]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/clocksource/cadence_ttc_timer.c
Merge tag 'mfd-for-linus-3.16-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / drivers / clocksource / cadence_ttc_timer.c
1 /*
2  * This file contains driver for the Cadence Triple Timer Counter Rev 06
3  *
4  *  Copyright (C) 2011-2013 Xilinx
5  *
6  * based on arch/mips/kernel/time.c timer driver
7  *
8  * This software is licensed under the terms of the GNU General Public
9  * License version 2, as published by the Free Software Foundation, and
10  * may be copied, distributed, and modified under those terms.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17
18 #include <linux/clk.h>
19 #include <linux/clk-provider.h>
20 #include <linux/interrupt.h>
21 #include <linux/clockchips.h>
22 #include <linux/of_address.h>
23 #include <linux/of_irq.h>
24 #include <linux/slab.h>
25 #include <linux/sched_clock.h>
26
27 /*
28  * This driver configures the 2 16-bit count-up timers as follows:
29  *
30  * T1: Timer 1, clocksource for generic timekeeping
31  * T2: Timer 2, clockevent source for hrtimers
32  * T3: Timer 3, <unused>
33  *
34  * The input frequency to the timer module for emulation is 2.5MHz which is
35  * common to all the timer channels (T1, T2, and T3). With a pre-scaler of 32,
36  * the timers are clocked at 78.125KHz (12.8 us resolution).
37
38  * The input frequency to the timer module in silicon is configurable and
39  * obtained from device tree. The pre-scaler of 32 is used.
40  */
41
42 /*
43  * Timer Register Offset Definitions of Timer 1, Increment base address by 4
44  * and use same offsets for Timer 2
45  */
46 #define TTC_CLK_CNTRL_OFFSET            0x00 /* Clock Control Reg, RW */
47 #define TTC_CNT_CNTRL_OFFSET            0x0C /* Counter Control Reg, RW */
48 #define TTC_COUNT_VAL_OFFSET            0x18 /* Counter Value Reg, RO */
49 #define TTC_INTR_VAL_OFFSET             0x24 /* Interval Count Reg, RW */
50 #define TTC_ISR_OFFSET          0x54 /* Interrupt Status Reg, RO */
51 #define TTC_IER_OFFSET          0x60 /* Interrupt Enable Reg, RW */
52
53 #define TTC_CNT_CNTRL_DISABLE_MASK      0x1
54
55 #define TTC_CLK_CNTRL_CSRC_MASK         (1 << 5)        /* clock source */
56 #define TTC_CLK_CNTRL_PSV_MASK          0x1e
57 #define TTC_CLK_CNTRL_PSV_SHIFT         1
58
59 /*
60  * Setup the timers to use pre-scaling, using a fixed value for now that will
61  * work across most input frequency, but it may need to be more dynamic
62  */
63 #define PRESCALE_EXPONENT       11      /* 2 ^ PRESCALE_EXPONENT = PRESCALE */
64 #define PRESCALE                2048    /* The exponent must match this */
65 #define CLK_CNTRL_PRESCALE      ((PRESCALE_EXPONENT - 1) << 1)
66 #define CLK_CNTRL_PRESCALE_EN   1
67 #define CNT_CNTRL_RESET         (1 << 4)
68
69 #define MAX_F_ERR 50
70
71 /**
72  * struct ttc_timer - This definition defines local timer structure
73  *
74  * @base_addr:  Base address of timer
75  * @freq:       Timer input clock frequency
76  * @clk:        Associated clock source
77  * @clk_rate_change_nb  Notifier block for clock rate changes
78  */
79 struct ttc_timer {
80         void __iomem *base_addr;
81         unsigned long freq;
82         struct clk *clk;
83         struct notifier_block clk_rate_change_nb;
84 };
85
86 #define to_ttc_timer(x) \
87                 container_of(x, struct ttc_timer, clk_rate_change_nb)
88
89 struct ttc_timer_clocksource {
90         u32                     scale_clk_ctrl_reg_old;
91         u32                     scale_clk_ctrl_reg_new;
92         struct ttc_timer        ttc;
93         struct clocksource      cs;
94 };
95
96 #define to_ttc_timer_clksrc(x) \
97                 container_of(x, struct ttc_timer_clocksource, cs)
98
99 struct ttc_timer_clockevent {
100         struct ttc_timer                ttc;
101         struct clock_event_device       ce;
102 };
103
104 #define to_ttc_timer_clkevent(x) \
105                 container_of(x, struct ttc_timer_clockevent, ce)
106
107 static void __iomem *ttc_sched_clock_val_reg;
108
109 /**
110  * ttc_set_interval - Set the timer interval value
111  *
112  * @timer:      Pointer to the timer instance
113  * @cycles:     Timer interval ticks
114  **/
115 static void ttc_set_interval(struct ttc_timer *timer,
116                                         unsigned long cycles)
117 {
118         u32 ctrl_reg;
119
120         /* Disable the counter, set the counter value  and re-enable counter */
121         ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
122         ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
123         writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
124
125         writel_relaxed(cycles, timer->base_addr + TTC_INTR_VAL_OFFSET);
126
127         /*
128          * Reset the counter (0x10) so that it starts from 0, one-shot
129          * mode makes this needed for timing to be right.
130          */
131         ctrl_reg |= CNT_CNTRL_RESET;
132         ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
133         writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
134 }
135
136 /**
137  * ttc_clock_event_interrupt - Clock event timer interrupt handler
138  *
139  * @irq:        IRQ number of the Timer
140  * @dev_id:     void pointer to the ttc_timer instance
141  *
142  * returns: Always IRQ_HANDLED - success
143  **/
144 static irqreturn_t ttc_clock_event_interrupt(int irq, void *dev_id)
145 {
146         struct ttc_timer_clockevent *ttce = dev_id;
147         struct ttc_timer *timer = &ttce->ttc;
148
149         /* Acknowledge the interrupt and call event handler */
150         readl_relaxed(timer->base_addr + TTC_ISR_OFFSET);
151
152         ttce->ce.event_handler(&ttce->ce);
153
154         return IRQ_HANDLED;
155 }
156
157 /**
158  * __ttc_clocksource_read - Reads the timer counter register
159  *
160  * returns: Current timer counter register value
161  **/
162 static cycle_t __ttc_clocksource_read(struct clocksource *cs)
163 {
164         struct ttc_timer *timer = &to_ttc_timer_clksrc(cs)->ttc;
165
166         return (cycle_t)readl_relaxed(timer->base_addr +
167                                 TTC_COUNT_VAL_OFFSET);
168 }
169
170 static u64 notrace ttc_sched_clock_read(void)
171 {
172         return readl_relaxed(ttc_sched_clock_val_reg);
173 }
174
175 /**
176  * ttc_set_next_event - Sets the time interval for next event
177  *
178  * @cycles:     Timer interval ticks
179  * @evt:        Address of clock event instance
180  *
181  * returns: Always 0 - success
182  **/
183 static int ttc_set_next_event(unsigned long cycles,
184                                         struct clock_event_device *evt)
185 {
186         struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
187         struct ttc_timer *timer = &ttce->ttc;
188
189         ttc_set_interval(timer, cycles);
190         return 0;
191 }
192
193 /**
194  * ttc_set_mode - Sets the mode of timer
195  *
196  * @mode:       Mode to be set
197  * @evt:        Address of clock event instance
198  **/
199 static void ttc_set_mode(enum clock_event_mode mode,
200                                         struct clock_event_device *evt)
201 {
202         struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
203         struct ttc_timer *timer = &ttce->ttc;
204         u32 ctrl_reg;
205
206         switch (mode) {
207         case CLOCK_EVT_MODE_PERIODIC:
208                 ttc_set_interval(timer, DIV_ROUND_CLOSEST(ttce->ttc.freq,
209                                                 PRESCALE * HZ));
210                 break;
211         case CLOCK_EVT_MODE_ONESHOT:
212         case CLOCK_EVT_MODE_UNUSED:
213         case CLOCK_EVT_MODE_SHUTDOWN:
214                 ctrl_reg = readl_relaxed(timer->base_addr +
215                                         TTC_CNT_CNTRL_OFFSET);
216                 ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
217                 writel_relaxed(ctrl_reg,
218                                 timer->base_addr + TTC_CNT_CNTRL_OFFSET);
219                 break;
220         case CLOCK_EVT_MODE_RESUME:
221                 ctrl_reg = readl_relaxed(timer->base_addr +
222                                         TTC_CNT_CNTRL_OFFSET);
223                 ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
224                 writel_relaxed(ctrl_reg,
225                                 timer->base_addr + TTC_CNT_CNTRL_OFFSET);
226                 break;
227         }
228 }
229
230 static int ttc_rate_change_clocksource_cb(struct notifier_block *nb,
231                 unsigned long event, void *data)
232 {
233         struct clk_notifier_data *ndata = data;
234         struct ttc_timer *ttc = to_ttc_timer(nb);
235         struct ttc_timer_clocksource *ttccs = container_of(ttc,
236                         struct ttc_timer_clocksource, ttc);
237
238         switch (event) {
239         case PRE_RATE_CHANGE:
240         {
241                 u32 psv;
242                 unsigned long factor, rate_low, rate_high;
243
244                 if (ndata->new_rate > ndata->old_rate) {
245                         factor = DIV_ROUND_CLOSEST(ndata->new_rate,
246                                         ndata->old_rate);
247                         rate_low = ndata->old_rate;
248                         rate_high = ndata->new_rate;
249                 } else {
250                         factor = DIV_ROUND_CLOSEST(ndata->old_rate,
251                                         ndata->new_rate);
252                         rate_low = ndata->new_rate;
253                         rate_high = ndata->old_rate;
254                 }
255
256                 if (!is_power_of_2(factor))
257                                 return NOTIFY_BAD;
258
259                 if (abs(rate_high - (factor * rate_low)) > MAX_F_ERR)
260                         return NOTIFY_BAD;
261
262                 factor = __ilog2_u32(factor);
263
264                 /*
265                  * store timer clock ctrl register so we can restore it in case
266                  * of an abort.
267                  */
268                 ttccs->scale_clk_ctrl_reg_old =
269                         readl_relaxed(ttccs->ttc.base_addr +
270                         TTC_CLK_CNTRL_OFFSET);
271
272                 psv = (ttccs->scale_clk_ctrl_reg_old &
273                                 TTC_CLK_CNTRL_PSV_MASK) >>
274                                 TTC_CLK_CNTRL_PSV_SHIFT;
275                 if (ndata->new_rate < ndata->old_rate)
276                         psv -= factor;
277                 else
278                         psv += factor;
279
280                 /* prescaler within legal range? */
281                 if (psv & ~(TTC_CLK_CNTRL_PSV_MASK >> TTC_CLK_CNTRL_PSV_SHIFT))
282                         return NOTIFY_BAD;
283
284                 ttccs->scale_clk_ctrl_reg_new = ttccs->scale_clk_ctrl_reg_old &
285                         ~TTC_CLK_CNTRL_PSV_MASK;
286                 ttccs->scale_clk_ctrl_reg_new |= psv << TTC_CLK_CNTRL_PSV_SHIFT;
287
288
289                 /* scale down: adjust divider in post-change notification */
290                 if (ndata->new_rate < ndata->old_rate)
291                         return NOTIFY_DONE;
292
293                 /* scale up: adjust divider now - before frequency change */
294                 writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
295                                ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
296                 break;
297         }
298         case POST_RATE_CHANGE:
299                 /* scale up: pre-change notification did the adjustment */
300                 if (ndata->new_rate > ndata->old_rate)
301                         return NOTIFY_OK;
302
303                 /* scale down: adjust divider now - after frequency change */
304                 writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
305                                ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
306                 break;
307
308         case ABORT_RATE_CHANGE:
309                 /* we have to undo the adjustment in case we scale up */
310                 if (ndata->new_rate < ndata->old_rate)
311                         return NOTIFY_OK;
312
313                 /* restore original register value */
314                 writel_relaxed(ttccs->scale_clk_ctrl_reg_old,
315                                ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
316                 /* fall through */
317         default:
318                 return NOTIFY_DONE;
319         }
320
321         return NOTIFY_DONE;
322 }
323
324 static void __init ttc_setup_clocksource(struct clk *clk, void __iomem *base)
325 {
326         struct ttc_timer_clocksource *ttccs;
327         int err;
328
329         ttccs = kzalloc(sizeof(*ttccs), GFP_KERNEL);
330         if (WARN_ON(!ttccs))
331                 return;
332
333         ttccs->ttc.clk = clk;
334
335         err = clk_prepare_enable(ttccs->ttc.clk);
336         if (WARN_ON(err)) {
337                 kfree(ttccs);
338                 return;
339         }
340
341         ttccs->ttc.freq = clk_get_rate(ttccs->ttc.clk);
342
343         ttccs->ttc.clk_rate_change_nb.notifier_call =
344                 ttc_rate_change_clocksource_cb;
345         ttccs->ttc.clk_rate_change_nb.next = NULL;
346         if (clk_notifier_register(ttccs->ttc.clk,
347                                 &ttccs->ttc.clk_rate_change_nb))
348                 pr_warn("Unable to register clock notifier.\n");
349
350         ttccs->ttc.base_addr = base;
351         ttccs->cs.name = "ttc_clocksource";
352         ttccs->cs.rating = 200;
353         ttccs->cs.read = __ttc_clocksource_read;
354         ttccs->cs.mask = CLOCKSOURCE_MASK(16);
355         ttccs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
356
357         /*
358          * Setup the clock source counter to be an incrementing counter
359          * with no interrupt and it rolls over at 0xFFFF. Pre-scale
360          * it by 32 also. Let it start running now.
361          */
362         writel_relaxed(0x0,  ttccs->ttc.base_addr + TTC_IER_OFFSET);
363         writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
364                      ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
365         writel_relaxed(CNT_CNTRL_RESET,
366                      ttccs->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
367
368         err = clocksource_register_hz(&ttccs->cs, ttccs->ttc.freq / PRESCALE);
369         if (WARN_ON(err)) {
370                 kfree(ttccs);
371                 return;
372         }
373
374         ttc_sched_clock_val_reg = base + TTC_COUNT_VAL_OFFSET;
375         sched_clock_register(ttc_sched_clock_read, 16, ttccs->ttc.freq / PRESCALE);
376 }
377
378 static int ttc_rate_change_clockevent_cb(struct notifier_block *nb,
379                 unsigned long event, void *data)
380 {
381         struct clk_notifier_data *ndata = data;
382         struct ttc_timer *ttc = to_ttc_timer(nb);
383         struct ttc_timer_clockevent *ttcce = container_of(ttc,
384                         struct ttc_timer_clockevent, ttc);
385
386         switch (event) {
387         case POST_RATE_CHANGE:
388                 /* update cached frequency */
389                 ttc->freq = ndata->new_rate;
390
391                 clockevents_update_freq(&ttcce->ce, ndata->new_rate / PRESCALE);
392
393                 /* fall through */
394         case PRE_RATE_CHANGE:
395         case ABORT_RATE_CHANGE:
396         default:
397                 return NOTIFY_DONE;
398         }
399 }
400
401 static void __init ttc_setup_clockevent(struct clk *clk,
402                                                 void __iomem *base, u32 irq)
403 {
404         struct ttc_timer_clockevent *ttcce;
405         int err;
406
407         ttcce = kzalloc(sizeof(*ttcce), GFP_KERNEL);
408         if (WARN_ON(!ttcce))
409                 return;
410
411         ttcce->ttc.clk = clk;
412
413         err = clk_prepare_enable(ttcce->ttc.clk);
414         if (WARN_ON(err)) {
415                 kfree(ttcce);
416                 return;
417         }
418
419         ttcce->ttc.clk_rate_change_nb.notifier_call =
420                 ttc_rate_change_clockevent_cb;
421         ttcce->ttc.clk_rate_change_nb.next = NULL;
422         if (clk_notifier_register(ttcce->ttc.clk,
423                                 &ttcce->ttc.clk_rate_change_nb))
424                 pr_warn("Unable to register clock notifier.\n");
425         ttcce->ttc.freq = clk_get_rate(ttcce->ttc.clk);
426
427         ttcce->ttc.base_addr = base;
428         ttcce->ce.name = "ttc_clockevent";
429         ttcce->ce.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
430         ttcce->ce.set_next_event = ttc_set_next_event;
431         ttcce->ce.set_mode = ttc_set_mode;
432         ttcce->ce.rating = 200;
433         ttcce->ce.irq = irq;
434         ttcce->ce.cpumask = cpu_possible_mask;
435
436         /*
437          * Setup the clock event timer to be an interval timer which
438          * is prescaled by 32 using the interval interrupt. Leave it
439          * disabled for now.
440          */
441         writel_relaxed(0x23, ttcce->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
442         writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
443                      ttcce->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
444         writel_relaxed(0x1,  ttcce->ttc.base_addr + TTC_IER_OFFSET);
445
446         err = request_irq(irq, ttc_clock_event_interrupt,
447                           IRQF_TIMER, ttcce->ce.name, ttcce);
448         if (WARN_ON(err)) {
449                 kfree(ttcce);
450                 return;
451         }
452
453         clockevents_config_and_register(&ttcce->ce,
454                         ttcce->ttc.freq / PRESCALE, 1, 0xfffe);
455 }
456
457 /**
458  * ttc_timer_init - Initialize the timer
459  *
460  * Initializes the timer hardware and register the clock source and clock event
461  * timers with Linux kernal timer framework
462  */
463 static void __init ttc_timer_init(struct device_node *timer)
464 {
465         unsigned int irq;
466         void __iomem *timer_baseaddr;
467         struct clk *clk_cs, *clk_ce;
468         static int initialized;
469         int clksel;
470
471         if (initialized)
472                 return;
473
474         initialized = 1;
475
476         /*
477          * Get the 1st Triple Timer Counter (TTC) block from the device tree
478          * and use it. Note that the event timer uses the interrupt and it's the
479          * 2nd TTC hence the irq_of_parse_and_map(,1)
480          */
481         timer_baseaddr = of_iomap(timer, 0);
482         if (!timer_baseaddr) {
483                 pr_err("ERROR: invalid timer base address\n");
484                 BUG();
485         }
486
487         irq = irq_of_parse_and_map(timer, 1);
488         if (irq <= 0) {
489                 pr_err("ERROR: invalid interrupt number\n");
490                 BUG();
491         }
492
493         clksel = readl_relaxed(timer_baseaddr + TTC_CLK_CNTRL_OFFSET);
494         clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
495         clk_cs = of_clk_get(timer, clksel);
496         if (IS_ERR(clk_cs)) {
497                 pr_err("ERROR: timer input clock not found\n");
498                 BUG();
499         }
500
501         clksel = readl_relaxed(timer_baseaddr + 4 + TTC_CLK_CNTRL_OFFSET);
502         clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
503         clk_ce = of_clk_get(timer, clksel);
504         if (IS_ERR(clk_ce)) {
505                 pr_err("ERROR: timer input clock not found\n");
506                 BUG();
507         }
508
509         ttc_setup_clocksource(clk_cs, timer_baseaddr);
510         ttc_setup_clockevent(clk_ce, timer_baseaddr + 4, irq);
511
512         pr_info("%s #0 at %p, irq=%d\n", timer->name, timer_baseaddr, irq);
513 }
514
515 CLOCKSOURCE_OF_DECLARE(ttc, "cdns,ttc", ttc_timer_init);