]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/char/ipmi/ipmi_si_intf.c
Merge tag 'for-linus-4.13-v2' of git://github.com/cminyard/linux-ipmi
[karo-tx-linux.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include "ipmi_dmi.h"
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/of_device.h>
69 #include <linux/of_platform.h>
70 #include <linux/of_address.h>
71 #include <linux/of_irq.h>
72 #include <linux/acpi.h>
73
74 #ifdef CONFIG_PARISC
75 #include <asm/hardware.h>       /* for register_parisc_driver() stuff */
76 #include <asm/parisc-device.h>
77 #endif
78
79 #define PFX "ipmi_si: "
80
81 /* Measure times between events in the driver. */
82 #undef DEBUG_TIMING
83
84 /* Call every 10 ms. */
85 #define SI_TIMEOUT_TIME_USEC    10000
86 #define SI_USEC_PER_JIFFY       (1000000/HZ)
87 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
88 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
89                                       short timeout */
90
91 enum si_intf_state {
92         SI_NORMAL,
93         SI_GETTING_FLAGS,
94         SI_GETTING_EVENTS,
95         SI_CLEARING_FLAGS,
96         SI_GETTING_MESSAGES,
97         SI_CHECKING_ENABLES,
98         SI_SETTING_ENABLES
99         /* FIXME - add watchdog stuff. */
100 };
101
102 /* Some BT-specific defines we need here. */
103 #define IPMI_BT_INTMASK_REG             2
104 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
105 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
106
107 enum si_type {
108         SI_KCS, SI_SMIC, SI_BT
109 };
110
111 static const char * const si_to_str[] = { "kcs", "smic", "bt" };
112
113 #define DEVICE_NAME "ipmi_si"
114
115 static struct platform_driver ipmi_driver;
116
117 /*
118  * Indexes into stats[] in smi_info below.
119  */
120 enum si_stat_indexes {
121         /*
122          * Number of times the driver requested a timer while an operation
123          * was in progress.
124          */
125         SI_STAT_short_timeouts = 0,
126
127         /*
128          * Number of times the driver requested a timer while nothing was in
129          * progress.
130          */
131         SI_STAT_long_timeouts,
132
133         /* Number of times the interface was idle while being polled. */
134         SI_STAT_idles,
135
136         /* Number of interrupts the driver handled. */
137         SI_STAT_interrupts,
138
139         /* Number of time the driver got an ATTN from the hardware. */
140         SI_STAT_attentions,
141
142         /* Number of times the driver requested flags from the hardware. */
143         SI_STAT_flag_fetches,
144
145         /* Number of times the hardware didn't follow the state machine. */
146         SI_STAT_hosed_count,
147
148         /* Number of completed messages. */
149         SI_STAT_complete_transactions,
150
151         /* Number of IPMI events received from the hardware. */
152         SI_STAT_events,
153
154         /* Number of watchdog pretimeouts. */
155         SI_STAT_watchdog_pretimeouts,
156
157         /* Number of asynchronous messages received. */
158         SI_STAT_incoming_messages,
159
160
161         /* This *must* remain last, add new values above this. */
162         SI_NUM_STATS
163 };
164
165 struct smi_info {
166         int                    intf_num;
167         ipmi_smi_t             intf;
168         struct si_sm_data      *si_sm;
169         const struct si_sm_handlers *handlers;
170         enum si_type           si_type;
171         spinlock_t             si_lock;
172         struct ipmi_smi_msg    *waiting_msg;
173         struct ipmi_smi_msg    *curr_msg;
174         enum si_intf_state     si_state;
175
176         /*
177          * Used to handle the various types of I/O that can occur with
178          * IPMI
179          */
180         struct si_sm_io io;
181         int (*io_setup)(struct smi_info *info);
182         void (*io_cleanup)(struct smi_info *info);
183         int (*irq_setup)(struct smi_info *info);
184         void (*irq_cleanup)(struct smi_info *info);
185         unsigned int io_size;
186         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
187         void (*addr_source_cleanup)(struct smi_info *info);
188         void *addr_source_data;
189
190         /*
191          * Per-OEM handler, called from handle_flags().  Returns 1
192          * when handle_flags() needs to be re-run or 0 indicating it
193          * set si_state itself.
194          */
195         int (*oem_data_avail_handler)(struct smi_info *smi_info);
196
197         /*
198          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
199          * is set to hold the flags until we are done handling everything
200          * from the flags.
201          */
202 #define RECEIVE_MSG_AVAIL       0x01
203 #define EVENT_MSG_BUFFER_FULL   0x02
204 #define WDT_PRE_TIMEOUT_INT     0x08
205 #define OEM0_DATA_AVAIL     0x20
206 #define OEM1_DATA_AVAIL     0x40
207 #define OEM2_DATA_AVAIL     0x80
208 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
209                              OEM1_DATA_AVAIL | \
210                              OEM2_DATA_AVAIL)
211         unsigned char       msg_flags;
212
213         /* Does the BMC have an event buffer? */
214         bool                has_event_buffer;
215
216         /*
217          * If set to true, this will request events the next time the
218          * state machine is idle.
219          */
220         atomic_t            req_events;
221
222         /*
223          * If true, run the state machine to completion on every send
224          * call.  Generally used after a panic to make sure stuff goes
225          * out.
226          */
227         bool                run_to_completion;
228
229         /* The I/O port of an SI interface. */
230         int                 port;
231
232         /*
233          * The space between start addresses of the two ports.  For
234          * instance, if the first port is 0xca2 and the spacing is 4, then
235          * the second port is 0xca6.
236          */
237         unsigned int        spacing;
238
239         /* zero if no irq; */
240         int                 irq;
241
242         /* The timer for this si. */
243         struct timer_list   si_timer;
244
245         /* This flag is set, if the timer is running (timer_pending() isn't enough) */
246         bool                timer_running;
247
248         /* The time (in jiffies) the last timeout occurred at. */
249         unsigned long       last_timeout_jiffies;
250
251         /* Are we waiting for the events, pretimeouts, received msgs? */
252         atomic_t            need_watch;
253
254         /*
255          * The driver will disable interrupts when it gets into a
256          * situation where it cannot handle messages due to lack of
257          * memory.  Once that situation clears up, it will re-enable
258          * interrupts.
259          */
260         bool interrupt_disabled;
261
262         /*
263          * Does the BMC support events?
264          */
265         bool supports_event_msg_buff;
266
267         /*
268          * Can we disable interrupts the global enables receive irq
269          * bit?  There are currently two forms of brokenness, some
270          * systems cannot disable the bit (which is technically within
271          * the spec but a bad idea) and some systems have the bit
272          * forced to zero even though interrupts work (which is
273          * clearly outside the spec).  The next bool tells which form
274          * of brokenness is present.
275          */
276         bool cannot_disable_irq;
277
278         /*
279          * Some systems are broken and cannot set the irq enable
280          * bit, even if they support interrupts.
281          */
282         bool irq_enable_broken;
283
284         /*
285          * Did we get an attention that we did not handle?
286          */
287         bool got_attn;
288
289         /* From the get device id response... */
290         struct ipmi_device_id device_id;
291
292         /* Driver model stuff. */
293         struct device *dev;
294         struct platform_device *pdev;
295
296         /*
297          * True if we allocated the device, false if it came from
298          * someplace else (like PCI).
299          */
300         bool dev_registered;
301
302         /* Slave address, could be reported from DMI. */
303         unsigned char slave_addr;
304
305         /* Counters and things for the proc filesystem. */
306         atomic_t stats[SI_NUM_STATS];
307
308         struct task_struct *thread;
309
310         struct list_head link;
311         union ipmi_smi_info_union addr_info;
312 };
313
314 #define smi_inc_stat(smi, stat) \
315         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
316 #define smi_get_stat(smi, stat) \
317         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
318
319 #define SI_MAX_PARMS 4
320
321 static int force_kipmid[SI_MAX_PARMS];
322 static int num_force_kipmid;
323 #ifdef CONFIG_PCI
324 static bool pci_registered;
325 #endif
326 #ifdef CONFIG_PARISC
327 static bool parisc_registered;
328 #endif
329
330 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
331 static int num_max_busy_us;
332
333 static bool unload_when_empty = true;
334
335 static int add_smi(struct smi_info *smi);
336 static int try_smi_init(struct smi_info *smi);
337 static void cleanup_one_si(struct smi_info *to_clean);
338 static void cleanup_ipmi_si(void);
339
340 #ifdef DEBUG_TIMING
341 void debug_timestamp(char *msg)
342 {
343         struct timespec64 t;
344
345         getnstimeofday64(&t);
346         pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
347 }
348 #else
349 #define debug_timestamp(x)
350 #endif
351
352 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
353 static int register_xaction_notifier(struct notifier_block *nb)
354 {
355         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
356 }
357
358 static void deliver_recv_msg(struct smi_info *smi_info,
359                              struct ipmi_smi_msg *msg)
360 {
361         /* Deliver the message to the upper layer. */
362         if (smi_info->intf)
363                 ipmi_smi_msg_received(smi_info->intf, msg);
364         else
365                 ipmi_free_smi_msg(msg);
366 }
367
368 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
369 {
370         struct ipmi_smi_msg *msg = smi_info->curr_msg;
371
372         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
373                 cCode = IPMI_ERR_UNSPECIFIED;
374         /* else use it as is */
375
376         /* Make it a response */
377         msg->rsp[0] = msg->data[0] | 4;
378         msg->rsp[1] = msg->data[1];
379         msg->rsp[2] = cCode;
380         msg->rsp_size = 3;
381
382         smi_info->curr_msg = NULL;
383         deliver_recv_msg(smi_info, msg);
384 }
385
386 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
387 {
388         int              rv;
389
390         if (!smi_info->waiting_msg) {
391                 smi_info->curr_msg = NULL;
392                 rv = SI_SM_IDLE;
393         } else {
394                 int err;
395
396                 smi_info->curr_msg = smi_info->waiting_msg;
397                 smi_info->waiting_msg = NULL;
398                 debug_timestamp("Start2");
399                 err = atomic_notifier_call_chain(&xaction_notifier_list,
400                                 0, smi_info);
401                 if (err & NOTIFY_STOP_MASK) {
402                         rv = SI_SM_CALL_WITHOUT_DELAY;
403                         goto out;
404                 }
405                 err = smi_info->handlers->start_transaction(
406                         smi_info->si_sm,
407                         smi_info->curr_msg->data,
408                         smi_info->curr_msg->data_size);
409                 if (err)
410                         return_hosed_msg(smi_info, err);
411
412                 rv = SI_SM_CALL_WITHOUT_DELAY;
413         }
414 out:
415         return rv;
416 }
417
418 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
419 {
420         smi_info->last_timeout_jiffies = jiffies;
421         mod_timer(&smi_info->si_timer, new_val);
422         smi_info->timer_running = true;
423 }
424
425 /*
426  * Start a new message and (re)start the timer and thread.
427  */
428 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
429                           unsigned int size)
430 {
431         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
432
433         if (smi_info->thread)
434                 wake_up_process(smi_info->thread);
435
436         smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
437 }
438
439 static void start_check_enables(struct smi_info *smi_info, bool start_timer)
440 {
441         unsigned char msg[2];
442
443         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
444         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
445
446         if (start_timer)
447                 start_new_msg(smi_info, msg, 2);
448         else
449                 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
450         smi_info->si_state = SI_CHECKING_ENABLES;
451 }
452
453 static void start_clear_flags(struct smi_info *smi_info, bool start_timer)
454 {
455         unsigned char msg[3];
456
457         /* Make sure the watchdog pre-timeout flag is not set at startup. */
458         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
459         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
460         msg[2] = WDT_PRE_TIMEOUT_INT;
461
462         if (start_timer)
463                 start_new_msg(smi_info, msg, 3);
464         else
465                 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
466         smi_info->si_state = SI_CLEARING_FLAGS;
467 }
468
469 static void start_getting_msg_queue(struct smi_info *smi_info)
470 {
471         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
472         smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
473         smi_info->curr_msg->data_size = 2;
474
475         start_new_msg(smi_info, smi_info->curr_msg->data,
476                       smi_info->curr_msg->data_size);
477         smi_info->si_state = SI_GETTING_MESSAGES;
478 }
479
480 static void start_getting_events(struct smi_info *smi_info)
481 {
482         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
483         smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
484         smi_info->curr_msg->data_size = 2;
485
486         start_new_msg(smi_info, smi_info->curr_msg->data,
487                       smi_info->curr_msg->data_size);
488         smi_info->si_state = SI_GETTING_EVENTS;
489 }
490
491 /*
492  * When we have a situtaion where we run out of memory and cannot
493  * allocate messages, we just leave them in the BMC and run the system
494  * polled until we can allocate some memory.  Once we have some
495  * memory, we will re-enable the interrupt.
496  *
497  * Note that we cannot just use disable_irq(), since the interrupt may
498  * be shared.
499  */
500 static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer)
501 {
502         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
503                 smi_info->interrupt_disabled = true;
504                 start_check_enables(smi_info, start_timer);
505                 return true;
506         }
507         return false;
508 }
509
510 static inline bool enable_si_irq(struct smi_info *smi_info)
511 {
512         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
513                 smi_info->interrupt_disabled = false;
514                 start_check_enables(smi_info, true);
515                 return true;
516         }
517         return false;
518 }
519
520 /*
521  * Allocate a message.  If unable to allocate, start the interrupt
522  * disable process and return NULL.  If able to allocate but
523  * interrupts are disabled, free the message and return NULL after
524  * starting the interrupt enable process.
525  */
526 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
527 {
528         struct ipmi_smi_msg *msg;
529
530         msg = ipmi_alloc_smi_msg();
531         if (!msg) {
532                 if (!disable_si_irq(smi_info, true))
533                         smi_info->si_state = SI_NORMAL;
534         } else if (enable_si_irq(smi_info)) {
535                 ipmi_free_smi_msg(msg);
536                 msg = NULL;
537         }
538         return msg;
539 }
540
541 static void handle_flags(struct smi_info *smi_info)
542 {
543 retry:
544         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
545                 /* Watchdog pre-timeout */
546                 smi_inc_stat(smi_info, watchdog_pretimeouts);
547
548                 start_clear_flags(smi_info, true);
549                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
550                 if (smi_info->intf)
551                         ipmi_smi_watchdog_pretimeout(smi_info->intf);
552         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
553                 /* Messages available. */
554                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
555                 if (!smi_info->curr_msg)
556                         return;
557
558                 start_getting_msg_queue(smi_info);
559         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
560                 /* Events available. */
561                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
562                 if (!smi_info->curr_msg)
563                         return;
564
565                 start_getting_events(smi_info);
566         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
567                    smi_info->oem_data_avail_handler) {
568                 if (smi_info->oem_data_avail_handler(smi_info))
569                         goto retry;
570         } else
571                 smi_info->si_state = SI_NORMAL;
572 }
573
574 /*
575  * Global enables we care about.
576  */
577 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
578                              IPMI_BMC_EVT_MSG_INTR)
579
580 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
581                                  bool *irq_on)
582 {
583         u8 enables = 0;
584
585         if (smi_info->supports_event_msg_buff)
586                 enables |= IPMI_BMC_EVT_MSG_BUFF;
587
588         if (((smi_info->irq && !smi_info->interrupt_disabled) ||
589              smi_info->cannot_disable_irq) &&
590             !smi_info->irq_enable_broken)
591                 enables |= IPMI_BMC_RCV_MSG_INTR;
592
593         if (smi_info->supports_event_msg_buff &&
594             smi_info->irq && !smi_info->interrupt_disabled &&
595             !smi_info->irq_enable_broken)
596                 enables |= IPMI_BMC_EVT_MSG_INTR;
597
598         *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
599
600         return enables;
601 }
602
603 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
604 {
605         u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
606
607         irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
608
609         if ((bool)irqstate == irq_on)
610                 return;
611
612         if (irq_on)
613                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
614                                      IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
615         else
616                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
617 }
618
619 static void handle_transaction_done(struct smi_info *smi_info)
620 {
621         struct ipmi_smi_msg *msg;
622
623         debug_timestamp("Done");
624         switch (smi_info->si_state) {
625         case SI_NORMAL:
626                 if (!smi_info->curr_msg)
627                         break;
628
629                 smi_info->curr_msg->rsp_size
630                         = smi_info->handlers->get_result(
631                                 smi_info->si_sm,
632                                 smi_info->curr_msg->rsp,
633                                 IPMI_MAX_MSG_LENGTH);
634
635                 /*
636                  * Do this here becase deliver_recv_msg() releases the
637                  * lock, and a new message can be put in during the
638                  * time the lock is released.
639                  */
640                 msg = smi_info->curr_msg;
641                 smi_info->curr_msg = NULL;
642                 deliver_recv_msg(smi_info, msg);
643                 break;
644
645         case SI_GETTING_FLAGS:
646         {
647                 unsigned char msg[4];
648                 unsigned int  len;
649
650                 /* We got the flags from the SMI, now handle them. */
651                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
652                 if (msg[2] != 0) {
653                         /* Error fetching flags, just give up for now. */
654                         smi_info->si_state = SI_NORMAL;
655                 } else if (len < 4) {
656                         /*
657                          * Hmm, no flags.  That's technically illegal, but
658                          * don't use uninitialized data.
659                          */
660                         smi_info->si_state = SI_NORMAL;
661                 } else {
662                         smi_info->msg_flags = msg[3];
663                         handle_flags(smi_info);
664                 }
665                 break;
666         }
667
668         case SI_CLEARING_FLAGS:
669         {
670                 unsigned char msg[3];
671
672                 /* We cleared the flags. */
673                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
674                 if (msg[2] != 0) {
675                         /* Error clearing flags */
676                         dev_warn(smi_info->dev,
677                                  "Error clearing flags: %2.2x\n", msg[2]);
678                 }
679                 smi_info->si_state = SI_NORMAL;
680                 break;
681         }
682
683         case SI_GETTING_EVENTS:
684         {
685                 smi_info->curr_msg->rsp_size
686                         = smi_info->handlers->get_result(
687                                 smi_info->si_sm,
688                                 smi_info->curr_msg->rsp,
689                                 IPMI_MAX_MSG_LENGTH);
690
691                 /*
692                  * Do this here becase deliver_recv_msg() releases the
693                  * lock, and a new message can be put in during the
694                  * time the lock is released.
695                  */
696                 msg = smi_info->curr_msg;
697                 smi_info->curr_msg = NULL;
698                 if (msg->rsp[2] != 0) {
699                         /* Error getting event, probably done. */
700                         msg->done(msg);
701
702                         /* Take off the event flag. */
703                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
704                         handle_flags(smi_info);
705                 } else {
706                         smi_inc_stat(smi_info, events);
707
708                         /*
709                          * Do this before we deliver the message
710                          * because delivering the message releases the
711                          * lock and something else can mess with the
712                          * state.
713                          */
714                         handle_flags(smi_info);
715
716                         deliver_recv_msg(smi_info, msg);
717                 }
718                 break;
719         }
720
721         case SI_GETTING_MESSAGES:
722         {
723                 smi_info->curr_msg->rsp_size
724                         = smi_info->handlers->get_result(
725                                 smi_info->si_sm,
726                                 smi_info->curr_msg->rsp,
727                                 IPMI_MAX_MSG_LENGTH);
728
729                 /*
730                  * Do this here becase deliver_recv_msg() releases the
731                  * lock, and a new message can be put in during the
732                  * time the lock is released.
733                  */
734                 msg = smi_info->curr_msg;
735                 smi_info->curr_msg = NULL;
736                 if (msg->rsp[2] != 0) {
737                         /* Error getting event, probably done. */
738                         msg->done(msg);
739
740                         /* Take off the msg flag. */
741                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
742                         handle_flags(smi_info);
743                 } else {
744                         smi_inc_stat(smi_info, incoming_messages);
745
746                         /*
747                          * Do this before we deliver the message
748                          * because delivering the message releases the
749                          * lock and something else can mess with the
750                          * state.
751                          */
752                         handle_flags(smi_info);
753
754                         deliver_recv_msg(smi_info, msg);
755                 }
756                 break;
757         }
758
759         case SI_CHECKING_ENABLES:
760         {
761                 unsigned char msg[4];
762                 u8 enables;
763                 bool irq_on;
764
765                 /* We got the flags from the SMI, now handle them. */
766                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
767                 if (msg[2] != 0) {
768                         dev_warn(smi_info->dev,
769                                  "Couldn't get irq info: %x.\n", msg[2]);
770                         dev_warn(smi_info->dev,
771                                  "Maybe ok, but ipmi might run very slowly.\n");
772                         smi_info->si_state = SI_NORMAL;
773                         break;
774                 }
775                 enables = current_global_enables(smi_info, 0, &irq_on);
776                 if (smi_info->si_type == SI_BT)
777                         /* BT has its own interrupt enable bit. */
778                         check_bt_irq(smi_info, irq_on);
779                 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
780                         /* Enables are not correct, fix them. */
781                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
782                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
783                         msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
784                         smi_info->handlers->start_transaction(
785                                 smi_info->si_sm, msg, 3);
786                         smi_info->si_state = SI_SETTING_ENABLES;
787                 } else if (smi_info->supports_event_msg_buff) {
788                         smi_info->curr_msg = ipmi_alloc_smi_msg();
789                         if (!smi_info->curr_msg) {
790                                 smi_info->si_state = SI_NORMAL;
791                                 break;
792                         }
793                         start_getting_events(smi_info);
794                 } else {
795                         smi_info->si_state = SI_NORMAL;
796                 }
797                 break;
798         }
799
800         case SI_SETTING_ENABLES:
801         {
802                 unsigned char msg[4];
803
804                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
805                 if (msg[2] != 0)
806                         dev_warn(smi_info->dev,
807                                  "Could not set the global enables: 0x%x.\n",
808                                  msg[2]);
809
810                 if (smi_info->supports_event_msg_buff) {
811                         smi_info->curr_msg = ipmi_alloc_smi_msg();
812                         if (!smi_info->curr_msg) {
813                                 smi_info->si_state = SI_NORMAL;
814                                 break;
815                         }
816                         start_getting_events(smi_info);
817                 } else {
818                         smi_info->si_state = SI_NORMAL;
819                 }
820                 break;
821         }
822         }
823 }
824
825 /*
826  * Called on timeouts and events.  Timeouts should pass the elapsed
827  * time, interrupts should pass in zero.  Must be called with
828  * si_lock held and interrupts disabled.
829  */
830 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
831                                            int time)
832 {
833         enum si_sm_result si_sm_result;
834
835 restart:
836         /*
837          * There used to be a loop here that waited a little while
838          * (around 25us) before giving up.  That turned out to be
839          * pointless, the minimum delays I was seeing were in the 300us
840          * range, which is far too long to wait in an interrupt.  So
841          * we just run until the state machine tells us something
842          * happened or it needs a delay.
843          */
844         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
845         time = 0;
846         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
847                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
848
849         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
850                 smi_inc_stat(smi_info, complete_transactions);
851
852                 handle_transaction_done(smi_info);
853                 goto restart;
854         } else if (si_sm_result == SI_SM_HOSED) {
855                 smi_inc_stat(smi_info, hosed_count);
856
857                 /*
858                  * Do the before return_hosed_msg, because that
859                  * releases the lock.
860                  */
861                 smi_info->si_state = SI_NORMAL;
862                 if (smi_info->curr_msg != NULL) {
863                         /*
864                          * If we were handling a user message, format
865                          * a response to send to the upper layer to
866                          * tell it about the error.
867                          */
868                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
869                 }
870                 goto restart;
871         }
872
873         /*
874          * We prefer handling attn over new messages.  But don't do
875          * this if there is not yet an upper layer to handle anything.
876          */
877         if (likely(smi_info->intf) &&
878             (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
879                 unsigned char msg[2];
880
881                 if (smi_info->si_state != SI_NORMAL) {
882                         /*
883                          * We got an ATTN, but we are doing something else.
884                          * Handle the ATTN later.
885                          */
886                         smi_info->got_attn = true;
887                 } else {
888                         smi_info->got_attn = false;
889                         smi_inc_stat(smi_info, attentions);
890
891                         /*
892                          * Got a attn, send down a get message flags to see
893                          * what's causing it.  It would be better to handle
894                          * this in the upper layer, but due to the way
895                          * interrupts work with the SMI, that's not really
896                          * possible.
897                          */
898                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
899                         msg[1] = IPMI_GET_MSG_FLAGS_CMD;
900
901                         start_new_msg(smi_info, msg, 2);
902                         smi_info->si_state = SI_GETTING_FLAGS;
903                         goto restart;
904                 }
905         }
906
907         /* If we are currently idle, try to start the next message. */
908         if (si_sm_result == SI_SM_IDLE) {
909                 smi_inc_stat(smi_info, idles);
910
911                 si_sm_result = start_next_msg(smi_info);
912                 if (si_sm_result != SI_SM_IDLE)
913                         goto restart;
914         }
915
916         if ((si_sm_result == SI_SM_IDLE)
917             && (atomic_read(&smi_info->req_events))) {
918                 /*
919                  * We are idle and the upper layer requested that I fetch
920                  * events, so do so.
921                  */
922                 atomic_set(&smi_info->req_events, 0);
923
924                 /*
925                  * Take this opportunity to check the interrupt and
926                  * message enable state for the BMC.  The BMC can be
927                  * asynchronously reset, and may thus get interrupts
928                  * disable and messages disabled.
929                  */
930                 if (smi_info->supports_event_msg_buff || smi_info->irq) {
931                         start_check_enables(smi_info, true);
932                 } else {
933                         smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
934                         if (!smi_info->curr_msg)
935                                 goto out;
936
937                         start_getting_events(smi_info);
938                 }
939                 goto restart;
940         }
941
942         if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
943                 /* Ok it if fails, the timer will just go off. */
944                 if (del_timer(&smi_info->si_timer))
945                         smi_info->timer_running = false;
946         }
947
948 out:
949         return si_sm_result;
950 }
951
952 static void check_start_timer_thread(struct smi_info *smi_info)
953 {
954         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
955                 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
956
957                 if (smi_info->thread)
958                         wake_up_process(smi_info->thread);
959
960                 start_next_msg(smi_info);
961                 smi_event_handler(smi_info, 0);
962         }
963 }
964
965 static void flush_messages(void *send_info)
966 {
967         struct smi_info *smi_info = send_info;
968         enum si_sm_result result;
969
970         /*
971          * Currently, this function is called only in run-to-completion
972          * mode.  This means we are single-threaded, no need for locks.
973          */
974         result = smi_event_handler(smi_info, 0);
975         while (result != SI_SM_IDLE) {
976                 udelay(SI_SHORT_TIMEOUT_USEC);
977                 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
978         }
979 }
980
981 static void sender(void                *send_info,
982                    struct ipmi_smi_msg *msg)
983 {
984         struct smi_info   *smi_info = send_info;
985         unsigned long     flags;
986
987         debug_timestamp("Enqueue");
988
989         if (smi_info->run_to_completion) {
990                 /*
991                  * If we are running to completion, start it.  Upper
992                  * layer will call flush_messages to clear it out.
993                  */
994                 smi_info->waiting_msg = msg;
995                 return;
996         }
997
998         spin_lock_irqsave(&smi_info->si_lock, flags);
999         /*
1000          * The following two lines don't need to be under the lock for
1001          * the lock's sake, but they do need SMP memory barriers to
1002          * avoid getting things out of order.  We are already claiming
1003          * the lock, anyway, so just do it under the lock to avoid the
1004          * ordering problem.
1005          */
1006         BUG_ON(smi_info->waiting_msg);
1007         smi_info->waiting_msg = msg;
1008         check_start_timer_thread(smi_info);
1009         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1010 }
1011
1012 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1013 {
1014         struct smi_info   *smi_info = send_info;
1015
1016         smi_info->run_to_completion = i_run_to_completion;
1017         if (i_run_to_completion)
1018                 flush_messages(smi_info);
1019 }
1020
1021 /*
1022  * Use -1 in the nsec value of the busy waiting timespec to tell that
1023  * we are spinning in kipmid looking for something and not delaying
1024  * between checks
1025  */
1026 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1027 {
1028         ts->tv_nsec = -1;
1029 }
1030 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1031 {
1032         return ts->tv_nsec != -1;
1033 }
1034
1035 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1036                                         const struct smi_info *smi_info,
1037                                         struct timespec64 *busy_until)
1038 {
1039         unsigned int max_busy_us = 0;
1040
1041         if (smi_info->intf_num < num_max_busy_us)
1042                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1043         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1044                 ipmi_si_set_not_busy(busy_until);
1045         else if (!ipmi_si_is_busy(busy_until)) {
1046                 getnstimeofday64(busy_until);
1047                 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1048         } else {
1049                 struct timespec64 now;
1050
1051                 getnstimeofday64(&now);
1052                 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1053                         ipmi_si_set_not_busy(busy_until);
1054                         return 0;
1055                 }
1056         }
1057         return 1;
1058 }
1059
1060
1061 /*
1062  * A busy-waiting loop for speeding up IPMI operation.
1063  *
1064  * Lousy hardware makes this hard.  This is only enabled for systems
1065  * that are not BT and do not have interrupts.  It starts spinning
1066  * when an operation is complete or until max_busy tells it to stop
1067  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1068  * Documentation/IPMI.txt for details.
1069  */
1070 static int ipmi_thread(void *data)
1071 {
1072         struct smi_info *smi_info = data;
1073         unsigned long flags;
1074         enum si_sm_result smi_result;
1075         struct timespec64 busy_until;
1076
1077         ipmi_si_set_not_busy(&busy_until);
1078         set_user_nice(current, MAX_NICE);
1079         while (!kthread_should_stop()) {
1080                 int busy_wait;
1081
1082                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1083                 smi_result = smi_event_handler(smi_info, 0);
1084
1085                 /*
1086                  * If the driver is doing something, there is a possible
1087                  * race with the timer.  If the timer handler see idle,
1088                  * and the thread here sees something else, the timer
1089                  * handler won't restart the timer even though it is
1090                  * required.  So start it here if necessary.
1091                  */
1092                 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1093                         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1094
1095                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1096                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1097                                                   &busy_until);
1098                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1099                         ; /* do nothing */
1100                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1101                         schedule();
1102                 else if (smi_result == SI_SM_IDLE) {
1103                         if (atomic_read(&smi_info->need_watch)) {
1104                                 schedule_timeout_interruptible(100);
1105                         } else {
1106                                 /* Wait to be woken up when we are needed. */
1107                                 __set_current_state(TASK_INTERRUPTIBLE);
1108                                 schedule();
1109                         }
1110                 } else
1111                         schedule_timeout_interruptible(1);
1112         }
1113         return 0;
1114 }
1115
1116
1117 static void poll(void *send_info)
1118 {
1119         struct smi_info *smi_info = send_info;
1120         unsigned long flags = 0;
1121         bool run_to_completion = smi_info->run_to_completion;
1122
1123         /*
1124          * Make sure there is some delay in the poll loop so we can
1125          * drive time forward and timeout things.
1126          */
1127         udelay(10);
1128         if (!run_to_completion)
1129                 spin_lock_irqsave(&smi_info->si_lock, flags);
1130         smi_event_handler(smi_info, 10);
1131         if (!run_to_completion)
1132                 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1133 }
1134
1135 static void request_events(void *send_info)
1136 {
1137         struct smi_info *smi_info = send_info;
1138
1139         if (!smi_info->has_event_buffer)
1140                 return;
1141
1142         atomic_set(&smi_info->req_events, 1);
1143 }
1144
1145 static void set_need_watch(void *send_info, bool enable)
1146 {
1147         struct smi_info *smi_info = send_info;
1148         unsigned long flags;
1149
1150         atomic_set(&smi_info->need_watch, enable);
1151         spin_lock_irqsave(&smi_info->si_lock, flags);
1152         check_start_timer_thread(smi_info);
1153         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1154 }
1155
1156 static int initialized;
1157
1158 static void smi_timeout(unsigned long data)
1159 {
1160         struct smi_info   *smi_info = (struct smi_info *) data;
1161         enum si_sm_result smi_result;
1162         unsigned long     flags;
1163         unsigned long     jiffies_now;
1164         long              time_diff;
1165         long              timeout;
1166
1167         spin_lock_irqsave(&(smi_info->si_lock), flags);
1168         debug_timestamp("Timer");
1169
1170         jiffies_now = jiffies;
1171         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1172                      * SI_USEC_PER_JIFFY);
1173         smi_result = smi_event_handler(smi_info, time_diff);
1174
1175         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1176                 /* Running with interrupts, only do long timeouts. */
1177                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1178                 smi_inc_stat(smi_info, long_timeouts);
1179                 goto do_mod_timer;
1180         }
1181
1182         /*
1183          * If the state machine asks for a short delay, then shorten
1184          * the timer timeout.
1185          */
1186         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1187                 smi_inc_stat(smi_info, short_timeouts);
1188                 timeout = jiffies + 1;
1189         } else {
1190                 smi_inc_stat(smi_info, long_timeouts);
1191                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1192         }
1193
1194 do_mod_timer:
1195         if (smi_result != SI_SM_IDLE)
1196                 smi_mod_timer(smi_info, timeout);
1197         else
1198                 smi_info->timer_running = false;
1199         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1200 }
1201
1202 static irqreturn_t si_irq_handler(int irq, void *data)
1203 {
1204         struct smi_info *smi_info = data;
1205         unsigned long   flags;
1206
1207         spin_lock_irqsave(&(smi_info->si_lock), flags);
1208
1209         smi_inc_stat(smi_info, interrupts);
1210
1211         debug_timestamp("Interrupt");
1212
1213         smi_event_handler(smi_info, 0);
1214         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1215         return IRQ_HANDLED;
1216 }
1217
1218 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1219 {
1220         struct smi_info *smi_info = data;
1221         /* We need to clear the IRQ flag for the BT interface. */
1222         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1223                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1224                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1225         return si_irq_handler(irq, data);
1226 }
1227
1228 static int smi_start_processing(void       *send_info,
1229                                 ipmi_smi_t intf)
1230 {
1231         struct smi_info *new_smi = send_info;
1232         int             enable = 0;
1233
1234         new_smi->intf = intf;
1235
1236         /* Set up the timer that drives the interface. */
1237         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1238         smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1239
1240         /* Try to claim any interrupts. */
1241         if (new_smi->irq_setup)
1242                 new_smi->irq_setup(new_smi);
1243
1244         /*
1245          * Check if the user forcefully enabled the daemon.
1246          */
1247         if (new_smi->intf_num < num_force_kipmid)
1248                 enable = force_kipmid[new_smi->intf_num];
1249         /*
1250          * The BT interface is efficient enough to not need a thread,
1251          * and there is no need for a thread if we have interrupts.
1252          */
1253         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1254                 enable = 1;
1255
1256         if (enable) {
1257                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1258                                               "kipmi%d", new_smi->intf_num);
1259                 if (IS_ERR(new_smi->thread)) {
1260                         dev_notice(new_smi->dev, "Could not start"
1261                                    " kernel thread due to error %ld, only using"
1262                                    " timers to drive the interface\n",
1263                                    PTR_ERR(new_smi->thread));
1264                         new_smi->thread = NULL;
1265                 }
1266         }
1267
1268         return 0;
1269 }
1270
1271 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1272 {
1273         struct smi_info *smi = send_info;
1274
1275         data->addr_src = smi->addr_source;
1276         data->dev = smi->dev;
1277         data->addr_info = smi->addr_info;
1278         get_device(smi->dev);
1279
1280         return 0;
1281 }
1282
1283 static void set_maintenance_mode(void *send_info, bool enable)
1284 {
1285         struct smi_info   *smi_info = send_info;
1286
1287         if (!enable)
1288                 atomic_set(&smi_info->req_events, 0);
1289 }
1290
1291 static const struct ipmi_smi_handlers handlers = {
1292         .owner                  = THIS_MODULE,
1293         .start_processing       = smi_start_processing,
1294         .get_smi_info           = get_smi_info,
1295         .sender                 = sender,
1296         .request_events         = request_events,
1297         .set_need_watch         = set_need_watch,
1298         .set_maintenance_mode   = set_maintenance_mode,
1299         .set_run_to_completion  = set_run_to_completion,
1300         .flush_messages         = flush_messages,
1301         .poll                   = poll,
1302 };
1303
1304 /*
1305  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1306  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1307  */
1308
1309 static LIST_HEAD(smi_infos);
1310 static DEFINE_MUTEX(smi_infos_lock);
1311 static int smi_num; /* Used to sequence the SMIs */
1312
1313 #define DEFAULT_REGSPACING      1
1314 #define DEFAULT_REGSIZE         1
1315
1316 #ifdef CONFIG_ACPI
1317 static bool          si_tryacpi = true;
1318 #endif
1319 #ifdef CONFIG_DMI
1320 static bool          si_trydmi = true;
1321 #endif
1322 static bool          si_tryplatform = true;
1323 #ifdef CONFIG_PCI
1324 static bool          si_trypci = true;
1325 #endif
1326 static char          *si_type[SI_MAX_PARMS];
1327 #define MAX_SI_TYPE_STR 30
1328 static char          si_type_str[MAX_SI_TYPE_STR];
1329 static unsigned long addrs[SI_MAX_PARMS];
1330 static unsigned int num_addrs;
1331 static unsigned int  ports[SI_MAX_PARMS];
1332 static unsigned int num_ports;
1333 static int           irqs[SI_MAX_PARMS];
1334 static unsigned int num_irqs;
1335 static int           regspacings[SI_MAX_PARMS];
1336 static unsigned int num_regspacings;
1337 static int           regsizes[SI_MAX_PARMS];
1338 static unsigned int num_regsizes;
1339 static int           regshifts[SI_MAX_PARMS];
1340 static unsigned int num_regshifts;
1341 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1342 static unsigned int num_slave_addrs;
1343
1344 #define IPMI_IO_ADDR_SPACE  0
1345 #define IPMI_MEM_ADDR_SPACE 1
1346 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1347
1348 static int hotmod_handler(const char *val, struct kernel_param *kp);
1349
1350 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1351 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1352                  " Documentation/IPMI.txt in the kernel sources for the"
1353                  " gory details.");
1354
1355 #ifdef CONFIG_ACPI
1356 module_param_named(tryacpi, si_tryacpi, bool, 0);
1357 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1358                  " default scan of the interfaces identified via ACPI");
1359 #endif
1360 #ifdef CONFIG_DMI
1361 module_param_named(trydmi, si_trydmi, bool, 0);
1362 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1363                  " default scan of the interfaces identified via DMI");
1364 #endif
1365 module_param_named(tryplatform, si_tryplatform, bool, 0);
1366 MODULE_PARM_DESC(tryplatform, "Setting this to zero will disable the"
1367                  " default scan of the interfaces identified via platform"
1368                  " interfaces like openfirmware");
1369 #ifdef CONFIG_PCI
1370 module_param_named(trypci, si_trypci, bool, 0);
1371 MODULE_PARM_DESC(trypci, "Setting this to zero will disable the"
1372                  " default scan of the interfaces identified via pci");
1373 #endif
1374 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1375 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1376                  " interface separated by commas.  The types are 'kcs',"
1377                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1378                  " the first interface to kcs and the second to bt");
1379 module_param_hw_array(addrs, ulong, iomem, &num_addrs, 0);
1380 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1381                  " addresses separated by commas.  Only use if an interface"
1382                  " is in memory.  Otherwise, set it to zero or leave"
1383                  " it blank.");
1384 module_param_hw_array(ports, uint, ioport, &num_ports, 0);
1385 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1386                  " addresses separated by commas.  Only use if an interface"
1387                  " is a port.  Otherwise, set it to zero or leave"
1388                  " it blank.");
1389 module_param_hw_array(irqs, int, irq, &num_irqs, 0);
1390 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1391                  " addresses separated by commas.  Only use if an interface"
1392                  " has an interrupt.  Otherwise, set it to zero or leave"
1393                  " it blank.");
1394 module_param_hw_array(regspacings, int, other, &num_regspacings, 0);
1395 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1396                  " and each successive register used by the interface.  For"
1397                  " instance, if the start address is 0xca2 and the spacing"
1398                  " is 2, then the second address is at 0xca4.  Defaults"
1399                  " to 1.");
1400 module_param_hw_array(regsizes, int, other, &num_regsizes, 0);
1401 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1402                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1403                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1404                  " the 8-bit IPMI register has to be read from a larger"
1405                  " register.");
1406 module_param_hw_array(regshifts, int, other, &num_regshifts, 0);
1407 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1408                  " IPMI register, in bits.  For instance, if the data"
1409                  " is read from a 32-bit word and the IPMI data is in"
1410                  " bit 8-15, then the shift would be 8");
1411 module_param_hw_array(slave_addrs, int, other, &num_slave_addrs, 0);
1412 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1413                  " the controller.  Normally this is 0x20, but can be"
1414                  " overridden by this parm.  This is an array indexed"
1415                  " by interface number.");
1416 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1417 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1418                  " disabled(0).  Normally the IPMI driver auto-detects"
1419                  " this, but the value may be overridden by this parm.");
1420 module_param(unload_when_empty, bool, 0);
1421 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1422                  " specified or found, default is 1.  Setting to 0"
1423                  " is useful for hot add of devices using hotmod.");
1424 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1425 MODULE_PARM_DESC(kipmid_max_busy_us,
1426                  "Max time (in microseconds) to busy-wait for IPMI data before"
1427                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1428                  " if kipmid is using up a lot of CPU time.");
1429
1430
1431 static void std_irq_cleanup(struct smi_info *info)
1432 {
1433         if (info->si_type == SI_BT)
1434                 /* Disable the interrupt in the BT interface. */
1435                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1436         free_irq(info->irq, info);
1437 }
1438
1439 static int std_irq_setup(struct smi_info *info)
1440 {
1441         int rv;
1442
1443         if (!info->irq)
1444                 return 0;
1445
1446         if (info->si_type == SI_BT) {
1447                 rv = request_irq(info->irq,
1448                                  si_bt_irq_handler,
1449                                  IRQF_SHARED,
1450                                  DEVICE_NAME,
1451                                  info);
1452                 if (!rv)
1453                         /* Enable the interrupt in the BT interface. */
1454                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1455                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1456         } else
1457                 rv = request_irq(info->irq,
1458                                  si_irq_handler,
1459                                  IRQF_SHARED,
1460                                  DEVICE_NAME,
1461                                  info);
1462         if (rv) {
1463                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1464                          " running polled\n",
1465                          DEVICE_NAME, info->irq);
1466                 info->irq = 0;
1467         } else {
1468                 info->irq_cleanup = std_irq_cleanup;
1469                 dev_info(info->dev, "Using irq %d\n", info->irq);
1470         }
1471
1472         return rv;
1473 }
1474
1475 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1476 {
1477         unsigned int addr = io->addr_data;
1478
1479         return inb(addr + (offset * io->regspacing));
1480 }
1481
1482 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1483                       unsigned char b)
1484 {
1485         unsigned int addr = io->addr_data;
1486
1487         outb(b, addr + (offset * io->regspacing));
1488 }
1489
1490 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1491 {
1492         unsigned int addr = io->addr_data;
1493
1494         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1495 }
1496
1497 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1498                       unsigned char b)
1499 {
1500         unsigned int addr = io->addr_data;
1501
1502         outw(b << io->regshift, addr + (offset * io->regspacing));
1503 }
1504
1505 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1506 {
1507         unsigned int addr = io->addr_data;
1508
1509         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1510 }
1511
1512 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1513                       unsigned char b)
1514 {
1515         unsigned int addr = io->addr_data;
1516
1517         outl(b << io->regshift, addr+(offset * io->regspacing));
1518 }
1519
1520 static void port_cleanup(struct smi_info *info)
1521 {
1522         unsigned int addr = info->io.addr_data;
1523         int          idx;
1524
1525         if (addr) {
1526                 for (idx = 0; idx < info->io_size; idx++)
1527                         release_region(addr + idx * info->io.regspacing,
1528                                        info->io.regsize);
1529         }
1530 }
1531
1532 static int port_setup(struct smi_info *info)
1533 {
1534         unsigned int addr = info->io.addr_data;
1535         int          idx;
1536
1537         if (!addr)
1538                 return -ENODEV;
1539
1540         info->io_cleanup = port_cleanup;
1541
1542         /*
1543          * Figure out the actual inb/inw/inl/etc routine to use based
1544          * upon the register size.
1545          */
1546         switch (info->io.regsize) {
1547         case 1:
1548                 info->io.inputb = port_inb;
1549                 info->io.outputb = port_outb;
1550                 break;
1551         case 2:
1552                 info->io.inputb = port_inw;
1553                 info->io.outputb = port_outw;
1554                 break;
1555         case 4:
1556                 info->io.inputb = port_inl;
1557                 info->io.outputb = port_outl;
1558                 break;
1559         default:
1560                 dev_warn(info->dev, "Invalid register size: %d\n",
1561                          info->io.regsize);
1562                 return -EINVAL;
1563         }
1564
1565         /*
1566          * Some BIOSes reserve disjoint I/O regions in their ACPI
1567          * tables.  This causes problems when trying to register the
1568          * entire I/O region.  Therefore we must register each I/O
1569          * port separately.
1570          */
1571         for (idx = 0; idx < info->io_size; idx++) {
1572                 if (request_region(addr + idx * info->io.regspacing,
1573                                    info->io.regsize, DEVICE_NAME) == NULL) {
1574                         /* Undo allocations */
1575                         while (idx--)
1576                                 release_region(addr + idx * info->io.regspacing,
1577                                                info->io.regsize);
1578                         return -EIO;
1579                 }
1580         }
1581         return 0;
1582 }
1583
1584 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1585                                   unsigned int offset)
1586 {
1587         return readb((io->addr)+(offset * io->regspacing));
1588 }
1589
1590 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1591                           unsigned char b)
1592 {
1593         writeb(b, (io->addr)+(offset * io->regspacing));
1594 }
1595
1596 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1597                                   unsigned int offset)
1598 {
1599         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1600                 & 0xff;
1601 }
1602
1603 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1604                           unsigned char b)
1605 {
1606         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1607 }
1608
1609 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1610                                   unsigned int offset)
1611 {
1612         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1613                 & 0xff;
1614 }
1615
1616 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1617                           unsigned char b)
1618 {
1619         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1620 }
1621
1622 #ifdef readq
1623 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1624 {
1625         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1626                 & 0xff;
1627 }
1628
1629 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1630                      unsigned char b)
1631 {
1632         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1633 }
1634 #endif
1635
1636 static void mem_region_cleanup(struct smi_info *info, int num)
1637 {
1638         unsigned long addr = info->io.addr_data;
1639         int idx;
1640
1641         for (idx = 0; idx < num; idx++)
1642                 release_mem_region(addr + idx * info->io.regspacing,
1643                                    info->io.regsize);
1644 }
1645
1646 static void mem_cleanup(struct smi_info *info)
1647 {
1648         if (info->io.addr) {
1649                 iounmap(info->io.addr);
1650                 mem_region_cleanup(info, info->io_size);
1651         }
1652 }
1653
1654 static int mem_setup(struct smi_info *info)
1655 {
1656         unsigned long addr = info->io.addr_data;
1657         int           mapsize, idx;
1658
1659         if (!addr)
1660                 return -ENODEV;
1661
1662         info->io_cleanup = mem_cleanup;
1663
1664         /*
1665          * Figure out the actual readb/readw/readl/etc routine to use based
1666          * upon the register size.
1667          */
1668         switch (info->io.regsize) {
1669         case 1:
1670                 info->io.inputb = intf_mem_inb;
1671                 info->io.outputb = intf_mem_outb;
1672                 break;
1673         case 2:
1674                 info->io.inputb = intf_mem_inw;
1675                 info->io.outputb = intf_mem_outw;
1676                 break;
1677         case 4:
1678                 info->io.inputb = intf_mem_inl;
1679                 info->io.outputb = intf_mem_outl;
1680                 break;
1681 #ifdef readq
1682         case 8:
1683                 info->io.inputb = mem_inq;
1684                 info->io.outputb = mem_outq;
1685                 break;
1686 #endif
1687         default:
1688                 dev_warn(info->dev, "Invalid register size: %d\n",
1689                          info->io.regsize);
1690                 return -EINVAL;
1691         }
1692
1693         /*
1694          * Some BIOSes reserve disjoint memory regions in their ACPI
1695          * tables.  This causes problems when trying to request the
1696          * entire region.  Therefore we must request each register
1697          * separately.
1698          */
1699         for (idx = 0; idx < info->io_size; idx++) {
1700                 if (request_mem_region(addr + idx * info->io.regspacing,
1701                                        info->io.regsize, DEVICE_NAME) == NULL) {
1702                         /* Undo allocations */
1703                         mem_region_cleanup(info, idx);
1704                         return -EIO;
1705                 }
1706         }
1707
1708         /*
1709          * Calculate the total amount of memory to claim.  This is an
1710          * unusual looking calculation, but it avoids claiming any
1711          * more memory than it has to.  It will claim everything
1712          * between the first address to the end of the last full
1713          * register.
1714          */
1715         mapsize = ((info->io_size * info->io.regspacing)
1716                    - (info->io.regspacing - info->io.regsize));
1717         info->io.addr = ioremap(addr, mapsize);
1718         if (info->io.addr == NULL) {
1719                 mem_region_cleanup(info, info->io_size);
1720                 return -EIO;
1721         }
1722         return 0;
1723 }
1724
1725 /*
1726  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1727  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1728  * Options are:
1729  *   rsp=<regspacing>
1730  *   rsi=<regsize>
1731  *   rsh=<regshift>
1732  *   irq=<irq>
1733  *   ipmb=<ipmb addr>
1734  */
1735 enum hotmod_op { HM_ADD, HM_REMOVE };
1736 struct hotmod_vals {
1737         const char *name;
1738         const int  val;
1739 };
1740
1741 static const struct hotmod_vals hotmod_ops[] = {
1742         { "add",        HM_ADD },
1743         { "remove",     HM_REMOVE },
1744         { NULL }
1745 };
1746
1747 static const struct hotmod_vals hotmod_si[] = {
1748         { "kcs",        SI_KCS },
1749         { "smic",       SI_SMIC },
1750         { "bt",         SI_BT },
1751         { NULL }
1752 };
1753
1754 static const struct hotmod_vals hotmod_as[] = {
1755         { "mem",        IPMI_MEM_ADDR_SPACE },
1756         { "i/o",        IPMI_IO_ADDR_SPACE },
1757         { NULL }
1758 };
1759
1760 static int parse_str(const struct hotmod_vals *v, int *val, char *name,
1761                      char **curr)
1762 {
1763         char *s;
1764         int  i;
1765
1766         s = strchr(*curr, ',');
1767         if (!s) {
1768                 pr_warn(PFX "No hotmod %s given.\n", name);
1769                 return -EINVAL;
1770         }
1771         *s = '\0';
1772         s++;
1773         for (i = 0; v[i].name; i++) {
1774                 if (strcmp(*curr, v[i].name) == 0) {
1775                         *val = v[i].val;
1776                         *curr = s;
1777                         return 0;
1778                 }
1779         }
1780
1781         pr_warn(PFX "Invalid hotmod %s '%s'\n", name, *curr);
1782         return -EINVAL;
1783 }
1784
1785 static int check_hotmod_int_op(const char *curr, const char *option,
1786                                const char *name, int *val)
1787 {
1788         char *n;
1789
1790         if (strcmp(curr, name) == 0) {
1791                 if (!option) {
1792                         pr_warn(PFX "No option given for '%s'\n", curr);
1793                         return -EINVAL;
1794                 }
1795                 *val = simple_strtoul(option, &n, 0);
1796                 if ((*n != '\0') || (*option == '\0')) {
1797                         pr_warn(PFX "Bad option given for '%s'\n", curr);
1798                         return -EINVAL;
1799                 }
1800                 return 1;
1801         }
1802         return 0;
1803 }
1804
1805 static struct smi_info *smi_info_alloc(void)
1806 {
1807         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1808
1809         if (info)
1810                 spin_lock_init(&info->si_lock);
1811         return info;
1812 }
1813
1814 static int hotmod_handler(const char *val, struct kernel_param *kp)
1815 {
1816         char *str = kstrdup(val, GFP_KERNEL);
1817         int  rv;
1818         char *next, *curr, *s, *n, *o;
1819         enum hotmod_op op;
1820         enum si_type si_type;
1821         int  addr_space;
1822         unsigned long addr;
1823         int regspacing;
1824         int regsize;
1825         int regshift;
1826         int irq;
1827         int ipmb;
1828         int ival;
1829         int len;
1830         struct smi_info *info;
1831
1832         if (!str)
1833                 return -ENOMEM;
1834
1835         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1836         len = strlen(str);
1837         ival = len - 1;
1838         while ((ival >= 0) && isspace(str[ival])) {
1839                 str[ival] = '\0';
1840                 ival--;
1841         }
1842
1843         for (curr = str; curr; curr = next) {
1844                 regspacing = 1;
1845                 regsize = 1;
1846                 regshift = 0;
1847                 irq = 0;
1848                 ipmb = 0; /* Choose the default if not specified */
1849
1850                 next = strchr(curr, ':');
1851                 if (next) {
1852                         *next = '\0';
1853                         next++;
1854                 }
1855
1856                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1857                 if (rv)
1858                         break;
1859                 op = ival;
1860
1861                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1862                 if (rv)
1863                         break;
1864                 si_type = ival;
1865
1866                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1867                 if (rv)
1868                         break;
1869
1870                 s = strchr(curr, ',');
1871                 if (s) {
1872                         *s = '\0';
1873                         s++;
1874                 }
1875                 addr = simple_strtoul(curr, &n, 0);
1876                 if ((*n != '\0') || (*curr == '\0')) {
1877                         pr_warn(PFX "Invalid hotmod address '%s'\n", curr);
1878                         break;
1879                 }
1880
1881                 while (s) {
1882                         curr = s;
1883                         s = strchr(curr, ',');
1884                         if (s) {
1885                                 *s = '\0';
1886                                 s++;
1887                         }
1888                         o = strchr(curr, '=');
1889                         if (o) {
1890                                 *o = '\0';
1891                                 o++;
1892                         }
1893                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1894                         if (rv < 0)
1895                                 goto out;
1896                         else if (rv)
1897                                 continue;
1898                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1899                         if (rv < 0)
1900                                 goto out;
1901                         else if (rv)
1902                                 continue;
1903                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1904                         if (rv < 0)
1905                                 goto out;
1906                         else if (rv)
1907                                 continue;
1908                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1909                         if (rv < 0)
1910                                 goto out;
1911                         else if (rv)
1912                                 continue;
1913                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1914                         if (rv < 0)
1915                                 goto out;
1916                         else if (rv)
1917                                 continue;
1918
1919                         rv = -EINVAL;
1920                         pr_warn(PFX "Invalid hotmod option '%s'\n", curr);
1921                         goto out;
1922                 }
1923
1924                 if (op == HM_ADD) {
1925                         info = smi_info_alloc();
1926                         if (!info) {
1927                                 rv = -ENOMEM;
1928                                 goto out;
1929                         }
1930
1931                         info->addr_source = SI_HOTMOD;
1932                         info->si_type = si_type;
1933                         info->io.addr_data = addr;
1934                         info->io.addr_type = addr_space;
1935                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1936                                 info->io_setup = mem_setup;
1937                         else
1938                                 info->io_setup = port_setup;
1939
1940                         info->io.addr = NULL;
1941                         info->io.regspacing = regspacing;
1942                         if (!info->io.regspacing)
1943                                 info->io.regspacing = DEFAULT_REGSPACING;
1944                         info->io.regsize = regsize;
1945                         if (!info->io.regsize)
1946                                 info->io.regsize = DEFAULT_REGSIZE;
1947                         info->io.regshift = regshift;
1948                         info->irq = irq;
1949                         if (info->irq)
1950                                 info->irq_setup = std_irq_setup;
1951                         info->slave_addr = ipmb;
1952
1953                         rv = add_smi(info);
1954                         if (rv) {
1955                                 kfree(info);
1956                                 goto out;
1957                         }
1958                         mutex_lock(&smi_infos_lock);
1959                         rv = try_smi_init(info);
1960                         mutex_unlock(&smi_infos_lock);
1961                         if (rv) {
1962                                 cleanup_one_si(info);
1963                                 goto out;
1964                         }
1965                 } else {
1966                         /* remove */
1967                         struct smi_info *e, *tmp_e;
1968
1969                         mutex_lock(&smi_infos_lock);
1970                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1971                                 if (e->io.addr_type != addr_space)
1972                                         continue;
1973                                 if (e->si_type != si_type)
1974                                         continue;
1975                                 if (e->io.addr_data == addr)
1976                                         cleanup_one_si(e);
1977                         }
1978                         mutex_unlock(&smi_infos_lock);
1979                 }
1980         }
1981         rv = len;
1982 out:
1983         kfree(str);
1984         return rv;
1985 }
1986
1987 static int hardcode_find_bmc(void)
1988 {
1989         int ret = -ENODEV;
1990         int             i;
1991         struct smi_info *info;
1992
1993         for (i = 0; i < SI_MAX_PARMS; i++) {
1994                 if (!ports[i] && !addrs[i])
1995                         continue;
1996
1997                 info = smi_info_alloc();
1998                 if (!info)
1999                         return -ENOMEM;
2000
2001                 info->addr_source = SI_HARDCODED;
2002                 pr_info(PFX "probing via hardcoded address\n");
2003
2004                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
2005                         info->si_type = SI_KCS;
2006                 } else if (strcmp(si_type[i], "smic") == 0) {
2007                         info->si_type = SI_SMIC;
2008                 } else if (strcmp(si_type[i], "bt") == 0) {
2009                         info->si_type = SI_BT;
2010                 } else {
2011                         pr_warn(PFX "Interface type specified for interface %d, was invalid: %s\n",
2012                                 i, si_type[i]);
2013                         kfree(info);
2014                         continue;
2015                 }
2016
2017                 if (ports[i]) {
2018                         /* An I/O port */
2019                         info->io_setup = port_setup;
2020                         info->io.addr_data = ports[i];
2021                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
2022                 } else if (addrs[i]) {
2023                         /* A memory port */
2024                         info->io_setup = mem_setup;
2025                         info->io.addr_data = addrs[i];
2026                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2027                 } else {
2028                         pr_warn(PFX "Interface type specified for interface %d, but port and address were not set or set to zero.\n",
2029                                 i);
2030                         kfree(info);
2031                         continue;
2032                 }
2033
2034                 info->io.addr = NULL;
2035                 info->io.regspacing = regspacings[i];
2036                 if (!info->io.regspacing)
2037                         info->io.regspacing = DEFAULT_REGSPACING;
2038                 info->io.regsize = regsizes[i];
2039                 if (!info->io.regsize)
2040                         info->io.regsize = DEFAULT_REGSIZE;
2041                 info->io.regshift = regshifts[i];
2042                 info->irq = irqs[i];
2043                 if (info->irq)
2044                         info->irq_setup = std_irq_setup;
2045                 info->slave_addr = slave_addrs[i];
2046
2047                 if (!add_smi(info)) {
2048                         mutex_lock(&smi_infos_lock);
2049                         if (try_smi_init(info))
2050                                 cleanup_one_si(info);
2051                         mutex_unlock(&smi_infos_lock);
2052                         ret = 0;
2053                 } else {
2054                         kfree(info);
2055                 }
2056         }
2057         return ret;
2058 }
2059
2060 #ifdef CONFIG_ACPI
2061
2062 /*
2063  * Once we get an ACPI failure, we don't try any more, because we go
2064  * through the tables sequentially.  Once we don't find a table, there
2065  * are no more.
2066  */
2067 static int acpi_failure;
2068
2069 /* For GPE-type interrupts. */
2070 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2071         u32 gpe_number, void *context)
2072 {
2073         struct smi_info *smi_info = context;
2074         unsigned long   flags;
2075
2076         spin_lock_irqsave(&(smi_info->si_lock), flags);
2077
2078         smi_inc_stat(smi_info, interrupts);
2079
2080         debug_timestamp("ACPI_GPE");
2081
2082         smi_event_handler(smi_info, 0);
2083         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2084
2085         return ACPI_INTERRUPT_HANDLED;
2086 }
2087
2088 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2089 {
2090         if (!info->irq)
2091                 return;
2092
2093         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2094 }
2095
2096 static int acpi_gpe_irq_setup(struct smi_info *info)
2097 {
2098         acpi_status status;
2099
2100         if (!info->irq)
2101                 return 0;
2102
2103         status = acpi_install_gpe_handler(NULL,
2104                                           info->irq,
2105                                           ACPI_GPE_LEVEL_TRIGGERED,
2106                                           &ipmi_acpi_gpe,
2107                                           info);
2108         if (status != AE_OK) {
2109                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2110                          " running polled\n", DEVICE_NAME, info->irq);
2111                 info->irq = 0;
2112                 return -EINVAL;
2113         } else {
2114                 info->irq_cleanup = acpi_gpe_irq_cleanup;
2115                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2116                 return 0;
2117         }
2118 }
2119
2120 /*
2121  * Defined at
2122  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2123  */
2124 struct SPMITable {
2125         s8      Signature[4];
2126         u32     Length;
2127         u8      Revision;
2128         u8      Checksum;
2129         s8      OEMID[6];
2130         s8      OEMTableID[8];
2131         s8      OEMRevision[4];
2132         s8      CreatorID[4];
2133         s8      CreatorRevision[4];
2134         u8      InterfaceType;
2135         u8      IPMIlegacy;
2136         s16     SpecificationRevision;
2137
2138         /*
2139          * Bit 0 - SCI interrupt supported
2140          * Bit 1 - I/O APIC/SAPIC
2141          */
2142         u8      InterruptType;
2143
2144         /*
2145          * If bit 0 of InterruptType is set, then this is the SCI
2146          * interrupt in the GPEx_STS register.
2147          */
2148         u8      GPE;
2149
2150         s16     Reserved;
2151
2152         /*
2153          * If bit 1 of InterruptType is set, then this is the I/O
2154          * APIC/SAPIC interrupt.
2155          */
2156         u32     GlobalSystemInterrupt;
2157
2158         /* The actual register address. */
2159         struct acpi_generic_address addr;
2160
2161         u8      UID[4];
2162
2163         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2164 };
2165
2166 static int try_init_spmi(struct SPMITable *spmi)
2167 {
2168         struct smi_info  *info;
2169         int rv;
2170
2171         if (spmi->IPMIlegacy != 1) {
2172                 pr_info(PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2173                 return -ENODEV;
2174         }
2175
2176         info = smi_info_alloc();
2177         if (!info) {
2178                 pr_err(PFX "Could not allocate SI data (3)\n");
2179                 return -ENOMEM;
2180         }
2181
2182         info->addr_source = SI_SPMI;
2183         pr_info(PFX "probing via SPMI\n");
2184
2185         /* Figure out the interface type. */
2186         switch (spmi->InterfaceType) {
2187         case 1: /* KCS */
2188                 info->si_type = SI_KCS;
2189                 break;
2190         case 2: /* SMIC */
2191                 info->si_type = SI_SMIC;
2192                 break;
2193         case 3: /* BT */
2194                 info->si_type = SI_BT;
2195                 break;
2196         case 4: /* SSIF, just ignore */
2197                 kfree(info);
2198                 return -EIO;
2199         default:
2200                 pr_info(PFX "Unknown ACPI/SPMI SI type %d\n",
2201                         spmi->InterfaceType);
2202                 kfree(info);
2203                 return -EIO;
2204         }
2205
2206         if (spmi->InterruptType & 1) {
2207                 /* We've got a GPE interrupt. */
2208                 info->irq = spmi->GPE;
2209                 info->irq_setup = acpi_gpe_irq_setup;
2210         } else if (spmi->InterruptType & 2) {
2211                 /* We've got an APIC/SAPIC interrupt. */
2212                 info->irq = spmi->GlobalSystemInterrupt;
2213                 info->irq_setup = std_irq_setup;
2214         } else {
2215                 /* Use the default interrupt setting. */
2216                 info->irq = 0;
2217                 info->irq_setup = NULL;
2218         }
2219
2220         if (spmi->addr.bit_width) {
2221                 /* A (hopefully) properly formed register bit width. */
2222                 info->io.regspacing = spmi->addr.bit_width / 8;
2223         } else {
2224                 info->io.regspacing = DEFAULT_REGSPACING;
2225         }
2226         info->io.regsize = info->io.regspacing;
2227         info->io.regshift = spmi->addr.bit_offset;
2228
2229         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2230                 info->io_setup = mem_setup;
2231                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2232         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2233                 info->io_setup = port_setup;
2234                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2235         } else {
2236                 kfree(info);
2237                 pr_warn(PFX "Unknown ACPI I/O Address type\n");
2238                 return -EIO;
2239         }
2240         info->io.addr_data = spmi->addr.address;
2241
2242         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2243                 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2244                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2245                 info->irq);
2246
2247         rv = add_smi(info);
2248         if (rv)
2249                 kfree(info);
2250
2251         return rv;
2252 }
2253
2254 static void spmi_find_bmc(void)
2255 {
2256         acpi_status      status;
2257         struct SPMITable *spmi;
2258         int              i;
2259
2260         if (acpi_disabled)
2261                 return;
2262
2263         if (acpi_failure)
2264                 return;
2265
2266         for (i = 0; ; i++) {
2267                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2268                                         (struct acpi_table_header **)&spmi);
2269                 if (status != AE_OK)
2270                         return;
2271
2272                 try_init_spmi(spmi);
2273         }
2274 }
2275 #endif
2276
2277 #if defined(CONFIG_DMI) || defined(CONFIG_ACPI)
2278 struct resource *ipmi_get_info_from_resources(struct platform_device *pdev,
2279                                               struct smi_info *info)
2280 {
2281         struct resource *res, *res_second;
2282
2283         res = platform_get_resource(pdev, IORESOURCE_IO, 0);
2284         if (res) {
2285                 info->io_setup = port_setup;
2286                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2287         } else {
2288                 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2289                 if (res) {
2290                         info->io_setup = mem_setup;
2291                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2292                 }
2293         }
2294         if (!res) {
2295                 dev_err(&pdev->dev, "no I/O or memory address\n");
2296                 return NULL;
2297         }
2298         info->io.addr_data = res->start;
2299
2300         info->io.regspacing = DEFAULT_REGSPACING;
2301         res_second = platform_get_resource(pdev,
2302                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2303                                         IORESOURCE_IO : IORESOURCE_MEM,
2304                                1);
2305         if (res_second) {
2306                 if (res_second->start > info->io.addr_data)
2307                         info->io.regspacing =
2308                                 res_second->start - info->io.addr_data;
2309         }
2310         info->io.regsize = DEFAULT_REGSIZE;
2311         info->io.regshift = 0;
2312
2313         return res;
2314 }
2315
2316 #endif
2317
2318 #ifdef CONFIG_DMI
2319 static int dmi_ipmi_probe(struct platform_device *pdev)
2320 {
2321         struct smi_info *info;
2322         u8 type, slave_addr;
2323         int rv;
2324
2325         if (!si_trydmi)
2326                 return -ENODEV;
2327
2328         rv = device_property_read_u8(&pdev->dev, "ipmi-type", &type);
2329         if (rv)
2330                 return -ENODEV;
2331
2332         info = smi_info_alloc();
2333         if (!info) {
2334                 pr_err(PFX "Could not allocate SI data\n");
2335                 return -ENOMEM;
2336         }
2337
2338         info->addr_source = SI_SMBIOS;
2339         pr_info(PFX "probing via SMBIOS\n");
2340
2341         switch (type) {
2342         case IPMI_DMI_TYPE_KCS:
2343                 info->si_type = SI_KCS;
2344                 break;
2345         case IPMI_DMI_TYPE_SMIC:
2346                 info->si_type = SI_SMIC;
2347                 break;
2348         case IPMI_DMI_TYPE_BT:
2349                 info->si_type = SI_BT;
2350                 break;
2351         default:
2352                 kfree(info);
2353                 return -EINVAL;
2354         }
2355
2356         if (!ipmi_get_info_from_resources(pdev, info)) {
2357                 rv = -EINVAL;
2358                 goto err_free;
2359         }
2360
2361         rv = device_property_read_u8(&pdev->dev, "slave-addr", &slave_addr);
2362         if (rv) {
2363                 dev_warn(&pdev->dev, "device has no slave-addr property");
2364                 info->slave_addr = 0x20;
2365         } else {
2366                 info->slave_addr = slave_addr;
2367         }
2368
2369         info->irq = platform_get_irq(pdev, 0);
2370         if (info->irq > 0)
2371                 info->irq_setup = std_irq_setup;
2372         else
2373                 info->irq = 0;
2374
2375         info->dev = &pdev->dev;
2376
2377         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2378                 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2379                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2380                 info->irq);
2381
2382         if (add_smi(info))
2383                 kfree(info);
2384
2385         return 0;
2386
2387 err_free:
2388         kfree(info);
2389         return rv;
2390 }
2391 #else
2392 static int dmi_ipmi_probe(struct platform_device *pdev)
2393 {
2394         return -ENODEV;
2395 }
2396 #endif /* CONFIG_DMI */
2397
2398 #ifdef CONFIG_PCI
2399
2400 #define PCI_ERMC_CLASSCODE              0x0C0700
2401 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2402 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2403 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2404 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2405 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2406
2407 #define PCI_HP_VENDOR_ID    0x103C
2408 #define PCI_MMC_DEVICE_ID   0x121A
2409 #define PCI_MMC_ADDR_CW     0x10
2410
2411 static void ipmi_pci_cleanup(struct smi_info *info)
2412 {
2413         struct pci_dev *pdev = info->addr_source_data;
2414
2415         pci_disable_device(pdev);
2416 }
2417
2418 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2419 {
2420         if (info->si_type == SI_KCS) {
2421                 unsigned char   status;
2422                 int             regspacing;
2423
2424                 info->io.regsize = DEFAULT_REGSIZE;
2425                 info->io.regshift = 0;
2426                 info->io_size = 2;
2427                 info->handlers = &kcs_smi_handlers;
2428
2429                 /* detect 1, 4, 16byte spacing */
2430                 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2431                         info->io.regspacing = regspacing;
2432                         if (info->io_setup(info)) {
2433                                 dev_err(info->dev,
2434                                         "Could not setup I/O space\n");
2435                                 return DEFAULT_REGSPACING;
2436                         }
2437                         /* write invalid cmd */
2438                         info->io.outputb(&info->io, 1, 0x10);
2439                         /* read status back */
2440                         status = info->io.inputb(&info->io, 1);
2441                         info->io_cleanup(info);
2442                         if (status)
2443                                 return regspacing;
2444                         regspacing *= 4;
2445                 }
2446         }
2447         return DEFAULT_REGSPACING;
2448 }
2449
2450 static int ipmi_pci_probe(struct pci_dev *pdev,
2451                                     const struct pci_device_id *ent)
2452 {
2453         int rv;
2454         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2455         struct smi_info *info;
2456
2457         info = smi_info_alloc();
2458         if (!info)
2459                 return -ENOMEM;
2460
2461         info->addr_source = SI_PCI;
2462         dev_info(&pdev->dev, "probing via PCI");
2463
2464         switch (class_type) {
2465         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2466                 info->si_type = SI_SMIC;
2467                 break;
2468
2469         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2470                 info->si_type = SI_KCS;
2471                 break;
2472
2473         case PCI_ERMC_CLASSCODE_TYPE_BT:
2474                 info->si_type = SI_BT;
2475                 break;
2476
2477         default:
2478                 kfree(info);
2479                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2480                 return -ENOMEM;
2481         }
2482
2483         rv = pci_enable_device(pdev);
2484         if (rv) {
2485                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2486                 kfree(info);
2487                 return rv;
2488         }
2489
2490         info->addr_source_cleanup = ipmi_pci_cleanup;
2491         info->addr_source_data = pdev;
2492
2493         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2494                 info->io_setup = port_setup;
2495                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2496         } else {
2497                 info->io_setup = mem_setup;
2498                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2499         }
2500         info->io.addr_data = pci_resource_start(pdev, 0);
2501
2502         info->io.regspacing = ipmi_pci_probe_regspacing(info);
2503         info->io.regsize = DEFAULT_REGSIZE;
2504         info->io.regshift = 0;
2505
2506         info->irq = pdev->irq;
2507         if (info->irq)
2508                 info->irq_setup = std_irq_setup;
2509
2510         info->dev = &pdev->dev;
2511         pci_set_drvdata(pdev, info);
2512
2513         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2514                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2515                 info->irq);
2516
2517         rv = add_smi(info);
2518         if (rv) {
2519                 kfree(info);
2520                 pci_disable_device(pdev);
2521         }
2522
2523         return rv;
2524 }
2525
2526 static void ipmi_pci_remove(struct pci_dev *pdev)
2527 {
2528         struct smi_info *info = pci_get_drvdata(pdev);
2529         cleanup_one_si(info);
2530 }
2531
2532 static const struct pci_device_id ipmi_pci_devices[] = {
2533         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2534         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2535         { 0, }
2536 };
2537 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2538
2539 static struct pci_driver ipmi_pci_driver = {
2540         .name =         DEVICE_NAME,
2541         .id_table =     ipmi_pci_devices,
2542         .probe =        ipmi_pci_probe,
2543         .remove =       ipmi_pci_remove,
2544 };
2545 #endif /* CONFIG_PCI */
2546
2547 #ifdef CONFIG_OF
2548 static const struct of_device_id of_ipmi_match[] = {
2549         { .type = "ipmi", .compatible = "ipmi-kcs",
2550           .data = (void *)(unsigned long) SI_KCS },
2551         { .type = "ipmi", .compatible = "ipmi-smic",
2552           .data = (void *)(unsigned long) SI_SMIC },
2553         { .type = "ipmi", .compatible = "ipmi-bt",
2554           .data = (void *)(unsigned long) SI_BT },
2555         {},
2556 };
2557 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2558
2559 static int of_ipmi_probe(struct platform_device *dev)
2560 {
2561         const struct of_device_id *match;
2562         struct smi_info *info;
2563         struct resource resource;
2564         const __be32 *regsize, *regspacing, *regshift;
2565         struct device_node *np = dev->dev.of_node;
2566         int ret;
2567         int proplen;
2568
2569         dev_info(&dev->dev, "probing via device tree\n");
2570
2571         match = of_match_device(of_ipmi_match, &dev->dev);
2572         if (!match)
2573                 return -ENODEV;
2574
2575         if (!of_device_is_available(np))
2576                 return -EINVAL;
2577
2578         ret = of_address_to_resource(np, 0, &resource);
2579         if (ret) {
2580                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2581                 return ret;
2582         }
2583
2584         regsize = of_get_property(np, "reg-size", &proplen);
2585         if (regsize && proplen != 4) {
2586                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2587                 return -EINVAL;
2588         }
2589
2590         regspacing = of_get_property(np, "reg-spacing", &proplen);
2591         if (regspacing && proplen != 4) {
2592                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2593                 return -EINVAL;
2594         }
2595
2596         regshift = of_get_property(np, "reg-shift", &proplen);
2597         if (regshift && proplen != 4) {
2598                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2599                 return -EINVAL;
2600         }
2601
2602         info = smi_info_alloc();
2603
2604         if (!info) {
2605                 dev_err(&dev->dev,
2606                         "could not allocate memory for OF probe\n");
2607                 return -ENOMEM;
2608         }
2609
2610         info->si_type           = (enum si_type) match->data;
2611         info->addr_source       = SI_DEVICETREE;
2612         info->irq_setup         = std_irq_setup;
2613
2614         if (resource.flags & IORESOURCE_IO) {
2615                 info->io_setup          = port_setup;
2616                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2617         } else {
2618                 info->io_setup          = mem_setup;
2619                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2620         }
2621
2622         info->io.addr_data      = resource.start;
2623
2624         info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2625         info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2626         info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2627
2628         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2629         info->dev               = &dev->dev;
2630
2631         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2632                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2633                 info->irq);
2634
2635         dev_set_drvdata(&dev->dev, info);
2636
2637         ret = add_smi(info);
2638         if (ret) {
2639                 kfree(info);
2640                 return ret;
2641         }
2642         return 0;
2643 }
2644 #else
2645 #define of_ipmi_match NULL
2646 static int of_ipmi_probe(struct platform_device *dev)
2647 {
2648         return -ENODEV;
2649 }
2650 #endif
2651
2652 #ifdef CONFIG_ACPI
2653 static int find_slave_address(struct smi_info *info, int slave_addr)
2654 {
2655 #ifdef CONFIG_IPMI_DMI_DECODE
2656         if (!slave_addr) {
2657                 int type = -1;
2658                 u32 flags = IORESOURCE_IO;
2659
2660                 switch (info->si_type) {
2661                 case SI_KCS:
2662                         type = IPMI_DMI_TYPE_KCS;
2663                         break;
2664                 case SI_BT:
2665                         type = IPMI_DMI_TYPE_BT;
2666                         break;
2667                 case SI_SMIC:
2668                         type = IPMI_DMI_TYPE_SMIC;
2669                         break;
2670                 }
2671
2672                 if (info->io.addr_type == IPMI_MEM_ADDR_SPACE)
2673                         flags = IORESOURCE_MEM;
2674
2675                 slave_addr = ipmi_dmi_get_slave_addr(type, flags,
2676                                                      info->io.addr_data);
2677         }
2678 #endif
2679
2680         return slave_addr;
2681 }
2682
2683 static int acpi_ipmi_probe(struct platform_device *dev)
2684 {
2685         struct smi_info *info;
2686         acpi_handle handle;
2687         acpi_status status;
2688         unsigned long long tmp;
2689         struct resource *res;
2690         int rv = -EINVAL;
2691
2692         if (!si_tryacpi)
2693                 return -ENODEV;
2694
2695         handle = ACPI_HANDLE(&dev->dev);
2696         if (!handle)
2697                 return -ENODEV;
2698
2699         info = smi_info_alloc();
2700         if (!info)
2701                 return -ENOMEM;
2702
2703         info->addr_source = SI_ACPI;
2704         dev_info(&dev->dev, PFX "probing via ACPI\n");
2705
2706         info->addr_info.acpi_info.acpi_handle = handle;
2707
2708         /* _IFT tells us the interface type: KCS, BT, etc */
2709         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2710         if (ACPI_FAILURE(status)) {
2711                 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2712                 goto err_free;
2713         }
2714
2715         switch (tmp) {
2716         case 1:
2717                 info->si_type = SI_KCS;
2718                 break;
2719         case 2:
2720                 info->si_type = SI_SMIC;
2721                 break;
2722         case 3:
2723                 info->si_type = SI_BT;
2724                 break;
2725         case 4: /* SSIF, just ignore */
2726                 rv = -ENODEV;
2727                 goto err_free;
2728         default:
2729                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2730                 goto err_free;
2731         }
2732
2733         res = ipmi_get_info_from_resources(dev, info);
2734         if (!res) {
2735                 rv = -EINVAL;
2736                 goto err_free;
2737         }
2738
2739         /* If _GPE exists, use it; otherwise use standard interrupts */
2740         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2741         if (ACPI_SUCCESS(status)) {
2742                 info->irq = tmp;
2743                 info->irq_setup = acpi_gpe_irq_setup;
2744         } else {
2745                 int irq = platform_get_irq(dev, 0);
2746
2747                 if (irq > 0) {
2748                         info->irq = irq;
2749                         info->irq_setup = std_irq_setup;
2750                 }
2751         }
2752
2753         info->slave_addr = find_slave_address(info, info->slave_addr);
2754
2755         info->dev = &dev->dev;
2756         platform_set_drvdata(dev, info);
2757
2758         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2759                  res, info->io.regsize, info->io.regspacing,
2760                  info->irq);
2761
2762         rv = add_smi(info);
2763         if (rv)
2764                 kfree(info);
2765
2766         return rv;
2767
2768 err_free:
2769         kfree(info);
2770         return rv;
2771 }
2772
2773 static const struct acpi_device_id acpi_ipmi_match[] = {
2774         { "IPI0001", 0 },
2775         { },
2776 };
2777 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2778 #else
2779 static int acpi_ipmi_probe(struct platform_device *dev)
2780 {
2781         return -ENODEV;
2782 }
2783 #endif
2784
2785 static int ipmi_probe(struct platform_device *dev)
2786 {
2787         if (of_ipmi_probe(dev) == 0)
2788                 return 0;
2789
2790         if (acpi_ipmi_probe(dev) == 0)
2791                 return 0;
2792
2793         return dmi_ipmi_probe(dev);
2794 }
2795
2796 static int ipmi_remove(struct platform_device *dev)
2797 {
2798         struct smi_info *info = dev_get_drvdata(&dev->dev);
2799
2800         cleanup_one_si(info);
2801         return 0;
2802 }
2803
2804 static struct platform_driver ipmi_driver = {
2805         .driver = {
2806                 .name = DEVICE_NAME,
2807                 .of_match_table = of_ipmi_match,
2808                 .acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2809         },
2810         .probe          = ipmi_probe,
2811         .remove         = ipmi_remove,
2812 };
2813
2814 #ifdef CONFIG_PARISC
2815 static int ipmi_parisc_probe(struct parisc_device *dev)
2816 {
2817         struct smi_info *info;
2818         int rv;
2819
2820         info = smi_info_alloc();
2821
2822         if (!info) {
2823                 dev_err(&dev->dev,
2824                         "could not allocate memory for PARISC probe\n");
2825                 return -ENOMEM;
2826         }
2827
2828         info->si_type           = SI_KCS;
2829         info->addr_source       = SI_DEVICETREE;
2830         info->io_setup          = mem_setup;
2831         info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2832         info->io.addr_data      = dev->hpa.start;
2833         info->io.regsize        = 1;
2834         info->io.regspacing     = 1;
2835         info->io.regshift       = 0;
2836         info->irq               = 0; /* no interrupt */
2837         info->irq_setup         = NULL;
2838         info->dev               = &dev->dev;
2839
2840         dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2841
2842         dev_set_drvdata(&dev->dev, info);
2843
2844         rv = add_smi(info);
2845         if (rv) {
2846                 kfree(info);
2847                 return rv;
2848         }
2849
2850         return 0;
2851 }
2852
2853 static int ipmi_parisc_remove(struct parisc_device *dev)
2854 {
2855         cleanup_one_si(dev_get_drvdata(&dev->dev));
2856         return 0;
2857 }
2858
2859 static const struct parisc_device_id ipmi_parisc_tbl[] = {
2860         { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2861         { 0, }
2862 };
2863
2864 static struct parisc_driver ipmi_parisc_driver = {
2865         .name =         "ipmi",
2866         .id_table =     ipmi_parisc_tbl,
2867         .probe =        ipmi_parisc_probe,
2868         .remove =       ipmi_parisc_remove,
2869 };
2870 #endif /* CONFIG_PARISC */
2871
2872 static int wait_for_msg_done(struct smi_info *smi_info)
2873 {
2874         enum si_sm_result     smi_result;
2875
2876         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2877         for (;;) {
2878                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2879                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2880                         schedule_timeout_uninterruptible(1);
2881                         smi_result = smi_info->handlers->event(
2882                                 smi_info->si_sm, jiffies_to_usecs(1));
2883                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2884                         smi_result = smi_info->handlers->event(
2885                                 smi_info->si_sm, 0);
2886                 } else
2887                         break;
2888         }
2889         if (smi_result == SI_SM_HOSED)
2890                 /*
2891                  * We couldn't get the state machine to run, so whatever's at
2892                  * the port is probably not an IPMI SMI interface.
2893                  */
2894                 return -ENODEV;
2895
2896         return 0;
2897 }
2898
2899 static int try_get_dev_id(struct smi_info *smi_info)
2900 {
2901         unsigned char         msg[2];
2902         unsigned char         *resp;
2903         unsigned long         resp_len;
2904         int                   rv = 0;
2905
2906         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2907         if (!resp)
2908                 return -ENOMEM;
2909
2910         /*
2911          * Do a Get Device ID command, since it comes back with some
2912          * useful info.
2913          */
2914         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2915         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2916         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2917
2918         rv = wait_for_msg_done(smi_info);
2919         if (rv)
2920                 goto out;
2921
2922         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2923                                                   resp, IPMI_MAX_MSG_LENGTH);
2924
2925         /* Check and record info from the get device id, in case we need it. */
2926         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2927
2928 out:
2929         kfree(resp);
2930         return rv;
2931 }
2932
2933 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2934 {
2935         unsigned char         msg[3];
2936         unsigned char         *resp;
2937         unsigned long         resp_len;
2938         int                   rv;
2939
2940         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2941         if (!resp)
2942                 return -ENOMEM;
2943
2944         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2945         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2946         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2947
2948         rv = wait_for_msg_done(smi_info);
2949         if (rv) {
2950                 dev_warn(smi_info->dev,
2951                          "Error getting response from get global enables command: %d\n",
2952                          rv);
2953                 goto out;
2954         }
2955
2956         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2957                                                   resp, IPMI_MAX_MSG_LENGTH);
2958
2959         if (resp_len < 4 ||
2960                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2961                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2962                         resp[2] != 0) {
2963                 dev_warn(smi_info->dev,
2964                          "Invalid return from get global enables command: %ld %x %x %x\n",
2965                          resp_len, resp[0], resp[1], resp[2]);
2966                 rv = -EINVAL;
2967                 goto out;
2968         } else {
2969                 *enables = resp[3];
2970         }
2971
2972 out:
2973         kfree(resp);
2974         return rv;
2975 }
2976
2977 /*
2978  * Returns 1 if it gets an error from the command.
2979  */
2980 static int set_global_enables(struct smi_info *smi_info, u8 enables)
2981 {
2982         unsigned char         msg[3];
2983         unsigned char         *resp;
2984         unsigned long         resp_len;
2985         int                   rv;
2986
2987         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2988         if (!resp)
2989                 return -ENOMEM;
2990
2991         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2992         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2993         msg[2] = enables;
2994         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2995
2996         rv = wait_for_msg_done(smi_info);
2997         if (rv) {
2998                 dev_warn(smi_info->dev,
2999                          "Error getting response from set global enables command: %d\n",
3000                          rv);
3001                 goto out;
3002         }
3003
3004         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3005                                                   resp, IPMI_MAX_MSG_LENGTH);
3006
3007         if (resp_len < 3 ||
3008                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3009                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3010                 dev_warn(smi_info->dev,
3011                          "Invalid return from set global enables command: %ld %x %x\n",
3012                          resp_len, resp[0], resp[1]);
3013                 rv = -EINVAL;
3014                 goto out;
3015         }
3016
3017         if (resp[2] != 0)
3018                 rv = 1;
3019
3020 out:
3021         kfree(resp);
3022         return rv;
3023 }
3024
3025 /*
3026  * Some BMCs do not support clearing the receive irq bit in the global
3027  * enables (even if they don't support interrupts on the BMC).  Check
3028  * for this and handle it properly.
3029  */
3030 static void check_clr_rcv_irq(struct smi_info *smi_info)
3031 {
3032         u8 enables = 0;
3033         int rv;
3034
3035         rv = get_global_enables(smi_info, &enables);
3036         if (!rv) {
3037                 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3038                         /* Already clear, should work ok. */
3039                         return;
3040
3041                 enables &= ~IPMI_BMC_RCV_MSG_INTR;
3042                 rv = set_global_enables(smi_info, enables);
3043         }
3044
3045         if (rv < 0) {
3046                 dev_err(smi_info->dev,
3047                         "Cannot check clearing the rcv irq: %d\n", rv);
3048                 return;
3049         }
3050
3051         if (rv) {
3052                 /*
3053                  * An error when setting the event buffer bit means
3054                  * clearing the bit is not supported.
3055                  */
3056                 dev_warn(smi_info->dev,
3057                          "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3058                 smi_info->cannot_disable_irq = true;
3059         }
3060 }
3061
3062 /*
3063  * Some BMCs do not support setting the interrupt bits in the global
3064  * enables even if they support interrupts.  Clearly bad, but we can
3065  * compensate.
3066  */
3067 static void check_set_rcv_irq(struct smi_info *smi_info)
3068 {
3069         u8 enables = 0;
3070         int rv;
3071
3072         if (!smi_info->irq)
3073                 return;
3074
3075         rv = get_global_enables(smi_info, &enables);
3076         if (!rv) {
3077                 enables |= IPMI_BMC_RCV_MSG_INTR;
3078                 rv = set_global_enables(smi_info, enables);
3079         }
3080
3081         if (rv < 0) {
3082                 dev_err(smi_info->dev,
3083                         "Cannot check setting the rcv irq: %d\n", rv);
3084                 return;
3085         }
3086
3087         if (rv) {
3088                 /*
3089                  * An error when setting the event buffer bit means
3090                  * setting the bit is not supported.
3091                  */
3092                 dev_warn(smi_info->dev,
3093                          "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3094                 smi_info->cannot_disable_irq = true;
3095                 smi_info->irq_enable_broken = true;
3096         }
3097 }
3098
3099 static int try_enable_event_buffer(struct smi_info *smi_info)
3100 {
3101         unsigned char         msg[3];
3102         unsigned char         *resp;
3103         unsigned long         resp_len;
3104         int                   rv = 0;
3105
3106         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3107         if (!resp)
3108                 return -ENOMEM;
3109
3110         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3111         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3112         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3113
3114         rv = wait_for_msg_done(smi_info);
3115         if (rv) {
3116                 pr_warn(PFX "Error getting response from get global enables command, the event buffer is not enabled.\n");
3117                 goto out;
3118         }
3119
3120         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3121                                                   resp, IPMI_MAX_MSG_LENGTH);
3122
3123         if (resp_len < 4 ||
3124                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3125                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
3126                         resp[2] != 0) {
3127                 pr_warn(PFX "Invalid return from get global enables command, cannot enable the event buffer.\n");
3128                 rv = -EINVAL;
3129                 goto out;
3130         }
3131
3132         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3133                 /* buffer is already enabled, nothing to do. */
3134                 smi_info->supports_event_msg_buff = true;
3135                 goto out;
3136         }
3137
3138         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3139         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3140         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3141         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3142
3143         rv = wait_for_msg_done(smi_info);
3144         if (rv) {
3145                 pr_warn(PFX "Error getting response from set global, enables command, the event buffer is not enabled.\n");
3146                 goto out;
3147         }
3148
3149         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3150                                                   resp, IPMI_MAX_MSG_LENGTH);
3151
3152         if (resp_len < 3 ||
3153                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3154                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3155                 pr_warn(PFX "Invalid return from get global, enables command, not enable the event buffer.\n");
3156                 rv = -EINVAL;
3157                 goto out;
3158         }
3159
3160         if (resp[2] != 0)
3161                 /*
3162                  * An error when setting the event buffer bit means
3163                  * that the event buffer is not supported.
3164                  */
3165                 rv = -ENOENT;
3166         else
3167                 smi_info->supports_event_msg_buff = true;
3168
3169 out:
3170         kfree(resp);
3171         return rv;
3172 }
3173
3174 static int smi_type_proc_show(struct seq_file *m, void *v)
3175 {
3176         struct smi_info *smi = m->private;
3177
3178         seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3179
3180         return 0;
3181 }
3182
3183 static int smi_type_proc_open(struct inode *inode, struct file *file)
3184 {
3185         return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3186 }
3187
3188 static const struct file_operations smi_type_proc_ops = {
3189         .open           = smi_type_proc_open,
3190         .read           = seq_read,
3191         .llseek         = seq_lseek,
3192         .release        = single_release,
3193 };
3194
3195 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3196 {
3197         struct smi_info *smi = m->private;
3198
3199         seq_printf(m, "interrupts_enabled:    %d\n",
3200                        smi->irq && !smi->interrupt_disabled);
3201         seq_printf(m, "short_timeouts:        %u\n",
3202                        smi_get_stat(smi, short_timeouts));
3203         seq_printf(m, "long_timeouts:         %u\n",
3204                        smi_get_stat(smi, long_timeouts));
3205         seq_printf(m, "idles:                 %u\n",
3206                        smi_get_stat(smi, idles));
3207         seq_printf(m, "interrupts:            %u\n",
3208                        smi_get_stat(smi, interrupts));
3209         seq_printf(m, "attentions:            %u\n",
3210                        smi_get_stat(smi, attentions));
3211         seq_printf(m, "flag_fetches:          %u\n",
3212                        smi_get_stat(smi, flag_fetches));
3213         seq_printf(m, "hosed_count:           %u\n",
3214                        smi_get_stat(smi, hosed_count));
3215         seq_printf(m, "complete_transactions: %u\n",
3216                        smi_get_stat(smi, complete_transactions));
3217         seq_printf(m, "events:                %u\n",
3218                        smi_get_stat(smi, events));
3219         seq_printf(m, "watchdog_pretimeouts:  %u\n",
3220                        smi_get_stat(smi, watchdog_pretimeouts));
3221         seq_printf(m, "incoming_messages:     %u\n",
3222                        smi_get_stat(smi, incoming_messages));
3223         return 0;
3224 }
3225
3226 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3227 {
3228         return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3229 }
3230
3231 static const struct file_operations smi_si_stats_proc_ops = {
3232         .open           = smi_si_stats_proc_open,
3233         .read           = seq_read,
3234         .llseek         = seq_lseek,
3235         .release        = single_release,
3236 };
3237
3238 static int smi_params_proc_show(struct seq_file *m, void *v)
3239 {
3240         struct smi_info *smi = m->private;
3241
3242         seq_printf(m,
3243                    "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3244                    si_to_str[smi->si_type],
3245                    addr_space_to_str[smi->io.addr_type],
3246                    smi->io.addr_data,
3247                    smi->io.regspacing,
3248                    smi->io.regsize,
3249                    smi->io.regshift,
3250                    smi->irq,
3251                    smi->slave_addr);
3252
3253         return 0;
3254 }
3255
3256 static int smi_params_proc_open(struct inode *inode, struct file *file)
3257 {
3258         return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3259 }
3260
3261 static const struct file_operations smi_params_proc_ops = {
3262         .open           = smi_params_proc_open,
3263         .read           = seq_read,
3264         .llseek         = seq_lseek,
3265         .release        = single_release,
3266 };
3267
3268 /*
3269  * oem_data_avail_to_receive_msg_avail
3270  * @info - smi_info structure with msg_flags set
3271  *
3272  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3273  * Returns 1 indicating need to re-run handle_flags().
3274  */
3275 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3276 {
3277         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3278                                RECEIVE_MSG_AVAIL);
3279         return 1;
3280 }
3281
3282 /*
3283  * setup_dell_poweredge_oem_data_handler
3284  * @info - smi_info.device_id must be populated
3285  *
3286  * Systems that match, but have firmware version < 1.40 may assert
3287  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3288  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3289  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3290  * as RECEIVE_MSG_AVAIL instead.
3291  *
3292  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3293  * assert the OEM[012] bits, and if it did, the driver would have to
3294  * change to handle that properly, we don't actually check for the
3295  * firmware version.
3296  * Device ID = 0x20                BMC on PowerEdge 8G servers
3297  * Device Revision = 0x80
3298  * Firmware Revision1 = 0x01       BMC version 1.40
3299  * Firmware Revision2 = 0x40       BCD encoded
3300  * IPMI Version = 0x51             IPMI 1.5
3301  * Manufacturer ID = A2 02 00      Dell IANA
3302  *
3303  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3304  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3305  *
3306  */
3307 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3308 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3309 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3310 #define DELL_IANA_MFR_ID 0x0002a2
3311 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3312 {
3313         struct ipmi_device_id *id = &smi_info->device_id;
3314         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3315                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3316                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3317                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3318                         smi_info->oem_data_avail_handler =
3319                                 oem_data_avail_to_receive_msg_avail;
3320                 } else if (ipmi_version_major(id) < 1 ||
3321                            (ipmi_version_major(id) == 1 &&
3322                             ipmi_version_minor(id) < 5)) {
3323                         smi_info->oem_data_avail_handler =
3324                                 oem_data_avail_to_receive_msg_avail;
3325                 }
3326         }
3327 }
3328
3329 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3330 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3331 {
3332         struct ipmi_smi_msg *msg = smi_info->curr_msg;
3333
3334         /* Make it a response */
3335         msg->rsp[0] = msg->data[0] | 4;
3336         msg->rsp[1] = msg->data[1];
3337         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3338         msg->rsp_size = 3;
3339         smi_info->curr_msg = NULL;
3340         deliver_recv_msg(smi_info, msg);
3341 }
3342
3343 /*
3344  * dell_poweredge_bt_xaction_handler
3345  * @info - smi_info.device_id must be populated
3346  *
3347  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3348  * not respond to a Get SDR command if the length of the data
3349  * requested is exactly 0x3A, which leads to command timeouts and no
3350  * data returned.  This intercepts such commands, and causes userspace
3351  * callers to try again with a different-sized buffer, which succeeds.
3352  */
3353
3354 #define STORAGE_NETFN 0x0A
3355 #define STORAGE_CMD_GET_SDR 0x23
3356 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3357                                              unsigned long unused,
3358                                              void *in)
3359 {
3360         struct smi_info *smi_info = in;
3361         unsigned char *data = smi_info->curr_msg->data;
3362         unsigned int size   = smi_info->curr_msg->data_size;
3363         if (size >= 8 &&
3364             (data[0]>>2) == STORAGE_NETFN &&
3365             data[1] == STORAGE_CMD_GET_SDR &&
3366             data[7] == 0x3A) {
3367                 return_hosed_msg_badsize(smi_info);
3368                 return NOTIFY_STOP;
3369         }
3370         return NOTIFY_DONE;
3371 }
3372
3373 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3374         .notifier_call  = dell_poweredge_bt_xaction_handler,
3375 };
3376
3377 /*
3378  * setup_dell_poweredge_bt_xaction_handler
3379  * @info - smi_info.device_id must be filled in already
3380  *
3381  * Fills in smi_info.device_id.start_transaction_pre_hook
3382  * when we know what function to use there.
3383  */
3384 static void
3385 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3386 {
3387         struct ipmi_device_id *id = &smi_info->device_id;
3388         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3389             smi_info->si_type == SI_BT)
3390                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3391 }
3392
3393 /*
3394  * setup_oem_data_handler
3395  * @info - smi_info.device_id must be filled in already
3396  *
3397  * Fills in smi_info.device_id.oem_data_available_handler
3398  * when we know what function to use there.
3399  */
3400
3401 static void setup_oem_data_handler(struct smi_info *smi_info)
3402 {
3403         setup_dell_poweredge_oem_data_handler(smi_info);
3404 }
3405
3406 static void setup_xaction_handlers(struct smi_info *smi_info)
3407 {
3408         setup_dell_poweredge_bt_xaction_handler(smi_info);
3409 }
3410
3411 static void check_for_broken_irqs(struct smi_info *smi_info)
3412 {
3413         check_clr_rcv_irq(smi_info);
3414         check_set_rcv_irq(smi_info);
3415 }
3416
3417 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3418 {
3419         if (smi_info->thread != NULL)
3420                 kthread_stop(smi_info->thread);
3421         if (smi_info->timer_running)
3422                 del_timer_sync(&smi_info->si_timer);
3423 }
3424
3425 static int is_new_interface(struct smi_info *info)
3426 {
3427         struct smi_info *e;
3428
3429         list_for_each_entry(e, &smi_infos, link) {
3430                 if (e->io.addr_type != info->io.addr_type)
3431                         continue;
3432                 if (e->io.addr_data == info->io.addr_data) {
3433                         /*
3434                          * This is a cheap hack, ACPI doesn't have a defined
3435                          * slave address but SMBIOS does.  Pick it up from
3436                          * any source that has it available.
3437                          */
3438                         if (info->slave_addr && !e->slave_addr)
3439                                 e->slave_addr = info->slave_addr;
3440                         return 0;
3441                 }
3442         }
3443
3444         return 1;
3445 }
3446
3447 static int add_smi(struct smi_info *new_smi)
3448 {
3449         int rv = 0;
3450
3451         mutex_lock(&smi_infos_lock);
3452         if (!is_new_interface(new_smi)) {
3453                 pr_info(PFX "%s-specified %s state machine: duplicate\n",
3454                         ipmi_addr_src_to_str(new_smi->addr_source),
3455                         si_to_str[new_smi->si_type]);
3456                 rv = -EBUSY;
3457                 goto out_err;
3458         }
3459
3460         pr_info(PFX "Adding %s-specified %s state machine\n",
3461                 ipmi_addr_src_to_str(new_smi->addr_source),
3462                 si_to_str[new_smi->si_type]);
3463
3464         /* So we know not to free it unless we have allocated one. */
3465         new_smi->intf = NULL;
3466         new_smi->si_sm = NULL;
3467         new_smi->handlers = NULL;
3468
3469         list_add_tail(&new_smi->link, &smi_infos);
3470
3471 out_err:
3472         mutex_unlock(&smi_infos_lock);
3473         return rv;
3474 }
3475
3476 /*
3477  * Try to start up an interface.  Must be called with smi_infos_lock
3478  * held, primarily to keep smi_num consistent, we only one to do these
3479  * one at a time.
3480  */
3481 static int try_smi_init(struct smi_info *new_smi)
3482 {
3483         int rv = 0;
3484         int i;
3485         char *init_name = NULL;
3486
3487         pr_info(PFX "Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
3488                 ipmi_addr_src_to_str(new_smi->addr_source),
3489                 si_to_str[new_smi->si_type],
3490                 addr_space_to_str[new_smi->io.addr_type],
3491                 new_smi->io.addr_data,
3492                 new_smi->slave_addr, new_smi->irq);
3493
3494         switch (new_smi->si_type) {
3495         case SI_KCS:
3496                 new_smi->handlers = &kcs_smi_handlers;
3497                 break;
3498
3499         case SI_SMIC:
3500                 new_smi->handlers = &smic_smi_handlers;
3501                 break;
3502
3503         case SI_BT:
3504                 new_smi->handlers = &bt_smi_handlers;
3505                 break;
3506
3507         default:
3508                 /* No support for anything else yet. */
3509                 rv = -EIO;
3510                 goto out_err;
3511         }
3512
3513         new_smi->intf_num = smi_num;
3514
3515         /* Do this early so it's available for logs. */
3516         if (!new_smi->dev) {
3517                 init_name = kasprintf(GFP_KERNEL, "ipmi_si.%d",
3518                                       new_smi->intf_num);
3519
3520                 /*
3521                  * If we don't already have a device from something
3522                  * else (like PCI), then register a new one.
3523                  */
3524                 new_smi->pdev = platform_device_alloc("ipmi_si",
3525                                                       new_smi->intf_num);
3526                 if (!new_smi->pdev) {
3527                         pr_err(PFX "Unable to allocate platform device\n");
3528                         goto out_err;
3529                 }
3530                 new_smi->dev = &new_smi->pdev->dev;
3531                 new_smi->dev->driver = &ipmi_driver.driver;
3532                 /* Nulled by device_add() */
3533                 new_smi->dev->init_name = init_name;
3534         }
3535
3536         /* Allocate the state machine's data and initialize it. */
3537         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3538         if (!new_smi->si_sm) {
3539                 pr_err(PFX "Could not allocate state machine memory\n");
3540                 rv = -ENOMEM;
3541                 goto out_err;
3542         }
3543         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3544                                                         &new_smi->io);
3545
3546         /* Now that we know the I/O size, we can set up the I/O. */
3547         rv = new_smi->io_setup(new_smi);
3548         if (rv) {
3549                 dev_err(new_smi->dev, "Could not set up I/O space\n");
3550                 goto out_err;
3551         }
3552
3553         /* Do low-level detection first. */
3554         if (new_smi->handlers->detect(new_smi->si_sm)) {
3555                 if (new_smi->addr_source)
3556                         dev_err(new_smi->dev, "Interface detection failed\n");
3557                 rv = -ENODEV;
3558                 goto out_err;
3559         }
3560
3561         /*
3562          * Attempt a get device id command.  If it fails, we probably
3563          * don't have a BMC here.
3564          */
3565         rv = try_get_dev_id(new_smi);
3566         if (rv) {
3567                 if (new_smi->addr_source)
3568                         dev_err(new_smi->dev, "There appears to be no BMC at this location\n");
3569                 goto out_err;
3570         }
3571
3572         setup_oem_data_handler(new_smi);
3573         setup_xaction_handlers(new_smi);
3574         check_for_broken_irqs(new_smi);
3575
3576         new_smi->waiting_msg = NULL;
3577         new_smi->curr_msg = NULL;
3578         atomic_set(&new_smi->req_events, 0);
3579         new_smi->run_to_completion = false;
3580         for (i = 0; i < SI_NUM_STATS; i++)
3581                 atomic_set(&new_smi->stats[i], 0);
3582
3583         new_smi->interrupt_disabled = true;
3584         atomic_set(&new_smi->need_watch, 0);
3585
3586         rv = try_enable_event_buffer(new_smi);
3587         if (rv == 0)
3588                 new_smi->has_event_buffer = true;
3589
3590         /*
3591          * Start clearing the flags before we enable interrupts or the
3592          * timer to avoid racing with the timer.
3593          */
3594         start_clear_flags(new_smi, false);
3595
3596         /*
3597          * IRQ is defined to be set when non-zero.  req_events will
3598          * cause a global flags check that will enable interrupts.
3599          */
3600         if (new_smi->irq) {
3601                 new_smi->interrupt_disabled = false;
3602                 atomic_set(&new_smi->req_events, 1);
3603         }
3604
3605         if (new_smi->pdev) {
3606                 rv = platform_device_add(new_smi->pdev);
3607                 if (rv) {
3608                         dev_err(new_smi->dev,
3609                                 "Unable to register system interface device: %d\n",
3610                                 rv);
3611                         goto out_err;
3612                 }
3613                 new_smi->dev_registered = true;
3614         }
3615
3616         rv = ipmi_register_smi(&handlers,
3617                                new_smi,
3618                                &new_smi->device_id,
3619                                new_smi->dev,
3620                                new_smi->slave_addr);
3621         if (rv) {
3622                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3623                         rv);
3624                 goto out_err_stop_timer;
3625         }
3626
3627         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3628                                      &smi_type_proc_ops,
3629                                      new_smi);
3630         if (rv) {
3631                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3632                 goto out_err_stop_timer;
3633         }
3634
3635         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3636                                      &smi_si_stats_proc_ops,
3637                                      new_smi);
3638         if (rv) {
3639                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3640                 goto out_err_stop_timer;
3641         }
3642
3643         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3644                                      &smi_params_proc_ops,
3645                                      new_smi);
3646         if (rv) {
3647                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3648                 goto out_err_stop_timer;
3649         }
3650
3651         /* Don't increment till we know we have succeeded. */
3652         smi_num++;
3653
3654         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3655                  si_to_str[new_smi->si_type]);
3656
3657         WARN_ON(new_smi->dev->init_name != NULL);
3658         kfree(init_name);
3659
3660         return 0;
3661
3662 out_err_stop_timer:
3663         wait_for_timer_and_thread(new_smi);
3664
3665 out_err:
3666         new_smi->interrupt_disabled = true;
3667
3668         if (new_smi->intf) {
3669                 ipmi_smi_t intf = new_smi->intf;
3670                 new_smi->intf = NULL;
3671                 ipmi_unregister_smi(intf);
3672         }
3673
3674         if (new_smi->irq_cleanup) {
3675                 new_smi->irq_cleanup(new_smi);
3676                 new_smi->irq_cleanup = NULL;
3677         }
3678
3679         /*
3680          * Wait until we know that we are out of any interrupt
3681          * handlers might have been running before we freed the
3682          * interrupt.
3683          */
3684         synchronize_sched();
3685
3686         if (new_smi->si_sm) {
3687                 if (new_smi->handlers)
3688                         new_smi->handlers->cleanup(new_smi->si_sm);
3689                 kfree(new_smi->si_sm);
3690                 new_smi->si_sm = NULL;
3691         }
3692         if (new_smi->addr_source_cleanup) {
3693                 new_smi->addr_source_cleanup(new_smi);
3694                 new_smi->addr_source_cleanup = NULL;
3695         }
3696         if (new_smi->io_cleanup) {
3697                 new_smi->io_cleanup(new_smi);
3698                 new_smi->io_cleanup = NULL;
3699         }
3700
3701         if (new_smi->dev_registered) {
3702                 platform_device_unregister(new_smi->pdev);
3703                 new_smi->dev_registered = false;
3704                 new_smi->pdev = NULL;
3705         } else if (new_smi->pdev) {
3706                 platform_device_put(new_smi->pdev);
3707                 new_smi->pdev = NULL;
3708         }
3709
3710         kfree(init_name);
3711
3712         return rv;
3713 }
3714
3715 static int init_ipmi_si(void)
3716 {
3717         int  i;
3718         char *str;
3719         int  rv;
3720         struct smi_info *e;
3721         enum ipmi_addr_src type = SI_INVALID;
3722
3723         if (initialized)
3724                 return 0;
3725         initialized = 1;
3726
3727         if (si_tryplatform) {
3728                 rv = platform_driver_register(&ipmi_driver);
3729                 if (rv) {
3730                         pr_err(PFX "Unable to register driver: %d\n", rv);
3731                         return rv;
3732                 }
3733         }
3734
3735         /* Parse out the si_type string into its components. */
3736         str = si_type_str;
3737         if (*str != '\0') {
3738                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3739                         si_type[i] = str;
3740                         str = strchr(str, ',');
3741                         if (str) {
3742                                 *str = '\0';
3743                                 str++;
3744                         } else {
3745                                 break;
3746                         }
3747                 }
3748         }
3749
3750         pr_info("IPMI System Interface driver.\n");
3751
3752         /* If the user gave us a device, they presumably want us to use it */
3753         if (!hardcode_find_bmc())
3754                 return 0;
3755
3756 #ifdef CONFIG_PCI
3757         if (si_trypci) {
3758                 rv = pci_register_driver(&ipmi_pci_driver);
3759                 if (rv)
3760                         pr_err(PFX "Unable to register PCI driver: %d\n", rv);
3761                 else
3762                         pci_registered = true;
3763         }
3764 #endif
3765
3766 #ifdef CONFIG_ACPI
3767         if (si_tryacpi)
3768                 spmi_find_bmc();
3769 #endif
3770
3771 #ifdef CONFIG_PARISC
3772         register_parisc_driver(&ipmi_parisc_driver);
3773         parisc_registered = true;
3774 #endif
3775
3776         /* We prefer devices with interrupts, but in the case of a machine
3777            with multiple BMCs we assume that there will be several instances
3778            of a given type so if we succeed in registering a type then also
3779            try to register everything else of the same type */
3780
3781         mutex_lock(&smi_infos_lock);
3782         list_for_each_entry(e, &smi_infos, link) {
3783                 /* Try to register a device if it has an IRQ and we either
3784                    haven't successfully registered a device yet or this
3785                    device has the same type as one we successfully registered */
3786                 if (e->irq && (!type || e->addr_source == type)) {
3787                         if (!try_smi_init(e)) {
3788                                 type = e->addr_source;
3789                         }
3790                 }
3791         }
3792
3793         /* type will only have been set if we successfully registered an si */
3794         if (type) {
3795                 mutex_unlock(&smi_infos_lock);
3796                 return 0;
3797         }
3798
3799         /* Fall back to the preferred device */
3800
3801         list_for_each_entry(e, &smi_infos, link) {
3802                 if (!e->irq && (!type || e->addr_source == type)) {
3803                         if (!try_smi_init(e)) {
3804                                 type = e->addr_source;
3805                         }
3806                 }
3807         }
3808         mutex_unlock(&smi_infos_lock);
3809
3810         if (type)
3811                 return 0;
3812
3813         mutex_lock(&smi_infos_lock);
3814         if (unload_when_empty && list_empty(&smi_infos)) {
3815                 mutex_unlock(&smi_infos_lock);
3816                 cleanup_ipmi_si();
3817                 pr_warn(PFX "Unable to find any System Interface(s)\n");
3818                 return -ENODEV;
3819         } else {
3820                 mutex_unlock(&smi_infos_lock);
3821                 return 0;
3822         }
3823 }
3824 module_init(init_ipmi_si);
3825
3826 static void cleanup_one_si(struct smi_info *to_clean)
3827 {
3828         int           rv = 0;
3829
3830         if (!to_clean)
3831                 return;
3832
3833         if (to_clean->intf) {
3834                 ipmi_smi_t intf = to_clean->intf;
3835
3836                 to_clean->intf = NULL;
3837                 rv = ipmi_unregister_smi(intf);
3838                 if (rv) {
3839                         pr_err(PFX "Unable to unregister device: errno=%d\n",
3840                                rv);
3841                 }
3842         }
3843
3844         if (to_clean->dev)
3845                 dev_set_drvdata(to_clean->dev, NULL);
3846
3847         list_del(&to_clean->link);
3848
3849         /*
3850          * Make sure that interrupts, the timer and the thread are
3851          * stopped and will not run again.
3852          */
3853         if (to_clean->irq_cleanup)
3854                 to_clean->irq_cleanup(to_clean);
3855         wait_for_timer_and_thread(to_clean);
3856
3857         /*
3858          * Timeouts are stopped, now make sure the interrupts are off
3859          * in the BMC.  Note that timers and CPU interrupts are off,
3860          * so no need for locks.
3861          */
3862         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3863                 poll(to_clean);
3864                 schedule_timeout_uninterruptible(1);
3865         }
3866         disable_si_irq(to_clean, false);
3867         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3868                 poll(to_clean);
3869                 schedule_timeout_uninterruptible(1);
3870         }
3871
3872         if (to_clean->handlers)
3873                 to_clean->handlers->cleanup(to_clean->si_sm);
3874
3875         kfree(to_clean->si_sm);
3876
3877         if (to_clean->addr_source_cleanup)
3878                 to_clean->addr_source_cleanup(to_clean);
3879         if (to_clean->io_cleanup)
3880                 to_clean->io_cleanup(to_clean);
3881
3882         if (to_clean->dev_registered)
3883                 platform_device_unregister(to_clean->pdev);
3884
3885         kfree(to_clean);
3886 }
3887
3888 static void cleanup_ipmi_si(void)
3889 {
3890         struct smi_info *e, *tmp_e;
3891
3892         if (!initialized)
3893                 return;
3894
3895 #ifdef CONFIG_PCI
3896         if (pci_registered)
3897                 pci_unregister_driver(&ipmi_pci_driver);
3898 #endif
3899 #ifdef CONFIG_PARISC
3900         if (parisc_registered)
3901                 unregister_parisc_driver(&ipmi_parisc_driver);
3902 #endif
3903
3904         platform_driver_unregister(&ipmi_driver);
3905
3906         mutex_lock(&smi_infos_lock);
3907         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3908                 cleanup_one_si(e);
3909         mutex_unlock(&smi_infos_lock);
3910 }
3911 module_exit(cleanup_ipmi_si);
3912
3913 MODULE_ALIAS("platform:dmi-ipmi-si");
3914 MODULE_LICENSE("GPL");
3915 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3916 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3917                    " system interfaces.");