssize_t rbd_size_show(struct device *dev,
3440                              struct device_attribute *attr, char *buf)
3441 {
3442         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3443
3444         return sprintf(buf, "%llu\n",
3445                 (unsigned long long)rbd_dev->mapping.size);
3446 }
3447
3448 /*
3449  * Note this shows the features for whatever's mapped, which is not
3450  * necessarily the base image.
3451  */
3452 static ssize_t rbd_features_show(struct device *dev,
3453                              struct device_attribute *attr, char *buf)
3454 {
3455         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3456
3457         return sprintf(buf, "0x%016llx\n",
3458                         (unsigned long long)rbd_dev->mapping.features);
3459 }
3460
3461 static ssize_t rbd_major_show(struct device *dev,
3462                               struct device_attribute *attr, char *buf)
3463 {
3464         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3465
3466         if (rbd_dev->major)
3467                 return sprintf(buf, "%d\n", rbd_dev->major);
3468
3469         return sprintf(buf, "(none)\n");
3470
3471 }
3472
3473 static ssize_t rbd_client_id_show(struct device *dev,
3474                                   struct device_attribute *attr, char *buf)
3475 {
3476         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3477
3478         return sprintf(buf, "client%lld\n",
3479                         ceph_client_id(rbd_dev->rbd_client->client));
3480 }
3481
3482 static ssize_t rbd_pool_show(struct device *dev,
3483                              struct device_attribute *attr, char *buf)
3484 {
3485         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3486
3487         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3488 }
3489
3490 static ssize_t rbd_pool_id_show(struct device *dev,
3491                              struct device_attribute *attr, char *buf)
3492 {
3493         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3494
3495         return sprintf(buf, "%llu\n",
3496                         (unsigned long long) rbd_dev->spec->pool_id);
3497 }
3498
3499 static ssize_t rbd_name_show(struct device *dev,
3500                              struct device_attribute *attr, char *buf)
3501 {
3502         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3503
3504         if (rbd_dev->spec->image_name)
3505                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3506
3507         return sprintf(buf, "(unknown)\n");
3508 }
3509
3510 static ssize_t rbd_image_id_show(struct device *dev,
3511                              struct device_attribute *attr, char *buf)
3512 {
3513         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3514
3515         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3516 }
3517
3518 /*
3519  * Shows the name of the currently-mapped snapshot (or
3520  * RBD_SNAP_HEAD_NAME for the base image).
3521  */
3522 static ssize_t rbd_snap_show(struct device *dev,
3523                              struct device_attribute *attr,
3524                              char *buf)
3525 {
3526         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3527
3528         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3529 }
3530
3531 /*
3532  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3533  * for the parent image.  If there is no parent, simply shows
3534  * "(no parent image)".
3535  */
3536 static ssize_t rbd_parent_show(struct device *dev,
3537                              struct device_attribute *attr,
3538                              char *buf)
3539 {
3540         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3541         struct rbd_spec *spec = rbd_dev->parent_spec;
3542         int count;
3543         char *bufp = buf;
3544
3545         if (!spec)
3546                 return sprintf(buf, "(no parent image)\n");
3547
3548         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3549                         (unsigned long long) spec->pool_id, spec->pool_name);
3550         if (count < 0)
3551                 return count;
3552         bufp += count;
3553
3554         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3555                         spec->image_name ? spec->image_name : "(unknown)");
3556         if (count < 0)
3557                 return count;
3558         bufp += count;
3559
3560         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3561                         (unsigned long long) spec->snap_id, spec->snap_name);
3562         if (count < 0)
3563                 return count;
3564         bufp += count;
3565
3566         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3567         if (count < 0)
3568                 return count;
3569         bufp += count;
3570
3571         return (ssize_t) (bufp - buf);
3572 }
3573
3574 static ssize_t rbd_image_refresh(struct device *dev,
3575                                  struct device_attribute *attr,
3576                                  const char *buf,
3577                                  size_t size)
3578 {
3579         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3580         int ret;
3581
3582         ret = rbd_dev_refresh(rbd_dev);
3583         if (ret)
3584                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3585
3586         return ret < 0 ? ret : size;
3587 }
3588
3589 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3590 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3591 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3592 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3593 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3594 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3595 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3596 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3597 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3598 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3599 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3600
3601 static struct attribute *rbd_attrs[] = {
3602         &dev_attr_size.attr,
3603         &dev_attr_features.attr,
3604         &dev_attr_major.attr,
3605         &dev_attr_client_id.attr,
3606         &dev_attr_pool.attr,
3607         &dev_attr_pool_id.attr,
3608         &dev_attr_name.attr,
3609         &dev_attr_image_id.attr,
3610         &dev_attr_current_snap.attr,
3611         &dev_attr_parent.attr,
3612         &dev_attr_refresh.attr,
3613         NULL
3614 };
3615
3616 static struct attribute_group rbd_attr_group = {
3617         .attrs = rbd_attrs,
3618 };
3619
3620 static const struct attribute_group *rbd_attr_groups[] = {
3621         &rbd_attr_group,
3622         NULL
3623 };
3624
3625 static void rbd_sysfs_dev_release(struct device *dev)
3626 {
3627 }
3628
3629 static struct device_type rbd_device_type = {
3630         .name           = "rbd",
3631         .groups         = rbd_attr_groups,
3632         .release        = rbd_sysfs_dev_release,
3633 };
3634
3635 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3636 {
3637         kref_get(&spec->kref);
3638
3639         return spec;
3640 }
3641
3642 static void rbd_spec_free(struct kref *kref);
3643 static void rbd_spec_put(struct rbd_spec *spec)
3644 {
3645         if (spec)
3646                 kref_put(&spec->kref, rbd_spec_free);
3647 }
3648
3649 static struct rbd_spec *rbd_spec_alloc(void)
3650 {
3651         struct rbd_spec *spec;
3652
3653         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3654         if (!spec)
3655                 return NULL;
3656         kref_init(&spec->kref);
3657
3658         return spec;
3659 }
3660
3661 static void rbd_spec_free(struct kref *kref)
3662 {
3663         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3664
3665         kfree(spec->pool_name);
3666         kfree(spec->image_id);
3667         kfree(spec->image_name);
3668         kfree(spec->snap_name);
3669         kfree(spec);
3670 }
3671
3672 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3673                                 struct rbd_spec *spec)
3674 {
3675         struct rbd_device *rbd_dev;
3676
3677         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3678         if (!rbd_dev)
3679                 return NULL;
3680
3681         spin_lock_init(&rbd_dev->lock);
3682         rbd_dev->flags = 0;
3683         atomic_set(&rbd_dev->parent_ref, 0);
3684         INIT_LIST_HEAD(&rbd_dev->node);
3685         init_rwsem(&rbd_dev->header_rwsem);
3686
3687         rbd_dev->spec = spec;
3688         rbd_dev->rbd_client = rbdc;
3689
3690         /* Initialize the layout used for all rbd requests */
3691
3692         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3693         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3694         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3695         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3696
3697         return rbd_dev;
3698 }
3699
3700 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3701 {
3702         rbd_put_client(rbd_dev->rbd_client);
3703         rbd_spec_put(rbd_dev->spec);
3704         kfree(rbd_dev);
3705 }
3706
3707 /*
3708  * Get the size and object order for an image snapshot, or if
3709  * snap_id is CEPH_NOSNAP, gets this information for the base
3710  * image.
3711  */
3712 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3713                                 u8 *order, u64 *snap_size)
3714 {
3715         __le64 snapid = cpu_to_le64(snap_id);
3716         int ret;
3717         struct {
3718                 u8 order;
3719                 __le64 size;
3720         } __attribute__ ((packed)) size_buf = { 0 };
3721
3722         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3723                                 "rbd", "get_size",
3724                                 &snapid, sizeof (snapid),
3725                                 &size_buf, sizeof (size_buf));
3726         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3727         if (ret < 0)
3728                 return ret;
3729         if (ret < sizeof (size_buf))
3730                 return -ERANGE;
3731
3732         if (order) {
3733                 *order = size_buf.order;
3734                 dout("  order %u", (unsigned int)*order);
3735         }
3736         *snap_size = le64_to_cpu(size_buf.size);
3737
3738         dout("  snap_id 0x%016llx snap_size = %llu\n",
3739                 (unsigned long long)snap_id,
3740                 (unsigned long long)*snap_size);
3741
3742         return 0;
3743 }
3744
3745 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3746 {
3747         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3748                                         &rbd_dev->header.obj_order,
3749                                         &rbd_dev->header.image_size);
3750 }
3751
3752 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3753 {
3754         void *reply_buf;
3755         int ret;
3756         void *p;
3757
3758         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3759         if (!reply_buf)
3760                 return -ENOMEM;
3761
3762         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3763                                 "rbd", "get_object_prefix", NULL, 0,
3764                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3765         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3766         if (ret < 0)
3767                 goto out;
3768
3769         p = reply_buf;
3770         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3771                                                 p + ret, NULL, GFP_NOIO);
3772         ret = 0;
3773
3774         if (IS_ERR(rbd_dev->header.object_prefix)) {
3775                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3776                 rbd_dev->header.object_prefix = NULL;
3777         } else {
3778                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3779         }
3780 out:
3781         kfree(reply_buf);
3782
3783         return ret;
3784 }
3785
3786 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3787                 u64 *snap_features)
3788 {
3789         __le64 snapid = cpu_to_le64(snap_id);
3790         struct {
3791                 __le64 features;
3792                 __le64 incompat;
3793         } __attribute__ ((packed)) features_buf = { 0 };
3794         u64 incompat;
3795         int ret;
3796
3797         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3798                                 "rbd", "get_features",
3799                                 &snapid, sizeof (snapid),
3800                                 &features_buf, sizeof (features_buf));
3801         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3802         if (ret < 0)
3803                 return ret;
3804         if (ret < sizeof (features_buf))
3805                 return -ERANGE;
3806
3807         incompat = le64_to_cpu(features_buf.incompat);
3808         if (incompat & ~RBD_FEATURES_SUPPORTED)
3809                 return -ENXIO;
3810
3811         *snap_features = le64_to_cpu(features_buf.features);
3812
3813         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3814                 (unsigned long long)snap_id,
3815                 (unsigned long long)*snap_features,
3816                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3817
3818         return 0;
3819 }
3820
3821 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3822 {
3823         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3824                                                 &rbd_dev->header.features);
3825 }
3826
3827 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3828 {
3829         struct rbd_spec *parent_spec;
3830         size_t size;
3831         void *reply_buf = NULL;
3832         __le64 snapid;
3833         void *p;
3834         void *end;
3835         u64 pool_id;
3836         char *image_id;
3837         u64 snap_id;
3838         u64 overlap;
3839         int ret;
3840
3841         parent_spec = rbd_spec_alloc();
3842         if (!parent_spec)
3843                 return -ENOMEM;
3844
3845         size = sizeof (__le64) +                                /* pool_id */
3846                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3847                 sizeof (__le64) +                               /* snap_id */
3848                 sizeof (__le64);                                /* overlap */
3849         reply_buf = kmalloc(size, GFP_KERNEL);
3850         if (!reply_buf) {
3851                 ret = -ENOMEM;
3852                 goto out_err;
3853         }
3854
3855         snapid = cpu_to_le64(CEPH_NOSNAP);
3856         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3857                                 "rbd", "get_parent",
3858                                 &snapid, sizeof (snapid),
3859                                 reply_buf, size);
3860         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3861         if (ret < 0)
3862                 goto out_err;
3863
3864         p = reply_buf;
3865         end = reply_buf + ret;
3866         ret = -ERANGE;
3867         ceph_decode_64_safe(&p, end, pool_id, out_err);
3868         if (pool_id == CEPH_NOPOOL) {
3869                 /*
3870                  * Either the parent never existed, or we have
3871                  * record of it but the image got flattened so it no
3872                  * longer has a parent.  When the parent of a
3873                  * layered image disappears we immediately set the
3874                  * overlap to 0.  The effect of this is that all new
3875                  * requests will be treated as if the image had no
3876                  * parent.
3877                  */
3878                 if (rbd_dev->parent_overlap) {
3879                         rbd_dev->parent_overlap = 0;
3880                         smp_mb();
3881                         rbd_dev_parent_put(rbd_dev);
3882                         pr_info("%s: clone image has been flattened\n",
3883                                 rbd_dev->disk->disk_name);
3884                 }
3885
3886                 goto out;       /* No parent?  No problem. */
3887         }
3888
3889         /* The ceph file layout needs to fit pool id in 32 bits */
3890
3891         ret = -EIO;
3892         if (pool_id > (u64)U32_MAX) {
3893                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3894                         (unsigned long long)pool_id, U32_MAX);
3895                 goto out_err;
3896         }
3897
3898         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3899         if (IS_ERR(image_id)) {
3900                 ret = PTR_ERR(image_id);
3901                 goto out_err;
3902         }
3903         ceph_decode_64_safe(&p, end, snap_id, out_err);
3904         ceph_decode_64_safe(&p, end, overlap, out_err);
3905
3906         /*
3907          * The parent won't change (except when the clone is
3908          * flattened, already handled that).  So we only need to
3909          * record the parent spec we have not already done so.
3910          */
3911         if (!rbd_dev->parent_spec) {
3912                 parent_spec->pool_id = pool_id;
3913                 parent_spec->image_id = image_id;
3914                 parent_spec->snap_id = snap_id;
3915                 rbd_dev->parent_spec = parent_spec;
3916                 parent_spec = NULL;     /* rbd_dev now owns this */
3917         }
3918
3919         /*
3920          * We always update the parent overlap.  If it's zero we
3921          * treat it specially.
3922          */
3923         rbd_dev->parent_overlap = overlap;
3924         smp_mb();
3925         if (!overlap) {
3926
3927                 /* A null parent_spec indicates it's the initial probe */
3928
3929                 if (parent_spec) {
3930                         /*
3931                          * The overlap has become zero, so the clone
3932                          * must have been resized down to 0 at some
3933                          * point.  Treat this the same as a flatten.
3934                          */
3935                         rbd_dev_parent_put(rbd_dev);
3936                         pr_info("%s: clone image now standalone\n",
3937                                 rbd_dev->disk->disk_name);
3938                 } else {
3939                         /*
3940                          * For the initial probe, if we find the
3941                          * overlap is zero we just pretend there was
3942                          * no parent image.
3943                          */
3944                         rbd_warn(rbd_dev, "ignoring parent of "
3945                                                 "clone with overlap 0\n");
3946                 }
3947         }
3948 out:
3949         ret = 0;
3950 out_err:
3951         kfree(reply_buf);
3952         rbd_spec_put(parent_spec);
3953
3954         return ret;
3955 }
3956
3957 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3958 {
3959         struct {
3960                 __le64 stripe_unit;
3961                 __le64 stripe_count;
3962         } __attribute__ ((packed)) striping_info_buf = { 0 };
3963         size_t size = sizeof (striping_info_buf);
3964         void *p;
3965         u64 obj_size;
3966         u64 stripe_unit;
3967         u64 stripe_count;
3968         int ret;
3969
3970         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3971                                 "rbd", "get_stripe_unit_count", NULL, 0,
3972                                 (char *)&striping_info_buf, size);
3973         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3974         if (ret < 0)
3975                 return ret;
3976         if (ret < size)
3977                 return -ERANGE;
3978
3979         /*
3980          * We don't actually support the "fancy striping" feature
3981          * (STRIPINGV2) yet, but if the striping sizes are the
3982          * defaults the behavior is the same as before.  So find
3983          * out, and only fail if the image has non-default values.
3984          */
3985         ret = -EINVAL;
3986         obj_size = (u64)1 << rbd_dev->header.obj_order;
3987         p = &striping_info_buf;
3988         stripe_unit = ceph_decode_64(&p);
3989         if (stripe_unit != obj_size) {
3990                 rbd_warn(rbd_dev, "unsupported stripe unit "
3991                                 "(got %llu want %llu)",
3992                                 stripe_unit, obj_size);
3993                 return -EINVAL;
3994         }
3995         stripe_count = ceph_decode_64(&p);
3996         if (stripe_count != 1) {
3997                 rbd_warn(rbd_dev, "unsupported stripe count "
3998                                 "(got %llu want 1)", stripe_count);
3999                 return -EINVAL;
4000         }
4001         rbd_dev->header.stripe_unit = stripe_unit;
4002         rbd_dev->header.stripe_count = stripe_count;
4003
4004         return 0;
4005 }
4006
4007 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4008 {
4009         size_t image_id_size;
4010         char *image_id;
4011         void *p;
4012         void *end;
4013         size_t size;
4014         void *reply_buf = NULL;
4015         size_t len = 0;
4016         char *image_name = NULL;
4017         int ret;
4018
4019         rbd_assert(!rbd_dev->spec->image_name);
4020
4021         len = strlen(rbd_dev->spec->image_id);
4022         image_id_size = sizeof (__le32) + len;
4023         image_id = kmalloc(image_id_size, GFP_KERNEL);
4024         if (!image_id)
4025                 return NULL;
4026
4027         p = image_id;
4028         end = image_id + image_id_size;
4029         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4030
4031         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4032         reply_buf = kmalloc(size, GFP_KERNEL);
4033         if (!reply_buf)
4034                 goto out;
4035
4036         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4037                                 "rbd", "dir_get_name",
4038                                 image_id, image_id_size,
4039                                 reply_buf, size);
4040         if (ret < 0)
4041                 goto out;
4042         p = reply_buf;
4043         end = reply_buf + ret;
4044
4045         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4046         if (IS_ERR(image_name))
4047                 image_name = NULL;
4048         else
4049                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4050 out:
4051         kfree(reply_buf);
4052         kfree(image_id);
4053
4054         return image_name;
4055 }
4056
4057 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4058 {
4059         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4060         const char *snap_name;
4061         u32 which = 0;
4062
4063         /* Skip over names until we find the one we are looking for */
4064
4065         snap_name = rbd_dev->header.snap_names;
4066         while (which < snapc->num_snaps) {
4067                 if (!strcmp(name, snap_name))
4068                         return snapc->snaps[which];
4069                 snap_name += strlen(snap_name) + 1;
4070                 which++;
4071         }
4072         return CEPH_NOSNAP;
4073 }
4074
4075 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4076 {
4077         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4078         u32 which;
4079         bool found = false;
4080         u64 snap_id;
4081
4082         for (which = 0; !found && which < snapc->num_snaps; which++) {
4083                 const char *snap_name;
4084
4085                 snap_id = snapc->snaps[which];
4086                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4087                 if (IS_ERR(snap_name)) {
4088                         /* ignore no-longer existing snapshots */
4089                         if (PTR_ERR(snap_name) == -ENOENT)
4090                                 continue;
4091                         else
4092                                 break;
4093                 }
4094                 found = !strcmp(name, snap_name);
4095                 kfree(snap_name);
4096         }
4097         return found ? snap_id : CEPH_NOSNAP;
4098 }
4099
4100 /*
4101  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4102  * no snapshot by that name is found, or if an error occurs.
4103  */
4104 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4105 {
4106         if (rbd_dev->image_format == 1)
4107                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4108
4109         return rbd_v2_snap_id_by_name(rbd_dev, name);
4110 }
4111
4112 /*
4113  * When an rbd image has a parent image, it is identified by the
4114  * pool, image, and snapshot ids (not names).  This function fills
4115  * in the names for those ids.  (It's OK if we can't figure out the
4116  * name for an image id, but the pool and snapshot ids should always
4117  * exist and have names.)  All names in an rbd spec are dynamically
4118  * allocated.
4119  *
4120  * When an image being mapped (not a parent) is probed, we have the
4121  * pool name and pool id, image name and image id, and the snapshot
4122  * name.  The only thing we're missing is the snapshot id.
4123  */
4124 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4125 {
4126         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4127         struct rbd_spec *spec = rbd_dev->spec;
4128         const char *pool_name;
4129         const char *image_name;
4130         const char *snap_name;
4131         int ret;
4132
4133         /*
4134          * An image being mapped will have the pool name (etc.), but
4135          * we need to look up the snapshot id.
4136          */
4137         if (spec->pool_name) {
4138                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4139                         u64 snap_id;
4140
4141                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4142                         if (snap_id == CEPH_NOSNAP)
4143                                 return -ENOENT;
4144                         spec->snap_id = snap_id;
4145                 } else {
4146                         spec->snap_id = CEPH_NOSNAP;
4147                 }
4148
4149                 return 0;
4150         }
4151
4152         /* Get the pool name; we have to make our own copy of this */
4153
4154         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4155         if (!pool_name) {
4156                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4157                 return -EIO;
4158         }
4159         pool_name = kstrdup(pool_name, GFP_KERNEL);
4160         if (!pool_name)
4161                 return -ENOMEM;
4162
4163         /* Fetch the image name; tolerate failure here */
4164
4165         image_name = rbd_dev_image_name(rbd_dev);
4166         if (!image_name)
4167                 rbd_warn(rbd_dev, "unable to get image name");
4168
4169         /* Look up the snapshot name, and make a copy */
4170
4171         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4172         if (IS_ERR(snap_name)) {
4173                 ret = PTR_ERR(snap_name);
4174                 goto out_err;
4175         }
4176
4177         spec->pool_name = pool_name;
4178         spec->image_name = image_name;
4179         spec->snap_name = snap_name;
4180
4181         return 0;
4182 out_err:
4183         kfree(image_name);
4184         kfree(pool_name);
4185
4186         return ret;
4187 }
4188
4189 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4190 {
4191         size_t size;
4192         int ret;
4193         void *reply_buf;
4194         void *p;
4195         void *end;
4196         u64 seq;
4197         u32 snap_count;
4198         struct ceph_snap_context *snapc;
4199         u32 i;
4200
4201         /*
4202          * We'll need room for the seq value (maximum snapshot id),
4203          * snapshot count, and array of that many snapshot ids.
4204          * For now we have a fixed upper limit on the number we're
4205          * prepared to receive.
4206          */
4207         size = sizeof (__le64) + sizeof (__le32) +
4208                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4209         reply_buf = kzalloc(size, GFP_KERNEL);
4210         if (!reply_buf)
4211                 return -ENOMEM;
4212
4213         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4214                                 "rbd", "get_snapcontext", NULL, 0,
4215                                 reply_buf, size);
4216         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4217         if (ret < 0)
4218                 goto out;
4219
4220         p = reply_buf;
4221         end = reply_buf + ret;
4222         ret = -ERANGE;
4223         ceph_decode_64_safe(&p, end, seq, out);
4224         ceph_decode_32_safe(&p, end, snap_count, out);
4225
4226         /*
4227          * Make sure the reported number of snapshot ids wouldn't go
4228          * beyond the end of our buffer.  But before checking that,
4229          * make sure the computed size of the snapshot context we
4230          * allocate is representable in a size_t.
4231          */
4232         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4233                                  / sizeof (u64)) {
4234                 ret = -EINVAL;
4235                 goto out;
4236         }
4237         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4238                 goto out;
4239         ret = 0;
4240
4241         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4242         if (!snapc) {
4243                 ret = -ENOMEM;
4244                 goto out;
4245         }
4246         snapc->seq = seq;
4247         for (i = 0; i < snap_count; i++)
4248                 snapc->snaps[i] = ceph_decode_64(&p);
4249
4250         ceph_put_snap_context(rbd_dev->header.snapc);
4251         rbd_dev->header.snapc = snapc;
4252
4253         dout("  snap context seq = %llu, snap_count = %u\n",
4254                 (unsigned long long)seq, (unsigned int)snap_count);
4255 out:
4256         kfree(reply_buf);
4257
4258         return ret;
4259 }
4260
4261 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4262                                         u64 snap_id)
4263 {
4264         size_t size;
4265         void *reply_buf;
4266         __le64 snapid;
4267         int ret;
4268         void *p;
4269         void *end;
4270         char *snap_name;
4271
4272         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4273         reply_buf = kmalloc(size, GFP_KERNEL);
4274         if (!reply_buf)
4275                 return ERR_PTR(-ENOMEM);
4276
4277         snapid = cpu_to_le64(snap_id);
4278         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4279                                 "rbd", "get_snapshot_name",
4280                                 &snapid, sizeof (snapid),
4281                                 reply_buf, size);
4282         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4283         if (ret < 0) {
4284                 snap_name = ERR_PTR(ret);
4285                 goto out;
4286         }
4287
4288         p = reply_buf;
4289         end = reply_buf + ret;
4290         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4291         if (IS_ERR(snap_name))
4292                 goto out;
4293
4294         dout("  snap_id 0x%016llx snap_name = %s\n",
4295                 (unsigned long long)snap_id, snap_name);
4296 out:
4297         kfree(reply_buf);
4298
4299         return snap_name;
4300 }
4301
4302 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4303 {
4304         bool first_time = rbd_dev->header.object_prefix == NULL;
4305         int ret;
4306
4307         ret = rbd_dev_v2_image_size(rbd_dev);
4308         if (ret)
4309                 return ret;
4310
4311         if (first_time) {
4312                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4313                 if (ret)
4314                         return ret;
4315         }
4316
4317         /*
4318          * If the image supports layering, get the parent info.  We
4319          * need to probe the first time regardless.  Thereafter we
4320          * only need to if there's a parent, to see if it has
4321          * disappeared due to the mapped image getting flattened.
4322          */
4323         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4324                         (first_time || rbd_dev->parent_spec)) {
4325                 bool warn;
4326
4327                 ret = rbd_dev_v2_parent_info(rbd_dev);
4328                 if (ret)
4329                         return ret;
4330
4331                 /*
4332                  * Print a warning if this is the initial probe and
4333                  * the image has a parent.  Don't print it if the
4334                  * image now being probed is itself a parent.  We
4335                  * can tell at this point because we won't know its
4336                  * pool name yet (just its pool id).
4337                  */
4338                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4339                 if (first_time && warn)
4340                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4341                                         "is EXPERIMENTAL!");
4342         }
4343
4344         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4345                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4346                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4347
4348         ret = rbd_dev_v2_snap_context(rbd_dev);
4349         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4350
4351         return ret;
4352 }
4353
4354 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4355 {
4356         struct device *dev;
4357         int ret;
4358
4359         dev = &rbd_dev->dev;
4360         dev->bus = &rbd_bus_type;
4361         dev->type = &rbd_device_type;
4362         dev->parent = &rbd_root_dev;
4363         dev->release = rbd_dev_device_release;
4364         dev_set_name(dev, "%d", rbd_dev->dev_id);
4365         ret = device_register(dev);
4366
4367         return ret;
4368 }
4369
4370 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4371 {
4372         device_unregister(&rbd_dev->dev);
4373 }
4374
4375 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4376
4377 /*
4378  * Get a unique rbd identifier for the given new rbd_dev, and add
4379  * the rbd_dev to the global list.  The minimum rbd id is 1.
4380  */
4381 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4382 {
4383         rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4384
4385         spin_lock(&rbd_dev_list_lock);
4386         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4387         spin_unlock(&rbd_dev_list_lock);
4388         dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4389                 (unsigned long long) rbd_dev->dev_id);
4390 }
4391
4392 /*
4393  * Remove an rbd_dev from the global list, and record that its
4394  * identifier is no longer in use.
4395  */
4396 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4397 {
4398         struct list_head *tmp;
4399         int rbd_id = rbd_dev->dev_id;
4400         int max_id;
4401
4402         rbd_assert(rbd_id > 0);
4403
4404         dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4405                 (unsigned long long) rbd_dev->dev_id);
4406         spin_lock(&rbd_dev_list_lock);
4407         list_del_init(&rbd_dev->node);
4408
4409         /*
4410          * If the id being "put" is not the current maximum, there
4411          * is nothing special we need to do.
4412          */
4413         if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4414                 spin_unlock(&rbd_dev_list_lock);
4415                 return;
4416         }
4417
4418         /*
4419          * We need to update the current maximum id.  Search the
4420          * list to find out what it is.  We're more likely to find
4421          * the maximum at the end, so search the list backward.
4422          */
4423         max_id = 0;
4424         list_for_each_prev(tmp, &rbd_dev_list) {
4425                 struct rbd_device *rbd_dev;
4426
4427                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4428                 if (rbd_dev->dev_id > max_id)
4429                         max_id = rbd_dev->dev_id;
4430         }
4431         spin_unlock(&rbd_dev_list_lock);
4432
4433         /*
4434          * The max id could have been updated by rbd_dev_id_get(), in
4435          * which case it now accurately reflects the new maximum.
4436          * Be careful not to overwrite the maximum value in that
4437          * case.
4438          */
4439         atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4440         dout("  max dev id has been reset\n");
4441 }
4442
4443 /*
4444  * Skips over white space at *buf, and updates *buf to point to the
4445  * first found non-space character (if any). Returns the length of
4446  * the token (string of non-white space characters) found.  Note
4447  * that *buf must be terminated with '\0'.
4448  */
4449 static inline size_t next_token(const char **buf)
4450 {
4451         /*
4452         * These are the characters that produce nonzero for
4453         * isspace() in the "C" and "POSIX" locales.
4454         */
4455         const char *spaces = " \f\n\r\t\v";
4456
4457         *buf += strspn(*buf, spaces);   /* Find start of token */
4458
4459         return strcspn(*buf, spaces);   /* Return token length */
4460 }
4461
4462 /*
4463  * Finds the next token in *buf, and if the provided token buffer is
4464  * big enough, copies the found token into it.  The result, if
4465  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4466  * must be terminated with '\0' on entry.
4467  *
4468  * Returns the length of the token found (not including the '\0').
4469  * Return value will be 0 if no token is found, and it will be >=
4470  * token_size if the token would not fit.
4471  *
4472  * The *buf pointer will be updated to point beyond the end of the
4473  * found token.  Note that this occurs even if the token buffer is
4474  * too small to hold it.
4475  */
4476 static inline size_t copy_token(const char **buf,
4477                                 char *token,
4478                                 size_t token_size)
4479 {
4480         size_t len;
4481
4482         len = next_token(buf);
4483         if (len < token_size) {
4484                 memcpy(token, *buf, len);
4485                 *(token + len) = '\0';
4486         }
4487         *buf += len;
4488
4489         return len;
4490 }
4491
4492 /*
4493  * Finds the next token in *buf, dynamically allocates a buffer big
4494  * enough to hold a copy of it, and copies the token into the new
4495  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4496  * that a duplicate buffer is created even for a zero-length token.
4497  *
4498  * Returns a pointer to the newly-allocated duplicate, or a null
4499  * pointer if memory for the duplicate was not available.  If
4500  * the lenp argument is a non-null pointer, the length of the token
4501  * (not including the '\0') is returned in *lenp.
4502  *
4503  * If successful, the *buf pointer will be updated to point beyond
4504  * the end of the found token.
4505  *
4506  * Note: uses GFP_KERNEL for allocation.
4507  */
4508 static inline char *dup_token(const char **buf, size_t *lenp)
4509 {
4510         char *dup;
4511         size_t len;
4512
4513         len = next_token(buf);
4514         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4515         if (!dup)
4516                 return NULL;
4517         *(dup + len) = '\0';
4518         *buf += len;
4519
4520         if (lenp)
4521                 *lenp = len;
4522
4523         return dup;
4524 }
4525
4526 /*
4527  * Parse the options provided for an "rbd add" (i.e., rbd image
4528  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4529  * and the data written is passed here via a NUL-terminated buffer.
4530  * Returns 0 if successful or an error code otherwise.
4531  *
4532  * The information extracted from these options is recorded in
4533  * the other parameters which return dynamically-allocated
4534  * structures:
4535  *  ceph_opts
4536  *      The address of a pointer that will refer to a ceph options
4537  *      structure.  Caller must release the returned pointer using
4538  *      ceph_destroy_options() when it is no longer needed.
4539  *  rbd_opts
4540  *      Address of an rbd options pointer.  Fully initialized by
4541  *      this function; caller must release with kfree().
4542  *  spec
4543  *      Address of an rbd image specification pointer.  Fully
4544  *      initialized by this function based on parsed options.
4545  *      Caller must release with rbd_spec_put().
4546  *
4547  * The options passed take this form:
4548  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4549  * where:
4550  *  <mon_addrs>
4551  *      A comma-separated list of one or more monitor addresses.
4552  *      A monitor address is an ip address, optionally followed
4553  *      by a port number (separated by a colon).
4554  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4555  *  <options>
4556  *      A comma-separated list of ceph and/or rbd options.
4557  *  <pool_name>
4558  *      The name of the rados pool containing the rbd image.
4559  *  <image_name>
4560  *      The name of the image in that pool to map.
4561  *  <snap_id>
4562  *      An optional snapshot id.  If provided, the mapping will
4563  *      present data from the image at the time that snapshot was
4564  *      created.  The image head is used if no snapshot id is
4565  *      provided.  Snapshot mappings are always read-only.
4566  */
4567 static int rbd_add_parse_args(const char *buf,
4568                                 struct ceph_options **ceph_opts,
4569                                 struct rbd_options **opts,
4570                                 struct rbd_spec **rbd_spec)
4571 {
4572         size_t len;
4573         char *options;
4574         const char *mon_addrs;
4575         char *snap_name;
4576         size_t mon_addrs_size;
4577         struct rbd_spec *spec = NULL;
4578         struct rbd_options *rbd_opts = NULL;
4579         struct ceph_options *copts;
4580         int ret;
4581
4582         /* The first four tokens are required */
4583
4584         len = next_token(&buf);
4585         if (!len) {
4586                 rbd_warn(NULL, "no monitor address(es) provided");
4587                 return -EINVAL;
4588         }
4589         mon_addrs = buf;
4590         mon_addrs_size = len + 1;
4591         buf += len;
4592
4593         ret = -EINVAL;
4594         options = dup_token(&buf, NULL);
4595         if (!options)
4596                 return -ENOMEM;
4597         if (!*options) {
4598                 rbd_warn(NULL, "no options provided");
4599                 goto out_err;
4600         }
4601
4602         spec = rbd_spec_alloc();
4603         if (!spec)
4604                 goto out_mem;
4605
4606         spec->pool_name = dup_token(&buf, NULL);
4607         if (!spec->pool_name)
4608                 goto out_mem;
4609         if (!*spec->pool_name) {
4610                 rbd_warn(NULL, "no pool name provided");
4611                 goto out_err;
4612         }
4613
4614         spec->image_name = dup_token(&buf, NULL);
4615         if (!spec->image_name)
4616                 goto out_mem;
4617         if (!*spec->image_name) {
4618                 rbd_warn(NULL, "no image name provided");
4619                 goto out_err;
4620         }
4621
4622         /*
4623          * Snapshot name is optional; default is to use "-"
4624          * (indicating the head/no snapshot).
4625          */
4626         len = next_token(&buf);
4627         if (!len) {
4628                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4629                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4630         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4631                 ret = -ENAMETOOLONG;
4632                 goto out_err;
4633         }
4634         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4635         if (!snap_name)
4636                 goto out_mem;
4637         *(snap_name + len) = '\0';
4638         spec->snap_name = snap_name;
4639
4640         /* Initialize all rbd options to the defaults */
4641
4642         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4643         if (!rbd_opts)
4644                 goto out_mem;
4645
4646         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4647
4648         copts = ceph_parse_options(options, mon_addrs,
4649                                         mon_addrs + mon_addrs_size - 1,
4650                                         parse_rbd_opts_token, rbd_opts);
4651         if (IS_ERR(copts)) {
4652                 ret = PTR_ERR(copts);
4653                 goto out_err;
4654         }
4655         kfree(options);
4656
4657         *ceph_opts = copts;
4658         *opts = rbd_opts;
4659         *rbd_spec = spec;
4660
4661         return 0;
4662 out_mem:
4663         ret = -ENOMEM;
4664 out_err:
4665         kfree(rbd_opts);
4666         rbd_spec_put(spec);
4667         kfree(options);
4668
4669         return ret;
4670 }
4671
4672 /*
4673  * An rbd format 2 image has a unique identifier, distinct from the
4674  * name given to it by the user.  Internally, that identifier is
4675  * what's used to specify the names of objects related to the image.
4676  *
4677  * A special "rbd id" object is used to map an rbd image name to its
4678  * id.  If that object doesn't exist, then there is no v2 rbd image
4679  * with the supplied name.
4680  *
4681  * This function will record the given rbd_dev's image_id field if
4682  * it can be determined, and in that case will return 0.  If any
4683  * errors occur a negative errno will be returned and the rbd_dev's
4684  * image_id field will be unchanged (and should be NULL).
4685  */
4686 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4687 {
4688         int ret;
4689         size_t size;
4690         char *object_name;
4691         void *response;
4692         char *image_id;
4693
4694         /*
4695          * When probing a parent image, the image id is already
4696          * known (and the image name likely is not).  There's no
4697          * need to fetch the image id again in this case.  We
4698          * do still need to set the image format though.
4699          */
4700         if (rbd_dev->spec->image_id) {
4701                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4702
4703                 return 0;
4704         }
4705
4706         /*
4707          * First, see if the format 2 image id file exists, and if
4708          * so, get the image's persistent id from it.
4709          */
4710         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4711         object_name = kmalloc(size, GFP_NOIO);
4712         if (!object_name)
4713                 return -ENOMEM;
4714         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4715         dout("rbd id object name is %s\n", object_name);
4716
4717         /* Response will be an encoded string, which includes a length */
4718
4719         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4720         response = kzalloc(size, GFP_NOIO);
4721         if (!response) {
4722                 ret = -ENOMEM;
4723                 goto out;
4724         }
4725
4726         /* If it doesn't exist we'll assume it's a format 1 image */
4727
4728         ret = rbd_obj_method_sync(rbd_dev, object_name,
4729                                 "rbd", "get_id", NULL, 0,
4730                                 response, RBD_IMAGE_ID_LEN_MAX);
4731         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4732         if (ret == -ENOENT) {
4733                 image_id = kstrdup("", GFP_KERNEL);
4734                 ret = image_id ? 0 : -ENOMEM;
4735                 if (!ret)
4736                         rbd_dev->image_format = 1;
4737         } else if (ret > sizeof (__le32)) {
4738                 void *p = response;
4739
4740                 image_id = ceph_extract_encoded_string(&p, p + ret,
4741                                                 NULL, GFP_NOIO);
4742                 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4743                 if (!ret)
4744                         rbd_dev->image_format = 2;
4745         } else {
4746                 ret = -EINVAL;
4747         }
4748
4749         if (!ret) {
4750                 rbd_dev->spec->image_id = image_id;
4751                 dout("image_id is %s\n", image_id);
4752         }
4753 out:
4754         kfree(response);
4755         kfree(object_name);
4756
4757         return ret;
4758 }
4759
4760 /*
4761  * Undo whatever state changes are made by v1 or v2 header info
4762  * call.
4763  */
4764 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4765 {
4766         struct rbd_image_header *header;
4767
4768         /* Drop parent reference unless it's already been done (or none) */
4769
4770         if (rbd_dev->parent_overlap)
4771                 rbd_dev_parent_put(rbd_dev);
4772
4773         /* Free dynamic fields from the header, then zero it out */
4774
4775         header = &rbd_dev->header;
4776         ceph_put_snap_context(header->snapc);
4777         kfree(header->snap_sizes);
4778         kfree(header->snap_names);
4779         kfree(header->object_prefix);
4780         memset(header, 0, sizeof (*header));
4781 }
4782
4783 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4784 {
4785         int ret;
4786
4787         ret = rbd_dev_v2_object_prefix(rbd_dev);
4788         if (ret)
4789                 goto out_err;
4790
4791         /*
4792          * Get the and check features for the image.  Currently the
4793          * features are assumed to never change.
4794          */
4795         ret = rbd_dev_v2_features(rbd_dev);
4796         if (ret)
4797                 goto out_err;
4798
4799         /* If the image supports fancy striping, get its parameters */
4800
4801         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4802                 ret = rbd_dev_v2_striping_info(rbd_dev);
4803                 if (ret < 0)
4804                         goto out_err;
4805         }
4806         /* No support for crypto and compression type format 2 images */
4807
4808         return 0;
4809 out_err:
4810         rbd_dev->header.features = 0;
4811         kfree(rbd_dev->header.object_prefix);
4812         rbd_dev->header.object_prefix = NULL;
4813
4814         return ret;
4815 }
4816
4817 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4818 {
4819         struct rbd_device *parent = NULL;
4820         struct rbd_spec *parent_spec;
4821         struct rbd_client *rbdc;
4822         int ret;
4823
4824         if (!rbd_dev->parent_spec)
4825                 return 0;
4826         /*
4827          * We need to pass a reference to the client and the parent
4828          * spec when creating the parent rbd_dev.  Images related by
4829          * parent/child relationships always share both.
4830          */
4831         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4832         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4833
4834         ret = -ENOMEM;
4835         parent = rbd_dev_create(rbdc, parent_spec);
4836         if (!parent)
4837                 goto out_err;
4838
4839         ret = rbd_dev_image_probe(parent, false);
4840         if (ret < 0)
4841                 goto out_err;
4842         rbd_dev->parent = parent;
4843         atomic_set(&rbd_dev->parent_ref, 1);
4844
4845         return 0;
4846 out_err:
4847         if (parent) {
4848                 rbd_dev_unparent(rbd_dev);
4849                 kfree(rbd_dev->header_name);
4850                 rbd_dev_destroy(parent);
4851         } else {
4852                 rbd_put_client(rbdc);
4853                 rbd_spec_put(parent_spec);
4854         }
4855
4856         return ret;
4857 }
4858
4859 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4860 {
4861         int ret;
4862
4863         /* generate unique id: find highest unique id, add one */
4864         rbd_dev_id_get(rbd_dev);
4865
4866         /* Fill in the device name, now that we have its id. */
4867         BUILD_BUG_ON(DEV_NAME_LEN
4868                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4869         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4870
4871         /* Get our block major device number. */
4872
4873         ret = register_blkdev(0, rbd_dev->name);
4874         if (ret < 0)
4875                 goto err_out_id;
4876         rbd_dev->major = ret;
4877
4878         /* Set up the blkdev mapping. */
4879
4880         ret = rbd_init_disk(rbd_dev);
4881         if (ret)
4882                 goto err_out_blkdev;
4883
4884         ret = rbd_dev_mapping_set(rbd_dev);
4885         if (ret)
4886                 goto err_out_disk;
4887         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4888
4889         ret = rbd_bus_add_dev(rbd_dev);
4890         if (ret)
4891                 goto err_out_mapping;
4892
4893         /* Everything's ready.  Announce the disk to the world. */
4894
4895         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4896         add_disk(rbd_dev->disk);
4897
4898         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4899                 (unsigned long long) rbd_dev->mapping.size);
4900
4901         return ret;
4902
4903 err_out_mapping:
4904         rbd_dev_mapping_clear(rbd_dev);
4905 err_out_disk:
4906         rbd_free_disk(rbd_dev);
4907 err_out_blkdev:
4908         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4909 err_out_id:
4910         rbd_dev_id_put(rbd_dev);
4911         rbd_dev_mapping_clear(rbd_dev);
4912
4913         return ret;
4914 }
4915
4916 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4917 {
4918         struct rbd_spec *spec = rbd_dev->spec;
4919         size_t size;
4920
4921         /* Record the header object name for this rbd image. */
4922
4923         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4924
4925         if (rbd_dev->image_format == 1)
4926                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4927         else
4928                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4929
4930         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4931         if (!rbd_dev->header_name)
4932                 return -ENOMEM;
4933
4934         if (rbd_dev->image_format == 1)
4935                 sprintf(rbd_dev->header_name, "%s%s",
4936                         spec->image_name, RBD_SUFFIX);
4937         else
4938                 sprintf(rbd_dev->header_name, "%s%s",
4939                         RBD_HEADER_PREFIX, spec->image_id);
4940         return 0;
4941 }
4942
4943 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4944 {
4945         rbd_dev_unprobe(rbd_dev);
4946         kfree(rbd_dev->header_name);
4947         rbd_dev->header_name = NULL;
4948         rbd_dev->image_format = 0;
4949         kfree(rbd_dev->spec->image_id);
4950         rbd_dev->spec->image_id = NULL;
4951
4952         rbd_dev_destroy(rbd_dev);
4953 }
4954
4955 /*
4956  * Probe for the existence of the header object for the given rbd
4957  * device.  If this image is the one being mapped (i.e., not a
4958  * parent), initiate a watch on its header object before using that
4959  * object to get detailed information about the rbd image.
4960  */
4961 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4962 {
4963         int ret;
4964         int tmp;
4965
4966         /*
4967          * Get the id from the image id object.  Unless there's an
4968          * error, rbd_dev->spec->image_id will be filled in with
4969          * a dynamically-allocated string, and rbd_dev->image_format
4970          * will be set to either 1 or 2.
4971          */
4972         ret = rbd_dev_image_id(rbd_dev);
4973         if (ret)
4974                 return ret;
4975         rbd_assert(rbd_dev->spec->image_id);
4976         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4977
4978         ret = rbd_dev_header_name(rbd_dev);
4979         if (ret)
4980                 goto err_out_format;
4981
4982         if (mapping) {
4983                 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4984                 if (ret)
4985                         goto out_header_name;
4986         }
4987
4988         if (rbd_dev->image_format == 1)
4989                 ret = rbd_dev_v1_header_info(rbd_dev);
4990         else
4991                 ret = rbd_dev_v2_header_info(rbd_dev);
4992         if (ret)
4993                 goto err_out_watch;
4994
4995         ret = rbd_dev_spec_update(rbd_dev);
4996         if (ret)
4997                 goto err_out_probe;
4998
4999         ret = rbd_dev_probe_parent(rbd_dev);
5000         if (ret)
5001                 goto err_out_probe;
5002
5003         dout("discovered format %u image, header name is %s\n",
5004                 rbd_dev->image_format, rbd_dev->header_name);
5005
5006         return 0;
5007 err_out_probe:
5008         rbd_dev_unprobe(rbd_dev);
5009 err_out_watch:
5010         if (mapping) {
5011                 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
5012                 if (tmp)
5013                         rbd_warn(rbd_dev, "unable to tear down "
5014                                         "watch request (%d)\n", tmp);
5015         }
5016 out_header_name:
5017         kfree(rbd_dev->header_name);
5018         rbd_dev->header_name = NULL;
5019 err_out_format:
5020         rbd_dev->image_format = 0;
5021         kfree(rbd_dev->spec->image_id);
5022         rbd_dev->spec->image_id = NULL;
5023
5024         dout("probe failed, returning %d\n", ret);
5025
5026         return ret;
5027 }
5028
5029 static ssize_t rbd_add(struct bus_type *bus,
5030                        const char *buf,
5031                        size_t count)
5032 {
5033         struct rbd_device *rbd_dev = NULL;
5034         struct ceph_options *ceph_opts = NULL;
5035         struct rbd_options *rbd_opts = NULL;
5036         struct rbd_spec *spec = NULL;
5037         struct rbd_client *rbdc;
5038         struct ceph_osd_client *osdc;
5039         bool read_only;
5040         int rc = -ENOMEM;
5041
5042         if (!try_module_get(THIS_MODULE))
5043                 return -ENODEV;
5044
5045         /* parse add command */
5046         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5047         if (rc < 0)
5048                 goto err_out_module;
5049         read_only = rbd_opts->read_only;
5050         kfree(rbd_opts);
5051         rbd_opts = NULL;        /* done with this */
5052
5053         rbdc = rbd_get_client(ceph_opts);
5054         if (IS_ERR(rbdc)) {
5055                 rc = PTR_ERR(rbdc);
5056                 goto err_out_args;
5057         }
5058
5059         /* pick the pool */
5060         osdc = &rbdc->client->osdc;
5061         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5062         if (rc < 0)
5063                 goto err_out_client;
5064         spec->pool_id = (u64)rc;
5065
5066         /* The ceph file layout needs to fit pool id in 32 bits */
5067
5068         if (spec->pool_id > (u64)U32_MAX) {
5069                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5070                                 (unsigned long long)spec->pool_id, U32_MAX);
5071                 rc = -EIO;
5072                 goto err_out_client;
5073         }
5074
5075         rbd_dev = rbd_dev_create(rbdc, spec);
5076         if (!rbd_dev)
5077                 goto err_out_client;
5078         rbdc = NULL;            /* rbd_dev now owns this */
5079         spec = NULL;            /* rbd_dev now owns this */
5080
5081         rc = rbd_dev_image_probe(rbd_dev, true);
5082         if (rc < 0)
5083                 goto err_out_rbd_dev;
5084
5085         /* If we are mapping a snapshot it must be marked read-only */
5086
5087         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5088                 read_only = true;
5089         rbd_dev->mapping.read_only = read_only;
5090
5091         rc = rbd_dev_device_setup(rbd_dev);
5092         if (rc) {
5093                 rbd_dev_image_release(rbd_dev);
5094                 goto err_out_module;
5095         }
5096
5097         return count;
5098
5099 err_out_rbd_dev:
5100         rbd_dev_destroy(rbd_dev);
5101 err_out_client:
5102         rbd_put_client(rbdc);
5103 err_out_args:
5104         rbd_spec_put(spec);
5105 err_out_module:
5106         module_put(THIS_MODULE);
5107
5108         dout("Error adding device %s\n", buf);
5109
5110         return (ssize_t)rc;
5111 }
5112
5113 static void rbd_dev_device_release(struct device *dev)
5114 {
5115         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5116
5117         rbd_free_disk(rbd_dev);
5118         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5119         rbd_dev_mapping_clear(rbd_dev);
5120         unregister_blkdev(rbd_dev->major, rbd_dev->name);
5121         rbd_dev->major = 0;
5122         rbd_dev_id_put(rbd_dev);
5123         rbd_dev_mapping_clear(rbd_dev);
5124 }
5125
5126 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5127 {
5128         while (rbd_dev->parent) {
5129                 struct rbd_device *first = rbd_dev;
5130                 struct rbd_device *second = first->parent;
5131                 struct rbd_device *third;
5132
5133                 /*
5134                  * Follow to the parent with no grandparent and
5135                  * remove it.
5136                  */
5137                 while (second && (third = second->parent)) {
5138                         first = second;
5139                         second = third;
5140                 }
5141                 rbd_assert(second);
5142                 rbd_dev_image_release(second);
5143                 first->parent = NULL;
5144                 first->parent_overlap = 0;
5145
5146                 rbd_assert(first->parent_spec);
5147                 rbd_spec_put(first->parent_spec);
5148                 first->parent_spec = NULL;
5149         }
5150 }
5151
5152 static ssize_t rbd_remove(struct bus_type *bus,
5153                           const char *buf,
5154                           size_t count)
5155 {
5156         struct rbd_device *rbd_dev = NULL;
5157         struct list_head *tmp;
5158         int dev_id;
5159         unsigned long ul;
5160         bool already = false;
5161         int ret;
5162
5163         ret = kstrtoul(buf, 10, &ul);
5164         if (ret)
5165                 return ret;
5166
5167         /* convert to int; abort if we lost anything in the conversion */
5168         dev_id = (int)ul;
5169         if (dev_id != ul)
5170                 return -EINVAL;
5171
5172         ret = -ENOENT;
5173         spin_lock(&rbd_dev_list_lock);
5174         list_for_each(tmp, &rbd_dev_list) {
5175                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5176                 if (rbd_dev->dev_id == dev_id) {
5177                         ret = 0;
5178                         break;
5179                 }
5180         }
5181         if (!ret) {
5182                 spin_lock_irq(&rbd_dev->lock);
5183                 if (rbd_dev->open_count)
5184                         ret = -EBUSY;
5185                 else
5186                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5187                                                         &rbd_dev->flags);
5188                 spin_unlock_irq(&rbd_dev->lock);
5189         }
5190         spin_unlock(&rbd_dev_list_lock);
5191         if (ret < 0 || already)
5192                 return ret;
5193
5194         ret = rbd_dev_header_watch_sync(rbd_dev, false);
5195         if (ret)
5196                 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5197
5198         /*
5199          * flush remaining watch callbacks - these must be complete
5200          * before the osd_client is shutdown
5201          */
5202         dout("%s: flushing notifies", __func__);
5203         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5204         /*
5205          * Don't free anything from rbd_dev->disk until after all
5206          * notifies are completely processed. Otherwise
5207          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5208          * in a potential use after free of rbd_dev->disk or rbd_dev.
5209          */
5210         rbd_bus_del_dev(rbd_dev);
5211         rbd_dev_image_release(rbd_dev);
5212         module_put(THIS_MODULE);
5213
5214         return count;
5215 }
5216
5217 /*
5218  * create control files in sysfs
5219  * /sys/bus/rbd/...
5220  */
5221 static int rbd_sysfs_init(void)
5222 {
5223         int ret;
5224
5225         ret = device_register(&rbd_root_dev);
5226         if (ret < 0)
5227                 return ret;
5228
5229         ret = bus_register(&rbd_bus_type);
5230         if (ret < 0)
5231                 device_unregister(&rbd_root_dev);
5232
5233         return ret;
5234 }
5235
5236 static void rbd_sysfs_cleanup(void)
5237 {
5238         bus_unregister(&rbd_bus_type);
5239         device_unregister(&rbd_root_dev);
5240 }
5241
5242 static int rbd_slab_init(void)
5243 {
5244         rbd_assert(!rbd_img_request_cache);
5245         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5246                                         sizeof (struct rbd_img_request),
5247                                         __alignof__(struct rbd_img_request),
5248                                         0, NULL);
5249         if (!rbd_img_request_cache)
5250                 return -ENOMEM;
5251
5252         rbd_assert(!rbd_obj_request_cache);
5253         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5254                                         sizeof (struct rbd_obj_request),
5255                                         __alignof__(struct rbd_obj_request),
5256                                         0, NULL);
5257         if (!rbd_obj_request_cache)
5258                 goto out_err;
5259
5260         rbd_assert(!rbd_segment_name_cache);
5261         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5262                                         MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5263         if (rbd_segment_name_cache)
5264                 return 0;
5265 out_err:
5266         if (rbd_obj_request_cache) {
5267                 kmem_cache_destroy(rbd_obj_request_cache);
5268                 rbd_obj_request_cache = NULL;
5269         }
5270
5271         kmem_cache_destroy(rbd_img_request_cache);
5272         rbd_img_request_cache = NULL;
5273
5274         return -ENOMEM;
5275 }
5276
5277 static void rbd_slab_exit(void)
5278 {
5279         rbd_assert(rbd_segment_name_cache);
5280         kmem_cache_destroy(rbd_segment_name_cache);
5281         rbd_segment_name_cache = NULL;
5282
5283         rbd_assert(rbd_obj_request_cache);
5284         kmem_cache_destroy(rbd_obj_request_cache);
5285         rbd_obj_request_cache = NULL;
5286
5287         rbd_assert(rbd_img_request_cache);
5288         kmem_cache_destroy(rbd_img_request_cache);
5289         rbd_img_request_cache = NULL;
5290 }
5291
5292 static int __init rbd_init(void)
5293 {
5294         int rc;
5295
5296         if (!libceph_compatible(NULL)) {
5297                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5298
5299                 return -EINVAL;
5300         }
5301         rc = rbd_slab_init();
5302         if (rc)
5303                 return rc;
5304         rc = rbd_sysfs_init();
5305         if (rc)
5306                 rbd_slab_exit();
5307         else
5308                 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5309
5310         return rc;
5311 }
5312
5313 static void __exit rbd_exit(void)
5314 {
5315         rbd_sysfs_cleanup();
5316         rbd_slab_exit();
5317 }
5318
5319 module_init(rbd_init);
5320 module_exit(rbd_exit);
5321
5322 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5323 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5324 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5325 MODULE_DESCRIPTION("rados block device");
5326
5327 /* following authorship retained from original osdblk.c */
5328 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5329
5330 MODULE_LICENSE("GPL");