]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/cpufreq/cpufreq.c
ASoC: bcm2835-i2s: Use devm_snd_dmaengine_pcm_register()
[karo-tx-linux.git] / drivers / cpufreq / cpufreq.c
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7  *
8  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9  *      Added handling for CPU hotplug
10  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11  *      Fix handling for CPU hotplug -- affected CPUs
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32
33 /**
34  * The "cpufreq driver" - the arch- or hardware-dependent low
35  * level driver of CPUFreq support, and its spinlock. This lock
36  * also protects the cpufreq_cpu_data array.
37  */
38 static struct cpufreq_driver *cpufreq_driver;
39 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
40 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback);
41 static DEFINE_RWLOCK(cpufreq_driver_lock);
42 static DEFINE_MUTEX(cpufreq_governor_lock);
43 static LIST_HEAD(cpufreq_policy_list);
44
45 #ifdef CONFIG_HOTPLUG_CPU
46 /* This one keeps track of the previously set governor of a removed CPU */
47 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
48 #endif
49
50 static inline bool has_target(void)
51 {
52         return cpufreq_driver->target_index || cpufreq_driver->target;
53 }
54
55 /*
56  * rwsem to guarantee that cpufreq driver module doesn't unload during critical
57  * sections
58  */
59 static DECLARE_RWSEM(cpufreq_rwsem);
60
61 /* internal prototypes */
62 static int __cpufreq_governor(struct cpufreq_policy *policy,
63                 unsigned int event);
64 static unsigned int __cpufreq_get(unsigned int cpu);
65 static void handle_update(struct work_struct *work);
66
67 /**
68  * Two notifier lists: the "policy" list is involved in the
69  * validation process for a new CPU frequency policy; the
70  * "transition" list for kernel code that needs to handle
71  * changes to devices when the CPU clock speed changes.
72  * The mutex locks both lists.
73  */
74 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
75 static struct srcu_notifier_head cpufreq_transition_notifier_list;
76
77 static bool init_cpufreq_transition_notifier_list_called;
78 static int __init init_cpufreq_transition_notifier_list(void)
79 {
80         srcu_init_notifier_head(&cpufreq_transition_notifier_list);
81         init_cpufreq_transition_notifier_list_called = true;
82         return 0;
83 }
84 pure_initcall(init_cpufreq_transition_notifier_list);
85
86 static int off __read_mostly;
87 static int cpufreq_disabled(void)
88 {
89         return off;
90 }
91 void disable_cpufreq(void)
92 {
93         off = 1;
94 }
95 static LIST_HEAD(cpufreq_governor_list);
96 static DEFINE_MUTEX(cpufreq_governor_mutex);
97
98 bool have_governor_per_policy(void)
99 {
100         return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
101 }
102 EXPORT_SYMBOL_GPL(have_governor_per_policy);
103
104 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
105 {
106         if (have_governor_per_policy())
107                 return &policy->kobj;
108         else
109                 return cpufreq_global_kobject;
110 }
111 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
112
113 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
114 {
115         u64 idle_time;
116         u64 cur_wall_time;
117         u64 busy_time;
118
119         cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
120
121         busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
122         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
123         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
124         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
125         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
126         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
127
128         idle_time = cur_wall_time - busy_time;
129         if (wall)
130                 *wall = cputime_to_usecs(cur_wall_time);
131
132         return cputime_to_usecs(idle_time);
133 }
134
135 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
136 {
137         u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
138
139         if (idle_time == -1ULL)
140                 return get_cpu_idle_time_jiffy(cpu, wall);
141         else if (!io_busy)
142                 idle_time += get_cpu_iowait_time_us(cpu, wall);
143
144         return idle_time;
145 }
146 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
147
148 /*
149  * This is a generic cpufreq init() routine which can be used by cpufreq
150  * drivers of SMP systems. It will do following:
151  * - validate & show freq table passed
152  * - set policies transition latency
153  * - policy->cpus with all possible CPUs
154  */
155 int cpufreq_generic_init(struct cpufreq_policy *policy,
156                 struct cpufreq_frequency_table *table,
157                 unsigned int transition_latency)
158 {
159         int ret;
160
161         ret = cpufreq_table_validate_and_show(policy, table);
162         if (ret) {
163                 pr_err("%s: invalid frequency table: %d\n", __func__, ret);
164                 return ret;
165         }
166
167         policy->cpuinfo.transition_latency = transition_latency;
168
169         /*
170          * The driver only supports the SMP configuartion where all processors
171          * share the clock and voltage and clock.
172          */
173         cpumask_setall(policy->cpus);
174
175         return 0;
176 }
177 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
178
179 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
180 {
181         struct cpufreq_policy *policy = NULL;
182         unsigned long flags;
183
184         if (cpufreq_disabled() || (cpu >= nr_cpu_ids))
185                 return NULL;
186
187         if (!down_read_trylock(&cpufreq_rwsem))
188                 return NULL;
189
190         /* get the cpufreq driver */
191         read_lock_irqsave(&cpufreq_driver_lock, flags);
192
193         if (cpufreq_driver) {
194                 /* get the CPU */
195                 policy = per_cpu(cpufreq_cpu_data, cpu);
196                 if (policy)
197                         kobject_get(&policy->kobj);
198         }
199
200         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
201
202         if (!policy)
203                 up_read(&cpufreq_rwsem);
204
205         return policy;
206 }
207 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
208
209 void cpufreq_cpu_put(struct cpufreq_policy *policy)
210 {
211         if (cpufreq_disabled())
212                 return;
213
214         kobject_put(&policy->kobj);
215         up_read(&cpufreq_rwsem);
216 }
217 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
218
219 /*********************************************************************
220  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
221  *********************************************************************/
222
223 /**
224  * adjust_jiffies - adjust the system "loops_per_jiffy"
225  *
226  * This function alters the system "loops_per_jiffy" for the clock
227  * speed change. Note that loops_per_jiffy cannot be updated on SMP
228  * systems as each CPU might be scaled differently. So, use the arch
229  * per-CPU loops_per_jiffy value wherever possible.
230  */
231 #ifndef CONFIG_SMP
232 static unsigned long l_p_j_ref;
233 static unsigned int l_p_j_ref_freq;
234
235 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
236 {
237         if (ci->flags & CPUFREQ_CONST_LOOPS)
238                 return;
239
240         if (!l_p_j_ref_freq) {
241                 l_p_j_ref = loops_per_jiffy;
242                 l_p_j_ref_freq = ci->old;
243                 pr_debug("saving %lu as reference value for loops_per_jiffy; "
244                         "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
245         }
246         if ((val == CPUFREQ_POSTCHANGE && ci->old != ci->new) ||
247             (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
248                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
249                                                                 ci->new);
250                 pr_debug("scaling loops_per_jiffy to %lu "
251                         "for frequency %u kHz\n", loops_per_jiffy, ci->new);
252         }
253 }
254 #else
255 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
256 {
257         return;
258 }
259 #endif
260
261 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
262                 struct cpufreq_freqs *freqs, unsigned int state)
263 {
264         BUG_ON(irqs_disabled());
265
266         if (cpufreq_disabled())
267                 return;
268
269         freqs->flags = cpufreq_driver->flags;
270         pr_debug("notification %u of frequency transition to %u kHz\n",
271                 state, freqs->new);
272
273         switch (state) {
274
275         case CPUFREQ_PRECHANGE:
276                 /* detect if the driver reported a value as "old frequency"
277                  * which is not equal to what the cpufreq core thinks is
278                  * "old frequency".
279                  */
280                 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
281                         if ((policy) && (policy->cpu == freqs->cpu) &&
282                             (policy->cur) && (policy->cur != freqs->old)) {
283                                 pr_debug("Warning: CPU frequency is"
284                                         " %u, cpufreq assumed %u kHz.\n",
285                                         freqs->old, policy->cur);
286                                 freqs->old = policy->cur;
287                         }
288                 }
289                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
290                                 CPUFREQ_PRECHANGE, freqs);
291                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
292                 break;
293
294         case CPUFREQ_POSTCHANGE:
295                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
296                 pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new,
297                         (unsigned long)freqs->cpu);
298                 trace_cpu_frequency(freqs->new, freqs->cpu);
299                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
300                                 CPUFREQ_POSTCHANGE, freqs);
301                 if (likely(policy) && likely(policy->cpu == freqs->cpu))
302                         policy->cur = freqs->new;
303                 break;
304         }
305 }
306
307 /**
308  * cpufreq_notify_transition - call notifier chain and adjust_jiffies
309  * on frequency transition.
310  *
311  * This function calls the transition notifiers and the "adjust_jiffies"
312  * function. It is called twice on all CPU frequency changes that have
313  * external effects.
314  */
315 void cpufreq_notify_transition(struct cpufreq_policy *policy,
316                 struct cpufreq_freqs *freqs, unsigned int state)
317 {
318         for_each_cpu(freqs->cpu, policy->cpus)
319                 __cpufreq_notify_transition(policy, freqs, state);
320 }
321 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
322
323
324 /*********************************************************************
325  *                          SYSFS INTERFACE                          *
326  *********************************************************************/
327
328 static struct cpufreq_governor *__find_governor(const char *str_governor)
329 {
330         struct cpufreq_governor *t;
331
332         list_for_each_entry(t, &cpufreq_governor_list, governor_list)
333                 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
334                         return t;
335
336         return NULL;
337 }
338
339 /**
340  * cpufreq_parse_governor - parse a governor string
341  */
342 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
343                                 struct cpufreq_governor **governor)
344 {
345         int err = -EINVAL;
346
347         if (!cpufreq_driver)
348                 goto out;
349
350         if (cpufreq_driver->setpolicy) {
351                 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
352                         *policy = CPUFREQ_POLICY_PERFORMANCE;
353                         err = 0;
354                 } else if (!strnicmp(str_governor, "powersave",
355                                                 CPUFREQ_NAME_LEN)) {
356                         *policy = CPUFREQ_POLICY_POWERSAVE;
357                         err = 0;
358                 }
359         } else if (has_target()) {
360                 struct cpufreq_governor *t;
361
362                 mutex_lock(&cpufreq_governor_mutex);
363
364                 t = __find_governor(str_governor);
365
366                 if (t == NULL) {
367                         int ret;
368
369                         mutex_unlock(&cpufreq_governor_mutex);
370                         ret = request_module("cpufreq_%s", str_governor);
371                         mutex_lock(&cpufreq_governor_mutex);
372
373                         if (ret == 0)
374                                 t = __find_governor(str_governor);
375                 }
376
377                 if (t != NULL) {
378                         *governor = t;
379                         err = 0;
380                 }
381
382                 mutex_unlock(&cpufreq_governor_mutex);
383         }
384 out:
385         return err;
386 }
387
388 /**
389  * cpufreq_per_cpu_attr_read() / show_##file_name() -
390  * print out cpufreq information
391  *
392  * Write out information from cpufreq_driver->policy[cpu]; object must be
393  * "unsigned int".
394  */
395
396 #define show_one(file_name, object)                     \
397 static ssize_t show_##file_name                         \
398 (struct cpufreq_policy *policy, char *buf)              \
399 {                                                       \
400         return sprintf(buf, "%u\n", policy->object);    \
401 }
402
403 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
404 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
405 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
406 show_one(scaling_min_freq, min);
407 show_one(scaling_max_freq, max);
408 show_one(scaling_cur_freq, cur);
409
410 static int cpufreq_set_policy(struct cpufreq_policy *policy,
411                                 struct cpufreq_policy *new_policy);
412
413 /**
414  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
415  */
416 #define store_one(file_name, object)                    \
417 static ssize_t store_##file_name                                        \
418 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
419 {                                                                       \
420         int ret;                                                        \
421         struct cpufreq_policy new_policy;                               \
422                                                                         \
423         ret = cpufreq_get_policy(&new_policy, policy->cpu);             \
424         if (ret)                                                        \
425                 return -EINVAL;                                         \
426                                                                         \
427         ret = sscanf(buf, "%u", &new_policy.object);                    \
428         if (ret != 1)                                                   \
429                 return -EINVAL;                                         \
430                                                                         \
431         ret = cpufreq_set_policy(policy, &new_policy);          \
432         policy->user_policy.object = policy->object;                    \
433                                                                         \
434         return ret ? ret : count;                                       \
435 }
436
437 store_one(scaling_min_freq, min);
438 store_one(scaling_max_freq, max);
439
440 /**
441  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
442  */
443 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
444                                         char *buf)
445 {
446         unsigned int cur_freq = __cpufreq_get(policy->cpu);
447         if (!cur_freq)
448                 return sprintf(buf, "<unknown>");
449         return sprintf(buf, "%u\n", cur_freq);
450 }
451
452 /**
453  * show_scaling_governor - show the current policy for the specified CPU
454  */
455 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
456 {
457         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
458                 return sprintf(buf, "powersave\n");
459         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
460                 return sprintf(buf, "performance\n");
461         else if (policy->governor)
462                 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
463                                 policy->governor->name);
464         return -EINVAL;
465 }
466
467 /**
468  * store_scaling_governor - store policy for the specified CPU
469  */
470 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
471                                         const char *buf, size_t count)
472 {
473         int ret;
474         char    str_governor[16];
475         struct cpufreq_policy new_policy;
476
477         ret = cpufreq_get_policy(&new_policy, policy->cpu);
478         if (ret)
479                 return ret;
480
481         ret = sscanf(buf, "%15s", str_governor);
482         if (ret != 1)
483                 return -EINVAL;
484
485         if (cpufreq_parse_governor(str_governor, &new_policy.policy,
486                                                 &new_policy.governor))
487                 return -EINVAL;
488
489         ret = cpufreq_set_policy(policy, &new_policy);
490
491         policy->user_policy.policy = policy->policy;
492         policy->user_policy.governor = policy->governor;
493
494         if (ret)
495                 return ret;
496         else
497                 return count;
498 }
499
500 /**
501  * show_scaling_driver - show the cpufreq driver currently loaded
502  */
503 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
504 {
505         return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
506 }
507
508 /**
509  * show_scaling_available_governors - show the available CPUfreq governors
510  */
511 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
512                                                 char *buf)
513 {
514         ssize_t i = 0;
515         struct cpufreq_governor *t;
516
517         if (!has_target()) {
518                 i += sprintf(buf, "performance powersave");
519                 goto out;
520         }
521
522         list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
523                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
524                     - (CPUFREQ_NAME_LEN + 2)))
525                         goto out;
526                 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
527         }
528 out:
529         i += sprintf(&buf[i], "\n");
530         return i;
531 }
532
533 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
534 {
535         ssize_t i = 0;
536         unsigned int cpu;
537
538         for_each_cpu(cpu, mask) {
539                 if (i)
540                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
541                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
542                 if (i >= (PAGE_SIZE - 5))
543                         break;
544         }
545         i += sprintf(&buf[i], "\n");
546         return i;
547 }
548 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
549
550 /**
551  * show_related_cpus - show the CPUs affected by each transition even if
552  * hw coordination is in use
553  */
554 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
555 {
556         return cpufreq_show_cpus(policy->related_cpus, buf);
557 }
558
559 /**
560  * show_affected_cpus - show the CPUs affected by each transition
561  */
562 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
563 {
564         return cpufreq_show_cpus(policy->cpus, buf);
565 }
566
567 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
568                                         const char *buf, size_t count)
569 {
570         unsigned int freq = 0;
571         unsigned int ret;
572
573         if (!policy->governor || !policy->governor->store_setspeed)
574                 return -EINVAL;
575
576         ret = sscanf(buf, "%u", &freq);
577         if (ret != 1)
578                 return -EINVAL;
579
580         policy->governor->store_setspeed(policy, freq);
581
582         return count;
583 }
584
585 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
586 {
587         if (!policy->governor || !policy->governor->show_setspeed)
588                 return sprintf(buf, "<unsupported>\n");
589
590         return policy->governor->show_setspeed(policy, buf);
591 }
592
593 /**
594  * show_bios_limit - show the current cpufreq HW/BIOS limitation
595  */
596 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
597 {
598         unsigned int limit;
599         int ret;
600         if (cpufreq_driver->bios_limit) {
601                 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
602                 if (!ret)
603                         return sprintf(buf, "%u\n", limit);
604         }
605         return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
606 }
607
608 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
609 cpufreq_freq_attr_ro(cpuinfo_min_freq);
610 cpufreq_freq_attr_ro(cpuinfo_max_freq);
611 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
612 cpufreq_freq_attr_ro(scaling_available_governors);
613 cpufreq_freq_attr_ro(scaling_driver);
614 cpufreq_freq_attr_ro(scaling_cur_freq);
615 cpufreq_freq_attr_ro(bios_limit);
616 cpufreq_freq_attr_ro(related_cpus);
617 cpufreq_freq_attr_ro(affected_cpus);
618 cpufreq_freq_attr_rw(scaling_min_freq);
619 cpufreq_freq_attr_rw(scaling_max_freq);
620 cpufreq_freq_attr_rw(scaling_governor);
621 cpufreq_freq_attr_rw(scaling_setspeed);
622
623 static struct attribute *default_attrs[] = {
624         &cpuinfo_min_freq.attr,
625         &cpuinfo_max_freq.attr,
626         &cpuinfo_transition_latency.attr,
627         &scaling_min_freq.attr,
628         &scaling_max_freq.attr,
629         &affected_cpus.attr,
630         &related_cpus.attr,
631         &scaling_governor.attr,
632         &scaling_driver.attr,
633         &scaling_available_governors.attr,
634         &scaling_setspeed.attr,
635         NULL
636 };
637
638 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
639 #define to_attr(a) container_of(a, struct freq_attr, attr)
640
641 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
642 {
643         struct cpufreq_policy *policy = to_policy(kobj);
644         struct freq_attr *fattr = to_attr(attr);
645         ssize_t ret;
646
647         if (!down_read_trylock(&cpufreq_rwsem))
648                 return -EINVAL;
649
650         down_read(&policy->rwsem);
651
652         if (fattr->show)
653                 ret = fattr->show(policy, buf);
654         else
655                 ret = -EIO;
656
657         up_read(&policy->rwsem);
658         up_read(&cpufreq_rwsem);
659
660         return ret;
661 }
662
663 static ssize_t store(struct kobject *kobj, struct attribute *attr,
664                      const char *buf, size_t count)
665 {
666         struct cpufreq_policy *policy = to_policy(kobj);
667         struct freq_attr *fattr = to_attr(attr);
668         ssize_t ret = -EINVAL;
669
670         get_online_cpus();
671
672         if (!cpu_online(policy->cpu))
673                 goto unlock;
674
675         if (!down_read_trylock(&cpufreq_rwsem))
676                 goto unlock;
677
678         down_write(&policy->rwsem);
679
680         if (fattr->store)
681                 ret = fattr->store(policy, buf, count);
682         else
683                 ret = -EIO;
684
685         up_write(&policy->rwsem);
686
687         up_read(&cpufreq_rwsem);
688 unlock:
689         put_online_cpus();
690
691         return ret;
692 }
693
694 static void cpufreq_sysfs_release(struct kobject *kobj)
695 {
696         struct cpufreq_policy *policy = to_policy(kobj);
697         pr_debug("last reference is dropped\n");
698         complete(&policy->kobj_unregister);
699 }
700
701 static const struct sysfs_ops sysfs_ops = {
702         .show   = show,
703         .store  = store,
704 };
705
706 static struct kobj_type ktype_cpufreq = {
707         .sysfs_ops      = &sysfs_ops,
708         .default_attrs  = default_attrs,
709         .release        = cpufreq_sysfs_release,
710 };
711
712 struct kobject *cpufreq_global_kobject;
713 EXPORT_SYMBOL(cpufreq_global_kobject);
714
715 static int cpufreq_global_kobject_usage;
716
717 int cpufreq_get_global_kobject(void)
718 {
719         if (!cpufreq_global_kobject_usage++)
720                 return kobject_add(cpufreq_global_kobject,
721                                 &cpu_subsys.dev_root->kobj, "%s", "cpufreq");
722
723         return 0;
724 }
725 EXPORT_SYMBOL(cpufreq_get_global_kobject);
726
727 void cpufreq_put_global_kobject(void)
728 {
729         if (!--cpufreq_global_kobject_usage)
730                 kobject_del(cpufreq_global_kobject);
731 }
732 EXPORT_SYMBOL(cpufreq_put_global_kobject);
733
734 int cpufreq_sysfs_create_file(const struct attribute *attr)
735 {
736         int ret = cpufreq_get_global_kobject();
737
738         if (!ret) {
739                 ret = sysfs_create_file(cpufreq_global_kobject, attr);
740                 if (ret)
741                         cpufreq_put_global_kobject();
742         }
743
744         return ret;
745 }
746 EXPORT_SYMBOL(cpufreq_sysfs_create_file);
747
748 void cpufreq_sysfs_remove_file(const struct attribute *attr)
749 {
750         sysfs_remove_file(cpufreq_global_kobject, attr);
751         cpufreq_put_global_kobject();
752 }
753 EXPORT_SYMBOL(cpufreq_sysfs_remove_file);
754
755 /* symlink affected CPUs */
756 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
757 {
758         unsigned int j;
759         int ret = 0;
760
761         for_each_cpu(j, policy->cpus) {
762                 struct device *cpu_dev;
763
764                 if (j == policy->cpu)
765                         continue;
766
767                 pr_debug("Adding link for CPU: %u\n", j);
768                 cpu_dev = get_cpu_device(j);
769                 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
770                                         "cpufreq");
771                 if (ret)
772                         break;
773         }
774         return ret;
775 }
776
777 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy,
778                                      struct device *dev)
779 {
780         struct freq_attr **drv_attr;
781         int ret = 0;
782
783         /* prepare interface data */
784         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
785                                    &dev->kobj, "cpufreq");
786         if (ret)
787                 return ret;
788
789         /* set up files for this cpu device */
790         drv_attr = cpufreq_driver->attr;
791         while ((drv_attr) && (*drv_attr)) {
792                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
793                 if (ret)
794                         goto err_out_kobj_put;
795                 drv_attr++;
796         }
797         if (cpufreq_driver->get) {
798                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
799                 if (ret)
800                         goto err_out_kobj_put;
801         }
802         if (has_target()) {
803                 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
804                 if (ret)
805                         goto err_out_kobj_put;
806         }
807         if (cpufreq_driver->bios_limit) {
808                 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
809                 if (ret)
810                         goto err_out_kobj_put;
811         }
812
813         ret = cpufreq_add_dev_symlink(policy);
814         if (ret)
815                 goto err_out_kobj_put;
816
817         return ret;
818
819 err_out_kobj_put:
820         kobject_put(&policy->kobj);
821         wait_for_completion(&policy->kobj_unregister);
822         return ret;
823 }
824
825 static void cpufreq_init_policy(struct cpufreq_policy *policy)
826 {
827         struct cpufreq_policy new_policy;
828         int ret = 0;
829
830         memcpy(&new_policy, policy, sizeof(*policy));
831         /* assure that the starting sequence is run in cpufreq_set_policy */
832         policy->governor = NULL;
833
834         /* set default policy */
835         ret = cpufreq_set_policy(policy, &new_policy);
836         policy->user_policy.policy = policy->policy;
837         policy->user_policy.governor = policy->governor;
838
839         if (ret) {
840                 pr_debug("setting policy failed\n");
841                 if (cpufreq_driver->exit)
842                         cpufreq_driver->exit(policy);
843         }
844 }
845
846 #ifdef CONFIG_HOTPLUG_CPU
847 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy,
848                                   unsigned int cpu, struct device *dev,
849                                   bool frozen)
850 {
851         int ret = 0;
852         unsigned long flags;
853
854         if (has_target()) {
855                 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
856                 if (ret) {
857                         pr_err("%s: Failed to stop governor\n", __func__);
858                         return ret;
859                 }
860         }
861
862         down_write(&policy->rwsem);
863
864         write_lock_irqsave(&cpufreq_driver_lock, flags);
865
866         cpumask_set_cpu(cpu, policy->cpus);
867         per_cpu(cpufreq_cpu_data, cpu) = policy;
868         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
869
870         up_write(&policy->rwsem);
871
872         if (has_target()) {
873                 if ((ret = __cpufreq_governor(policy, CPUFREQ_GOV_START)) ||
874                         (ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))) {
875                         pr_err("%s: Failed to start governor\n", __func__);
876                         return ret;
877                 }
878         }
879
880         /* Don't touch sysfs links during light-weight init */
881         if (!frozen)
882                 ret = sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq");
883
884         return ret;
885 }
886 #endif
887
888 static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu)
889 {
890         struct cpufreq_policy *policy;
891         unsigned long flags;
892
893         read_lock_irqsave(&cpufreq_driver_lock, flags);
894
895         policy = per_cpu(cpufreq_cpu_data_fallback, cpu);
896
897         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
898
899         return policy;
900 }
901
902 static struct cpufreq_policy *cpufreq_policy_alloc(void)
903 {
904         struct cpufreq_policy *policy;
905
906         policy = kzalloc(sizeof(*policy), GFP_KERNEL);
907         if (!policy)
908                 return NULL;
909
910         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
911                 goto err_free_policy;
912
913         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
914                 goto err_free_cpumask;
915
916         INIT_LIST_HEAD(&policy->policy_list);
917         init_rwsem(&policy->rwsem);
918
919         return policy;
920
921 err_free_cpumask:
922         free_cpumask_var(policy->cpus);
923 err_free_policy:
924         kfree(policy);
925
926         return NULL;
927 }
928
929 static void cpufreq_policy_free(struct cpufreq_policy *policy)
930 {
931         free_cpumask_var(policy->related_cpus);
932         free_cpumask_var(policy->cpus);
933         kfree(policy);
934 }
935
936 static void update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
937 {
938         if (WARN_ON(cpu == policy->cpu))
939                 return;
940
941         down_write(&policy->rwsem);
942
943         policy->last_cpu = policy->cpu;
944         policy->cpu = cpu;
945
946         up_write(&policy->rwsem);
947
948         cpufreq_frequency_table_update_policy_cpu(policy);
949         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
950                         CPUFREQ_UPDATE_POLICY_CPU, policy);
951 }
952
953 static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif,
954                              bool frozen)
955 {
956         unsigned int j, cpu = dev->id;
957         int ret = -ENOMEM;
958         struct cpufreq_policy *policy;
959         unsigned long flags;
960 #ifdef CONFIG_HOTPLUG_CPU
961         struct cpufreq_policy *tpolicy;
962         struct cpufreq_governor *gov;
963 #endif
964
965         if (cpu_is_offline(cpu))
966                 return 0;
967
968         pr_debug("adding CPU %u\n", cpu);
969
970 #ifdef CONFIG_SMP
971         /* check whether a different CPU already registered this
972          * CPU because it is in the same boat. */
973         policy = cpufreq_cpu_get(cpu);
974         if (unlikely(policy)) {
975                 cpufreq_cpu_put(policy);
976                 return 0;
977         }
978 #endif
979
980         if (!down_read_trylock(&cpufreq_rwsem))
981                 return 0;
982
983 #ifdef CONFIG_HOTPLUG_CPU
984         /* Check if this cpu was hot-unplugged earlier and has siblings */
985         read_lock_irqsave(&cpufreq_driver_lock, flags);
986         list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) {
987                 if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) {
988                         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
989                         ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev, frozen);
990                         up_read(&cpufreq_rwsem);
991                         return ret;
992                 }
993         }
994         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
995 #endif
996
997         if (frozen)
998                 /* Restore the saved policy when doing light-weight init */
999                 policy = cpufreq_policy_restore(cpu);
1000         else
1001                 policy = cpufreq_policy_alloc();
1002
1003         if (!policy)
1004                 goto nomem_out;
1005
1006
1007         /*
1008          * In the resume path, since we restore a saved policy, the assignment
1009          * to policy->cpu is like an update of the existing policy, rather than
1010          * the creation of a brand new one. So we need to perform this update
1011          * by invoking update_policy_cpu().
1012          */
1013         if (frozen && cpu != policy->cpu)
1014                 update_policy_cpu(policy, cpu);
1015         else
1016                 policy->cpu = cpu;
1017
1018         policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
1019         cpumask_copy(policy->cpus, cpumask_of(cpu));
1020
1021         init_completion(&policy->kobj_unregister);
1022         INIT_WORK(&policy->update, handle_update);
1023
1024         /* call driver. From then on the cpufreq must be able
1025          * to accept all calls to ->verify and ->setpolicy for this CPU
1026          */
1027         ret = cpufreq_driver->init(policy);
1028         if (ret) {
1029                 pr_debug("initialization failed\n");
1030                 goto err_set_policy_cpu;
1031         }
1032
1033         if (cpufreq_driver->get) {
1034                 policy->cur = cpufreq_driver->get(policy->cpu);
1035                 if (!policy->cur) {
1036                         pr_err("%s: ->get() failed\n", __func__);
1037                         goto err_get_freq;
1038                 }
1039         }
1040
1041         /* related cpus should atleast have policy->cpus */
1042         cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus);
1043
1044         /*
1045          * affected cpus must always be the one, which are online. We aren't
1046          * managing offline cpus here.
1047          */
1048         cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1049
1050         policy->user_policy.min = policy->min;
1051         policy->user_policy.max = policy->max;
1052
1053         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1054                                      CPUFREQ_START, policy);
1055
1056 #ifdef CONFIG_HOTPLUG_CPU
1057         gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu));
1058         if (gov) {
1059                 policy->governor = gov;
1060                 pr_debug("Restoring governor %s for cpu %d\n",
1061                        policy->governor->name, cpu);
1062         }
1063 #endif
1064
1065         write_lock_irqsave(&cpufreq_driver_lock, flags);
1066         for_each_cpu(j, policy->cpus)
1067                 per_cpu(cpufreq_cpu_data, j) = policy;
1068         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1069
1070         if (!frozen) {
1071                 ret = cpufreq_add_dev_interface(policy, dev);
1072                 if (ret)
1073                         goto err_out_unregister;
1074         }
1075
1076         write_lock_irqsave(&cpufreq_driver_lock, flags);
1077         list_add(&policy->policy_list, &cpufreq_policy_list);
1078         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1079
1080         cpufreq_init_policy(policy);
1081
1082         kobject_uevent(&policy->kobj, KOBJ_ADD);
1083         up_read(&cpufreq_rwsem);
1084
1085         pr_debug("initialization complete\n");
1086
1087         return 0;
1088
1089 err_out_unregister:
1090         write_lock_irqsave(&cpufreq_driver_lock, flags);
1091         for_each_cpu(j, policy->cpus)
1092                 per_cpu(cpufreq_cpu_data, j) = NULL;
1093         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1094
1095 err_get_freq:
1096         if (cpufreq_driver->exit)
1097                 cpufreq_driver->exit(policy);
1098 err_set_policy_cpu:
1099         cpufreq_policy_free(policy);
1100 nomem_out:
1101         up_read(&cpufreq_rwsem);
1102
1103         return ret;
1104 }
1105
1106 /**
1107  * cpufreq_add_dev - add a CPU device
1108  *
1109  * Adds the cpufreq interface for a CPU device.
1110  *
1111  * The Oracle says: try running cpufreq registration/unregistration concurrently
1112  * with with cpu hotplugging and all hell will break loose. Tried to clean this
1113  * mess up, but more thorough testing is needed. - Mathieu
1114  */
1115 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1116 {
1117         return __cpufreq_add_dev(dev, sif, false);
1118 }
1119
1120 static int cpufreq_nominate_new_policy_cpu(struct cpufreq_policy *policy,
1121                                            unsigned int old_cpu, bool frozen)
1122 {
1123         struct device *cpu_dev;
1124         int ret;
1125
1126         /* first sibling now owns the new sysfs dir */
1127         cpu_dev = get_cpu_device(cpumask_any_but(policy->cpus, old_cpu));
1128
1129         /* Don't touch sysfs files during light-weight tear-down */
1130         if (frozen)
1131                 return cpu_dev->id;
1132
1133         sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
1134         ret = kobject_move(&policy->kobj, &cpu_dev->kobj);
1135         if (ret) {
1136                 pr_err("%s: Failed to move kobj: %d", __func__, ret);
1137
1138                 down_write(&policy->rwsem);
1139                 cpumask_set_cpu(old_cpu, policy->cpus);
1140                 up_write(&policy->rwsem);
1141
1142                 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
1143                                         "cpufreq");
1144
1145                 return -EINVAL;
1146         }
1147
1148         return cpu_dev->id;
1149 }
1150
1151 static int __cpufreq_remove_dev_prepare(struct device *dev,
1152                                         struct subsys_interface *sif,
1153                                         bool frozen)
1154 {
1155         unsigned int cpu = dev->id, cpus;
1156         int new_cpu, ret;
1157         unsigned long flags;
1158         struct cpufreq_policy *policy;
1159
1160         pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1161
1162         write_lock_irqsave(&cpufreq_driver_lock, flags);
1163
1164         policy = per_cpu(cpufreq_cpu_data, cpu);
1165
1166         /* Save the policy somewhere when doing a light-weight tear-down */
1167         if (frozen)
1168                 per_cpu(cpufreq_cpu_data_fallback, cpu) = policy;
1169
1170         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1171
1172         if (!policy) {
1173                 pr_debug("%s: No cpu_data found\n", __func__);
1174                 return -EINVAL;
1175         }
1176
1177         if (has_target()) {
1178                 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1179                 if (ret) {
1180                         pr_err("%s: Failed to stop governor\n", __func__);
1181                         return ret;
1182                 }
1183         }
1184
1185 #ifdef CONFIG_HOTPLUG_CPU
1186         if (!cpufreq_driver->setpolicy)
1187                 strncpy(per_cpu(cpufreq_cpu_governor, cpu),
1188                         policy->governor->name, CPUFREQ_NAME_LEN);
1189 #endif
1190
1191         down_read(&policy->rwsem);
1192         cpus = cpumask_weight(policy->cpus);
1193         up_read(&policy->rwsem);
1194
1195         if (cpu != policy->cpu) {
1196                 if (!frozen)
1197                         sysfs_remove_link(&dev->kobj, "cpufreq");
1198         } else if (cpus > 1) {
1199                 new_cpu = cpufreq_nominate_new_policy_cpu(policy, cpu, frozen);
1200                 if (new_cpu >= 0) {
1201                         update_policy_cpu(policy, new_cpu);
1202
1203                         if (!frozen) {
1204                                 pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n",
1205                                                 __func__, new_cpu, cpu);
1206                         }
1207                 }
1208         }
1209
1210         return 0;
1211 }
1212
1213 static int __cpufreq_remove_dev_finish(struct device *dev,
1214                                        struct subsys_interface *sif,
1215                                        bool frozen)
1216 {
1217         unsigned int cpu = dev->id, cpus;
1218         int ret;
1219         unsigned long flags;
1220         struct cpufreq_policy *policy;
1221         struct kobject *kobj;
1222         struct completion *cmp;
1223
1224         read_lock_irqsave(&cpufreq_driver_lock, flags);
1225         policy = per_cpu(cpufreq_cpu_data, cpu);
1226         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1227
1228         if (!policy) {
1229                 pr_debug("%s: No cpu_data found\n", __func__);
1230                 return -EINVAL;
1231         }
1232
1233         down_write(&policy->rwsem);
1234         cpus = cpumask_weight(policy->cpus);
1235
1236         if (cpus > 1)
1237                 cpumask_clear_cpu(cpu, policy->cpus);
1238         up_write(&policy->rwsem);
1239
1240         /* If cpu is last user of policy, free policy */
1241         if (cpus == 1) {
1242                 if (has_target()) {
1243                         ret = __cpufreq_governor(policy,
1244                                         CPUFREQ_GOV_POLICY_EXIT);
1245                         if (ret) {
1246                                 pr_err("%s: Failed to exit governor\n",
1247                                                 __func__);
1248                                 return ret;
1249                         }
1250                 }
1251
1252                 if (!frozen) {
1253                         down_read(&policy->rwsem);
1254                         kobj = &policy->kobj;
1255                         cmp = &policy->kobj_unregister;
1256                         up_read(&policy->rwsem);
1257                         kobject_put(kobj);
1258
1259                         /*
1260                          * We need to make sure that the underlying kobj is
1261                          * actually not referenced anymore by anybody before we
1262                          * proceed with unloading.
1263                          */
1264                         pr_debug("waiting for dropping of refcount\n");
1265                         wait_for_completion(cmp);
1266                         pr_debug("wait complete\n");
1267                 }
1268
1269                 /*
1270                  * Perform the ->exit() even during light-weight tear-down,
1271                  * since this is a core component, and is essential for the
1272                  * subsequent light-weight ->init() to succeed.
1273                  */
1274                 if (cpufreq_driver->exit)
1275                         cpufreq_driver->exit(policy);
1276
1277                 /* Remove policy from list of active policies */
1278                 write_lock_irqsave(&cpufreq_driver_lock, flags);
1279                 list_del(&policy->policy_list);
1280                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1281
1282                 if (!frozen)
1283                         cpufreq_policy_free(policy);
1284         } else {
1285                 if (has_target()) {
1286                         if ((ret = __cpufreq_governor(policy, CPUFREQ_GOV_START)) ||
1287                                         (ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))) {
1288                                 pr_err("%s: Failed to start governor\n",
1289                                                 __func__);
1290                                 return ret;
1291                         }
1292                 }
1293         }
1294
1295         per_cpu(cpufreq_cpu_data, cpu) = NULL;
1296         return 0;
1297 }
1298
1299 /**
1300  * cpufreq_remove_dev - remove a CPU device
1301  *
1302  * Removes the cpufreq interface for a CPU device.
1303  */
1304 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1305 {
1306         unsigned int cpu = dev->id;
1307         int ret;
1308
1309         if (cpu_is_offline(cpu))
1310                 return 0;
1311
1312         ret = __cpufreq_remove_dev_prepare(dev, sif, false);
1313
1314         if (!ret)
1315                 ret = __cpufreq_remove_dev_finish(dev, sif, false);
1316
1317         return ret;
1318 }
1319
1320 static void handle_update(struct work_struct *work)
1321 {
1322         struct cpufreq_policy *policy =
1323                 container_of(work, struct cpufreq_policy, update);
1324         unsigned int cpu = policy->cpu;
1325         pr_debug("handle_update for cpu %u called\n", cpu);
1326         cpufreq_update_policy(cpu);
1327 }
1328
1329 /**
1330  *      cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1331  *      in deep trouble.
1332  *      @cpu: cpu number
1333  *      @old_freq: CPU frequency the kernel thinks the CPU runs at
1334  *      @new_freq: CPU frequency the CPU actually runs at
1335  *
1336  *      We adjust to current frequency first, and need to clean up later.
1337  *      So either call to cpufreq_update_policy() or schedule handle_update()).
1338  */
1339 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1340                                 unsigned int new_freq)
1341 {
1342         struct cpufreq_policy *policy;
1343         struct cpufreq_freqs freqs;
1344         unsigned long flags;
1345
1346         pr_debug("Warning: CPU frequency out of sync: cpufreq and timing "
1347                "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1348
1349         freqs.old = old_freq;
1350         freqs.new = new_freq;
1351
1352         read_lock_irqsave(&cpufreq_driver_lock, flags);
1353         policy = per_cpu(cpufreq_cpu_data, cpu);
1354         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1355
1356         cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
1357         cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
1358 }
1359
1360 /**
1361  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1362  * @cpu: CPU number
1363  *
1364  * This is the last known freq, without actually getting it from the driver.
1365  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1366  */
1367 unsigned int cpufreq_quick_get(unsigned int cpu)
1368 {
1369         struct cpufreq_policy *policy;
1370         unsigned int ret_freq = 0;
1371
1372         if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1373                 return cpufreq_driver->get(cpu);
1374
1375         policy = cpufreq_cpu_get(cpu);
1376         if (policy) {
1377                 ret_freq = policy->cur;
1378                 cpufreq_cpu_put(policy);
1379         }
1380
1381         return ret_freq;
1382 }
1383 EXPORT_SYMBOL(cpufreq_quick_get);
1384
1385 /**
1386  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1387  * @cpu: CPU number
1388  *
1389  * Just return the max possible frequency for a given CPU.
1390  */
1391 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1392 {
1393         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1394         unsigned int ret_freq = 0;
1395
1396         if (policy) {
1397                 ret_freq = policy->max;
1398                 cpufreq_cpu_put(policy);
1399         }
1400
1401         return ret_freq;
1402 }
1403 EXPORT_SYMBOL(cpufreq_quick_get_max);
1404
1405 static unsigned int __cpufreq_get(unsigned int cpu)
1406 {
1407         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1408         unsigned int ret_freq = 0;
1409
1410         if (!cpufreq_driver->get)
1411                 return ret_freq;
1412
1413         ret_freq = cpufreq_driver->get(cpu);
1414
1415         if (ret_freq && policy->cur &&
1416                 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1417                 /* verify no discrepancy between actual and
1418                                         saved value exists */
1419                 if (unlikely(ret_freq != policy->cur)) {
1420                         cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1421                         schedule_work(&policy->update);
1422                 }
1423         }
1424
1425         return ret_freq;
1426 }
1427
1428 /**
1429  * cpufreq_get - get the current CPU frequency (in kHz)
1430  * @cpu: CPU number
1431  *
1432  * Get the CPU current (static) CPU frequency
1433  */
1434 unsigned int cpufreq_get(unsigned int cpu)
1435 {
1436         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1437         unsigned int ret_freq = 0;
1438
1439         if (cpufreq_disabled() || !cpufreq_driver)
1440                 return -ENOENT;
1441
1442         BUG_ON(!policy);
1443
1444         if (!down_read_trylock(&cpufreq_rwsem))
1445                 return 0;
1446
1447         down_read(&policy->rwsem);
1448
1449         ret_freq = __cpufreq_get(cpu);
1450
1451         up_read(&policy->rwsem);
1452         up_read(&cpufreq_rwsem);
1453
1454         return ret_freq;
1455 }
1456 EXPORT_SYMBOL(cpufreq_get);
1457
1458 static struct subsys_interface cpufreq_interface = {
1459         .name           = "cpufreq",
1460         .subsys         = &cpu_subsys,
1461         .add_dev        = cpufreq_add_dev,
1462         .remove_dev     = cpufreq_remove_dev,
1463 };
1464
1465 /**
1466  * cpufreq_bp_suspend - Prepare the boot CPU for system suspend.
1467  *
1468  * This function is only executed for the boot processor.  The other CPUs
1469  * have been put offline by means of CPU hotplug.
1470  */
1471 static int cpufreq_bp_suspend(void)
1472 {
1473         int ret = 0;
1474
1475         int cpu = smp_processor_id();
1476         struct cpufreq_policy *policy;
1477
1478         pr_debug("suspending cpu %u\n", cpu);
1479
1480         /* If there's no policy for the boot CPU, we have nothing to do. */
1481         policy = cpufreq_cpu_get(cpu);
1482         if (!policy)
1483                 return 0;
1484
1485         if (cpufreq_driver->suspend) {
1486                 ret = cpufreq_driver->suspend(policy);
1487                 if (ret)
1488                         printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1489                                         "step on CPU %u\n", policy->cpu);
1490         }
1491
1492         cpufreq_cpu_put(policy);
1493         return ret;
1494 }
1495
1496 /**
1497  * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU.
1498  *
1499  *      1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1500  *      2.) schedule call cpufreq_update_policy() ASAP as interrupts are
1501  *          restored. It will verify that the current freq is in sync with
1502  *          what we believe it to be. This is a bit later than when it
1503  *          should be, but nonethteless it's better than calling
1504  *          cpufreq_driver->get() here which might re-enable interrupts...
1505  *
1506  * This function is only executed for the boot CPU.  The other CPUs have not
1507  * been turned on yet.
1508  */
1509 static void cpufreq_bp_resume(void)
1510 {
1511         int ret = 0;
1512
1513         int cpu = smp_processor_id();
1514         struct cpufreq_policy *policy;
1515
1516         pr_debug("resuming cpu %u\n", cpu);
1517
1518         /* If there's no policy for the boot CPU, we have nothing to do. */
1519         policy = cpufreq_cpu_get(cpu);
1520         if (!policy)
1521                 return;
1522
1523         if (cpufreq_driver->resume) {
1524                 ret = cpufreq_driver->resume(policy);
1525                 if (ret) {
1526                         printk(KERN_ERR "cpufreq: resume failed in ->resume "
1527                                         "step on CPU %u\n", policy->cpu);
1528                         goto fail;
1529                 }
1530         }
1531
1532         schedule_work(&policy->update);
1533
1534 fail:
1535         cpufreq_cpu_put(policy);
1536 }
1537
1538 static struct syscore_ops cpufreq_syscore_ops = {
1539         .suspend        = cpufreq_bp_suspend,
1540         .resume         = cpufreq_bp_resume,
1541 };
1542
1543 /**
1544  *      cpufreq_get_current_driver - return current driver's name
1545  *
1546  *      Return the name string of the currently loaded cpufreq driver
1547  *      or NULL, if none.
1548  */
1549 const char *cpufreq_get_current_driver(void)
1550 {
1551         if (cpufreq_driver)
1552                 return cpufreq_driver->name;
1553
1554         return NULL;
1555 }
1556 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1557
1558 /*********************************************************************
1559  *                     NOTIFIER LISTS INTERFACE                      *
1560  *********************************************************************/
1561
1562 /**
1563  *      cpufreq_register_notifier - register a driver with cpufreq
1564  *      @nb: notifier function to register
1565  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1566  *
1567  *      Add a driver to one of two lists: either a list of drivers that
1568  *      are notified about clock rate changes (once before and once after
1569  *      the transition), or a list of drivers that are notified about
1570  *      changes in cpufreq policy.
1571  *
1572  *      This function may sleep, and has the same return conditions as
1573  *      blocking_notifier_chain_register.
1574  */
1575 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1576 {
1577         int ret;
1578
1579         if (cpufreq_disabled())
1580                 return -EINVAL;
1581
1582         WARN_ON(!init_cpufreq_transition_notifier_list_called);
1583
1584         switch (list) {
1585         case CPUFREQ_TRANSITION_NOTIFIER:
1586                 ret = srcu_notifier_chain_register(
1587                                 &cpufreq_transition_notifier_list, nb);
1588                 break;
1589         case CPUFREQ_POLICY_NOTIFIER:
1590                 ret = blocking_notifier_chain_register(
1591                                 &cpufreq_policy_notifier_list, nb);
1592                 break;
1593         default:
1594                 ret = -EINVAL;
1595         }
1596
1597         return ret;
1598 }
1599 EXPORT_SYMBOL(cpufreq_register_notifier);
1600
1601 /**
1602  *      cpufreq_unregister_notifier - unregister a driver with cpufreq
1603  *      @nb: notifier block to be unregistered
1604  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1605  *
1606  *      Remove a driver from the CPU frequency notifier list.
1607  *
1608  *      This function may sleep, and has the same return conditions as
1609  *      blocking_notifier_chain_unregister.
1610  */
1611 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1612 {
1613         int ret;
1614
1615         if (cpufreq_disabled())
1616                 return -EINVAL;
1617
1618         switch (list) {
1619         case CPUFREQ_TRANSITION_NOTIFIER:
1620                 ret = srcu_notifier_chain_unregister(
1621                                 &cpufreq_transition_notifier_list, nb);
1622                 break;
1623         case CPUFREQ_POLICY_NOTIFIER:
1624                 ret = blocking_notifier_chain_unregister(
1625                                 &cpufreq_policy_notifier_list, nb);
1626                 break;
1627         default:
1628                 ret = -EINVAL;
1629         }
1630
1631         return ret;
1632 }
1633 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1634
1635
1636 /*********************************************************************
1637  *                              GOVERNORS                            *
1638  *********************************************************************/
1639
1640 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1641                             unsigned int target_freq,
1642                             unsigned int relation)
1643 {
1644         int retval = -EINVAL;
1645         unsigned int old_target_freq = target_freq;
1646
1647         if (cpufreq_disabled())
1648                 return -ENODEV;
1649
1650         /* Make sure that target_freq is within supported range */
1651         if (target_freq > policy->max)
1652                 target_freq = policy->max;
1653         if (target_freq < policy->min)
1654                 target_freq = policy->min;
1655
1656         pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1657                         policy->cpu, target_freq, relation, old_target_freq);
1658
1659         /*
1660          * This might look like a redundant call as we are checking it again
1661          * after finding index. But it is left intentionally for cases where
1662          * exactly same freq is called again and so we can save on few function
1663          * calls.
1664          */
1665         if (target_freq == policy->cur)
1666                 return 0;
1667
1668         if (cpufreq_driver->target)
1669                 retval = cpufreq_driver->target(policy, target_freq, relation);
1670         else if (cpufreq_driver->target_index) {
1671                 struct cpufreq_frequency_table *freq_table;
1672                 struct cpufreq_freqs freqs;
1673                 bool notify;
1674                 int index;
1675
1676                 freq_table = cpufreq_frequency_get_table(policy->cpu);
1677                 if (unlikely(!freq_table)) {
1678                         pr_err("%s: Unable to find freq_table\n", __func__);
1679                         goto out;
1680                 }
1681
1682                 retval = cpufreq_frequency_table_target(policy, freq_table,
1683                                 target_freq, relation, &index);
1684                 if (unlikely(retval)) {
1685                         pr_err("%s: Unable to find matching freq\n", __func__);
1686                         goto out;
1687                 }
1688
1689                 if (freq_table[index].frequency == policy->cur) {
1690                         retval = 0;
1691                         goto out;
1692                 }
1693
1694                 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1695
1696                 if (notify) {
1697                         freqs.old = policy->cur;
1698                         freqs.new = freq_table[index].frequency;
1699                         freqs.flags = 0;
1700
1701                         pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1702                                         __func__, policy->cpu, freqs.old,
1703                                         freqs.new);
1704
1705                         cpufreq_notify_transition(policy, &freqs,
1706                                         CPUFREQ_PRECHANGE);
1707                 }
1708
1709                 retval = cpufreq_driver->target_index(policy, index);
1710                 if (retval)
1711                         pr_err("%s: Failed to change cpu frequency: %d\n",
1712                                         __func__, retval);
1713
1714                 if (notify) {
1715                         /*
1716                          * Notify with old freq in case we failed to change
1717                          * frequency
1718                          */
1719                         if (retval)
1720                                 freqs.new = freqs.old;
1721
1722                         cpufreq_notify_transition(policy, &freqs,
1723                                         CPUFREQ_POSTCHANGE);
1724                 }
1725         }
1726
1727 out:
1728         return retval;
1729 }
1730 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1731
1732 int cpufreq_driver_target(struct cpufreq_policy *policy,
1733                           unsigned int target_freq,
1734                           unsigned int relation)
1735 {
1736         int ret = -EINVAL;
1737
1738         down_write(&policy->rwsem);
1739
1740         ret = __cpufreq_driver_target(policy, target_freq, relation);
1741
1742         up_write(&policy->rwsem);
1743
1744         return ret;
1745 }
1746 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1747
1748 /*
1749  * when "event" is CPUFREQ_GOV_LIMITS
1750  */
1751
1752 static int __cpufreq_governor(struct cpufreq_policy *policy,
1753                                         unsigned int event)
1754 {
1755         int ret;
1756
1757         /* Only must be defined when default governor is known to have latency
1758            restrictions, like e.g. conservative or ondemand.
1759            That this is the case is already ensured in Kconfig
1760         */
1761 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1762         struct cpufreq_governor *gov = &cpufreq_gov_performance;
1763 #else
1764         struct cpufreq_governor *gov = NULL;
1765 #endif
1766
1767         if (policy->governor->max_transition_latency &&
1768             policy->cpuinfo.transition_latency >
1769             policy->governor->max_transition_latency) {
1770                 if (!gov)
1771                         return -EINVAL;
1772                 else {
1773                         printk(KERN_WARNING "%s governor failed, too long"
1774                                " transition latency of HW, fallback"
1775                                " to %s governor\n",
1776                                policy->governor->name,
1777                                gov->name);
1778                         policy->governor = gov;
1779                 }
1780         }
1781
1782         if (event == CPUFREQ_GOV_POLICY_INIT)
1783                 if (!try_module_get(policy->governor->owner))
1784                         return -EINVAL;
1785
1786         pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1787                                                 policy->cpu, event);
1788
1789         mutex_lock(&cpufreq_governor_lock);
1790         if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
1791             || (!policy->governor_enabled
1792             && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
1793                 mutex_unlock(&cpufreq_governor_lock);
1794                 return -EBUSY;
1795         }
1796
1797         if (event == CPUFREQ_GOV_STOP)
1798                 policy->governor_enabled = false;
1799         else if (event == CPUFREQ_GOV_START)
1800                 policy->governor_enabled = true;
1801
1802         mutex_unlock(&cpufreq_governor_lock);
1803
1804         ret = policy->governor->governor(policy, event);
1805
1806         if (!ret) {
1807                 if (event == CPUFREQ_GOV_POLICY_INIT)
1808                         policy->governor->initialized++;
1809                 else if (event == CPUFREQ_GOV_POLICY_EXIT)
1810                         policy->governor->initialized--;
1811         } else {
1812                 /* Restore original values */
1813                 mutex_lock(&cpufreq_governor_lock);
1814                 if (event == CPUFREQ_GOV_STOP)
1815                         policy->governor_enabled = true;
1816                 else if (event == CPUFREQ_GOV_START)
1817                         policy->governor_enabled = false;
1818                 mutex_unlock(&cpufreq_governor_lock);
1819         }
1820
1821         if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
1822                         ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
1823                 module_put(policy->governor->owner);
1824
1825         return ret;
1826 }
1827
1828 int cpufreq_register_governor(struct cpufreq_governor *governor)
1829 {
1830         int err;
1831
1832         if (!governor)
1833                 return -EINVAL;
1834
1835         if (cpufreq_disabled())
1836                 return -ENODEV;
1837
1838         mutex_lock(&cpufreq_governor_mutex);
1839
1840         governor->initialized = 0;
1841         err = -EBUSY;
1842         if (__find_governor(governor->name) == NULL) {
1843                 err = 0;
1844                 list_add(&governor->governor_list, &cpufreq_governor_list);
1845         }
1846
1847         mutex_unlock(&cpufreq_governor_mutex);
1848         return err;
1849 }
1850 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1851
1852 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1853 {
1854 #ifdef CONFIG_HOTPLUG_CPU
1855         int cpu;
1856 #endif
1857
1858         if (!governor)
1859                 return;
1860
1861         if (cpufreq_disabled())
1862                 return;
1863
1864 #ifdef CONFIG_HOTPLUG_CPU
1865         for_each_present_cpu(cpu) {
1866                 if (cpu_online(cpu))
1867                         continue;
1868                 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
1869                         strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
1870         }
1871 #endif
1872
1873         mutex_lock(&cpufreq_governor_mutex);
1874         list_del(&governor->governor_list);
1875         mutex_unlock(&cpufreq_governor_mutex);
1876         return;
1877 }
1878 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1879
1880
1881 /*********************************************************************
1882  *                          POLICY INTERFACE                         *
1883  *********************************************************************/
1884
1885 /**
1886  * cpufreq_get_policy - get the current cpufreq_policy
1887  * @policy: struct cpufreq_policy into which the current cpufreq_policy
1888  *      is written
1889  *
1890  * Reads the current cpufreq policy.
1891  */
1892 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1893 {
1894         struct cpufreq_policy *cpu_policy;
1895         if (!policy)
1896                 return -EINVAL;
1897
1898         cpu_policy = cpufreq_cpu_get(cpu);
1899         if (!cpu_policy)
1900                 return -EINVAL;
1901
1902         memcpy(policy, cpu_policy, sizeof(*policy));
1903
1904         cpufreq_cpu_put(cpu_policy);
1905         return 0;
1906 }
1907 EXPORT_SYMBOL(cpufreq_get_policy);
1908
1909 /*
1910  * policy : current policy.
1911  * new_policy: policy to be set.
1912  */
1913 static int cpufreq_set_policy(struct cpufreq_policy *policy,
1914                                 struct cpufreq_policy *new_policy)
1915 {
1916         int ret = 0, failed = 1;
1917
1918         pr_debug("setting new policy for CPU %u: %u - %u kHz\n", new_policy->cpu,
1919                 new_policy->min, new_policy->max);
1920
1921         memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
1922
1923         if (new_policy->min > policy->max || new_policy->max < policy->min) {
1924                 ret = -EINVAL;
1925                 goto error_out;
1926         }
1927
1928         /* verify the cpu speed can be set within this limit */
1929         ret = cpufreq_driver->verify(new_policy);
1930         if (ret)
1931                 goto error_out;
1932
1933         /* adjust if necessary - all reasons */
1934         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1935                         CPUFREQ_ADJUST, new_policy);
1936
1937         /* adjust if necessary - hardware incompatibility*/
1938         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1939                         CPUFREQ_INCOMPATIBLE, new_policy);
1940
1941         /*
1942          * verify the cpu speed can be set within this limit, which might be
1943          * different to the first one
1944          */
1945         ret = cpufreq_driver->verify(new_policy);
1946         if (ret)
1947                 goto error_out;
1948
1949         /* notification of the new policy */
1950         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1951                         CPUFREQ_NOTIFY, new_policy);
1952
1953         policy->min = new_policy->min;
1954         policy->max = new_policy->max;
1955
1956         pr_debug("new min and max freqs are %u - %u kHz\n",
1957                                         policy->min, policy->max);
1958
1959         if (cpufreq_driver->setpolicy) {
1960                 policy->policy = new_policy->policy;
1961                 pr_debug("setting range\n");
1962                 ret = cpufreq_driver->setpolicy(new_policy);
1963         } else {
1964                 if (new_policy->governor != policy->governor) {
1965                         /* save old, working values */
1966                         struct cpufreq_governor *old_gov = policy->governor;
1967
1968                         pr_debug("governor switch\n");
1969
1970                         /* end old governor */
1971                         if (policy->governor) {
1972                                 __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1973                                 up_write(&policy->rwsem);
1974                                 __cpufreq_governor(policy,
1975                                                 CPUFREQ_GOV_POLICY_EXIT);
1976                                 down_write(&policy->rwsem);
1977                         }
1978
1979                         /* start new governor */
1980                         policy->governor = new_policy->governor;
1981                         if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) {
1982                                 if (!__cpufreq_governor(policy, CPUFREQ_GOV_START)) {
1983                                         failed = 0;
1984                                 } else {
1985                                         up_write(&policy->rwsem);
1986                                         __cpufreq_governor(policy,
1987                                                         CPUFREQ_GOV_POLICY_EXIT);
1988                                         down_write(&policy->rwsem);
1989                                 }
1990                         }
1991
1992                         if (failed) {
1993                                 /* new governor failed, so re-start old one */
1994                                 pr_debug("starting governor %s failed\n",
1995                                                         policy->governor->name);
1996                                 if (old_gov) {
1997                                         policy->governor = old_gov;
1998                                         __cpufreq_governor(policy,
1999                                                         CPUFREQ_GOV_POLICY_INIT);
2000                                         __cpufreq_governor(policy,
2001                                                            CPUFREQ_GOV_START);
2002                                 }
2003                                 ret = -EINVAL;
2004                                 goto error_out;
2005                         }
2006                         /* might be a policy change, too, so fall through */
2007                 }
2008                 pr_debug("governor: change or update limits\n");
2009                 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2010         }
2011
2012 error_out:
2013         return ret;
2014 }
2015
2016 /**
2017  *      cpufreq_update_policy - re-evaluate an existing cpufreq policy
2018  *      @cpu: CPU which shall be re-evaluated
2019  *
2020  *      Useful for policy notifiers which have different necessities
2021  *      at different times.
2022  */
2023 int cpufreq_update_policy(unsigned int cpu)
2024 {
2025         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2026         struct cpufreq_policy new_policy;
2027         int ret;
2028
2029         if (!policy) {
2030                 ret = -ENODEV;
2031                 goto no_policy;
2032         }
2033
2034         down_write(&policy->rwsem);
2035
2036         pr_debug("updating policy for CPU %u\n", cpu);
2037         memcpy(&new_policy, policy, sizeof(*policy));
2038         new_policy.min = policy->user_policy.min;
2039         new_policy.max = policy->user_policy.max;
2040         new_policy.policy = policy->user_policy.policy;
2041         new_policy.governor = policy->user_policy.governor;
2042
2043         /*
2044          * BIOS might change freq behind our back
2045          * -> ask driver for current freq and notify governors about a change
2046          */
2047         if (cpufreq_driver->get) {
2048                 new_policy.cur = cpufreq_driver->get(cpu);
2049                 if (!policy->cur) {
2050                         pr_debug("Driver did not initialize current freq");
2051                         policy->cur = new_policy.cur;
2052                 } else {
2053                         if (policy->cur != new_policy.cur && has_target())
2054                                 cpufreq_out_of_sync(cpu, policy->cur,
2055                                                                 new_policy.cur);
2056                 }
2057         }
2058
2059         ret = cpufreq_set_policy(policy, &new_policy);
2060
2061         up_write(&policy->rwsem);
2062
2063         cpufreq_cpu_put(policy);
2064 no_policy:
2065         return ret;
2066 }
2067 EXPORT_SYMBOL(cpufreq_update_policy);
2068
2069 static int cpufreq_cpu_callback(struct notifier_block *nfb,
2070                                         unsigned long action, void *hcpu)
2071 {
2072         unsigned int cpu = (unsigned long)hcpu;
2073         struct device *dev;
2074         bool frozen = false;
2075
2076         dev = get_cpu_device(cpu);
2077         if (dev) {
2078
2079                 if (action & CPU_TASKS_FROZEN)
2080                         frozen = true;
2081
2082                 switch (action & ~CPU_TASKS_FROZEN) {
2083                 case CPU_ONLINE:
2084                         __cpufreq_add_dev(dev, NULL, frozen);
2085                         cpufreq_update_policy(cpu);
2086                         break;
2087
2088                 case CPU_DOWN_PREPARE:
2089                         __cpufreq_remove_dev_prepare(dev, NULL, frozen);
2090                         break;
2091
2092                 case CPU_POST_DEAD:
2093                         __cpufreq_remove_dev_finish(dev, NULL, frozen);
2094                         break;
2095
2096                 case CPU_DOWN_FAILED:
2097                         __cpufreq_add_dev(dev, NULL, frozen);
2098                         break;
2099                 }
2100         }
2101         return NOTIFY_OK;
2102 }
2103
2104 static struct notifier_block __refdata cpufreq_cpu_notifier = {
2105         .notifier_call = cpufreq_cpu_callback,
2106 };
2107
2108 /*********************************************************************
2109  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2110  *********************************************************************/
2111
2112 /**
2113  * cpufreq_register_driver - register a CPU Frequency driver
2114  * @driver_data: A struct cpufreq_driver containing the values#
2115  * submitted by the CPU Frequency driver.
2116  *
2117  * Registers a CPU Frequency driver to this core code. This code
2118  * returns zero on success, -EBUSY when another driver got here first
2119  * (and isn't unregistered in the meantime).
2120  *
2121  */
2122 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2123 {
2124         unsigned long flags;
2125         int ret;
2126
2127         if (cpufreq_disabled())
2128                 return -ENODEV;
2129
2130         if (!driver_data || !driver_data->verify || !driver_data->init ||
2131             !(driver_data->setpolicy || driver_data->target_index ||
2132                     driver_data->target))
2133                 return -EINVAL;
2134
2135         pr_debug("trying to register driver %s\n", driver_data->name);
2136
2137         if (driver_data->setpolicy)
2138                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2139
2140         write_lock_irqsave(&cpufreq_driver_lock, flags);
2141         if (cpufreq_driver) {
2142                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2143                 return -EEXIST;
2144         }
2145         cpufreq_driver = driver_data;
2146         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2147
2148         ret = subsys_interface_register(&cpufreq_interface);
2149         if (ret)
2150                 goto err_null_driver;
2151
2152         if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
2153                 int i;
2154                 ret = -ENODEV;
2155
2156                 /* check for at least one working CPU */
2157                 for (i = 0; i < nr_cpu_ids; i++)
2158                         if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
2159                                 ret = 0;
2160                                 break;
2161                         }
2162
2163                 /* if all ->init() calls failed, unregister */
2164                 if (ret) {
2165                         pr_debug("no CPU initialized for driver %s\n",
2166                                                         driver_data->name);
2167                         goto err_if_unreg;
2168                 }
2169         }
2170
2171         register_hotcpu_notifier(&cpufreq_cpu_notifier);
2172         pr_debug("driver %s up and running\n", driver_data->name);
2173
2174         return 0;
2175 err_if_unreg:
2176         subsys_interface_unregister(&cpufreq_interface);
2177 err_null_driver:
2178         write_lock_irqsave(&cpufreq_driver_lock, flags);
2179         cpufreq_driver = NULL;
2180         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2181         return ret;
2182 }
2183 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2184
2185 /**
2186  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2187  *
2188  * Unregister the current CPUFreq driver. Only call this if you have
2189  * the right to do so, i.e. if you have succeeded in initialising before!
2190  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2191  * currently not initialised.
2192  */
2193 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2194 {
2195         unsigned long flags;
2196
2197         if (!cpufreq_driver || (driver != cpufreq_driver))
2198                 return -EINVAL;
2199
2200         pr_debug("unregistering driver %s\n", driver->name);
2201
2202         subsys_interface_unregister(&cpufreq_interface);
2203         unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2204
2205         down_write(&cpufreq_rwsem);
2206         write_lock_irqsave(&cpufreq_driver_lock, flags);
2207
2208         cpufreq_driver = NULL;
2209
2210         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2211         up_write(&cpufreq_rwsem);
2212
2213         return 0;
2214 }
2215 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2216
2217 static int __init cpufreq_core_init(void)
2218 {
2219         if (cpufreq_disabled())
2220                 return -ENODEV;
2221
2222         cpufreq_global_kobject = kobject_create();
2223         BUG_ON(!cpufreq_global_kobject);
2224         register_syscore_ops(&cpufreq_syscore_ops);
2225
2226         return 0;
2227 }
2228 core_initcall(cpufreq_core_init);