]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/block/zram/zram_drv.c
block/mm: make bdev_ops->rw_page() take a bool for read/write
[karo-tx-linux.git] / drivers / block / zram / zram_drv.c
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31 #include <linux/idr.h>
32 #include <linux/sysfs.h>
33
34 #include "zram_drv.h"
35
36 static DEFINE_IDR(zram_index_idr);
37 /* idr index must be protected */
38 static DEFINE_MUTEX(zram_index_mutex);
39
40 static int zram_major;
41 static const char *default_compressor = "lzo";
42
43 /* Module params (documentation at end) */
44 static unsigned int num_devices = 1;
45
46 static inline void deprecated_attr_warn(const char *name)
47 {
48         pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
49                         task_pid_nr(current),
50                         current->comm,
51                         name,
52                         "See zram documentation.");
53 }
54
55 #define ZRAM_ATTR_RO(name)                                              \
56 static ssize_t name##_show(struct device *d,                            \
57                                 struct device_attribute *attr, char *b) \
58 {                                                                       \
59         struct zram *zram = dev_to_zram(d);                             \
60                                                                         \
61         deprecated_attr_warn(__stringify(name));                        \
62         return scnprintf(b, PAGE_SIZE, "%llu\n",                        \
63                 (u64)atomic64_read(&zram->stats.name));                 \
64 }                                                                       \
65 static DEVICE_ATTR_RO(name);
66
67 static inline bool init_done(struct zram *zram)
68 {
69         return zram->disksize;
70 }
71
72 static inline struct zram *dev_to_zram(struct device *dev)
73 {
74         return (struct zram *)dev_to_disk(dev)->private_data;
75 }
76
77 /* flag operations require table entry bit_spin_lock() being held */
78 static int zram_test_flag(struct zram_meta *meta, u32 index,
79                         enum zram_pageflags flag)
80 {
81         return meta->table[index].value & BIT(flag);
82 }
83
84 static void zram_set_flag(struct zram_meta *meta, u32 index,
85                         enum zram_pageflags flag)
86 {
87         meta->table[index].value |= BIT(flag);
88 }
89
90 static void zram_clear_flag(struct zram_meta *meta, u32 index,
91                         enum zram_pageflags flag)
92 {
93         meta->table[index].value &= ~BIT(flag);
94 }
95
96 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
97 {
98         return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
99 }
100
101 static void zram_set_obj_size(struct zram_meta *meta,
102                                         u32 index, size_t size)
103 {
104         unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
105
106         meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
107 }
108
109 static inline bool is_partial_io(struct bio_vec *bvec)
110 {
111         return bvec->bv_len != PAGE_SIZE;
112 }
113
114 /*
115  * Check if request is within bounds and aligned on zram logical blocks.
116  */
117 static inline bool valid_io_request(struct zram *zram,
118                 sector_t start, unsigned int size)
119 {
120         u64 end, bound;
121
122         /* unaligned request */
123         if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
124                 return false;
125         if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
126                 return false;
127
128         end = start + (size >> SECTOR_SHIFT);
129         bound = zram->disksize >> SECTOR_SHIFT;
130         /* out of range range */
131         if (unlikely(start >= bound || end > bound || start > end))
132                 return false;
133
134         /* I/O request is valid */
135         return true;
136 }
137
138 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
139 {
140         if (*offset + bvec->bv_len >= PAGE_SIZE)
141                 (*index)++;
142         *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
143 }
144
145 static inline void update_used_max(struct zram *zram,
146                                         const unsigned long pages)
147 {
148         unsigned long old_max, cur_max;
149
150         old_max = atomic_long_read(&zram->stats.max_used_pages);
151
152         do {
153                 cur_max = old_max;
154                 if (pages > cur_max)
155                         old_max = atomic_long_cmpxchg(
156                                 &zram->stats.max_used_pages, cur_max, pages);
157         } while (old_max != cur_max);
158 }
159
160 static bool page_zero_filled(void *ptr)
161 {
162         unsigned int pos;
163         unsigned long *page;
164
165         page = (unsigned long *)ptr;
166
167         for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
168                 if (page[pos])
169                         return false;
170         }
171
172         return true;
173 }
174
175 static void handle_zero_page(struct bio_vec *bvec)
176 {
177         struct page *page = bvec->bv_page;
178         void *user_mem;
179
180         user_mem = kmap_atomic(page);
181         if (is_partial_io(bvec))
182                 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
183         else
184                 clear_page(user_mem);
185         kunmap_atomic(user_mem);
186
187         flush_dcache_page(page);
188 }
189
190 static ssize_t initstate_show(struct device *dev,
191                 struct device_attribute *attr, char *buf)
192 {
193         u32 val;
194         struct zram *zram = dev_to_zram(dev);
195
196         down_read(&zram->init_lock);
197         val = init_done(zram);
198         up_read(&zram->init_lock);
199
200         return scnprintf(buf, PAGE_SIZE, "%u\n", val);
201 }
202
203 static ssize_t disksize_show(struct device *dev,
204                 struct device_attribute *attr, char *buf)
205 {
206         struct zram *zram = dev_to_zram(dev);
207
208         return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
209 }
210
211 static ssize_t orig_data_size_show(struct device *dev,
212                 struct device_attribute *attr, char *buf)
213 {
214         struct zram *zram = dev_to_zram(dev);
215
216         deprecated_attr_warn("orig_data_size");
217         return scnprintf(buf, PAGE_SIZE, "%llu\n",
218                 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
219 }
220
221 static ssize_t mem_used_total_show(struct device *dev,
222                 struct device_attribute *attr, char *buf)
223 {
224         u64 val = 0;
225         struct zram *zram = dev_to_zram(dev);
226
227         deprecated_attr_warn("mem_used_total");
228         down_read(&zram->init_lock);
229         if (init_done(zram)) {
230                 struct zram_meta *meta = zram->meta;
231                 val = zs_get_total_pages(meta->mem_pool);
232         }
233         up_read(&zram->init_lock);
234
235         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
236 }
237
238 static ssize_t mem_limit_show(struct device *dev,
239                 struct device_attribute *attr, char *buf)
240 {
241         u64 val;
242         struct zram *zram = dev_to_zram(dev);
243
244         deprecated_attr_warn("mem_limit");
245         down_read(&zram->init_lock);
246         val = zram->limit_pages;
247         up_read(&zram->init_lock);
248
249         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
250 }
251
252 static ssize_t mem_limit_store(struct device *dev,
253                 struct device_attribute *attr, const char *buf, size_t len)
254 {
255         u64 limit;
256         char *tmp;
257         struct zram *zram = dev_to_zram(dev);
258
259         limit = memparse(buf, &tmp);
260         if (buf == tmp) /* no chars parsed, invalid input */
261                 return -EINVAL;
262
263         down_write(&zram->init_lock);
264         zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
265         up_write(&zram->init_lock);
266
267         return len;
268 }
269
270 static ssize_t mem_used_max_show(struct device *dev,
271                 struct device_attribute *attr, char *buf)
272 {
273         u64 val = 0;
274         struct zram *zram = dev_to_zram(dev);
275
276         deprecated_attr_warn("mem_used_max");
277         down_read(&zram->init_lock);
278         if (init_done(zram))
279                 val = atomic_long_read(&zram->stats.max_used_pages);
280         up_read(&zram->init_lock);
281
282         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
283 }
284
285 static ssize_t mem_used_max_store(struct device *dev,
286                 struct device_attribute *attr, const char *buf, size_t len)
287 {
288         int err;
289         unsigned long val;
290         struct zram *zram = dev_to_zram(dev);
291
292         err = kstrtoul(buf, 10, &val);
293         if (err || val != 0)
294                 return -EINVAL;
295
296         down_read(&zram->init_lock);
297         if (init_done(zram)) {
298                 struct zram_meta *meta = zram->meta;
299                 atomic_long_set(&zram->stats.max_used_pages,
300                                 zs_get_total_pages(meta->mem_pool));
301         }
302         up_read(&zram->init_lock);
303
304         return len;
305 }
306
307 /*
308  * We switched to per-cpu streams and this attr is not needed anymore.
309  * However, we will keep it around for some time, because:
310  * a) we may revert per-cpu streams in the future
311  * b) it's visible to user space and we need to follow our 2 years
312  *    retirement rule; but we already have a number of 'soon to be
313  *    altered' attrs, so max_comp_streams need to wait for the next
314  *    layoff cycle.
315  */
316 static ssize_t max_comp_streams_show(struct device *dev,
317                 struct device_attribute *attr, char *buf)
318 {
319         return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
320 }
321
322 static ssize_t max_comp_streams_store(struct device *dev,
323                 struct device_attribute *attr, const char *buf, size_t len)
324 {
325         return len;
326 }
327
328 static ssize_t comp_algorithm_show(struct device *dev,
329                 struct device_attribute *attr, char *buf)
330 {
331         size_t sz;
332         struct zram *zram = dev_to_zram(dev);
333
334         down_read(&zram->init_lock);
335         sz = zcomp_available_show(zram->compressor, buf);
336         up_read(&zram->init_lock);
337
338         return sz;
339 }
340
341 static ssize_t comp_algorithm_store(struct device *dev,
342                 struct device_attribute *attr, const char *buf, size_t len)
343 {
344         struct zram *zram = dev_to_zram(dev);
345         char compressor[CRYPTO_MAX_ALG_NAME];
346         size_t sz;
347
348         strlcpy(compressor, buf, sizeof(compressor));
349         /* ignore trailing newline */
350         sz = strlen(compressor);
351         if (sz > 0 && compressor[sz - 1] == '\n')
352                 compressor[sz - 1] = 0x00;
353
354         if (!zcomp_available_algorithm(compressor))
355                 return -EINVAL;
356
357         down_write(&zram->init_lock);
358         if (init_done(zram)) {
359                 up_write(&zram->init_lock);
360                 pr_info("Can't change algorithm for initialized device\n");
361                 return -EBUSY;
362         }
363
364         strlcpy(zram->compressor, compressor, sizeof(compressor));
365         up_write(&zram->init_lock);
366         return len;
367 }
368
369 static ssize_t compact_store(struct device *dev,
370                 struct device_attribute *attr, const char *buf, size_t len)
371 {
372         struct zram *zram = dev_to_zram(dev);
373         struct zram_meta *meta;
374
375         down_read(&zram->init_lock);
376         if (!init_done(zram)) {
377                 up_read(&zram->init_lock);
378                 return -EINVAL;
379         }
380
381         meta = zram->meta;
382         zs_compact(meta->mem_pool);
383         up_read(&zram->init_lock);
384
385         return len;
386 }
387
388 static ssize_t io_stat_show(struct device *dev,
389                 struct device_attribute *attr, char *buf)
390 {
391         struct zram *zram = dev_to_zram(dev);
392         ssize_t ret;
393
394         down_read(&zram->init_lock);
395         ret = scnprintf(buf, PAGE_SIZE,
396                         "%8llu %8llu %8llu %8llu\n",
397                         (u64)atomic64_read(&zram->stats.failed_reads),
398                         (u64)atomic64_read(&zram->stats.failed_writes),
399                         (u64)atomic64_read(&zram->stats.invalid_io),
400                         (u64)atomic64_read(&zram->stats.notify_free));
401         up_read(&zram->init_lock);
402
403         return ret;
404 }
405
406 static ssize_t mm_stat_show(struct device *dev,
407                 struct device_attribute *attr, char *buf)
408 {
409         struct zram *zram = dev_to_zram(dev);
410         struct zs_pool_stats pool_stats;
411         u64 orig_size, mem_used = 0;
412         long max_used;
413         ssize_t ret;
414
415         memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
416
417         down_read(&zram->init_lock);
418         if (init_done(zram)) {
419                 mem_used = zs_get_total_pages(zram->meta->mem_pool);
420                 zs_pool_stats(zram->meta->mem_pool, &pool_stats);
421         }
422
423         orig_size = atomic64_read(&zram->stats.pages_stored);
424         max_used = atomic_long_read(&zram->stats.max_used_pages);
425
426         ret = scnprintf(buf, PAGE_SIZE,
427                         "%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
428                         orig_size << PAGE_SHIFT,
429                         (u64)atomic64_read(&zram->stats.compr_data_size),
430                         mem_used << PAGE_SHIFT,
431                         zram->limit_pages << PAGE_SHIFT,
432                         max_used << PAGE_SHIFT,
433                         (u64)atomic64_read(&zram->stats.zero_pages),
434                         pool_stats.pages_compacted);
435         up_read(&zram->init_lock);
436
437         return ret;
438 }
439
440 static ssize_t debug_stat_show(struct device *dev,
441                 struct device_attribute *attr, char *buf)
442 {
443         int version = 1;
444         struct zram *zram = dev_to_zram(dev);
445         ssize_t ret;
446
447         down_read(&zram->init_lock);
448         ret = scnprintf(buf, PAGE_SIZE,
449                         "version: %d\n%8llu\n",
450                         version,
451                         (u64)atomic64_read(&zram->stats.writestall));
452         up_read(&zram->init_lock);
453
454         return ret;
455 }
456
457 static DEVICE_ATTR_RO(io_stat);
458 static DEVICE_ATTR_RO(mm_stat);
459 static DEVICE_ATTR_RO(debug_stat);
460 ZRAM_ATTR_RO(num_reads);
461 ZRAM_ATTR_RO(num_writes);
462 ZRAM_ATTR_RO(failed_reads);
463 ZRAM_ATTR_RO(failed_writes);
464 ZRAM_ATTR_RO(invalid_io);
465 ZRAM_ATTR_RO(notify_free);
466 ZRAM_ATTR_RO(zero_pages);
467 ZRAM_ATTR_RO(compr_data_size);
468
469 static inline bool zram_meta_get(struct zram *zram)
470 {
471         if (atomic_inc_not_zero(&zram->refcount))
472                 return true;
473         return false;
474 }
475
476 static inline void zram_meta_put(struct zram *zram)
477 {
478         atomic_dec(&zram->refcount);
479 }
480
481 static void zram_meta_free(struct zram_meta *meta, u64 disksize)
482 {
483         size_t num_pages = disksize >> PAGE_SHIFT;
484         size_t index;
485
486         /* Free all pages that are still in this zram device */
487         for (index = 0; index < num_pages; index++) {
488                 unsigned long handle = meta->table[index].handle;
489
490                 if (!handle)
491                         continue;
492
493                 zs_free(meta->mem_pool, handle);
494         }
495
496         zs_destroy_pool(meta->mem_pool);
497         vfree(meta->table);
498         kfree(meta);
499 }
500
501 static struct zram_meta *zram_meta_alloc(char *pool_name, u64 disksize)
502 {
503         size_t num_pages;
504         struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
505
506         if (!meta)
507                 return NULL;
508
509         num_pages = disksize >> PAGE_SHIFT;
510         meta->table = vzalloc(num_pages * sizeof(*meta->table));
511         if (!meta->table) {
512                 pr_err("Error allocating zram address table\n");
513                 goto out_error;
514         }
515
516         meta->mem_pool = zs_create_pool(pool_name);
517         if (!meta->mem_pool) {
518                 pr_err("Error creating memory pool\n");
519                 goto out_error;
520         }
521
522         return meta;
523
524 out_error:
525         vfree(meta->table);
526         kfree(meta);
527         return NULL;
528 }
529
530 /*
531  * To protect concurrent access to the same index entry,
532  * caller should hold this table index entry's bit_spinlock to
533  * indicate this index entry is accessing.
534  */
535 static void zram_free_page(struct zram *zram, size_t index)
536 {
537         struct zram_meta *meta = zram->meta;
538         unsigned long handle = meta->table[index].handle;
539
540         if (unlikely(!handle)) {
541                 /*
542                  * No memory is allocated for zero filled pages.
543                  * Simply clear zero page flag.
544                  */
545                 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
546                         zram_clear_flag(meta, index, ZRAM_ZERO);
547                         atomic64_dec(&zram->stats.zero_pages);
548                 }
549                 return;
550         }
551
552         zs_free(meta->mem_pool, handle);
553
554         atomic64_sub(zram_get_obj_size(meta, index),
555                         &zram->stats.compr_data_size);
556         atomic64_dec(&zram->stats.pages_stored);
557
558         meta->table[index].handle = 0;
559         zram_set_obj_size(meta, index, 0);
560 }
561
562 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
563 {
564         int ret = 0;
565         unsigned char *cmem;
566         struct zram_meta *meta = zram->meta;
567         unsigned long handle;
568         unsigned int size;
569
570         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
571         handle = meta->table[index].handle;
572         size = zram_get_obj_size(meta, index);
573
574         if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
575                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
576                 clear_page(mem);
577                 return 0;
578         }
579
580         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
581         if (size == PAGE_SIZE) {
582                 copy_page(mem, cmem);
583         } else {
584                 struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
585
586                 ret = zcomp_decompress(zstrm, cmem, size, mem);
587                 zcomp_stream_put(zram->comp);
588         }
589         zs_unmap_object(meta->mem_pool, handle);
590         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
591
592         /* Should NEVER happen. Return bio error if it does. */
593         if (unlikely(ret)) {
594                 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
595                 return ret;
596         }
597
598         return 0;
599 }
600
601 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
602                           u32 index, int offset)
603 {
604         int ret;
605         struct page *page;
606         unsigned char *user_mem, *uncmem = NULL;
607         struct zram_meta *meta = zram->meta;
608         page = bvec->bv_page;
609
610         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
611         if (unlikely(!meta->table[index].handle) ||
612                         zram_test_flag(meta, index, ZRAM_ZERO)) {
613                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
614                 handle_zero_page(bvec);
615                 return 0;
616         }
617         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
618
619         if (is_partial_io(bvec))
620                 /* Use  a temporary buffer to decompress the page */
621                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
622
623         user_mem = kmap_atomic(page);
624         if (!is_partial_io(bvec))
625                 uncmem = user_mem;
626
627         if (!uncmem) {
628                 pr_err("Unable to allocate temp memory\n");
629                 ret = -ENOMEM;
630                 goto out_cleanup;
631         }
632
633         ret = zram_decompress_page(zram, uncmem, index);
634         /* Should NEVER happen. Return bio error if it does. */
635         if (unlikely(ret))
636                 goto out_cleanup;
637
638         if (is_partial_io(bvec))
639                 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
640                                 bvec->bv_len);
641
642         flush_dcache_page(page);
643         ret = 0;
644 out_cleanup:
645         kunmap_atomic(user_mem);
646         if (is_partial_io(bvec))
647                 kfree(uncmem);
648         return ret;
649 }
650
651 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
652                            int offset)
653 {
654         int ret = 0;
655         unsigned int clen;
656         unsigned long handle = 0;
657         struct page *page;
658         unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
659         struct zram_meta *meta = zram->meta;
660         struct zcomp_strm *zstrm = NULL;
661         unsigned long alloced_pages;
662
663         page = bvec->bv_page;
664         if (is_partial_io(bvec)) {
665                 /*
666                  * This is a partial IO. We need to read the full page
667                  * before to write the changes.
668                  */
669                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
670                 if (!uncmem) {
671                         ret = -ENOMEM;
672                         goto out;
673                 }
674                 ret = zram_decompress_page(zram, uncmem, index);
675                 if (ret)
676                         goto out;
677         }
678
679 compress_again:
680         user_mem = kmap_atomic(page);
681         if (is_partial_io(bvec)) {
682                 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
683                        bvec->bv_len);
684                 kunmap_atomic(user_mem);
685                 user_mem = NULL;
686         } else {
687                 uncmem = user_mem;
688         }
689
690         if (page_zero_filled(uncmem)) {
691                 if (user_mem)
692                         kunmap_atomic(user_mem);
693                 /* Free memory associated with this sector now. */
694                 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
695                 zram_free_page(zram, index);
696                 zram_set_flag(meta, index, ZRAM_ZERO);
697                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
698
699                 atomic64_inc(&zram->stats.zero_pages);
700                 ret = 0;
701                 goto out;
702         }
703
704         zstrm = zcomp_stream_get(zram->comp);
705         ret = zcomp_compress(zstrm, uncmem, &clen);
706         if (!is_partial_io(bvec)) {
707                 kunmap_atomic(user_mem);
708                 user_mem = NULL;
709                 uncmem = NULL;
710         }
711
712         if (unlikely(ret)) {
713                 pr_err("Compression failed! err=%d\n", ret);
714                 goto out;
715         }
716
717         src = zstrm->buffer;
718         if (unlikely(clen > max_zpage_size)) {
719                 clen = PAGE_SIZE;
720                 if (is_partial_io(bvec))
721                         src = uncmem;
722         }
723
724         /*
725          * handle allocation has 2 paths:
726          * a) fast path is executed with preemption disabled (for
727          *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
728          *  since we can't sleep;
729          * b) slow path enables preemption and attempts to allocate
730          *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
731          *  put per-cpu compression stream and, thus, to re-do
732          *  the compression once handle is allocated.
733          *
734          * if we have a 'non-null' handle here then we are coming
735          * from the slow path and handle has already been allocated.
736          */
737         if (!handle)
738                 handle = zs_malloc(meta->mem_pool, clen,
739                                 __GFP_KSWAPD_RECLAIM |
740                                 __GFP_NOWARN |
741                                 __GFP_HIGHMEM |
742                                 __GFP_MOVABLE);
743         if (!handle) {
744                 zcomp_stream_put(zram->comp);
745                 zstrm = NULL;
746
747                 atomic64_inc(&zram->stats.writestall);
748
749                 handle = zs_malloc(meta->mem_pool, clen,
750                                 GFP_NOIO | __GFP_HIGHMEM |
751                                 __GFP_MOVABLE);
752                 if (handle)
753                         goto compress_again;
754
755                 pr_err("Error allocating memory for compressed page: %u, size=%u\n",
756                         index, clen);
757                 ret = -ENOMEM;
758                 goto out;
759         }
760
761         alloced_pages = zs_get_total_pages(meta->mem_pool);
762         update_used_max(zram, alloced_pages);
763
764         if (zram->limit_pages && alloced_pages > zram->limit_pages) {
765                 zs_free(meta->mem_pool, handle);
766                 ret = -ENOMEM;
767                 goto out;
768         }
769
770         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
771
772         if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
773                 src = kmap_atomic(page);
774                 copy_page(cmem, src);
775                 kunmap_atomic(src);
776         } else {
777                 memcpy(cmem, src, clen);
778         }
779
780         zcomp_stream_put(zram->comp);
781         zstrm = NULL;
782         zs_unmap_object(meta->mem_pool, handle);
783
784         /*
785          * Free memory associated with this sector
786          * before overwriting unused sectors.
787          */
788         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
789         zram_free_page(zram, index);
790
791         meta->table[index].handle = handle;
792         zram_set_obj_size(meta, index, clen);
793         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
794
795         /* Update stats */
796         atomic64_add(clen, &zram->stats.compr_data_size);
797         atomic64_inc(&zram->stats.pages_stored);
798 out:
799         if (zstrm)
800                 zcomp_stream_put(zram->comp);
801         if (is_partial_io(bvec))
802                 kfree(uncmem);
803         return ret;
804 }
805
806 /*
807  * zram_bio_discard - handler on discard request
808  * @index: physical block index in PAGE_SIZE units
809  * @offset: byte offset within physical block
810  */
811 static void zram_bio_discard(struct zram *zram, u32 index,
812                              int offset, struct bio *bio)
813 {
814         size_t n = bio->bi_iter.bi_size;
815         struct zram_meta *meta = zram->meta;
816
817         /*
818          * zram manages data in physical block size units. Because logical block
819          * size isn't identical with physical block size on some arch, we
820          * could get a discard request pointing to a specific offset within a
821          * certain physical block.  Although we can handle this request by
822          * reading that physiclal block and decompressing and partially zeroing
823          * and re-compressing and then re-storing it, this isn't reasonable
824          * because our intent with a discard request is to save memory.  So
825          * skipping this logical block is appropriate here.
826          */
827         if (offset) {
828                 if (n <= (PAGE_SIZE - offset))
829                         return;
830
831                 n -= (PAGE_SIZE - offset);
832                 index++;
833         }
834
835         while (n >= PAGE_SIZE) {
836                 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
837                 zram_free_page(zram, index);
838                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
839                 atomic64_inc(&zram->stats.notify_free);
840                 index++;
841                 n -= PAGE_SIZE;
842         }
843 }
844
845 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
846                         int offset, bool is_write)
847 {
848         unsigned long start_time = jiffies;
849         int rw_acct = is_write ? REQ_OP_WRITE : REQ_OP_READ;
850         int ret;
851
852         generic_start_io_acct(rw_acct, bvec->bv_len >> SECTOR_SHIFT,
853                         &zram->disk->part0);
854
855         if (!is_write) {
856                 atomic64_inc(&zram->stats.num_reads);
857                 ret = zram_bvec_read(zram, bvec, index, offset);
858         } else {
859                 atomic64_inc(&zram->stats.num_writes);
860                 ret = zram_bvec_write(zram, bvec, index, offset);
861         }
862
863         generic_end_io_acct(rw_acct, &zram->disk->part0, start_time);
864
865         if (unlikely(ret)) {
866                 if (!is_write)
867                         atomic64_inc(&zram->stats.failed_reads);
868                 else
869                         atomic64_inc(&zram->stats.failed_writes);
870         }
871
872         return ret;
873 }
874
875 static void __zram_make_request(struct zram *zram, struct bio *bio)
876 {
877         int offset;
878         u32 index;
879         struct bio_vec bvec;
880         struct bvec_iter iter;
881
882         index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
883         offset = (bio->bi_iter.bi_sector &
884                   (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
885
886         if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
887                 zram_bio_discard(zram, index, offset, bio);
888                 bio_endio(bio);
889                 return;
890         }
891
892         bio_for_each_segment(bvec, bio, iter) {
893                 int max_transfer_size = PAGE_SIZE - offset;
894
895                 if (bvec.bv_len > max_transfer_size) {
896                         /*
897                          * zram_bvec_rw() can only make operation on a single
898                          * zram page. Split the bio vector.
899                          */
900                         struct bio_vec bv;
901
902                         bv.bv_page = bvec.bv_page;
903                         bv.bv_len = max_transfer_size;
904                         bv.bv_offset = bvec.bv_offset;
905
906                         if (zram_bvec_rw(zram, &bv, index, offset,
907                                          op_is_write(bio_op(bio))) < 0)
908                                 goto out;
909
910                         bv.bv_len = bvec.bv_len - max_transfer_size;
911                         bv.bv_offset += max_transfer_size;
912                         if (zram_bvec_rw(zram, &bv, index + 1, 0,
913                                          op_is_write(bio_op(bio))) < 0)
914                                 goto out;
915                 } else
916                         if (zram_bvec_rw(zram, &bvec, index, offset,
917                                          op_is_write(bio_op(bio))) < 0)
918                                 goto out;
919
920                 update_position(&index, &offset, &bvec);
921         }
922
923         bio_endio(bio);
924         return;
925
926 out:
927         bio_io_error(bio);
928 }
929
930 /*
931  * Handler function for all zram I/O requests.
932  */
933 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
934 {
935         struct zram *zram = queue->queuedata;
936
937         if (unlikely(!zram_meta_get(zram)))
938                 goto error;
939
940         blk_queue_split(queue, &bio, queue->bio_split);
941
942         if (!valid_io_request(zram, bio->bi_iter.bi_sector,
943                                         bio->bi_iter.bi_size)) {
944                 atomic64_inc(&zram->stats.invalid_io);
945                 goto put_zram;
946         }
947
948         __zram_make_request(zram, bio);
949         zram_meta_put(zram);
950         return BLK_QC_T_NONE;
951 put_zram:
952         zram_meta_put(zram);
953 error:
954         bio_io_error(bio);
955         return BLK_QC_T_NONE;
956 }
957
958 static void zram_slot_free_notify(struct block_device *bdev,
959                                 unsigned long index)
960 {
961         struct zram *zram;
962         struct zram_meta *meta;
963
964         zram = bdev->bd_disk->private_data;
965         meta = zram->meta;
966
967         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
968         zram_free_page(zram, index);
969         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
970         atomic64_inc(&zram->stats.notify_free);
971 }
972
973 static int zram_rw_page(struct block_device *bdev, sector_t sector,
974                        struct page *page, bool is_write)
975 {
976         int offset, err = -EIO;
977         u32 index;
978         struct zram *zram;
979         struct bio_vec bv;
980
981         zram = bdev->bd_disk->private_data;
982         if (unlikely(!zram_meta_get(zram)))
983                 goto out;
984
985         if (!valid_io_request(zram, sector, PAGE_SIZE)) {
986                 atomic64_inc(&zram->stats.invalid_io);
987                 err = -EINVAL;
988                 goto put_zram;
989         }
990
991         index = sector >> SECTORS_PER_PAGE_SHIFT;
992         offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
993
994         bv.bv_page = page;
995         bv.bv_len = PAGE_SIZE;
996         bv.bv_offset = 0;
997
998         err = zram_bvec_rw(zram, &bv, index, offset, is_write);
999 put_zram:
1000         zram_meta_put(zram);
1001 out:
1002         /*
1003          * If I/O fails, just return error(ie, non-zero) without
1004          * calling page_endio.
1005          * It causes resubmit the I/O with bio request by upper functions
1006          * of rw_page(e.g., swap_readpage, __swap_writepage) and
1007          * bio->bi_end_io does things to handle the error
1008          * (e.g., SetPageError, set_page_dirty and extra works).
1009          */
1010         if (err == 0)
1011                 page_endio(page, is_write, 0);
1012         return err;
1013 }
1014
1015 static void zram_reset_device(struct zram *zram)
1016 {
1017         struct zram_meta *meta;
1018         struct zcomp *comp;
1019         u64 disksize;
1020
1021         down_write(&zram->init_lock);
1022
1023         zram->limit_pages = 0;
1024
1025         if (!init_done(zram)) {
1026                 up_write(&zram->init_lock);
1027                 return;
1028         }
1029
1030         meta = zram->meta;
1031         comp = zram->comp;
1032         disksize = zram->disksize;
1033         /*
1034          * Refcount will go down to 0 eventually and r/w handler
1035          * cannot handle further I/O so it will bail out by
1036          * check zram_meta_get.
1037          */
1038         zram_meta_put(zram);
1039         /*
1040          * We want to free zram_meta in process context to avoid
1041          * deadlock between reclaim path and any other locks.
1042          */
1043         wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
1044
1045         /* Reset stats */
1046         memset(&zram->stats, 0, sizeof(zram->stats));
1047         zram->disksize = 0;
1048
1049         set_capacity(zram->disk, 0);
1050         part_stat_set_all(&zram->disk->part0, 0);
1051
1052         up_write(&zram->init_lock);
1053         /* I/O operation under all of CPU are done so let's free */
1054         zram_meta_free(meta, disksize);
1055         zcomp_destroy(comp);
1056 }
1057
1058 static ssize_t disksize_store(struct device *dev,
1059                 struct device_attribute *attr, const char *buf, size_t len)
1060 {
1061         u64 disksize;
1062         struct zcomp *comp;
1063         struct zram_meta *meta;
1064         struct zram *zram = dev_to_zram(dev);
1065         int err;
1066
1067         disksize = memparse(buf, NULL);
1068         if (!disksize)
1069                 return -EINVAL;
1070
1071         disksize = PAGE_ALIGN(disksize);
1072         meta = zram_meta_alloc(zram->disk->disk_name, disksize);
1073         if (!meta)
1074                 return -ENOMEM;
1075
1076         comp = zcomp_create(zram->compressor);
1077         if (IS_ERR(comp)) {
1078                 pr_err("Cannot initialise %s compressing backend\n",
1079                                 zram->compressor);
1080                 err = PTR_ERR(comp);
1081                 goto out_free_meta;
1082         }
1083
1084         down_write(&zram->init_lock);
1085         if (init_done(zram)) {
1086                 pr_info("Cannot change disksize for initialized device\n");
1087                 err = -EBUSY;
1088                 goto out_destroy_comp;
1089         }
1090
1091         init_waitqueue_head(&zram->io_done);
1092         atomic_set(&zram->refcount, 1);
1093         zram->meta = meta;
1094         zram->comp = comp;
1095         zram->disksize = disksize;
1096         set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1097         up_write(&zram->init_lock);
1098
1099         /*
1100          * Revalidate disk out of the init_lock to avoid lockdep splat.
1101          * It's okay because disk's capacity is protected by init_lock
1102          * so that revalidate_disk always sees up-to-date capacity.
1103          */
1104         revalidate_disk(zram->disk);
1105
1106         return len;
1107
1108 out_destroy_comp:
1109         up_write(&zram->init_lock);
1110         zcomp_destroy(comp);
1111 out_free_meta:
1112         zram_meta_free(meta, disksize);
1113         return err;
1114 }
1115
1116 static ssize_t reset_store(struct device *dev,
1117                 struct device_attribute *attr, const char *buf, size_t len)
1118 {
1119         int ret;
1120         unsigned short do_reset;
1121         struct zram *zram;
1122         struct block_device *bdev;
1123
1124         ret = kstrtou16(buf, 10, &do_reset);
1125         if (ret)
1126                 return ret;
1127
1128         if (!do_reset)
1129                 return -EINVAL;
1130
1131         zram = dev_to_zram(dev);
1132         bdev = bdget_disk(zram->disk, 0);
1133         if (!bdev)
1134                 return -ENOMEM;
1135
1136         mutex_lock(&bdev->bd_mutex);
1137         /* Do not reset an active device or claimed device */
1138         if (bdev->bd_openers || zram->claim) {
1139                 mutex_unlock(&bdev->bd_mutex);
1140                 bdput(bdev);
1141                 return -EBUSY;
1142         }
1143
1144         /* From now on, anyone can't open /dev/zram[0-9] */
1145         zram->claim = true;
1146         mutex_unlock(&bdev->bd_mutex);
1147
1148         /* Make sure all the pending I/O are finished */
1149         fsync_bdev(bdev);
1150         zram_reset_device(zram);
1151         revalidate_disk(zram->disk);
1152         bdput(bdev);
1153
1154         mutex_lock(&bdev->bd_mutex);
1155         zram->claim = false;
1156         mutex_unlock(&bdev->bd_mutex);
1157
1158         return len;
1159 }
1160
1161 static int zram_open(struct block_device *bdev, fmode_t mode)
1162 {
1163         int ret = 0;
1164         struct zram *zram;
1165
1166         WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1167
1168         zram = bdev->bd_disk->private_data;
1169         /* zram was claimed to reset so open request fails */
1170         if (zram->claim)
1171                 ret = -EBUSY;
1172
1173         return ret;
1174 }
1175
1176 static const struct block_device_operations zram_devops = {
1177         .open = zram_open,
1178         .swap_slot_free_notify = zram_slot_free_notify,
1179         .rw_page = zram_rw_page,
1180         .owner = THIS_MODULE
1181 };
1182
1183 static DEVICE_ATTR_WO(compact);
1184 static DEVICE_ATTR_RW(disksize);
1185 static DEVICE_ATTR_RO(initstate);
1186 static DEVICE_ATTR_WO(reset);
1187 static DEVICE_ATTR_RO(orig_data_size);
1188 static DEVICE_ATTR_RO(mem_used_total);
1189 static DEVICE_ATTR_RW(mem_limit);
1190 static DEVICE_ATTR_RW(mem_used_max);
1191 static DEVICE_ATTR_RW(max_comp_streams);
1192 static DEVICE_ATTR_RW(comp_algorithm);
1193
1194 static struct attribute *zram_disk_attrs[] = {
1195         &dev_attr_disksize.attr,
1196         &dev_attr_initstate.attr,
1197         &dev_attr_reset.attr,
1198         &dev_attr_num_reads.attr,
1199         &dev_attr_num_writes.attr,
1200         &dev_attr_failed_reads.attr,
1201         &dev_attr_failed_writes.attr,
1202         &dev_attr_compact.attr,
1203         &dev_attr_invalid_io.attr,
1204         &dev_attr_notify_free.attr,
1205         &dev_attr_zero_pages.attr,
1206         &dev_attr_orig_data_size.attr,
1207         &dev_attr_compr_data_size.attr,
1208         &dev_attr_mem_used_total.attr,
1209         &dev_attr_mem_limit.attr,
1210         &dev_attr_mem_used_max.attr,
1211         &dev_attr_max_comp_streams.attr,
1212         &dev_attr_comp_algorithm.attr,
1213         &dev_attr_io_stat.attr,
1214         &dev_attr_mm_stat.attr,
1215         &dev_attr_debug_stat.attr,
1216         NULL,
1217 };
1218
1219 static struct attribute_group zram_disk_attr_group = {
1220         .attrs = zram_disk_attrs,
1221 };
1222
1223 /*
1224  * Allocate and initialize new zram device. the function returns
1225  * '>= 0' device_id upon success, and negative value otherwise.
1226  */
1227 static int zram_add(void)
1228 {
1229         struct zram *zram;
1230         struct request_queue *queue;
1231         int ret, device_id;
1232
1233         zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1234         if (!zram)
1235                 return -ENOMEM;
1236
1237         ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1238         if (ret < 0)
1239                 goto out_free_dev;
1240         device_id = ret;
1241
1242         init_rwsem(&zram->init_lock);
1243
1244         queue = blk_alloc_queue(GFP_KERNEL);
1245         if (!queue) {
1246                 pr_err("Error allocating disk queue for device %d\n",
1247                         device_id);
1248                 ret = -ENOMEM;
1249                 goto out_free_idr;
1250         }
1251
1252         blk_queue_make_request(queue, zram_make_request);
1253
1254         /* gendisk structure */
1255         zram->disk = alloc_disk(1);
1256         if (!zram->disk) {
1257                 pr_err("Error allocating disk structure for device %d\n",
1258                         device_id);
1259                 ret = -ENOMEM;
1260                 goto out_free_queue;
1261         }
1262
1263         zram->disk->major = zram_major;
1264         zram->disk->first_minor = device_id;
1265         zram->disk->fops = &zram_devops;
1266         zram->disk->queue = queue;
1267         zram->disk->queue->queuedata = zram;
1268         zram->disk->private_data = zram;
1269         snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1270
1271         /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1272         set_capacity(zram->disk, 0);
1273         /* zram devices sort of resembles non-rotational disks */
1274         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1275         queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1276         /*
1277          * To ensure that we always get PAGE_SIZE aligned
1278          * and n*PAGE_SIZED sized I/O requests.
1279          */
1280         blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1281         blk_queue_logical_block_size(zram->disk->queue,
1282                                         ZRAM_LOGICAL_BLOCK_SIZE);
1283         blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1284         blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1285         zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1286         blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1287         /*
1288          * zram_bio_discard() will clear all logical blocks if logical block
1289          * size is identical with physical block size(PAGE_SIZE). But if it is
1290          * different, we will skip discarding some parts of logical blocks in
1291          * the part of the request range which isn't aligned to physical block
1292          * size.  So we can't ensure that all discarded logical blocks are
1293          * zeroed.
1294          */
1295         if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1296                 zram->disk->queue->limits.discard_zeroes_data = 1;
1297         else
1298                 zram->disk->queue->limits.discard_zeroes_data = 0;
1299         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1300
1301         add_disk(zram->disk);
1302
1303         ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1304                                 &zram_disk_attr_group);
1305         if (ret < 0) {
1306                 pr_err("Error creating sysfs group for device %d\n",
1307                                 device_id);
1308                 goto out_free_disk;
1309         }
1310         strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1311         zram->meta = NULL;
1312
1313         pr_info("Added device: %s\n", zram->disk->disk_name);
1314         return device_id;
1315
1316 out_free_disk:
1317         del_gendisk(zram->disk);
1318         put_disk(zram->disk);
1319 out_free_queue:
1320         blk_cleanup_queue(queue);
1321 out_free_idr:
1322         idr_remove(&zram_index_idr, device_id);
1323 out_free_dev:
1324         kfree(zram);
1325         return ret;
1326 }
1327
1328 static int zram_remove(struct zram *zram)
1329 {
1330         struct block_device *bdev;
1331
1332         bdev = bdget_disk(zram->disk, 0);
1333         if (!bdev)
1334                 return -ENOMEM;
1335
1336         mutex_lock(&bdev->bd_mutex);
1337         if (bdev->bd_openers || zram->claim) {
1338                 mutex_unlock(&bdev->bd_mutex);
1339                 bdput(bdev);
1340                 return -EBUSY;
1341         }
1342
1343         zram->claim = true;
1344         mutex_unlock(&bdev->bd_mutex);
1345
1346         /*
1347          * Remove sysfs first, so no one will perform a disksize
1348          * store while we destroy the devices. This also helps during
1349          * hot_remove -- zram_reset_device() is the last holder of
1350          * ->init_lock, no later/concurrent disksize_store() or any
1351          * other sysfs handlers are possible.
1352          */
1353         sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1354                         &zram_disk_attr_group);
1355
1356         /* Make sure all the pending I/O are finished */
1357         fsync_bdev(bdev);
1358         zram_reset_device(zram);
1359         bdput(bdev);
1360
1361         pr_info("Removed device: %s\n", zram->disk->disk_name);
1362
1363         blk_cleanup_queue(zram->disk->queue);
1364         del_gendisk(zram->disk);
1365         put_disk(zram->disk);
1366         kfree(zram);
1367         return 0;
1368 }
1369
1370 /* zram-control sysfs attributes */
1371 static ssize_t hot_add_show(struct class *class,
1372                         struct class_attribute *attr,
1373                         char *buf)
1374 {
1375         int ret;
1376
1377         mutex_lock(&zram_index_mutex);
1378         ret = zram_add();
1379         mutex_unlock(&zram_index_mutex);
1380
1381         if (ret < 0)
1382                 return ret;
1383         return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1384 }
1385
1386 static ssize_t hot_remove_store(struct class *class,
1387                         struct class_attribute *attr,
1388                         const char *buf,
1389                         size_t count)
1390 {
1391         struct zram *zram;
1392         int ret, dev_id;
1393
1394         /* dev_id is gendisk->first_minor, which is `int' */
1395         ret = kstrtoint(buf, 10, &dev_id);
1396         if (ret)
1397                 return ret;
1398         if (dev_id < 0)
1399                 return -EINVAL;
1400
1401         mutex_lock(&zram_index_mutex);
1402
1403         zram = idr_find(&zram_index_idr, dev_id);
1404         if (zram) {
1405                 ret = zram_remove(zram);
1406                 idr_remove(&zram_index_idr, dev_id);
1407         } else {
1408                 ret = -ENODEV;
1409         }
1410
1411         mutex_unlock(&zram_index_mutex);
1412         return ret ? ret : count;
1413 }
1414
1415 static struct class_attribute zram_control_class_attrs[] = {
1416         __ATTR_RO(hot_add),
1417         __ATTR_WO(hot_remove),
1418         __ATTR_NULL,
1419 };
1420
1421 static struct class zram_control_class = {
1422         .name           = "zram-control",
1423         .owner          = THIS_MODULE,
1424         .class_attrs    = zram_control_class_attrs,
1425 };
1426
1427 static int zram_remove_cb(int id, void *ptr, void *data)
1428 {
1429         zram_remove(ptr);
1430         return 0;
1431 }
1432
1433 static void destroy_devices(void)
1434 {
1435         class_unregister(&zram_control_class);
1436         idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1437         idr_destroy(&zram_index_idr);
1438         unregister_blkdev(zram_major, "zram");
1439 }
1440
1441 static int __init zram_init(void)
1442 {
1443         int ret;
1444
1445         ret = class_register(&zram_control_class);
1446         if (ret) {
1447                 pr_err("Unable to register zram-control class\n");
1448                 return ret;
1449         }
1450
1451         zram_major = register_blkdev(0, "zram");
1452         if (zram_major <= 0) {
1453                 pr_err("Unable to get major number\n");
1454                 class_unregister(&zram_control_class);
1455                 return -EBUSY;
1456         }
1457
1458         while (num_devices != 0) {
1459                 mutex_lock(&zram_index_mutex);
1460                 ret = zram_add();
1461                 mutex_unlock(&zram_index_mutex);
1462                 if (ret < 0)
1463                         goto out_error;
1464                 num_devices--;
1465         }
1466
1467         return 0;
1468
1469 out_error:
1470         destroy_devices();
1471         return ret;
1472 }
1473
1474 static void __exit zram_exit(void)
1475 {
1476         destroy_devices();
1477 }
1478
1479 module_init(zram_init);
1480 module_exit(zram_exit);
1481
1482 module_param(num_devices, uint, 0);
1483 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1484
1485 MODULE_LICENSE("Dual BSD/GPL");
1486 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1487 MODULE_DESCRIPTION("Compressed RAM Block Device");