]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/clocksource/exynos_mct.c
ASoC: cache: Fix error code when not using ASoC level cache
[karo-tx-linux.git] / drivers / clocksource / exynos_mct.c
1 /* linux/arch/arm/mach-exynos4/mct.c
2  *
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *              http://www.samsung.com
5  *
6  * EXYNOS4 MCT(Multi-Core Timer) support
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11 */
12
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/cpu.h>
20 #include <linux/platform_device.h>
21 #include <linux/delay.h>
22 #include <linux/percpu.h>
23 #include <linux/of.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_address.h>
26 #include <linux/clocksource.h>
27
28 #define EXYNOS4_MCTREG(x)               (x)
29 #define EXYNOS4_MCT_G_CNT_L             EXYNOS4_MCTREG(0x100)
30 #define EXYNOS4_MCT_G_CNT_U             EXYNOS4_MCTREG(0x104)
31 #define EXYNOS4_MCT_G_CNT_WSTAT         EXYNOS4_MCTREG(0x110)
32 #define EXYNOS4_MCT_G_COMP0_L           EXYNOS4_MCTREG(0x200)
33 #define EXYNOS4_MCT_G_COMP0_U           EXYNOS4_MCTREG(0x204)
34 #define EXYNOS4_MCT_G_COMP0_ADD_INCR    EXYNOS4_MCTREG(0x208)
35 #define EXYNOS4_MCT_G_TCON              EXYNOS4_MCTREG(0x240)
36 #define EXYNOS4_MCT_G_INT_CSTAT         EXYNOS4_MCTREG(0x244)
37 #define EXYNOS4_MCT_G_INT_ENB           EXYNOS4_MCTREG(0x248)
38 #define EXYNOS4_MCT_G_WSTAT             EXYNOS4_MCTREG(0x24C)
39 #define _EXYNOS4_MCT_L_BASE             EXYNOS4_MCTREG(0x300)
40 #define EXYNOS4_MCT_L_BASE(x)           (_EXYNOS4_MCT_L_BASE + (0x100 * x))
41 #define EXYNOS4_MCT_L_MASK              (0xffffff00)
42
43 #define MCT_L_TCNTB_OFFSET              (0x00)
44 #define MCT_L_ICNTB_OFFSET              (0x08)
45 #define MCT_L_TCON_OFFSET               (0x20)
46 #define MCT_L_INT_CSTAT_OFFSET          (0x30)
47 #define MCT_L_INT_ENB_OFFSET            (0x34)
48 #define MCT_L_WSTAT_OFFSET              (0x40)
49 #define MCT_G_TCON_START                (1 << 8)
50 #define MCT_G_TCON_COMP0_AUTO_INC       (1 << 1)
51 #define MCT_G_TCON_COMP0_ENABLE         (1 << 0)
52 #define MCT_L_TCON_INTERVAL_MODE        (1 << 2)
53 #define MCT_L_TCON_INT_START            (1 << 1)
54 #define MCT_L_TCON_TIMER_START          (1 << 0)
55
56 #define TICK_BASE_CNT   1
57
58 enum {
59         MCT_INT_SPI,
60         MCT_INT_PPI
61 };
62
63 enum {
64         MCT_G0_IRQ,
65         MCT_G1_IRQ,
66         MCT_G2_IRQ,
67         MCT_G3_IRQ,
68         MCT_L0_IRQ,
69         MCT_L1_IRQ,
70         MCT_L2_IRQ,
71         MCT_L3_IRQ,
72         MCT_L4_IRQ,
73         MCT_L5_IRQ,
74         MCT_L6_IRQ,
75         MCT_L7_IRQ,
76         MCT_NR_IRQS,
77 };
78
79 static void __iomem *reg_base;
80 static unsigned long clk_rate;
81 static unsigned int mct_int_type;
82 static int mct_irqs[MCT_NR_IRQS];
83
84 struct mct_clock_event_device {
85         struct clock_event_device evt;
86         unsigned long base;
87         char name[10];
88 };
89
90 static void exynos4_mct_write(unsigned int value, unsigned long offset)
91 {
92         unsigned long stat_addr;
93         u32 mask;
94         u32 i;
95
96         __raw_writel(value, reg_base + offset);
97
98         if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
99                 stat_addr = (offset & ~EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
100                 switch (offset & EXYNOS4_MCT_L_MASK) {
101                 case MCT_L_TCON_OFFSET:
102                         mask = 1 << 3;          /* L_TCON write status */
103                         break;
104                 case MCT_L_ICNTB_OFFSET:
105                         mask = 1 << 1;          /* L_ICNTB write status */
106                         break;
107                 case MCT_L_TCNTB_OFFSET:
108                         mask = 1 << 0;          /* L_TCNTB write status */
109                         break;
110                 default:
111                         return;
112                 }
113         } else {
114                 switch (offset) {
115                 case EXYNOS4_MCT_G_TCON:
116                         stat_addr = EXYNOS4_MCT_G_WSTAT;
117                         mask = 1 << 16;         /* G_TCON write status */
118                         break;
119                 case EXYNOS4_MCT_G_COMP0_L:
120                         stat_addr = EXYNOS4_MCT_G_WSTAT;
121                         mask = 1 << 0;          /* G_COMP0_L write status */
122                         break;
123                 case EXYNOS4_MCT_G_COMP0_U:
124                         stat_addr = EXYNOS4_MCT_G_WSTAT;
125                         mask = 1 << 1;          /* G_COMP0_U write status */
126                         break;
127                 case EXYNOS4_MCT_G_COMP0_ADD_INCR:
128                         stat_addr = EXYNOS4_MCT_G_WSTAT;
129                         mask = 1 << 2;          /* G_COMP0_ADD_INCR w status */
130                         break;
131                 case EXYNOS4_MCT_G_CNT_L:
132                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
133                         mask = 1 << 0;          /* G_CNT_L write status */
134                         break;
135                 case EXYNOS4_MCT_G_CNT_U:
136                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
137                         mask = 1 << 1;          /* G_CNT_U write status */
138                         break;
139                 default:
140                         return;
141                 }
142         }
143
144         /* Wait maximum 1 ms until written values are applied */
145         for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
146                 if (__raw_readl(reg_base + stat_addr) & mask) {
147                         __raw_writel(mask, reg_base + stat_addr);
148                         return;
149                 }
150
151         panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
152 }
153
154 /* Clocksource handling */
155 static void exynos4_mct_frc_start(u32 hi, u32 lo)
156 {
157         u32 reg;
158
159         exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
160         exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);
161
162         reg = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
163         reg |= MCT_G_TCON_START;
164         exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
165 }
166
167 static cycle_t exynos4_frc_read(struct clocksource *cs)
168 {
169         unsigned int lo, hi;
170         u32 hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
171
172         do {
173                 hi = hi2;
174                 lo = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_L);
175                 hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
176         } while (hi != hi2);
177
178         return ((cycle_t)hi << 32) | lo;
179 }
180
181 static void exynos4_frc_resume(struct clocksource *cs)
182 {
183         exynos4_mct_frc_start(0, 0);
184 }
185
186 struct clocksource mct_frc = {
187         .name           = "mct-frc",
188         .rating         = 400,
189         .read           = exynos4_frc_read,
190         .mask           = CLOCKSOURCE_MASK(64),
191         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
192         .resume         = exynos4_frc_resume,
193 };
194
195 static void __init exynos4_clocksource_init(void)
196 {
197         exynos4_mct_frc_start(0, 0);
198
199         if (clocksource_register_hz(&mct_frc, clk_rate))
200                 panic("%s: can't register clocksource\n", mct_frc.name);
201 }
202
203 static void exynos4_mct_comp0_stop(void)
204 {
205         unsigned int tcon;
206
207         tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
208         tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
209
210         exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
211         exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
212 }
213
214 static void exynos4_mct_comp0_start(enum clock_event_mode mode,
215                                     unsigned long cycles)
216 {
217         unsigned int tcon;
218         cycle_t comp_cycle;
219
220         tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
221
222         if (mode == CLOCK_EVT_MODE_PERIODIC) {
223                 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
224                 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
225         }
226
227         comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
228         exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
229         exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
230
231         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
232
233         tcon |= MCT_G_TCON_COMP0_ENABLE;
234         exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
235 }
236
237 static int exynos4_comp_set_next_event(unsigned long cycles,
238                                        struct clock_event_device *evt)
239 {
240         exynos4_mct_comp0_start(evt->mode, cycles);
241
242         return 0;
243 }
244
245 static void exynos4_comp_set_mode(enum clock_event_mode mode,
246                                   struct clock_event_device *evt)
247 {
248         unsigned long cycles_per_jiffy;
249         exynos4_mct_comp0_stop();
250
251         switch (mode) {
252         case CLOCK_EVT_MODE_PERIODIC:
253                 cycles_per_jiffy =
254                         (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
255                 exynos4_mct_comp0_start(mode, cycles_per_jiffy);
256                 break;
257
258         case CLOCK_EVT_MODE_ONESHOT:
259         case CLOCK_EVT_MODE_UNUSED:
260         case CLOCK_EVT_MODE_SHUTDOWN:
261         case CLOCK_EVT_MODE_RESUME:
262                 break;
263         }
264 }
265
266 static struct clock_event_device mct_comp_device = {
267         .name           = "mct-comp",
268         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
269         .rating         = 250,
270         .set_next_event = exynos4_comp_set_next_event,
271         .set_mode       = exynos4_comp_set_mode,
272 };
273
274 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
275 {
276         struct clock_event_device *evt = dev_id;
277
278         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
279
280         evt->event_handler(evt);
281
282         return IRQ_HANDLED;
283 }
284
285 static struct irqaction mct_comp_event_irq = {
286         .name           = "mct_comp_irq",
287         .flags          = IRQF_TIMER | IRQF_IRQPOLL,
288         .handler        = exynos4_mct_comp_isr,
289         .dev_id         = &mct_comp_device,
290 };
291
292 static void exynos4_clockevent_init(void)
293 {
294         mct_comp_device.cpumask = cpumask_of(0);
295         clockevents_config_and_register(&mct_comp_device, clk_rate,
296                                         0xf, 0xffffffff);
297         setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
298 }
299
300 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
301
302 /* Clock event handling */
303 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
304 {
305         unsigned long tmp;
306         unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
307         unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
308
309         tmp = __raw_readl(reg_base + offset);
310         if (tmp & mask) {
311                 tmp &= ~mask;
312                 exynos4_mct_write(tmp, offset);
313         }
314 }
315
316 static void exynos4_mct_tick_start(unsigned long cycles,
317                                    struct mct_clock_event_device *mevt)
318 {
319         unsigned long tmp;
320
321         exynos4_mct_tick_stop(mevt);
322
323         tmp = (1 << 31) | cycles;       /* MCT_L_UPDATE_ICNTB */
324
325         /* update interrupt count buffer */
326         exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
327
328         /* enable MCT tick interrupt */
329         exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
330
331         tmp = __raw_readl(reg_base + mevt->base + MCT_L_TCON_OFFSET);
332         tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
333                MCT_L_TCON_INTERVAL_MODE;
334         exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
335 }
336
337 static int exynos4_tick_set_next_event(unsigned long cycles,
338                                        struct clock_event_device *evt)
339 {
340         struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
341
342         exynos4_mct_tick_start(cycles, mevt);
343
344         return 0;
345 }
346
347 static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
348                                          struct clock_event_device *evt)
349 {
350         struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
351         unsigned long cycles_per_jiffy;
352
353         exynos4_mct_tick_stop(mevt);
354
355         switch (mode) {
356         case CLOCK_EVT_MODE_PERIODIC:
357                 cycles_per_jiffy =
358                         (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
359                 exynos4_mct_tick_start(cycles_per_jiffy, mevt);
360                 break;
361
362         case CLOCK_EVT_MODE_ONESHOT:
363         case CLOCK_EVT_MODE_UNUSED:
364         case CLOCK_EVT_MODE_SHUTDOWN:
365         case CLOCK_EVT_MODE_RESUME:
366                 break;
367         }
368 }
369
370 static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
371 {
372         struct clock_event_device *evt = &mevt->evt;
373
374         /*
375          * This is for supporting oneshot mode.
376          * Mct would generate interrupt periodically
377          * without explicit stopping.
378          */
379         if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
380                 exynos4_mct_tick_stop(mevt);
381
382         /* Clear the MCT tick interrupt */
383         if (__raw_readl(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
384                 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
385                 return 1;
386         } else {
387                 return 0;
388         }
389 }
390
391 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
392 {
393         struct mct_clock_event_device *mevt = dev_id;
394         struct clock_event_device *evt = &mevt->evt;
395
396         exynos4_mct_tick_clear(mevt);
397
398         evt->event_handler(evt);
399
400         return IRQ_HANDLED;
401 }
402
403 static int exynos4_local_timer_setup(struct clock_event_device *evt)
404 {
405         struct mct_clock_event_device *mevt;
406         unsigned int cpu = smp_processor_id();
407
408         mevt = container_of(evt, struct mct_clock_event_device, evt);
409
410         mevt->base = EXYNOS4_MCT_L_BASE(cpu);
411         snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
412
413         evt->name = mevt->name;
414         evt->cpumask = cpumask_of(cpu);
415         evt->set_next_event = exynos4_tick_set_next_event;
416         evt->set_mode = exynos4_tick_set_mode;
417         evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
418         evt->rating = 450;
419         clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
420                                         0xf, 0x7fffffff);
421
422         exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
423
424         if (mct_int_type == MCT_INT_SPI) {
425                 evt->irq = mct_irqs[MCT_L0_IRQ + cpu];
426                 if (request_irq(evt->irq, exynos4_mct_tick_isr,
427                                 IRQF_TIMER | IRQF_NOBALANCING,
428                                 evt->name, mevt)) {
429                         pr_err("exynos-mct: cannot register IRQ %d\n",
430                                 evt->irq);
431                         return -EIO;
432                 }
433         } else {
434                 enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
435         }
436
437         return 0;
438 }
439
440 static void exynos4_local_timer_stop(struct clock_event_device *evt)
441 {
442         evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
443         if (mct_int_type == MCT_INT_SPI)
444                 free_irq(evt->irq, this_cpu_ptr(&percpu_mct_tick));
445         else
446                 disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
447 }
448
449 static int exynos4_mct_cpu_notify(struct notifier_block *self,
450                                            unsigned long action, void *hcpu)
451 {
452         struct mct_clock_event_device *mevt;
453         unsigned int cpu;
454
455         /*
456          * Grab cpu pointer in each case to avoid spurious
457          * preemptible warnings
458          */
459         switch (action & ~CPU_TASKS_FROZEN) {
460         case CPU_STARTING:
461                 mevt = this_cpu_ptr(&percpu_mct_tick);
462                 exynos4_local_timer_setup(&mevt->evt);
463                 break;
464         case CPU_ONLINE:
465                 cpu = (unsigned long)hcpu;
466                 if (mct_int_type == MCT_INT_SPI)
467                         irq_set_affinity(mct_irqs[MCT_L0_IRQ + cpu],
468                                                 cpumask_of(cpu));
469                 break;
470         case CPU_DYING:
471                 mevt = this_cpu_ptr(&percpu_mct_tick);
472                 exynos4_local_timer_stop(&mevt->evt);
473                 break;
474         }
475
476         return NOTIFY_OK;
477 }
478
479 static struct notifier_block exynos4_mct_cpu_nb = {
480         .notifier_call = exynos4_mct_cpu_notify,
481 };
482
483 static void __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
484 {
485         int err;
486         struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
487         struct clk *mct_clk, *tick_clk;
488
489         tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
490                                 clk_get(NULL, "fin_pll");
491         if (IS_ERR(tick_clk))
492                 panic("%s: unable to determine tick clock rate\n", __func__);
493         clk_rate = clk_get_rate(tick_clk);
494
495         mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
496         if (IS_ERR(mct_clk))
497                 panic("%s: unable to retrieve mct clock instance\n", __func__);
498         clk_prepare_enable(mct_clk);
499
500         reg_base = base;
501         if (!reg_base)
502                 panic("%s: unable to ioremap mct address space\n", __func__);
503
504         if (mct_int_type == MCT_INT_PPI) {
505
506                 err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
507                                          exynos4_mct_tick_isr, "MCT",
508                                          &percpu_mct_tick);
509                 WARN(err, "MCT: can't request IRQ %d (%d)\n",
510                      mct_irqs[MCT_L0_IRQ], err);
511         } else {
512                 irq_set_affinity(mct_irqs[MCT_L0_IRQ], cpumask_of(0));
513         }
514
515         err = register_cpu_notifier(&exynos4_mct_cpu_nb);
516         if (err)
517                 goto out_irq;
518
519         /* Immediately configure the timer on the boot CPU */
520         exynos4_local_timer_setup(&mevt->evt);
521         return;
522
523 out_irq:
524         free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
525 }
526
527 void __init mct_init(void __iomem *base, int irq_g0, int irq_l0, int irq_l1)
528 {
529         mct_irqs[MCT_G0_IRQ] = irq_g0;
530         mct_irqs[MCT_L0_IRQ] = irq_l0;
531         mct_irqs[MCT_L1_IRQ] = irq_l1;
532         mct_int_type = MCT_INT_SPI;
533
534         exynos4_timer_resources(NULL, base);
535         exynos4_clocksource_init();
536         exynos4_clockevent_init();
537 }
538
539 static void __init mct_init_dt(struct device_node *np, unsigned int int_type)
540 {
541         u32 nr_irqs, i;
542
543         mct_int_type = int_type;
544
545         /* This driver uses only one global timer interrupt */
546         mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
547
548         /*
549          * Find out the number of local irqs specified. The local
550          * timer irqs are specified after the four global timer
551          * irqs are specified.
552          */
553 #ifdef CONFIG_OF
554         nr_irqs = of_irq_count(np);
555 #else
556         nr_irqs = 0;
557 #endif
558         for (i = MCT_L0_IRQ; i < nr_irqs; i++)
559                 mct_irqs[i] = irq_of_parse_and_map(np, i);
560
561         exynos4_timer_resources(np, of_iomap(np, 0));
562         exynos4_clocksource_init();
563         exynos4_clockevent_init();
564 }
565
566
567 static void __init mct_init_spi(struct device_node *np)
568 {
569         return mct_init_dt(np, MCT_INT_SPI);
570 }
571
572 static void __init mct_init_ppi(struct device_node *np)
573 {
574         return mct_init_dt(np, MCT_INT_PPI);
575 }
576 CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
577 CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);