]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/clocksource/arm_arch_timer.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / drivers / clocksource / arm_arch_timer.c
1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/sched_clock.h>
25 #include <linux/acpi.h>
26
27 #include <asm/arch_timer.h>
28 #include <asm/virt.h>
29
30 #include <clocksource/arm_arch_timer.h>
31
32 #define CNTTIDR         0x08
33 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
34
35 #define CNTACR(n)       (0x40 + ((n) * 4))
36 #define CNTACR_RPCT     BIT(0)
37 #define CNTACR_RVCT     BIT(1)
38 #define CNTACR_RFRQ     BIT(2)
39 #define CNTACR_RVOFF    BIT(3)
40 #define CNTACR_RWVT     BIT(4)
41 #define CNTACR_RWPT     BIT(5)
42
43 #define CNTVCT_LO       0x08
44 #define CNTVCT_HI       0x0c
45 #define CNTFRQ          0x10
46 #define CNTP_TVAL       0x28
47 #define CNTP_CTL        0x2c
48 #define CNTV_TVAL       0x38
49 #define CNTV_CTL        0x3c
50
51 #define ARCH_CP15_TIMER BIT(0)
52 #define ARCH_MEM_TIMER  BIT(1)
53 static unsigned arch_timers_present __initdata;
54
55 static void __iomem *arch_counter_base;
56
57 struct arch_timer {
58         void __iomem *base;
59         struct clock_event_device evt;
60 };
61
62 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
63
64 static u32 arch_timer_rate;
65
66 enum ppi_nr {
67         PHYS_SECURE_PPI,
68         PHYS_NONSECURE_PPI,
69         VIRT_PPI,
70         HYP_PPI,
71         MAX_TIMER_PPI
72 };
73
74 static int arch_timer_ppi[MAX_TIMER_PPI];
75
76 static struct clock_event_device __percpu *arch_timer_evt;
77
78 static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
79 static bool arch_timer_c3stop;
80 static bool arch_timer_mem_use_virtual;
81
82 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
83
84 static int __init early_evtstrm_cfg(char *buf)
85 {
86         return strtobool(buf, &evtstrm_enable);
87 }
88 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
89
90 /*
91  * Architected system timer support.
92  */
93
94 static __always_inline
95 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
96                           struct clock_event_device *clk)
97 {
98         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
99                 struct arch_timer *timer = to_arch_timer(clk);
100                 switch (reg) {
101                 case ARCH_TIMER_REG_CTRL:
102                         writel_relaxed(val, timer->base + CNTP_CTL);
103                         break;
104                 case ARCH_TIMER_REG_TVAL:
105                         writel_relaxed(val, timer->base + CNTP_TVAL);
106                         break;
107                 }
108         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
109                 struct arch_timer *timer = to_arch_timer(clk);
110                 switch (reg) {
111                 case ARCH_TIMER_REG_CTRL:
112                         writel_relaxed(val, timer->base + CNTV_CTL);
113                         break;
114                 case ARCH_TIMER_REG_TVAL:
115                         writel_relaxed(val, timer->base + CNTV_TVAL);
116                         break;
117                 }
118         } else {
119                 arch_timer_reg_write_cp15(access, reg, val);
120         }
121 }
122
123 static __always_inline
124 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
125                         struct clock_event_device *clk)
126 {
127         u32 val;
128
129         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
130                 struct arch_timer *timer = to_arch_timer(clk);
131                 switch (reg) {
132                 case ARCH_TIMER_REG_CTRL:
133                         val = readl_relaxed(timer->base + CNTP_CTL);
134                         break;
135                 case ARCH_TIMER_REG_TVAL:
136                         val = readl_relaxed(timer->base + CNTP_TVAL);
137                         break;
138                 }
139         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
140                 struct arch_timer *timer = to_arch_timer(clk);
141                 switch (reg) {
142                 case ARCH_TIMER_REG_CTRL:
143                         val = readl_relaxed(timer->base + CNTV_CTL);
144                         break;
145                 case ARCH_TIMER_REG_TVAL:
146                         val = readl_relaxed(timer->base + CNTV_TVAL);
147                         break;
148                 }
149         } else {
150                 val = arch_timer_reg_read_cp15(access, reg);
151         }
152
153         return val;
154 }
155
156 static __always_inline irqreturn_t timer_handler(const int access,
157                                         struct clock_event_device *evt)
158 {
159         unsigned long ctrl;
160
161         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
162         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
163                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
164                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
165                 evt->event_handler(evt);
166                 return IRQ_HANDLED;
167         }
168
169         return IRQ_NONE;
170 }
171
172 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
173 {
174         struct clock_event_device *evt = dev_id;
175
176         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
177 }
178
179 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
180 {
181         struct clock_event_device *evt = dev_id;
182
183         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
184 }
185
186 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
187 {
188         struct clock_event_device *evt = dev_id;
189
190         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
191 }
192
193 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
194 {
195         struct clock_event_device *evt = dev_id;
196
197         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
198 }
199
200 static __always_inline int timer_shutdown(const int access,
201                                           struct clock_event_device *clk)
202 {
203         unsigned long ctrl;
204
205         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
206         ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
207         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
208
209         return 0;
210 }
211
212 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
213 {
214         return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
215 }
216
217 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
218 {
219         return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
220 }
221
222 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
223 {
224         return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
225 }
226
227 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
228 {
229         return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
230 }
231
232 static __always_inline void set_next_event(const int access, unsigned long evt,
233                                            struct clock_event_device *clk)
234 {
235         unsigned long ctrl;
236         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
237         ctrl |= ARCH_TIMER_CTRL_ENABLE;
238         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
239         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
240         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
241 }
242
243 static int arch_timer_set_next_event_virt(unsigned long evt,
244                                           struct clock_event_device *clk)
245 {
246         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
247         return 0;
248 }
249
250 static int arch_timer_set_next_event_phys(unsigned long evt,
251                                           struct clock_event_device *clk)
252 {
253         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
254         return 0;
255 }
256
257 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
258                                               struct clock_event_device *clk)
259 {
260         set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
261         return 0;
262 }
263
264 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
265                                               struct clock_event_device *clk)
266 {
267         set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
268         return 0;
269 }
270
271 static void __arch_timer_setup(unsigned type,
272                                struct clock_event_device *clk)
273 {
274         clk->features = CLOCK_EVT_FEAT_ONESHOT;
275
276         if (type == ARCH_CP15_TIMER) {
277                 if (arch_timer_c3stop)
278                         clk->features |= CLOCK_EVT_FEAT_C3STOP;
279                 clk->name = "arch_sys_timer";
280                 clk->rating = 450;
281                 clk->cpumask = cpumask_of(smp_processor_id());
282                 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
283                 switch (arch_timer_uses_ppi) {
284                 case VIRT_PPI:
285                         clk->set_state_shutdown = arch_timer_shutdown_virt;
286                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
287                         clk->set_next_event = arch_timer_set_next_event_virt;
288                         break;
289                 case PHYS_SECURE_PPI:
290                 case PHYS_NONSECURE_PPI:
291                 case HYP_PPI:
292                         clk->set_state_shutdown = arch_timer_shutdown_phys;
293                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
294                         clk->set_next_event = arch_timer_set_next_event_phys;
295                         break;
296                 default:
297                         BUG();
298                 }
299         } else {
300                 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
301                 clk->name = "arch_mem_timer";
302                 clk->rating = 400;
303                 clk->cpumask = cpu_all_mask;
304                 if (arch_timer_mem_use_virtual) {
305                         clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
306                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
307                         clk->set_next_event =
308                                 arch_timer_set_next_event_virt_mem;
309                 } else {
310                         clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
311                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
312                         clk->set_next_event =
313                                 arch_timer_set_next_event_phys_mem;
314                 }
315         }
316
317         clk->set_state_shutdown(clk);
318
319         clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
320 }
321
322 static void arch_timer_evtstrm_enable(int divider)
323 {
324         u32 cntkctl = arch_timer_get_cntkctl();
325
326         cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
327         /* Set the divider and enable virtual event stream */
328         cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
329                         | ARCH_TIMER_VIRT_EVT_EN;
330         arch_timer_set_cntkctl(cntkctl);
331         elf_hwcap |= HWCAP_EVTSTRM;
332 #ifdef CONFIG_COMPAT
333         compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
334 #endif
335 }
336
337 static void arch_timer_configure_evtstream(void)
338 {
339         int evt_stream_div, pos;
340
341         /* Find the closest power of two to the divisor */
342         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
343         pos = fls(evt_stream_div);
344         if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
345                 pos--;
346         /* enable event stream */
347         arch_timer_evtstrm_enable(min(pos, 15));
348 }
349
350 static void arch_counter_set_user_access(void)
351 {
352         u32 cntkctl = arch_timer_get_cntkctl();
353
354         /* Disable user access to the timers and the physical counter */
355         /* Also disable virtual event stream */
356         cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
357                         | ARCH_TIMER_USR_VT_ACCESS_EN
358                         | ARCH_TIMER_VIRT_EVT_EN
359                         | ARCH_TIMER_USR_PCT_ACCESS_EN);
360
361         /* Enable user access to the virtual counter */
362         cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
363
364         arch_timer_set_cntkctl(cntkctl);
365 }
366
367 static bool arch_timer_has_nonsecure_ppi(void)
368 {
369         return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
370                 arch_timer_ppi[PHYS_NONSECURE_PPI]);
371 }
372
373 static int arch_timer_setup(struct clock_event_device *clk)
374 {
375         __arch_timer_setup(ARCH_CP15_TIMER, clk);
376
377         enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], 0);
378
379         if (arch_timer_has_nonsecure_ppi())
380                 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
381
382         arch_counter_set_user_access();
383         if (evtstrm_enable)
384                 arch_timer_configure_evtstream();
385
386         return 0;
387 }
388
389 static void
390 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
391 {
392         /* Who has more than one independent system counter? */
393         if (arch_timer_rate)
394                 return;
395
396         /*
397          * Try to determine the frequency from the device tree or CNTFRQ,
398          * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
399          */
400         if (!acpi_disabled ||
401             of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
402                 if (cntbase)
403                         arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
404                 else
405                         arch_timer_rate = arch_timer_get_cntfrq();
406         }
407
408         /* Check the timer frequency. */
409         if (arch_timer_rate == 0)
410                 pr_warn("Architected timer frequency not available\n");
411 }
412
413 static void arch_timer_banner(unsigned type)
414 {
415         pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
416                      type & ARCH_CP15_TIMER ? "cp15" : "",
417                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
418                      type & ARCH_MEM_TIMER ? "mmio" : "",
419                      (unsigned long)arch_timer_rate / 1000000,
420                      (unsigned long)(arch_timer_rate / 10000) % 100,
421                      type & ARCH_CP15_TIMER ?
422                      (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
423                         "",
424                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
425                      type & ARCH_MEM_TIMER ?
426                         arch_timer_mem_use_virtual ? "virt" : "phys" :
427                         "");
428 }
429
430 u32 arch_timer_get_rate(void)
431 {
432         return arch_timer_rate;
433 }
434
435 static u64 arch_counter_get_cntvct_mem(void)
436 {
437         u32 vct_lo, vct_hi, tmp_hi;
438
439         do {
440                 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
441                 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
442                 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
443         } while (vct_hi != tmp_hi);
444
445         return ((u64) vct_hi << 32) | vct_lo;
446 }
447
448 /*
449  * Default to cp15 based access because arm64 uses this function for
450  * sched_clock() before DT is probed and the cp15 method is guaranteed
451  * to exist on arm64. arm doesn't use this before DT is probed so even
452  * if we don't have the cp15 accessors we won't have a problem.
453  */
454 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
455
456 static cycle_t arch_counter_read(struct clocksource *cs)
457 {
458         return arch_timer_read_counter();
459 }
460
461 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
462 {
463         return arch_timer_read_counter();
464 }
465
466 static struct clocksource clocksource_counter = {
467         .name   = "arch_sys_counter",
468         .rating = 400,
469         .read   = arch_counter_read,
470         .mask   = CLOCKSOURCE_MASK(56),
471         .flags  = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
472 };
473
474 static struct cyclecounter cyclecounter = {
475         .read   = arch_counter_read_cc,
476         .mask   = CLOCKSOURCE_MASK(56),
477 };
478
479 static struct arch_timer_kvm_info arch_timer_kvm_info;
480
481 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
482 {
483         return &arch_timer_kvm_info;
484 }
485
486 static void __init arch_counter_register(unsigned type)
487 {
488         u64 start_count;
489
490         /* Register the CP15 based counter if we have one */
491         if (type & ARCH_CP15_TIMER) {
492                 if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
493                         arch_timer_read_counter = arch_counter_get_cntvct;
494                 else
495                         arch_timer_read_counter = arch_counter_get_cntpct;
496         } else {
497                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
498
499                 /* If the clocksource name is "arch_sys_counter" the
500                  * VDSO will attempt to read the CP15-based counter.
501                  * Ensure this does not happen when CP15-based
502                  * counter is not available.
503                  */
504                 clocksource_counter.name = "arch_mem_counter";
505         }
506
507         start_count = arch_timer_read_counter();
508         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
509         cyclecounter.mult = clocksource_counter.mult;
510         cyclecounter.shift = clocksource_counter.shift;
511         timecounter_init(&arch_timer_kvm_info.timecounter,
512                          &cyclecounter, start_count);
513
514         /* 56 bits minimum, so we assume worst case rollover */
515         sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
516 }
517
518 static void arch_timer_stop(struct clock_event_device *clk)
519 {
520         pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
521                  clk->irq, smp_processor_id());
522
523         disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
524         if (arch_timer_has_nonsecure_ppi())
525                 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
526
527         clk->set_state_shutdown(clk);
528 }
529
530 static int arch_timer_cpu_notify(struct notifier_block *self,
531                                            unsigned long action, void *hcpu)
532 {
533         /*
534          * Grab cpu pointer in each case to avoid spurious
535          * preemptible warnings
536          */
537         switch (action & ~CPU_TASKS_FROZEN) {
538         case CPU_STARTING:
539                 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
540                 break;
541         case CPU_DYING:
542                 arch_timer_stop(this_cpu_ptr(arch_timer_evt));
543                 break;
544         }
545
546         return NOTIFY_OK;
547 }
548
549 static struct notifier_block arch_timer_cpu_nb = {
550         .notifier_call = arch_timer_cpu_notify,
551 };
552
553 #ifdef CONFIG_CPU_PM
554 static unsigned int saved_cntkctl;
555 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
556                                     unsigned long action, void *hcpu)
557 {
558         if (action == CPU_PM_ENTER)
559                 saved_cntkctl = arch_timer_get_cntkctl();
560         else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
561                 arch_timer_set_cntkctl(saved_cntkctl);
562         return NOTIFY_OK;
563 }
564
565 static struct notifier_block arch_timer_cpu_pm_notifier = {
566         .notifier_call = arch_timer_cpu_pm_notify,
567 };
568
569 static int __init arch_timer_cpu_pm_init(void)
570 {
571         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
572 }
573 #else
574 static int __init arch_timer_cpu_pm_init(void)
575 {
576         return 0;
577 }
578 #endif
579
580 static int __init arch_timer_register(void)
581 {
582         int err;
583         int ppi;
584
585         arch_timer_evt = alloc_percpu(struct clock_event_device);
586         if (!arch_timer_evt) {
587                 err = -ENOMEM;
588                 goto out;
589         }
590
591         ppi = arch_timer_ppi[arch_timer_uses_ppi];
592         switch (arch_timer_uses_ppi) {
593         case VIRT_PPI:
594                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
595                                          "arch_timer", arch_timer_evt);
596                 break;
597         case PHYS_SECURE_PPI:
598         case PHYS_NONSECURE_PPI:
599                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
600                                          "arch_timer", arch_timer_evt);
601                 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
602                         ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
603                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
604                                                  "arch_timer", arch_timer_evt);
605                         if (err)
606                                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
607                                                 arch_timer_evt);
608                 }
609                 break;
610         case HYP_PPI:
611                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
612                                          "arch_timer", arch_timer_evt);
613                 break;
614         default:
615                 BUG();
616         }
617
618         if (err) {
619                 pr_err("arch_timer: can't register interrupt %d (%d)\n",
620                        ppi, err);
621                 goto out_free;
622         }
623
624         err = register_cpu_notifier(&arch_timer_cpu_nb);
625         if (err)
626                 goto out_free_irq;
627
628         err = arch_timer_cpu_pm_init();
629         if (err)
630                 goto out_unreg_notify;
631
632         /* Immediately configure the timer on the boot CPU */
633         arch_timer_setup(this_cpu_ptr(arch_timer_evt));
634
635         return 0;
636
637 out_unreg_notify:
638         unregister_cpu_notifier(&arch_timer_cpu_nb);
639 out_free_irq:
640         free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
641         if (arch_timer_has_nonsecure_ppi())
642                 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
643                                 arch_timer_evt);
644
645 out_free:
646         free_percpu(arch_timer_evt);
647 out:
648         return err;
649 }
650
651 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
652 {
653         int ret;
654         irq_handler_t func;
655         struct arch_timer *t;
656
657         t = kzalloc(sizeof(*t), GFP_KERNEL);
658         if (!t)
659                 return -ENOMEM;
660
661         t->base = base;
662         t->evt.irq = irq;
663         __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
664
665         if (arch_timer_mem_use_virtual)
666                 func = arch_timer_handler_virt_mem;
667         else
668                 func = arch_timer_handler_phys_mem;
669
670         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
671         if (ret) {
672                 pr_err("arch_timer: Failed to request mem timer irq\n");
673                 kfree(t);
674         }
675
676         return ret;
677 }
678
679 static const struct of_device_id arch_timer_of_match[] __initconst = {
680         { .compatible   = "arm,armv7-timer",    },
681         { .compatible   = "arm,armv8-timer",    },
682         {},
683 };
684
685 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
686         { .compatible   = "arm,armv7-timer-mem", },
687         {},
688 };
689
690 static bool __init
691 arch_timer_needs_probing(int type, const struct of_device_id *matches)
692 {
693         struct device_node *dn;
694         bool needs_probing = false;
695
696         dn = of_find_matching_node(NULL, matches);
697         if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
698                 needs_probing = true;
699         of_node_put(dn);
700
701         return needs_probing;
702 }
703
704 static int __init arch_timer_common_init(void)
705 {
706         unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
707
708         /* Wait until both nodes are probed if we have two timers */
709         if ((arch_timers_present & mask) != mask) {
710                 if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
711                         return 0;
712                 if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
713                         return 0;
714         }
715
716         arch_timer_banner(arch_timers_present);
717         arch_counter_register(arch_timers_present);
718         return arch_timer_arch_init();
719 }
720
721 static int __init arch_timer_init(void)
722 {
723         int ret;
724         /*
725          * If HYP mode is available, we know that the physical timer
726          * has been configured to be accessible from PL1. Use it, so
727          * that a guest can use the virtual timer instead.
728          *
729          * If no interrupt provided for virtual timer, we'll have to
730          * stick to the physical timer. It'd better be accessible...
731          *
732          * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
733          * accesses to CNTP_*_EL1 registers are silently redirected to
734          * their CNTHP_*_EL2 counterparts, and use a different PPI
735          * number.
736          */
737         if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
738                 bool has_ppi;
739
740                 if (is_kernel_in_hyp_mode()) {
741                         arch_timer_uses_ppi = HYP_PPI;
742                         has_ppi = !!arch_timer_ppi[HYP_PPI];
743                 } else {
744                         arch_timer_uses_ppi = PHYS_SECURE_PPI;
745                         has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
746                                    !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
747                 }
748
749                 if (!has_ppi) {
750                         pr_warn("arch_timer: No interrupt available, giving up\n");
751                         return -EINVAL;
752                 }
753         }
754
755         ret = arch_timer_register();
756         if (ret)
757                 return ret;
758
759         ret = arch_timer_common_init();
760         if (ret)
761                 return ret;
762
763         arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
764         
765         return 0;
766 }
767
768 static int __init arch_timer_of_init(struct device_node *np)
769 {
770         int i;
771
772         if (arch_timers_present & ARCH_CP15_TIMER) {
773                 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
774                 return 0;
775         }
776
777         arch_timers_present |= ARCH_CP15_TIMER;
778         for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
779                 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
780
781         arch_timer_detect_rate(NULL, np);
782
783         arch_timer_c3stop = !of_property_read_bool(np, "always-on");
784
785         /*
786          * If we cannot rely on firmware initializing the timer registers then
787          * we should use the physical timers instead.
788          */
789         if (IS_ENABLED(CONFIG_ARM) &&
790             of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
791                 arch_timer_uses_ppi = PHYS_SECURE_PPI;
792
793         return arch_timer_init();
794 }
795 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
796 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
797
798 static int __init arch_timer_mem_init(struct device_node *np)
799 {
800         struct device_node *frame, *best_frame = NULL;
801         void __iomem *cntctlbase, *base;
802         unsigned int irq, ret = -EINVAL;
803         u32 cnttidr;
804
805         arch_timers_present |= ARCH_MEM_TIMER;
806         cntctlbase = of_iomap(np, 0);
807         if (!cntctlbase) {
808                 pr_err("arch_timer: Can't find CNTCTLBase\n");
809                 return -ENXIO;
810         }
811
812         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
813
814         /*
815          * Try to find a virtual capable frame. Otherwise fall back to a
816          * physical capable frame.
817          */
818         for_each_available_child_of_node(np, frame) {
819                 int n;
820                 u32 cntacr;
821
822                 if (of_property_read_u32(frame, "frame-number", &n)) {
823                         pr_err("arch_timer: Missing frame-number\n");
824                         of_node_put(frame);
825                         goto out;
826                 }
827
828                 /* Try enabling everything, and see what sticks */
829                 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
830                          CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
831                 writel_relaxed(cntacr, cntctlbase + CNTACR(n));
832                 cntacr = readl_relaxed(cntctlbase + CNTACR(n));
833
834                 if ((cnttidr & CNTTIDR_VIRT(n)) &&
835                     !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
836                         of_node_put(best_frame);
837                         best_frame = frame;
838                         arch_timer_mem_use_virtual = true;
839                         break;
840                 }
841
842                 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
843                         continue;
844
845                 of_node_put(best_frame);
846                 best_frame = of_node_get(frame);
847         }
848
849         ret= -ENXIO;
850         base = arch_counter_base = of_iomap(best_frame, 0);
851         if (!base) {
852                 pr_err("arch_timer: Can't map frame's registers\n");
853                 goto out;
854         }
855
856         if (arch_timer_mem_use_virtual)
857                 irq = irq_of_parse_and_map(best_frame, 1);
858         else
859                 irq = irq_of_parse_and_map(best_frame, 0);
860
861         ret = -EINVAL;
862         if (!irq) {
863                 pr_err("arch_timer: Frame missing %s irq",
864                        arch_timer_mem_use_virtual ? "virt" : "phys");
865                 goto out;
866         }
867
868         arch_timer_detect_rate(base, np);
869         ret = arch_timer_mem_register(base, irq);
870         if (ret)
871                 goto out;
872
873         return arch_timer_common_init();
874 out:
875         iounmap(cntctlbase);
876         of_node_put(best_frame);
877         return ret;
878 }
879 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
880                        arch_timer_mem_init);
881
882 #ifdef CONFIG_ACPI
883 static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
884 {
885         int trigger, polarity;
886
887         if (!interrupt)
888                 return 0;
889
890         trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
891                         : ACPI_LEVEL_SENSITIVE;
892
893         polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
894                         : ACPI_ACTIVE_HIGH;
895
896         return acpi_register_gsi(NULL, interrupt, trigger, polarity);
897 }
898
899 /* Initialize per-processor generic timer */
900 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
901 {
902         struct acpi_table_gtdt *gtdt;
903
904         if (arch_timers_present & ARCH_CP15_TIMER) {
905                 pr_warn("arch_timer: already initialized, skipping\n");
906                 return -EINVAL;
907         }
908
909         gtdt = container_of(table, struct acpi_table_gtdt, header);
910
911         arch_timers_present |= ARCH_CP15_TIMER;
912
913         arch_timer_ppi[PHYS_SECURE_PPI] =
914                 map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
915                 gtdt->secure_el1_flags);
916
917         arch_timer_ppi[PHYS_NONSECURE_PPI] =
918                 map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
919                 gtdt->non_secure_el1_flags);
920
921         arch_timer_ppi[VIRT_PPI] =
922                 map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
923                 gtdt->virtual_timer_flags);
924
925         arch_timer_ppi[HYP_PPI] =
926                 map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
927                 gtdt->non_secure_el2_flags);
928
929         /* Get the frequency from CNTFRQ */
930         arch_timer_detect_rate(NULL, NULL);
931
932         /* Always-on capability */
933         arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
934
935         arch_timer_init();
936         return 0;
937 }
938 CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
939 #endif