]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/clocksource/sh_mtu2.c
mxc: vpu: remove leftover iounmap() after conversion to devm_ioremap_resource()
[karo-tx-linux.git] / drivers / clocksource / sh_mtu2.c
1 /*
2  * SuperH Timer Support - MTU2
3  *
4  *  Copyright (C) 2009 Magnus Damm
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15
16 #include <linux/clk.h>
17 #include <linux/clockchips.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/ioport.h>
24 #include <linux/irq.h>
25 #include <linux/module.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_domain.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/sh_timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32
33 struct sh_mtu2_device;
34
35 struct sh_mtu2_channel {
36         struct sh_mtu2_device *mtu;
37         unsigned int index;
38
39         void __iomem *base;
40         int irq;
41
42         struct clock_event_device ced;
43 };
44
45 struct sh_mtu2_device {
46         struct platform_device *pdev;
47
48         void __iomem *mapbase;
49         struct clk *clk;
50
51         struct sh_mtu2_channel *channels;
52         unsigned int num_channels;
53
54         bool legacy;
55         bool has_clockevent;
56 };
57
58 static DEFINE_RAW_SPINLOCK(sh_mtu2_lock);
59
60 #define TSTR -1 /* shared register */
61 #define TCR  0 /* channel register */
62 #define TMDR 1 /* channel register */
63 #define TIOR 2 /* channel register */
64 #define TIER 3 /* channel register */
65 #define TSR  4 /* channel register */
66 #define TCNT 5 /* channel register */
67 #define TGR  6 /* channel register */
68
69 #define TCR_CCLR_NONE           (0 << 5)
70 #define TCR_CCLR_TGRA           (1 << 5)
71 #define TCR_CCLR_TGRB           (2 << 5)
72 #define TCR_CCLR_SYNC           (3 << 5)
73 #define TCR_CCLR_TGRC           (5 << 5)
74 #define TCR_CCLR_TGRD           (6 << 5)
75 #define TCR_CCLR_MASK           (7 << 5)
76 #define TCR_CKEG_RISING         (0 << 3)
77 #define TCR_CKEG_FALLING        (1 << 3)
78 #define TCR_CKEG_BOTH           (2 << 3)
79 #define TCR_CKEG_MASK           (3 << 3)
80 /* Values 4 to 7 are channel-dependent */
81 #define TCR_TPSC_P1             (0 << 0)
82 #define TCR_TPSC_P4             (1 << 0)
83 #define TCR_TPSC_P16            (2 << 0)
84 #define TCR_TPSC_P64            (3 << 0)
85 #define TCR_TPSC_CH0_TCLKA      (4 << 0)
86 #define TCR_TPSC_CH0_TCLKB      (5 << 0)
87 #define TCR_TPSC_CH0_TCLKC      (6 << 0)
88 #define TCR_TPSC_CH0_TCLKD      (7 << 0)
89 #define TCR_TPSC_CH1_TCLKA      (4 << 0)
90 #define TCR_TPSC_CH1_TCLKB      (5 << 0)
91 #define TCR_TPSC_CH1_P256       (6 << 0)
92 #define TCR_TPSC_CH1_TCNT2      (7 << 0)
93 #define TCR_TPSC_CH2_TCLKA      (4 << 0)
94 #define TCR_TPSC_CH2_TCLKB      (5 << 0)
95 #define TCR_TPSC_CH2_TCLKC      (6 << 0)
96 #define TCR_TPSC_CH2_P1024      (7 << 0)
97 #define TCR_TPSC_CH34_P256      (4 << 0)
98 #define TCR_TPSC_CH34_P1024     (5 << 0)
99 #define TCR_TPSC_CH34_TCLKA     (6 << 0)
100 #define TCR_TPSC_CH34_TCLKB     (7 << 0)
101 #define TCR_TPSC_MASK           (7 << 0)
102
103 #define TMDR_BFE                (1 << 6)
104 #define TMDR_BFB                (1 << 5)
105 #define TMDR_BFA                (1 << 4)
106 #define TMDR_MD_NORMAL          (0 << 0)
107 #define TMDR_MD_PWM_1           (2 << 0)
108 #define TMDR_MD_PWM_2           (3 << 0)
109 #define TMDR_MD_PHASE_1         (4 << 0)
110 #define TMDR_MD_PHASE_2         (5 << 0)
111 #define TMDR_MD_PHASE_3         (6 << 0)
112 #define TMDR_MD_PHASE_4         (7 << 0)
113 #define TMDR_MD_PWM_SYNC        (8 << 0)
114 #define TMDR_MD_PWM_COMP_CREST  (13 << 0)
115 #define TMDR_MD_PWM_COMP_TROUGH (14 << 0)
116 #define TMDR_MD_PWM_COMP_BOTH   (15 << 0)
117 #define TMDR_MD_MASK            (15 << 0)
118
119 #define TIOC_IOCH(n)            ((n) << 4)
120 #define TIOC_IOCL(n)            ((n) << 0)
121 #define TIOR_OC_RETAIN          (0 << 0)
122 #define TIOR_OC_0_CLEAR         (1 << 0)
123 #define TIOR_OC_0_SET           (2 << 0)
124 #define TIOR_OC_0_TOGGLE        (3 << 0)
125 #define TIOR_OC_1_CLEAR         (5 << 0)
126 #define TIOR_OC_1_SET           (6 << 0)
127 #define TIOR_OC_1_TOGGLE        (7 << 0)
128 #define TIOR_IC_RISING          (8 << 0)
129 #define TIOR_IC_FALLING         (9 << 0)
130 #define TIOR_IC_BOTH            (10 << 0)
131 #define TIOR_IC_TCNT            (12 << 0)
132 #define TIOR_MASK               (15 << 0)
133
134 #define TIER_TTGE               (1 << 7)
135 #define TIER_TTGE2              (1 << 6)
136 #define TIER_TCIEU              (1 << 5)
137 #define TIER_TCIEV              (1 << 4)
138 #define TIER_TGIED              (1 << 3)
139 #define TIER_TGIEC              (1 << 2)
140 #define TIER_TGIEB              (1 << 1)
141 #define TIER_TGIEA              (1 << 0)
142
143 #define TSR_TCFD                (1 << 7)
144 #define TSR_TCFU                (1 << 5)
145 #define TSR_TCFV                (1 << 4)
146 #define TSR_TGFD                (1 << 3)
147 #define TSR_TGFC                (1 << 2)
148 #define TSR_TGFB                (1 << 1)
149 #define TSR_TGFA                (1 << 0)
150
151 static unsigned long mtu2_reg_offs[] = {
152         [TCR] = 0,
153         [TMDR] = 1,
154         [TIOR] = 2,
155         [TIER] = 4,
156         [TSR] = 5,
157         [TCNT] = 6,
158         [TGR] = 8,
159 };
160
161 static inline unsigned long sh_mtu2_read(struct sh_mtu2_channel *ch, int reg_nr)
162 {
163         unsigned long offs;
164
165         if (reg_nr == TSTR) {
166                 if (ch->mtu->legacy)
167                         return ioread8(ch->mtu->mapbase);
168                 else
169                         return ioread8(ch->mtu->mapbase + 0x280);
170         }
171
172         offs = mtu2_reg_offs[reg_nr];
173
174         if ((reg_nr == TCNT) || (reg_nr == TGR))
175                 return ioread16(ch->base + offs);
176         else
177                 return ioread8(ch->base + offs);
178 }
179
180 static inline void sh_mtu2_write(struct sh_mtu2_channel *ch, int reg_nr,
181                                 unsigned long value)
182 {
183         unsigned long offs;
184
185         if (reg_nr == TSTR) {
186                 if (ch->mtu->legacy)
187                         return iowrite8(value, ch->mtu->mapbase);
188                 else
189                         return iowrite8(value, ch->mtu->mapbase + 0x280);
190         }
191
192         offs = mtu2_reg_offs[reg_nr];
193
194         if ((reg_nr == TCNT) || (reg_nr == TGR))
195                 iowrite16(value, ch->base + offs);
196         else
197                 iowrite8(value, ch->base + offs);
198 }
199
200 static void sh_mtu2_start_stop_ch(struct sh_mtu2_channel *ch, int start)
201 {
202         unsigned long flags, value;
203
204         /* start stop register shared by multiple timer channels */
205         raw_spin_lock_irqsave(&sh_mtu2_lock, flags);
206         value = sh_mtu2_read(ch, TSTR);
207
208         if (start)
209                 value |= 1 << ch->index;
210         else
211                 value &= ~(1 << ch->index);
212
213         sh_mtu2_write(ch, TSTR, value);
214         raw_spin_unlock_irqrestore(&sh_mtu2_lock, flags);
215 }
216
217 static int sh_mtu2_enable(struct sh_mtu2_channel *ch)
218 {
219         unsigned long periodic;
220         unsigned long rate;
221         int ret;
222
223         pm_runtime_get_sync(&ch->mtu->pdev->dev);
224         dev_pm_syscore_device(&ch->mtu->pdev->dev, true);
225
226         /* enable clock */
227         ret = clk_enable(ch->mtu->clk);
228         if (ret) {
229                 dev_err(&ch->mtu->pdev->dev, "ch%u: cannot enable clock\n",
230                         ch->index);
231                 return ret;
232         }
233
234         /* make sure channel is disabled */
235         sh_mtu2_start_stop_ch(ch, 0);
236
237         rate = clk_get_rate(ch->mtu->clk) / 64;
238         periodic = (rate + HZ/2) / HZ;
239
240         /*
241          * "Periodic Counter Operation"
242          * Clear on TGRA compare match, divide clock by 64.
243          */
244         sh_mtu2_write(ch, TCR, TCR_CCLR_TGRA | TCR_TPSC_P64);
245         sh_mtu2_write(ch, TIOR, TIOC_IOCH(TIOR_OC_0_CLEAR) |
246                       TIOC_IOCL(TIOR_OC_0_CLEAR));
247         sh_mtu2_write(ch, TGR, periodic);
248         sh_mtu2_write(ch, TCNT, 0);
249         sh_mtu2_write(ch, TMDR, TMDR_MD_NORMAL);
250         sh_mtu2_write(ch, TIER, TIER_TGIEA);
251
252         /* enable channel */
253         sh_mtu2_start_stop_ch(ch, 1);
254
255         return 0;
256 }
257
258 static void sh_mtu2_disable(struct sh_mtu2_channel *ch)
259 {
260         /* disable channel */
261         sh_mtu2_start_stop_ch(ch, 0);
262
263         /* stop clock */
264         clk_disable(ch->mtu->clk);
265
266         dev_pm_syscore_device(&ch->mtu->pdev->dev, false);
267         pm_runtime_put(&ch->mtu->pdev->dev);
268 }
269
270 static irqreturn_t sh_mtu2_interrupt(int irq, void *dev_id)
271 {
272         struct sh_mtu2_channel *ch = dev_id;
273
274         /* acknowledge interrupt */
275         sh_mtu2_read(ch, TSR);
276         sh_mtu2_write(ch, TSR, ~TSR_TGFA);
277
278         /* notify clockevent layer */
279         ch->ced.event_handler(&ch->ced);
280         return IRQ_HANDLED;
281 }
282
283 static struct sh_mtu2_channel *ced_to_sh_mtu2(struct clock_event_device *ced)
284 {
285         return container_of(ced, struct sh_mtu2_channel, ced);
286 }
287
288 static void sh_mtu2_clock_event_mode(enum clock_event_mode mode,
289                                     struct clock_event_device *ced)
290 {
291         struct sh_mtu2_channel *ch = ced_to_sh_mtu2(ced);
292         int disabled = 0;
293
294         /* deal with old setting first */
295         switch (ced->mode) {
296         case CLOCK_EVT_MODE_PERIODIC:
297                 sh_mtu2_disable(ch);
298                 disabled = 1;
299                 break;
300         default:
301                 break;
302         }
303
304         switch (mode) {
305         case CLOCK_EVT_MODE_PERIODIC:
306                 dev_info(&ch->mtu->pdev->dev,
307                          "ch%u: used for periodic clock events\n", ch->index);
308                 sh_mtu2_enable(ch);
309                 break;
310         case CLOCK_EVT_MODE_UNUSED:
311                 if (!disabled)
312                         sh_mtu2_disable(ch);
313                 break;
314         case CLOCK_EVT_MODE_SHUTDOWN:
315         default:
316                 break;
317         }
318 }
319
320 static void sh_mtu2_clock_event_suspend(struct clock_event_device *ced)
321 {
322         pm_genpd_syscore_poweroff(&ced_to_sh_mtu2(ced)->mtu->pdev->dev);
323 }
324
325 static void sh_mtu2_clock_event_resume(struct clock_event_device *ced)
326 {
327         pm_genpd_syscore_poweron(&ced_to_sh_mtu2(ced)->mtu->pdev->dev);
328 }
329
330 static void sh_mtu2_register_clockevent(struct sh_mtu2_channel *ch,
331                                         const char *name)
332 {
333         struct clock_event_device *ced = &ch->ced;
334         int ret;
335
336         ced->name = name;
337         ced->features = CLOCK_EVT_FEAT_PERIODIC;
338         ced->rating = 200;
339         ced->cpumask = cpu_possible_mask;
340         ced->set_mode = sh_mtu2_clock_event_mode;
341         ced->suspend = sh_mtu2_clock_event_suspend;
342         ced->resume = sh_mtu2_clock_event_resume;
343
344         dev_info(&ch->mtu->pdev->dev, "ch%u: used for clock events\n",
345                  ch->index);
346         clockevents_register_device(ced);
347
348         ret = request_irq(ch->irq, sh_mtu2_interrupt,
349                           IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
350                           dev_name(&ch->mtu->pdev->dev), ch);
351         if (ret) {
352                 dev_err(&ch->mtu->pdev->dev, "ch%u: failed to request irq %d\n",
353                         ch->index, ch->irq);
354                 return;
355         }
356 }
357
358 static int sh_mtu2_register(struct sh_mtu2_channel *ch, const char *name,
359                             bool clockevent)
360 {
361         if (clockevent) {
362                 ch->mtu->has_clockevent = true;
363                 sh_mtu2_register_clockevent(ch, name);
364         }
365
366         return 0;
367 }
368
369 static int sh_mtu2_setup_channel(struct sh_mtu2_channel *ch, unsigned int index,
370                                  struct sh_mtu2_device *mtu)
371 {
372         static const unsigned int channel_offsets[] = {
373                 0x300, 0x380, 0x000,
374         };
375         bool clockevent;
376
377         ch->mtu = mtu;
378
379         if (mtu->legacy) {
380                 struct sh_timer_config *cfg = mtu->pdev->dev.platform_data;
381
382                 clockevent = cfg->clockevent_rating != 0;
383
384                 ch->irq = platform_get_irq(mtu->pdev, 0);
385                 ch->base = mtu->mapbase - cfg->channel_offset;
386                 ch->index = cfg->timer_bit;
387         } else {
388                 char name[6];
389
390                 clockevent = true;
391
392                 sprintf(name, "tgi%ua", index);
393                 ch->irq = platform_get_irq_byname(mtu->pdev, name);
394                 ch->base = mtu->mapbase + channel_offsets[index];
395                 ch->index = index;
396         }
397
398         if (ch->irq < 0) {
399                 /* Skip channels with no declared interrupt. */
400                 if (!mtu->legacy)
401                         return 0;
402
403                 dev_err(&mtu->pdev->dev, "ch%u: failed to get irq\n",
404                         ch->index);
405                 return ch->irq;
406         }
407
408         return sh_mtu2_register(ch, dev_name(&mtu->pdev->dev), clockevent);
409 }
410
411 static int sh_mtu2_map_memory(struct sh_mtu2_device *mtu)
412 {
413         struct resource *res;
414
415         res = platform_get_resource(mtu->pdev, IORESOURCE_MEM, 0);
416         if (!res) {
417                 dev_err(&mtu->pdev->dev, "failed to get I/O memory\n");
418                 return -ENXIO;
419         }
420
421         mtu->mapbase = ioremap_nocache(res->start, resource_size(res));
422         if (mtu->mapbase == NULL)
423                 return -ENXIO;
424
425         /*
426          * In legacy platform device configuration (with one device per channel)
427          * the resource points to the channel base address.
428          */
429         if (mtu->legacy) {
430                 struct sh_timer_config *cfg = mtu->pdev->dev.platform_data;
431                 mtu->mapbase += cfg->channel_offset;
432         }
433
434         return 0;
435 }
436
437 static void sh_mtu2_unmap_memory(struct sh_mtu2_device *mtu)
438 {
439         if (mtu->legacy) {
440                 struct sh_timer_config *cfg = mtu->pdev->dev.platform_data;
441                 mtu->mapbase -= cfg->channel_offset;
442         }
443
444         iounmap(mtu->mapbase);
445 }
446
447 static int sh_mtu2_setup(struct sh_mtu2_device *mtu,
448                          struct platform_device *pdev)
449 {
450         struct sh_timer_config *cfg = pdev->dev.platform_data;
451         const struct platform_device_id *id = pdev->id_entry;
452         unsigned int i;
453         int ret;
454
455         mtu->pdev = pdev;
456         mtu->legacy = id->driver_data;
457
458         if (mtu->legacy && !cfg) {
459                 dev_err(&mtu->pdev->dev, "missing platform data\n");
460                 return -ENXIO;
461         }
462
463         /* Get hold of clock. */
464         mtu->clk = clk_get(&mtu->pdev->dev, mtu->legacy ? "mtu2_fck" : "fck");
465         if (IS_ERR(mtu->clk)) {
466                 dev_err(&mtu->pdev->dev, "cannot get clock\n");
467                 return PTR_ERR(mtu->clk);
468         }
469
470         ret = clk_prepare(mtu->clk);
471         if (ret < 0)
472                 goto err_clk_put;
473
474         /* Map the memory resource. */
475         ret = sh_mtu2_map_memory(mtu);
476         if (ret < 0) {
477                 dev_err(&mtu->pdev->dev, "failed to remap I/O memory\n");
478                 goto err_clk_unprepare;
479         }
480
481         /* Allocate and setup the channels. */
482         if (mtu->legacy)
483                 mtu->num_channels = 1;
484         else
485                 mtu->num_channels = 3;
486
487         mtu->channels = kzalloc(sizeof(*mtu->channels) * mtu->num_channels,
488                                 GFP_KERNEL);
489         if (mtu->channels == NULL) {
490                 ret = -ENOMEM;
491                 goto err_unmap;
492         }
493
494         if (mtu->legacy) {
495                 ret = sh_mtu2_setup_channel(&mtu->channels[0], 0, mtu);
496                 if (ret < 0)
497                         goto err_unmap;
498         } else {
499                 for (i = 0; i < mtu->num_channels; ++i) {
500                         ret = sh_mtu2_setup_channel(&mtu->channels[i], i, mtu);
501                         if (ret < 0)
502                                 goto err_unmap;
503                 }
504         }
505
506         platform_set_drvdata(pdev, mtu);
507
508         return 0;
509
510 err_unmap:
511         kfree(mtu->channels);
512         sh_mtu2_unmap_memory(mtu);
513 err_clk_unprepare:
514         clk_unprepare(mtu->clk);
515 err_clk_put:
516         clk_put(mtu->clk);
517         return ret;
518 }
519
520 static int sh_mtu2_probe(struct platform_device *pdev)
521 {
522         struct sh_mtu2_device *mtu = platform_get_drvdata(pdev);
523         int ret;
524
525         if (!is_early_platform_device(pdev)) {
526                 pm_runtime_set_active(&pdev->dev);
527                 pm_runtime_enable(&pdev->dev);
528         }
529
530         if (mtu) {
531                 dev_info(&pdev->dev, "kept as earlytimer\n");
532                 goto out;
533         }
534
535         mtu = kzalloc(sizeof(*mtu), GFP_KERNEL);
536         if (mtu == NULL)
537                 return -ENOMEM;
538
539         ret = sh_mtu2_setup(mtu, pdev);
540         if (ret) {
541                 kfree(mtu);
542                 pm_runtime_idle(&pdev->dev);
543                 return ret;
544         }
545         if (is_early_platform_device(pdev))
546                 return 0;
547
548  out:
549         if (mtu->has_clockevent)
550                 pm_runtime_irq_safe(&pdev->dev);
551         else
552                 pm_runtime_idle(&pdev->dev);
553
554         return 0;
555 }
556
557 static int sh_mtu2_remove(struct platform_device *pdev)
558 {
559         return -EBUSY; /* cannot unregister clockevent */
560 }
561
562 static const struct platform_device_id sh_mtu2_id_table[] = {
563         { "sh_mtu2", 1 },
564         { "sh-mtu2", 0 },
565         { },
566 };
567 MODULE_DEVICE_TABLE(platform, sh_mtu2_id_table);
568
569 static struct platform_driver sh_mtu2_device_driver = {
570         .probe          = sh_mtu2_probe,
571         .remove         = sh_mtu2_remove,
572         .driver         = {
573                 .name   = "sh_mtu2",
574         },
575         .id_table       = sh_mtu2_id_table,
576 };
577
578 static int __init sh_mtu2_init(void)
579 {
580         return platform_driver_register(&sh_mtu2_device_driver);
581 }
582
583 static void __exit sh_mtu2_exit(void)
584 {
585         platform_driver_unregister(&sh_mtu2_device_driver);
586 }
587
588 early_platform_init("earlytimer", &sh_mtu2_device_driver);
589 subsys_initcall(sh_mtu2_init);
590 module_exit(sh_mtu2_exit);
591
592 MODULE_AUTHOR("Magnus Damm");
593 MODULE_DESCRIPTION("SuperH MTU2 Timer Driver");
594 MODULE_LICENSE("GPL v2");