]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/cpufreq/intel_pstate.c
Merge branch 'i2c/for-4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[karo-tx-linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
41
42 #define ATOM_RATIOS             0x66a
43 #define ATOM_VIDS               0x66b
44 #define ATOM_TURBO_RATIOS       0x66c
45 #define ATOM_TURBO_VIDS         0x66d
46
47 #ifdef CONFIG_ACPI
48 #include <acpi/processor.h>
49 #include <acpi/cppc_acpi.h>
50 #endif
51
52 #define FRAC_BITS 8
53 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
54 #define fp_toint(X) ((X) >> FRAC_BITS)
55
56 #define EXT_BITS 6
57 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
58 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
59 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
60
61 static inline int32_t mul_fp(int32_t x, int32_t y)
62 {
63         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
64 }
65
66 static inline int32_t div_fp(s64 x, s64 y)
67 {
68         return div64_s64((int64_t)x << FRAC_BITS, y);
69 }
70
71 static inline int ceiling_fp(int32_t x)
72 {
73         int mask, ret;
74
75         ret = fp_toint(x);
76         mask = (1 << FRAC_BITS) - 1;
77         if (x & mask)
78                 ret += 1;
79         return ret;
80 }
81
82 static inline u64 mul_ext_fp(u64 x, u64 y)
83 {
84         return (x * y) >> EXT_FRAC_BITS;
85 }
86
87 static inline u64 div_ext_fp(u64 x, u64 y)
88 {
89         return div64_u64(x << EXT_FRAC_BITS, y);
90 }
91
92 /**
93  * struct sample -      Store performance sample
94  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
95  *                      performance during last sample period
96  * @busy_scaled:        Scaled busy value which is used to calculate next
97  *                      P state. This can be different than core_avg_perf
98  *                      to account for cpu idle period
99  * @aperf:              Difference of actual performance frequency clock count
100  *                      read from APERF MSR between last and current sample
101  * @mperf:              Difference of maximum performance frequency clock count
102  *                      read from MPERF MSR between last and current sample
103  * @tsc:                Difference of time stamp counter between last and
104  *                      current sample
105  * @time:               Current time from scheduler
106  *
107  * This structure is used in the cpudata structure to store performance sample
108  * data for choosing next P State.
109  */
110 struct sample {
111         int32_t core_avg_perf;
112         int32_t busy_scaled;
113         u64 aperf;
114         u64 mperf;
115         u64 tsc;
116         u64 time;
117 };
118
119 /**
120  * struct pstate_data - Store P state data
121  * @current_pstate:     Current requested P state
122  * @min_pstate:         Min P state possible for this platform
123  * @max_pstate:         Max P state possible for this platform
124  * @max_pstate_physical:This is physical Max P state for a processor
125  *                      This can be higher than the max_pstate which can
126  *                      be limited by platform thermal design power limits
127  * @scaling:            Scaling factor to  convert frequency to cpufreq
128  *                      frequency units
129  * @turbo_pstate:       Max Turbo P state possible for this platform
130  * @max_freq:           @max_pstate frequency in cpufreq units
131  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
132  *
133  * Stores the per cpu model P state limits and current P state.
134  */
135 struct pstate_data {
136         int     current_pstate;
137         int     min_pstate;
138         int     max_pstate;
139         int     max_pstate_physical;
140         int     scaling;
141         int     turbo_pstate;
142         unsigned int max_freq;
143         unsigned int turbo_freq;
144 };
145
146 /**
147  * struct vid_data -    Stores voltage information data
148  * @min:                VID data for this platform corresponding to
149  *                      the lowest P state
150  * @max:                VID data corresponding to the highest P State.
151  * @turbo:              VID data for turbo P state
152  * @ratio:              Ratio of (vid max - vid min) /
153  *                      (max P state - Min P State)
154  *
155  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
156  * This data is used in Atom platforms, where in addition to target P state,
157  * the voltage data needs to be specified to select next P State.
158  */
159 struct vid_data {
160         int min;
161         int max;
162         int turbo;
163         int32_t ratio;
164 };
165
166 /**
167  * struct _pid -        Stores PID data
168  * @setpoint:           Target set point for busyness or performance
169  * @integral:           Storage for accumulated error values
170  * @p_gain:             PID proportional gain
171  * @i_gain:             PID integral gain
172  * @d_gain:             PID derivative gain
173  * @deadband:           PID deadband
174  * @last_err:           Last error storage for integral part of PID calculation
175  *
176  * Stores PID coefficients and last error for PID controller.
177  */
178 struct _pid {
179         int setpoint;
180         int32_t integral;
181         int32_t p_gain;
182         int32_t i_gain;
183         int32_t d_gain;
184         int deadband;
185         int32_t last_err;
186 };
187
188 /**
189  * struct perf_limits - Store user and policy limits
190  * @no_turbo:           User requested turbo state from intel_pstate sysfs
191  * @turbo_disabled:     Platform turbo status either from msr
192  *                      MSR_IA32_MISC_ENABLE or when maximum available pstate
193  *                      matches the maximum turbo pstate
194  * @max_perf_pct:       Effective maximum performance limit in percentage, this
195  *                      is minimum of either limits enforced by cpufreq policy
196  *                      or limits from user set limits via intel_pstate sysfs
197  * @min_perf_pct:       Effective minimum performance limit in percentage, this
198  *                      is maximum of either limits enforced by cpufreq policy
199  *                      or limits from user set limits via intel_pstate sysfs
200  * @max_perf:           This is a scaled value between 0 to 255 for max_perf_pct
201  *                      This value is used to limit max pstate
202  * @min_perf:           This is a scaled value between 0 to 255 for min_perf_pct
203  *                      This value is used to limit min pstate
204  * @max_policy_pct:     The maximum performance in percentage enforced by
205  *                      cpufreq setpolicy interface
206  * @max_sysfs_pct:      The maximum performance in percentage enforced by
207  *                      intel pstate sysfs interface, unused when per cpu
208  *                      controls are enforced
209  * @min_policy_pct:     The minimum performance in percentage enforced by
210  *                      cpufreq setpolicy interface
211  * @min_sysfs_pct:      The minimum performance in percentage enforced by
212  *                      intel pstate sysfs interface, unused when per cpu
213  *                      controls are enforced
214  *
215  * Storage for user and policy defined limits.
216  */
217 struct perf_limits {
218         int no_turbo;
219         int turbo_disabled;
220         int max_perf_pct;
221         int min_perf_pct;
222         int32_t max_perf;
223         int32_t min_perf;
224         int max_policy_pct;
225         int max_sysfs_pct;
226         int min_policy_pct;
227         int min_sysfs_pct;
228 };
229
230 /**
231  * struct cpudata -     Per CPU instance data storage
232  * @cpu:                CPU number for this instance data
233  * @policy:             CPUFreq policy value
234  * @update_util:        CPUFreq utility callback information
235  * @update_util_set:    CPUFreq utility callback is set
236  * @iowait_boost:       iowait-related boost fraction
237  * @last_update:        Time of the last update.
238  * @pstate:             Stores P state limits for this CPU
239  * @vid:                Stores VID limits for this CPU
240  * @pid:                Stores PID parameters for this CPU
241  * @last_sample_time:   Last Sample time
242  * @prev_aperf:         Last APERF value read from APERF MSR
243  * @prev_mperf:         Last MPERF value read from MPERF MSR
244  * @prev_tsc:           Last timestamp counter (TSC) value
245  * @prev_cummulative_iowait: IO Wait time difference from last and
246  *                      current sample
247  * @sample:             Storage for storing last Sample data
248  * @perf_limits:        Pointer to perf_limit unique to this CPU
249  *                      Not all field in the structure are applicable
250  *                      when per cpu controls are enforced
251  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
252  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
253  * @epp_powersave:      Last saved HWP energy performance preference
254  *                      (EPP) or energy performance bias (EPB),
255  *                      when policy switched to performance
256  * @epp_policy:         Last saved policy used to set EPP/EPB
257  * @epp_default:        Power on default HWP energy performance
258  *                      preference/bias
259  * @epp_saved:          Saved EPP/EPB during system suspend or CPU offline
260  *                      operation
261  *
262  * This structure stores per CPU instance data for all CPUs.
263  */
264 struct cpudata {
265         int cpu;
266
267         unsigned int policy;
268         struct update_util_data update_util;
269         bool   update_util_set;
270
271         struct pstate_data pstate;
272         struct vid_data vid;
273         struct _pid pid;
274
275         u64     last_update;
276         u64     last_sample_time;
277         u64     prev_aperf;
278         u64     prev_mperf;
279         u64     prev_tsc;
280         u64     prev_cummulative_iowait;
281         struct sample sample;
282         struct perf_limits *perf_limits;
283 #ifdef CONFIG_ACPI
284         struct acpi_processor_performance acpi_perf_data;
285         bool valid_pss_table;
286 #endif
287         unsigned int iowait_boost;
288         s16 epp_powersave;
289         s16 epp_policy;
290         s16 epp_default;
291         s16 epp_saved;
292 };
293
294 static struct cpudata **all_cpu_data;
295
296 /**
297  * struct pstate_adjust_policy - Stores static PID configuration data
298  * @sample_rate_ms:     PID calculation sample rate in ms
299  * @sample_rate_ns:     Sample rate calculation in ns
300  * @deadband:           PID deadband
301  * @setpoint:           PID Setpoint
302  * @p_gain_pct:         PID proportional gain
303  * @i_gain_pct:         PID integral gain
304  * @d_gain_pct:         PID derivative gain
305  *
306  * Stores per CPU model static PID configuration data.
307  */
308 struct pstate_adjust_policy {
309         int sample_rate_ms;
310         s64 sample_rate_ns;
311         int deadband;
312         int setpoint;
313         int p_gain_pct;
314         int d_gain_pct;
315         int i_gain_pct;
316 };
317
318 /**
319  * struct pstate_funcs - Per CPU model specific callbacks
320  * @get_max:            Callback to get maximum non turbo effective P state
321  * @get_max_physical:   Callback to get maximum non turbo physical P state
322  * @get_min:            Callback to get minimum P state
323  * @get_turbo:          Callback to get turbo P state
324  * @get_scaling:        Callback to get frequency scaling factor
325  * @get_val:            Callback to convert P state to actual MSR write value
326  * @get_vid:            Callback to get VID data for Atom platforms
327  * @get_target_pstate:  Callback to a function to calculate next P state to use
328  *
329  * Core and Atom CPU models have different way to get P State limits. This
330  * structure is used to store those callbacks.
331  */
332 struct pstate_funcs {
333         int (*get_max)(void);
334         int (*get_max_physical)(void);
335         int (*get_min)(void);
336         int (*get_turbo)(void);
337         int (*get_scaling)(void);
338         u64 (*get_val)(struct cpudata*, int pstate);
339         void (*get_vid)(struct cpudata *);
340         int32_t (*get_target_pstate)(struct cpudata *);
341 };
342
343 /**
344  * struct cpu_defaults- Per CPU model default config data
345  * @pid_policy: PID config data
346  * @funcs:              Callback function data
347  */
348 struct cpu_defaults {
349         struct pstate_adjust_policy pid_policy;
350         struct pstate_funcs funcs;
351 };
352
353 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
354 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
355
356 static struct pstate_adjust_policy pid_params __read_mostly;
357 static struct pstate_funcs pstate_funcs __read_mostly;
358 static int hwp_active __read_mostly;
359 static bool per_cpu_limits __read_mostly;
360
361 static bool driver_registered __read_mostly;
362
363 #ifdef CONFIG_ACPI
364 static bool acpi_ppc;
365 #endif
366
367 static struct perf_limits performance_limits = {
368         .no_turbo = 0,
369         .turbo_disabled = 0,
370         .max_perf_pct = 100,
371         .max_perf = int_ext_tofp(1),
372         .min_perf_pct = 100,
373         .min_perf = int_ext_tofp(1),
374         .max_policy_pct = 100,
375         .max_sysfs_pct = 100,
376         .min_policy_pct = 0,
377         .min_sysfs_pct = 0,
378 };
379
380 static struct perf_limits powersave_limits = {
381         .no_turbo = 0,
382         .turbo_disabled = 0,
383         .max_perf_pct = 100,
384         .max_perf = int_ext_tofp(1),
385         .min_perf_pct = 0,
386         .min_perf = 0,
387         .max_policy_pct = 100,
388         .max_sysfs_pct = 100,
389         .min_policy_pct = 0,
390         .min_sysfs_pct = 0,
391 };
392
393 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
394 static struct perf_limits *limits = &performance_limits;
395 #else
396 static struct perf_limits *limits = &powersave_limits;
397 #endif
398
399 static DEFINE_MUTEX(intel_pstate_driver_lock);
400 static DEFINE_MUTEX(intel_pstate_limits_lock);
401
402 #ifdef CONFIG_ACPI
403
404 static bool intel_pstate_get_ppc_enable_status(void)
405 {
406         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
407             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
408                 return true;
409
410         return acpi_ppc;
411 }
412
413 #ifdef CONFIG_ACPI_CPPC_LIB
414
415 /* The work item is needed to avoid CPU hotplug locking issues */
416 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
417 {
418         sched_set_itmt_support();
419 }
420
421 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
422
423 static void intel_pstate_set_itmt_prio(int cpu)
424 {
425         struct cppc_perf_caps cppc_perf;
426         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
427         int ret;
428
429         ret = cppc_get_perf_caps(cpu, &cppc_perf);
430         if (ret)
431                 return;
432
433         /*
434          * The priorities can be set regardless of whether or not
435          * sched_set_itmt_support(true) has been called and it is valid to
436          * update them at any time after it has been called.
437          */
438         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
439
440         if (max_highest_perf <= min_highest_perf) {
441                 if (cppc_perf.highest_perf > max_highest_perf)
442                         max_highest_perf = cppc_perf.highest_perf;
443
444                 if (cppc_perf.highest_perf < min_highest_perf)
445                         min_highest_perf = cppc_perf.highest_perf;
446
447                 if (max_highest_perf > min_highest_perf) {
448                         /*
449                          * This code can be run during CPU online under the
450                          * CPU hotplug locks, so sched_set_itmt_support()
451                          * cannot be called from here.  Queue up a work item
452                          * to invoke it.
453                          */
454                         schedule_work(&sched_itmt_work);
455                 }
456         }
457 }
458 #else
459 static void intel_pstate_set_itmt_prio(int cpu)
460 {
461 }
462 #endif
463
464 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
465 {
466         struct cpudata *cpu;
467         int ret;
468         int i;
469
470         if (hwp_active) {
471                 intel_pstate_set_itmt_prio(policy->cpu);
472                 return;
473         }
474
475         if (!intel_pstate_get_ppc_enable_status())
476                 return;
477
478         cpu = all_cpu_data[policy->cpu];
479
480         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
481                                                   policy->cpu);
482         if (ret)
483                 return;
484
485         /*
486          * Check if the control value in _PSS is for PERF_CTL MSR, which should
487          * guarantee that the states returned by it map to the states in our
488          * list directly.
489          */
490         if (cpu->acpi_perf_data.control_register.space_id !=
491                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
492                 goto err;
493
494         /*
495          * If there is only one entry _PSS, simply ignore _PSS and continue as
496          * usual without taking _PSS into account
497          */
498         if (cpu->acpi_perf_data.state_count < 2)
499                 goto err;
500
501         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
502         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
503                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
504                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
505                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
506                          (u32) cpu->acpi_perf_data.states[i].power,
507                          (u32) cpu->acpi_perf_data.states[i].control);
508         }
509
510         /*
511          * The _PSS table doesn't contain whole turbo frequency range.
512          * This just contains +1 MHZ above the max non turbo frequency,
513          * with control value corresponding to max turbo ratio. But
514          * when cpufreq set policy is called, it will call with this
515          * max frequency, which will cause a reduced performance as
516          * this driver uses real max turbo frequency as the max
517          * frequency. So correct this frequency in _PSS table to
518          * correct max turbo frequency based on the turbo state.
519          * Also need to convert to MHz as _PSS freq is in MHz.
520          */
521         if (!limits->turbo_disabled)
522                 cpu->acpi_perf_data.states[0].core_frequency =
523                                         policy->cpuinfo.max_freq / 1000;
524         cpu->valid_pss_table = true;
525         pr_debug("_PPC limits will be enforced\n");
526
527         return;
528
529  err:
530         cpu->valid_pss_table = false;
531         acpi_processor_unregister_performance(policy->cpu);
532 }
533
534 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
535 {
536         struct cpudata *cpu;
537
538         cpu = all_cpu_data[policy->cpu];
539         if (!cpu->valid_pss_table)
540                 return;
541
542         acpi_processor_unregister_performance(policy->cpu);
543 }
544 #else
545 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
546 {
547 }
548
549 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
550 {
551 }
552 #endif
553
554 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
555                              int deadband, int integral) {
556         pid->setpoint = int_tofp(setpoint);
557         pid->deadband  = int_tofp(deadband);
558         pid->integral  = int_tofp(integral);
559         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
560 }
561
562 static inline void pid_p_gain_set(struct _pid *pid, int percent)
563 {
564         pid->p_gain = div_fp(percent, 100);
565 }
566
567 static inline void pid_i_gain_set(struct _pid *pid, int percent)
568 {
569         pid->i_gain = div_fp(percent, 100);
570 }
571
572 static inline void pid_d_gain_set(struct _pid *pid, int percent)
573 {
574         pid->d_gain = div_fp(percent, 100);
575 }
576
577 static signed int pid_calc(struct _pid *pid, int32_t busy)
578 {
579         signed int result;
580         int32_t pterm, dterm, fp_error;
581         int32_t integral_limit;
582
583         fp_error = pid->setpoint - busy;
584
585         if (abs(fp_error) <= pid->deadband)
586                 return 0;
587
588         pterm = mul_fp(pid->p_gain, fp_error);
589
590         pid->integral += fp_error;
591
592         /*
593          * We limit the integral here so that it will never
594          * get higher than 30.  This prevents it from becoming
595          * too large an input over long periods of time and allows
596          * it to get factored out sooner.
597          *
598          * The value of 30 was chosen through experimentation.
599          */
600         integral_limit = int_tofp(30);
601         if (pid->integral > integral_limit)
602                 pid->integral = integral_limit;
603         if (pid->integral < -integral_limit)
604                 pid->integral = -integral_limit;
605
606         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
607         pid->last_err = fp_error;
608
609         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
610         result = result + (1 << (FRAC_BITS-1));
611         return (signed int)fp_toint(result);
612 }
613
614 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
615 {
616         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
617         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
618         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
619
620         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
621 }
622
623 static inline void intel_pstate_reset_all_pid(void)
624 {
625         unsigned int cpu;
626
627         for_each_online_cpu(cpu) {
628                 if (all_cpu_data[cpu])
629                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
630         }
631 }
632
633 static inline void update_turbo_state(void)
634 {
635         u64 misc_en;
636         struct cpudata *cpu;
637
638         cpu = all_cpu_data[0];
639         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
640         limits->turbo_disabled =
641                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
642                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
643 }
644
645 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
646 {
647         u64 epb;
648         int ret;
649
650         if (!static_cpu_has(X86_FEATURE_EPB))
651                 return -ENXIO;
652
653         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
654         if (ret)
655                 return (s16)ret;
656
657         return (s16)(epb & 0x0f);
658 }
659
660 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
661 {
662         s16 epp;
663
664         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
665                 /*
666                  * When hwp_req_data is 0, means that caller didn't read
667                  * MSR_HWP_REQUEST, so need to read and get EPP.
668                  */
669                 if (!hwp_req_data) {
670                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
671                                             &hwp_req_data);
672                         if (epp)
673                                 return epp;
674                 }
675                 epp = (hwp_req_data >> 24) & 0xff;
676         } else {
677                 /* When there is no EPP present, HWP uses EPB settings */
678                 epp = intel_pstate_get_epb(cpu_data);
679         }
680
681         return epp;
682 }
683
684 static int intel_pstate_set_epb(int cpu, s16 pref)
685 {
686         u64 epb;
687         int ret;
688
689         if (!static_cpu_has(X86_FEATURE_EPB))
690                 return -ENXIO;
691
692         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
693         if (ret)
694                 return ret;
695
696         epb = (epb & ~0x0f) | pref;
697         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
698
699         return 0;
700 }
701
702 /*
703  * EPP/EPB display strings corresponding to EPP index in the
704  * energy_perf_strings[]
705  *      index           String
706  *-------------------------------------
707  *      0               default
708  *      1               performance
709  *      2               balance_performance
710  *      3               balance_power
711  *      4               power
712  */
713 static const char * const energy_perf_strings[] = {
714         "default",
715         "performance",
716         "balance_performance",
717         "balance_power",
718         "power",
719         NULL
720 };
721
722 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
723 {
724         s16 epp;
725         int index = -EINVAL;
726
727         epp = intel_pstate_get_epp(cpu_data, 0);
728         if (epp < 0)
729                 return epp;
730
731         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
732                 /*
733                  * Range:
734                  *      0x00-0x3F       :       Performance
735                  *      0x40-0x7F       :       Balance performance
736                  *      0x80-0xBF       :       Balance power
737                  *      0xC0-0xFF       :       Power
738                  * The EPP is a 8 bit value, but our ranges restrict the
739                  * value which can be set. Here only using top two bits
740                  * effectively.
741                  */
742                 index = (epp >> 6) + 1;
743         } else if (static_cpu_has(X86_FEATURE_EPB)) {
744                 /*
745                  * Range:
746                  *      0x00-0x03       :       Performance
747                  *      0x04-0x07       :       Balance performance
748                  *      0x08-0x0B       :       Balance power
749                  *      0x0C-0x0F       :       Power
750                  * The EPB is a 4 bit value, but our ranges restrict the
751                  * value which can be set. Here only using top two bits
752                  * effectively.
753                  */
754                 index = (epp >> 2) + 1;
755         }
756
757         return index;
758 }
759
760 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
761                                               int pref_index)
762 {
763         int epp = -EINVAL;
764         int ret;
765
766         if (!pref_index)
767                 epp = cpu_data->epp_default;
768
769         mutex_lock(&intel_pstate_limits_lock);
770
771         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
772                 u64 value;
773
774                 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
775                 if (ret)
776                         goto return_pref;
777
778                 value &= ~GENMASK_ULL(31, 24);
779
780                 /*
781                  * If epp is not default, convert from index into
782                  * energy_perf_strings to epp value, by shifting 6
783                  * bits left to use only top two bits in epp.
784                  * The resultant epp need to shifted by 24 bits to
785                  * epp position in MSR_HWP_REQUEST.
786                  */
787                 if (epp == -EINVAL)
788                         epp = (pref_index - 1) << 6;
789
790                 value |= (u64)epp << 24;
791                 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
792         } else {
793                 if (epp == -EINVAL)
794                         epp = (pref_index - 1) << 2;
795                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
796         }
797 return_pref:
798         mutex_unlock(&intel_pstate_limits_lock);
799
800         return ret;
801 }
802
803 static ssize_t show_energy_performance_available_preferences(
804                                 struct cpufreq_policy *policy, char *buf)
805 {
806         int i = 0;
807         int ret = 0;
808
809         while (energy_perf_strings[i] != NULL)
810                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
811
812         ret += sprintf(&buf[ret], "\n");
813
814         return ret;
815 }
816
817 cpufreq_freq_attr_ro(energy_performance_available_preferences);
818
819 static ssize_t store_energy_performance_preference(
820                 struct cpufreq_policy *policy, const char *buf, size_t count)
821 {
822         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
823         char str_preference[21];
824         int ret, i = 0;
825
826         ret = sscanf(buf, "%20s", str_preference);
827         if (ret != 1)
828                 return -EINVAL;
829
830         while (energy_perf_strings[i] != NULL) {
831                 if (!strcmp(str_preference, energy_perf_strings[i])) {
832                         intel_pstate_set_energy_pref_index(cpu_data, i);
833                         return count;
834                 }
835                 ++i;
836         }
837
838         return -EINVAL;
839 }
840
841 static ssize_t show_energy_performance_preference(
842                                 struct cpufreq_policy *policy, char *buf)
843 {
844         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
845         int preference;
846
847         preference = intel_pstate_get_energy_pref_index(cpu_data);
848         if (preference < 0)
849                 return preference;
850
851         return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
852 }
853
854 cpufreq_freq_attr_rw(energy_performance_preference);
855
856 static struct freq_attr *hwp_cpufreq_attrs[] = {
857         &energy_performance_preference,
858         &energy_performance_available_preferences,
859         NULL,
860 };
861
862 static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
863 {
864         int min, hw_min, max, hw_max, cpu, range, adj_range;
865         struct perf_limits *perf_limits = limits;
866         u64 value, cap;
867
868         for_each_cpu(cpu, policy->cpus) {
869                 int max_perf_pct, min_perf_pct;
870                 struct cpudata *cpu_data = all_cpu_data[cpu];
871                 s16 epp;
872
873                 if (per_cpu_limits)
874                         perf_limits = all_cpu_data[cpu]->perf_limits;
875
876                 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
877                 hw_min = HWP_LOWEST_PERF(cap);
878                 if (limits->no_turbo)
879                         hw_max = HWP_GUARANTEED_PERF(cap);
880                 else
881                         hw_max = HWP_HIGHEST_PERF(cap);
882                 range = hw_max - hw_min;
883
884                 max_perf_pct = perf_limits->max_perf_pct;
885                 min_perf_pct = perf_limits->min_perf_pct;
886
887                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
888                 adj_range = min_perf_pct * range / 100;
889                 min = hw_min + adj_range;
890                 value &= ~HWP_MIN_PERF(~0L);
891                 value |= HWP_MIN_PERF(min);
892
893                 adj_range = max_perf_pct * range / 100;
894                 max = hw_min + adj_range;
895
896                 value &= ~HWP_MAX_PERF(~0L);
897                 value |= HWP_MAX_PERF(max);
898
899                 if (cpu_data->epp_policy == cpu_data->policy)
900                         goto skip_epp;
901
902                 cpu_data->epp_policy = cpu_data->policy;
903
904                 if (cpu_data->epp_saved >= 0) {
905                         epp = cpu_data->epp_saved;
906                         cpu_data->epp_saved = -EINVAL;
907                         goto update_epp;
908                 }
909
910                 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
911                         epp = intel_pstate_get_epp(cpu_data, value);
912                         cpu_data->epp_powersave = epp;
913                         /* If EPP read was failed, then don't try to write */
914                         if (epp < 0)
915                                 goto skip_epp;
916
917
918                         epp = 0;
919                 } else {
920                         /* skip setting EPP, when saved value is invalid */
921                         if (cpu_data->epp_powersave < 0)
922                                 goto skip_epp;
923
924                         /*
925                          * No need to restore EPP when it is not zero. This
926                          * means:
927                          *  - Policy is not changed
928                          *  - user has manually changed
929                          *  - Error reading EPB
930                          */
931                         epp = intel_pstate_get_epp(cpu_data, value);
932                         if (epp)
933                                 goto skip_epp;
934
935                         epp = cpu_data->epp_powersave;
936                 }
937 update_epp:
938                 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
939                         value &= ~GENMASK_ULL(31, 24);
940                         value |= (u64)epp << 24;
941                 } else {
942                         intel_pstate_set_epb(cpu, epp);
943                 }
944 skip_epp:
945                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
946         }
947 }
948
949 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
950 {
951         if (hwp_active)
952                 intel_pstate_hwp_set(policy);
953
954         return 0;
955 }
956
957 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
958 {
959         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
960
961         if (!hwp_active)
962                 return 0;
963
964         cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
965
966         return 0;
967 }
968
969 static int intel_pstate_resume(struct cpufreq_policy *policy)
970 {
971         int ret;
972
973         if (!hwp_active)
974                 return 0;
975
976         mutex_lock(&intel_pstate_limits_lock);
977
978         all_cpu_data[policy->cpu]->epp_policy = 0;
979
980         ret = intel_pstate_hwp_set_policy(policy);
981
982         mutex_unlock(&intel_pstate_limits_lock);
983
984         return ret;
985 }
986
987 static void intel_pstate_update_policies(void)
988 {
989         int cpu;
990
991         for_each_possible_cpu(cpu)
992                 cpufreq_update_policy(cpu);
993 }
994
995 /************************** debugfs begin ************************/
996 static int pid_param_set(void *data, u64 val)
997 {
998         *(u32 *)data = val;
999         intel_pstate_reset_all_pid();
1000         return 0;
1001 }
1002
1003 static int pid_param_get(void *data, u64 *val)
1004 {
1005         *val = *(u32 *)data;
1006         return 0;
1007 }
1008 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
1009
1010 static struct dentry *debugfs_parent;
1011
1012 struct pid_param {
1013         char *name;
1014         void *value;
1015         struct dentry *dentry;
1016 };
1017
1018 static struct pid_param pid_files[] = {
1019         {"sample_rate_ms", &pid_params.sample_rate_ms, },
1020         {"d_gain_pct", &pid_params.d_gain_pct, },
1021         {"i_gain_pct", &pid_params.i_gain_pct, },
1022         {"deadband", &pid_params.deadband, },
1023         {"setpoint", &pid_params.setpoint, },
1024         {"p_gain_pct", &pid_params.p_gain_pct, },
1025         {NULL, NULL, }
1026 };
1027
1028 static void intel_pstate_debug_expose_params(void)
1029 {
1030         int i;
1031
1032         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
1033         if (IS_ERR_OR_NULL(debugfs_parent))
1034                 return;
1035
1036         for (i = 0; pid_files[i].name; i++) {
1037                 struct dentry *dentry;
1038
1039                 dentry = debugfs_create_file(pid_files[i].name, 0660,
1040                                              debugfs_parent, pid_files[i].value,
1041                                              &fops_pid_param);
1042                 if (!IS_ERR(dentry))
1043                         pid_files[i].dentry = dentry;
1044         }
1045 }
1046
1047 static void intel_pstate_debug_hide_params(void)
1048 {
1049         int i;
1050
1051         if (IS_ERR_OR_NULL(debugfs_parent))
1052                 return;
1053
1054         for (i = 0; pid_files[i].name; i++) {
1055                 debugfs_remove(pid_files[i].dentry);
1056                 pid_files[i].dentry = NULL;
1057         }
1058
1059         debugfs_remove(debugfs_parent);
1060         debugfs_parent = NULL;
1061 }
1062
1063 /************************** debugfs end ************************/
1064
1065 /************************** sysfs begin ************************/
1066 #define show_one(file_name, object)                                     \
1067         static ssize_t show_##file_name                                 \
1068         (struct kobject *kobj, struct attribute *attr, char *buf)       \
1069         {                                                               \
1070                 return sprintf(buf, "%u\n", limits->object);            \
1071         }
1072
1073 static ssize_t intel_pstate_show_status(char *buf);
1074 static int intel_pstate_update_status(const char *buf, size_t size);
1075
1076 static ssize_t show_status(struct kobject *kobj,
1077                            struct attribute *attr, char *buf)
1078 {
1079         ssize_t ret;
1080
1081         mutex_lock(&intel_pstate_driver_lock);
1082         ret = intel_pstate_show_status(buf);
1083         mutex_unlock(&intel_pstate_driver_lock);
1084
1085         return ret;
1086 }
1087
1088 static ssize_t store_status(struct kobject *a, struct attribute *b,
1089                             const char *buf, size_t count)
1090 {
1091         char *p = memchr(buf, '\n', count);
1092         int ret;
1093
1094         mutex_lock(&intel_pstate_driver_lock);
1095         ret = intel_pstate_update_status(buf, p ? p - buf : count);
1096         mutex_unlock(&intel_pstate_driver_lock);
1097
1098         return ret < 0 ? ret : count;
1099 }
1100
1101 static ssize_t show_turbo_pct(struct kobject *kobj,
1102                                 struct attribute *attr, char *buf)
1103 {
1104         struct cpudata *cpu;
1105         int total, no_turbo, turbo_pct;
1106         uint32_t turbo_fp;
1107
1108         mutex_lock(&intel_pstate_driver_lock);
1109
1110         if (!driver_registered) {
1111                 mutex_unlock(&intel_pstate_driver_lock);
1112                 return -EAGAIN;
1113         }
1114
1115         cpu = all_cpu_data[0];
1116
1117         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1118         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1119         turbo_fp = div_fp(no_turbo, total);
1120         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1121
1122         mutex_unlock(&intel_pstate_driver_lock);
1123
1124         return sprintf(buf, "%u\n", turbo_pct);
1125 }
1126
1127 static ssize_t show_num_pstates(struct kobject *kobj,
1128                                 struct attribute *attr, char *buf)
1129 {
1130         struct cpudata *cpu;
1131         int total;
1132
1133         mutex_lock(&intel_pstate_driver_lock);
1134
1135         if (!driver_registered) {
1136                 mutex_unlock(&intel_pstate_driver_lock);
1137                 return -EAGAIN;
1138         }
1139
1140         cpu = all_cpu_data[0];
1141         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1142
1143         mutex_unlock(&intel_pstate_driver_lock);
1144
1145         return sprintf(buf, "%u\n", total);
1146 }
1147
1148 static ssize_t show_no_turbo(struct kobject *kobj,
1149                              struct attribute *attr, char *buf)
1150 {
1151         ssize_t ret;
1152
1153         mutex_lock(&intel_pstate_driver_lock);
1154
1155         if (!driver_registered) {
1156                 mutex_unlock(&intel_pstate_driver_lock);
1157                 return -EAGAIN;
1158         }
1159
1160         update_turbo_state();
1161         if (limits->turbo_disabled)
1162                 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
1163         else
1164                 ret = sprintf(buf, "%u\n", limits->no_turbo);
1165
1166         mutex_unlock(&intel_pstate_driver_lock);
1167
1168         return ret;
1169 }
1170
1171 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1172                               const char *buf, size_t count)
1173 {
1174         unsigned int input;
1175         int ret;
1176
1177         ret = sscanf(buf, "%u", &input);
1178         if (ret != 1)
1179                 return -EINVAL;
1180
1181         mutex_lock(&intel_pstate_driver_lock);
1182
1183         if (!driver_registered) {
1184                 mutex_unlock(&intel_pstate_driver_lock);
1185                 return -EAGAIN;
1186         }
1187
1188         mutex_lock(&intel_pstate_limits_lock);
1189
1190         update_turbo_state();
1191         if (limits->turbo_disabled) {
1192                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1193                 mutex_unlock(&intel_pstate_limits_lock);
1194                 mutex_unlock(&intel_pstate_driver_lock);
1195                 return -EPERM;
1196         }
1197
1198         limits->no_turbo = clamp_t(int, input, 0, 1);
1199
1200         mutex_unlock(&intel_pstate_limits_lock);
1201
1202         intel_pstate_update_policies();
1203
1204         mutex_unlock(&intel_pstate_driver_lock);
1205
1206         return count;
1207 }
1208
1209 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1210                                   const char *buf, size_t count)
1211 {
1212         unsigned int input;
1213         int ret;
1214
1215         ret = sscanf(buf, "%u", &input);
1216         if (ret != 1)
1217                 return -EINVAL;
1218
1219         mutex_lock(&intel_pstate_driver_lock);
1220
1221         if (!driver_registered) {
1222                 mutex_unlock(&intel_pstate_driver_lock);
1223                 return -EAGAIN;
1224         }
1225
1226         mutex_lock(&intel_pstate_limits_lock);
1227
1228         limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
1229         limits->max_perf_pct = min(limits->max_policy_pct,
1230                                    limits->max_sysfs_pct);
1231         limits->max_perf_pct = max(limits->min_policy_pct,
1232                                    limits->max_perf_pct);
1233         limits->max_perf_pct = max(limits->min_perf_pct,
1234                                    limits->max_perf_pct);
1235         limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
1236
1237         mutex_unlock(&intel_pstate_limits_lock);
1238
1239         intel_pstate_update_policies();
1240
1241         mutex_unlock(&intel_pstate_driver_lock);
1242
1243         return count;
1244 }
1245
1246 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1247                                   const char *buf, size_t count)
1248 {
1249         unsigned int input;
1250         int ret;
1251
1252         ret = sscanf(buf, "%u", &input);
1253         if (ret != 1)
1254                 return -EINVAL;
1255
1256         mutex_lock(&intel_pstate_driver_lock);
1257
1258         if (!driver_registered) {
1259                 mutex_unlock(&intel_pstate_driver_lock);
1260                 return -EAGAIN;
1261         }
1262
1263         mutex_lock(&intel_pstate_limits_lock);
1264
1265         limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
1266         limits->min_perf_pct = max(limits->min_policy_pct,
1267                                    limits->min_sysfs_pct);
1268         limits->min_perf_pct = min(limits->max_policy_pct,
1269                                    limits->min_perf_pct);
1270         limits->min_perf_pct = min(limits->max_perf_pct,
1271                                    limits->min_perf_pct);
1272         limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
1273
1274         mutex_unlock(&intel_pstate_limits_lock);
1275
1276         intel_pstate_update_policies();
1277
1278         mutex_unlock(&intel_pstate_driver_lock);
1279
1280         return count;
1281 }
1282
1283 show_one(max_perf_pct, max_perf_pct);
1284 show_one(min_perf_pct, min_perf_pct);
1285
1286 define_one_global_rw(status);
1287 define_one_global_rw(no_turbo);
1288 define_one_global_rw(max_perf_pct);
1289 define_one_global_rw(min_perf_pct);
1290 define_one_global_ro(turbo_pct);
1291 define_one_global_ro(num_pstates);
1292
1293 static struct attribute *intel_pstate_attributes[] = {
1294         &status.attr,
1295         &no_turbo.attr,
1296         &turbo_pct.attr,
1297         &num_pstates.attr,
1298         NULL
1299 };
1300
1301 static struct attribute_group intel_pstate_attr_group = {
1302         .attrs = intel_pstate_attributes,
1303 };
1304
1305 static void __init intel_pstate_sysfs_expose_params(void)
1306 {
1307         struct kobject *intel_pstate_kobject;
1308         int rc;
1309
1310         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1311                                                 &cpu_subsys.dev_root->kobj);
1312         if (WARN_ON(!intel_pstate_kobject))
1313                 return;
1314
1315         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1316         if (WARN_ON(rc))
1317                 return;
1318
1319         /*
1320          * If per cpu limits are enforced there are no global limits, so
1321          * return without creating max/min_perf_pct attributes
1322          */
1323         if (per_cpu_limits)
1324                 return;
1325
1326         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1327         WARN_ON(rc);
1328
1329         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1330         WARN_ON(rc);
1331
1332 }
1333 /************************** sysfs end ************************/
1334
1335 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1336 {
1337         /* First disable HWP notification interrupt as we don't process them */
1338         if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1339                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1340
1341         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1342         cpudata->epp_policy = 0;
1343         if (cpudata->epp_default == -EINVAL)
1344                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1345 }
1346
1347 #define MSR_IA32_POWER_CTL_BIT_EE       19
1348
1349 /* Disable energy efficiency optimization */
1350 static void intel_pstate_disable_ee(int cpu)
1351 {
1352         u64 power_ctl;
1353         int ret;
1354
1355         ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1356         if (ret)
1357                 return;
1358
1359         if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1360                 pr_info("Disabling energy efficiency optimization\n");
1361                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1362                 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1363         }
1364 }
1365
1366 static int atom_get_min_pstate(void)
1367 {
1368         u64 value;
1369
1370         rdmsrl(ATOM_RATIOS, value);
1371         return (value >> 8) & 0x7F;
1372 }
1373
1374 static int atom_get_max_pstate(void)
1375 {
1376         u64 value;
1377
1378         rdmsrl(ATOM_RATIOS, value);
1379         return (value >> 16) & 0x7F;
1380 }
1381
1382 static int atom_get_turbo_pstate(void)
1383 {
1384         u64 value;
1385
1386         rdmsrl(ATOM_TURBO_RATIOS, value);
1387         return value & 0x7F;
1388 }
1389
1390 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1391 {
1392         u64 val;
1393         int32_t vid_fp;
1394         u32 vid;
1395
1396         val = (u64)pstate << 8;
1397         if (limits->no_turbo && !limits->turbo_disabled)
1398                 val |= (u64)1 << 32;
1399
1400         vid_fp = cpudata->vid.min + mul_fp(
1401                 int_tofp(pstate - cpudata->pstate.min_pstate),
1402                 cpudata->vid.ratio);
1403
1404         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1405         vid = ceiling_fp(vid_fp);
1406
1407         if (pstate > cpudata->pstate.max_pstate)
1408                 vid = cpudata->vid.turbo;
1409
1410         return val | vid;
1411 }
1412
1413 static int silvermont_get_scaling(void)
1414 {
1415         u64 value;
1416         int i;
1417         /* Defined in Table 35-6 from SDM (Sept 2015) */
1418         static int silvermont_freq_table[] = {
1419                 83300, 100000, 133300, 116700, 80000};
1420
1421         rdmsrl(MSR_FSB_FREQ, value);
1422         i = value & 0x7;
1423         WARN_ON(i > 4);
1424
1425         return silvermont_freq_table[i];
1426 }
1427
1428 static int airmont_get_scaling(void)
1429 {
1430         u64 value;
1431         int i;
1432         /* Defined in Table 35-10 from SDM (Sept 2015) */
1433         static int airmont_freq_table[] = {
1434                 83300, 100000, 133300, 116700, 80000,
1435                 93300, 90000, 88900, 87500};
1436
1437         rdmsrl(MSR_FSB_FREQ, value);
1438         i = value & 0xF;
1439         WARN_ON(i > 8);
1440
1441         return airmont_freq_table[i];
1442 }
1443
1444 static void atom_get_vid(struct cpudata *cpudata)
1445 {
1446         u64 value;
1447
1448         rdmsrl(ATOM_VIDS, value);
1449         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1450         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1451         cpudata->vid.ratio = div_fp(
1452                 cpudata->vid.max - cpudata->vid.min,
1453                 int_tofp(cpudata->pstate.max_pstate -
1454                         cpudata->pstate.min_pstate));
1455
1456         rdmsrl(ATOM_TURBO_VIDS, value);
1457         cpudata->vid.turbo = value & 0x7f;
1458 }
1459
1460 static int core_get_min_pstate(void)
1461 {
1462         u64 value;
1463
1464         rdmsrl(MSR_PLATFORM_INFO, value);
1465         return (value >> 40) & 0xFF;
1466 }
1467
1468 static int core_get_max_pstate_physical(void)
1469 {
1470         u64 value;
1471
1472         rdmsrl(MSR_PLATFORM_INFO, value);
1473         return (value >> 8) & 0xFF;
1474 }
1475
1476 static int core_get_tdp_ratio(u64 plat_info)
1477 {
1478         /* Check how many TDP levels present */
1479         if (plat_info & 0x600000000) {
1480                 u64 tdp_ctrl;
1481                 u64 tdp_ratio;
1482                 int tdp_msr;
1483                 int err;
1484
1485                 /* Get the TDP level (0, 1, 2) to get ratios */
1486                 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1487                 if (err)
1488                         return err;
1489
1490                 /* TDP MSR are continuous starting at 0x648 */
1491                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1492                 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1493                 if (err)
1494                         return err;
1495
1496                 /* For level 1 and 2, bits[23:16] contain the ratio */
1497                 if (tdp_ctrl & 0x03)
1498                         tdp_ratio >>= 16;
1499
1500                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1501                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1502
1503                 return (int)tdp_ratio;
1504         }
1505
1506         return -ENXIO;
1507 }
1508
1509 static int core_get_max_pstate(void)
1510 {
1511         u64 tar;
1512         u64 plat_info;
1513         int max_pstate;
1514         int tdp_ratio;
1515         int err;
1516
1517         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1518         max_pstate = (plat_info >> 8) & 0xFF;
1519
1520         tdp_ratio = core_get_tdp_ratio(plat_info);
1521         if (tdp_ratio <= 0)
1522                 return max_pstate;
1523
1524         if (hwp_active) {
1525                 /* Turbo activation ratio is not used on HWP platforms */
1526                 return tdp_ratio;
1527         }
1528
1529         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1530         if (!err) {
1531                 int tar_levels;
1532
1533                 /* Do some sanity checking for safety */
1534                 tar_levels = tar & 0xff;
1535                 if (tdp_ratio - 1 == tar_levels) {
1536                         max_pstate = tar_levels;
1537                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1538                 }
1539         }
1540
1541         return max_pstate;
1542 }
1543
1544 static int core_get_turbo_pstate(void)
1545 {
1546         u64 value;
1547         int nont, ret;
1548
1549         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1550         nont = core_get_max_pstate();
1551         ret = (value) & 255;
1552         if (ret <= nont)
1553                 ret = nont;
1554         return ret;
1555 }
1556
1557 static inline int core_get_scaling(void)
1558 {
1559         return 100000;
1560 }
1561
1562 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1563 {
1564         u64 val;
1565
1566         val = (u64)pstate << 8;
1567         if (limits->no_turbo && !limits->turbo_disabled)
1568                 val |= (u64)1 << 32;
1569
1570         return val;
1571 }
1572
1573 static int knl_get_turbo_pstate(void)
1574 {
1575         u64 value;
1576         int nont, ret;
1577
1578         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1579         nont = core_get_max_pstate();
1580         ret = (((value) >> 8) & 0xFF);
1581         if (ret <= nont)
1582                 ret = nont;
1583         return ret;
1584 }
1585
1586 static struct cpu_defaults core_params = {
1587         .pid_policy = {
1588                 .sample_rate_ms = 10,
1589                 .deadband = 0,
1590                 .setpoint = 97,
1591                 .p_gain_pct = 20,
1592                 .d_gain_pct = 0,
1593                 .i_gain_pct = 0,
1594         },
1595         .funcs = {
1596                 .get_max = core_get_max_pstate,
1597                 .get_max_physical = core_get_max_pstate_physical,
1598                 .get_min = core_get_min_pstate,
1599                 .get_turbo = core_get_turbo_pstate,
1600                 .get_scaling = core_get_scaling,
1601                 .get_val = core_get_val,
1602                 .get_target_pstate = get_target_pstate_use_performance,
1603         },
1604 };
1605
1606 static const struct cpu_defaults silvermont_params = {
1607         .pid_policy = {
1608                 .sample_rate_ms = 10,
1609                 .deadband = 0,
1610                 .setpoint = 60,
1611                 .p_gain_pct = 14,
1612                 .d_gain_pct = 0,
1613                 .i_gain_pct = 4,
1614         },
1615         .funcs = {
1616                 .get_max = atom_get_max_pstate,
1617                 .get_max_physical = atom_get_max_pstate,
1618                 .get_min = atom_get_min_pstate,
1619                 .get_turbo = atom_get_turbo_pstate,
1620                 .get_val = atom_get_val,
1621                 .get_scaling = silvermont_get_scaling,
1622                 .get_vid = atom_get_vid,
1623                 .get_target_pstate = get_target_pstate_use_cpu_load,
1624         },
1625 };
1626
1627 static const struct cpu_defaults airmont_params = {
1628         .pid_policy = {
1629                 .sample_rate_ms = 10,
1630                 .deadband = 0,
1631                 .setpoint = 60,
1632                 .p_gain_pct = 14,
1633                 .d_gain_pct = 0,
1634                 .i_gain_pct = 4,
1635         },
1636         .funcs = {
1637                 .get_max = atom_get_max_pstate,
1638                 .get_max_physical = atom_get_max_pstate,
1639                 .get_min = atom_get_min_pstate,
1640                 .get_turbo = atom_get_turbo_pstate,
1641                 .get_val = atom_get_val,
1642                 .get_scaling = airmont_get_scaling,
1643                 .get_vid = atom_get_vid,
1644                 .get_target_pstate = get_target_pstate_use_cpu_load,
1645         },
1646 };
1647
1648 static const struct cpu_defaults knl_params = {
1649         .pid_policy = {
1650                 .sample_rate_ms = 10,
1651                 .deadband = 0,
1652                 .setpoint = 97,
1653                 .p_gain_pct = 20,
1654                 .d_gain_pct = 0,
1655                 .i_gain_pct = 0,
1656         },
1657         .funcs = {
1658                 .get_max = core_get_max_pstate,
1659                 .get_max_physical = core_get_max_pstate_physical,
1660                 .get_min = core_get_min_pstate,
1661                 .get_turbo = knl_get_turbo_pstate,
1662                 .get_scaling = core_get_scaling,
1663                 .get_val = core_get_val,
1664                 .get_target_pstate = get_target_pstate_use_performance,
1665         },
1666 };
1667
1668 static const struct cpu_defaults bxt_params = {
1669         .pid_policy = {
1670                 .sample_rate_ms = 10,
1671                 .deadband = 0,
1672                 .setpoint = 60,
1673                 .p_gain_pct = 14,
1674                 .d_gain_pct = 0,
1675                 .i_gain_pct = 4,
1676         },
1677         .funcs = {
1678                 .get_max = core_get_max_pstate,
1679                 .get_max_physical = core_get_max_pstate_physical,
1680                 .get_min = core_get_min_pstate,
1681                 .get_turbo = core_get_turbo_pstate,
1682                 .get_scaling = core_get_scaling,
1683                 .get_val = core_get_val,
1684                 .get_target_pstate = get_target_pstate_use_cpu_load,
1685         },
1686 };
1687
1688 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1689 {
1690         int max_perf = cpu->pstate.turbo_pstate;
1691         int max_perf_adj;
1692         int min_perf;
1693         struct perf_limits *perf_limits = limits;
1694
1695         if (limits->no_turbo || limits->turbo_disabled)
1696                 max_perf = cpu->pstate.max_pstate;
1697
1698         if (per_cpu_limits)
1699                 perf_limits = cpu->perf_limits;
1700
1701         /*
1702          * performance can be limited by user through sysfs, by cpufreq
1703          * policy, or by cpu specific default values determined through
1704          * experimentation.
1705          */
1706         max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1707         *max = clamp_t(int, max_perf_adj,
1708                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1709
1710         min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1711         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1712 }
1713
1714 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1715 {
1716         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1717         cpu->pstate.current_pstate = pstate;
1718         /*
1719          * Generally, there is no guarantee that this code will always run on
1720          * the CPU being updated, so force the register update to run on the
1721          * right CPU.
1722          */
1723         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1724                       pstate_funcs.get_val(cpu, pstate));
1725 }
1726
1727 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1728 {
1729         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1730 }
1731
1732 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1733 {
1734         int min_pstate, max_pstate;
1735
1736         update_turbo_state();
1737         intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1738         intel_pstate_set_pstate(cpu, max_pstate);
1739 }
1740
1741 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1742 {
1743         cpu->pstate.min_pstate = pstate_funcs.get_min();
1744         cpu->pstate.max_pstate = pstate_funcs.get_max();
1745         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1746         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1747         cpu->pstate.scaling = pstate_funcs.get_scaling();
1748         cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1749         cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1750
1751         if (pstate_funcs.get_vid)
1752                 pstate_funcs.get_vid(cpu);
1753
1754         intel_pstate_set_min_pstate(cpu);
1755 }
1756
1757 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1758 {
1759         struct sample *sample = &cpu->sample;
1760
1761         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1762 }
1763
1764 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1765 {
1766         u64 aperf, mperf;
1767         unsigned long flags;
1768         u64 tsc;
1769
1770         local_irq_save(flags);
1771         rdmsrl(MSR_IA32_APERF, aperf);
1772         rdmsrl(MSR_IA32_MPERF, mperf);
1773         tsc = rdtsc();
1774         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1775                 local_irq_restore(flags);
1776                 return false;
1777         }
1778         local_irq_restore(flags);
1779
1780         cpu->last_sample_time = cpu->sample.time;
1781         cpu->sample.time = time;
1782         cpu->sample.aperf = aperf;
1783         cpu->sample.mperf = mperf;
1784         cpu->sample.tsc =  tsc;
1785         cpu->sample.aperf -= cpu->prev_aperf;
1786         cpu->sample.mperf -= cpu->prev_mperf;
1787         cpu->sample.tsc -= cpu->prev_tsc;
1788
1789         cpu->prev_aperf = aperf;
1790         cpu->prev_mperf = mperf;
1791         cpu->prev_tsc = tsc;
1792         /*
1793          * First time this function is invoked in a given cycle, all of the
1794          * previous sample data fields are equal to zero or stale and they must
1795          * be populated with meaningful numbers for things to work, so assume
1796          * that sample.time will always be reset before setting the utilization
1797          * update hook and make the caller skip the sample then.
1798          */
1799         return !!cpu->last_sample_time;
1800 }
1801
1802 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1803 {
1804         return mul_ext_fp(cpu->sample.core_avg_perf,
1805                           cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1806 }
1807
1808 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1809 {
1810         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1811                           cpu->sample.core_avg_perf);
1812 }
1813
1814 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1815 {
1816         struct sample *sample = &cpu->sample;
1817         int32_t busy_frac, boost;
1818         int target, avg_pstate;
1819
1820         busy_frac = div_fp(sample->mperf, sample->tsc);
1821
1822         boost = cpu->iowait_boost;
1823         cpu->iowait_boost >>= 1;
1824
1825         if (busy_frac < boost)
1826                 busy_frac = boost;
1827
1828         sample->busy_scaled = busy_frac * 100;
1829
1830         target = limits->no_turbo || limits->turbo_disabled ?
1831                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1832         target += target >> 2;
1833         target = mul_fp(target, busy_frac);
1834         if (target < cpu->pstate.min_pstate)
1835                 target = cpu->pstate.min_pstate;
1836
1837         /*
1838          * If the average P-state during the previous cycle was higher than the
1839          * current target, add 50% of the difference to the target to reduce
1840          * possible performance oscillations and offset possible performance
1841          * loss related to moving the workload from one CPU to another within
1842          * a package/module.
1843          */
1844         avg_pstate = get_avg_pstate(cpu);
1845         if (avg_pstate > target)
1846                 target += (avg_pstate - target) >> 1;
1847
1848         return target;
1849 }
1850
1851 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1852 {
1853         int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1854         u64 duration_ns;
1855
1856         /*
1857          * perf_scaled is the ratio of the average P-state during the last
1858          * sampling period to the P-state requested last time (in percent).
1859          *
1860          * That measures the system's response to the previous P-state
1861          * selection.
1862          */
1863         max_pstate = cpu->pstate.max_pstate_physical;
1864         current_pstate = cpu->pstate.current_pstate;
1865         perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1866                                div_fp(100 * max_pstate, current_pstate));
1867
1868         /*
1869          * Since our utilization update callback will not run unless we are
1870          * in C0, check if the actual elapsed time is significantly greater (3x)
1871          * than our sample interval.  If it is, then we were idle for a long
1872          * enough period of time to adjust our performance metric.
1873          */
1874         duration_ns = cpu->sample.time - cpu->last_sample_time;
1875         if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1876                 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1877                 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1878         } else {
1879                 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1880                 if (sample_ratio < int_tofp(1))
1881                         perf_scaled = 0;
1882         }
1883
1884         cpu->sample.busy_scaled = perf_scaled;
1885         return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1886 }
1887
1888 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1889 {
1890         int max_perf, min_perf;
1891
1892         intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1893         pstate = clamp_t(int, pstate, min_perf, max_perf);
1894         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1895         return pstate;
1896 }
1897
1898 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1899 {
1900         pstate = intel_pstate_prepare_request(cpu, pstate);
1901         if (pstate == cpu->pstate.current_pstate)
1902                 return;
1903
1904         cpu->pstate.current_pstate = pstate;
1905         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1906 }
1907
1908 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1909 {
1910         int from, target_pstate;
1911         struct sample *sample;
1912
1913         from = cpu->pstate.current_pstate;
1914
1915         target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1916                 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1917
1918         update_turbo_state();
1919
1920         intel_pstate_update_pstate(cpu, target_pstate);
1921
1922         sample = &cpu->sample;
1923         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1924                 fp_toint(sample->busy_scaled),
1925                 from,
1926                 cpu->pstate.current_pstate,
1927                 sample->mperf,
1928                 sample->aperf,
1929                 sample->tsc,
1930                 get_avg_frequency(cpu),
1931                 fp_toint(cpu->iowait_boost * 100));
1932 }
1933
1934 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1935                                      unsigned int flags)
1936 {
1937         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1938         u64 delta_ns;
1939
1940         if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1941                 if (flags & SCHED_CPUFREQ_IOWAIT) {
1942                         cpu->iowait_boost = int_tofp(1);
1943                 } else if (cpu->iowait_boost) {
1944                         /* Clear iowait_boost if the CPU may have been idle. */
1945                         delta_ns = time - cpu->last_update;
1946                         if (delta_ns > TICK_NSEC)
1947                                 cpu->iowait_boost = 0;
1948                 }
1949                 cpu->last_update = time;
1950         }
1951
1952         delta_ns = time - cpu->sample.time;
1953         if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1954                 bool sample_taken = intel_pstate_sample(cpu, time);
1955
1956                 if (sample_taken) {
1957                         intel_pstate_calc_avg_perf(cpu);
1958                         if (!hwp_active)
1959                                 intel_pstate_adjust_busy_pstate(cpu);
1960                 }
1961         }
1962 }
1963
1964 #define ICPU(model, policy) \
1965         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1966                         (unsigned long)&policy }
1967
1968 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1969         ICPU(INTEL_FAM6_SANDYBRIDGE,            core_params),
1970         ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_params),
1971         ICPU(INTEL_FAM6_ATOM_SILVERMONT1,       silvermont_params),
1972         ICPU(INTEL_FAM6_IVYBRIDGE,              core_params),
1973         ICPU(INTEL_FAM6_HASWELL_CORE,           core_params),
1974         ICPU(INTEL_FAM6_BROADWELL_CORE,         core_params),
1975         ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_params),
1976         ICPU(INTEL_FAM6_HASWELL_X,              core_params),
1977         ICPU(INTEL_FAM6_HASWELL_ULT,            core_params),
1978         ICPU(INTEL_FAM6_HASWELL_GT3E,           core_params),
1979         ICPU(INTEL_FAM6_BROADWELL_GT3E,         core_params),
1980         ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_params),
1981         ICPU(INTEL_FAM6_SKYLAKE_MOBILE,         core_params),
1982         ICPU(INTEL_FAM6_BROADWELL_X,            core_params),
1983         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,        core_params),
1984         ICPU(INTEL_FAM6_BROADWELL_XEON_D,       core_params),
1985         ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_params),
1986         ICPU(INTEL_FAM6_XEON_PHI_KNM,           knl_params),
1987         ICPU(INTEL_FAM6_ATOM_GOLDMONT,          bxt_params),
1988         {}
1989 };
1990 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1991
1992 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1993         ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1994         ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1995         ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1996         {}
1997 };
1998
1999 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2000         ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
2001         {}
2002 };
2003
2004 static int intel_pstate_init_cpu(unsigned int cpunum)
2005 {
2006         struct cpudata *cpu;
2007
2008         cpu = all_cpu_data[cpunum];
2009
2010         if (!cpu) {
2011                 unsigned int size = sizeof(struct cpudata);
2012
2013                 if (per_cpu_limits)
2014                         size += sizeof(struct perf_limits);
2015
2016                 cpu = kzalloc(size, GFP_KERNEL);
2017                 if (!cpu)
2018                         return -ENOMEM;
2019
2020                 all_cpu_data[cpunum] = cpu;
2021                 if (per_cpu_limits)
2022                         cpu->perf_limits = (struct perf_limits *)(cpu + 1);
2023
2024                 cpu->epp_default = -EINVAL;
2025                 cpu->epp_powersave = -EINVAL;
2026                 cpu->epp_saved = -EINVAL;
2027         }
2028
2029         cpu = all_cpu_data[cpunum];
2030
2031         cpu->cpu = cpunum;
2032
2033         if (hwp_active) {
2034                 const struct x86_cpu_id *id;
2035
2036                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
2037                 if (id)
2038                         intel_pstate_disable_ee(cpunum);
2039
2040                 intel_pstate_hwp_enable(cpu);
2041                 pid_params.sample_rate_ms = 50;
2042                 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
2043         }
2044
2045         intel_pstate_get_cpu_pstates(cpu);
2046
2047         intel_pstate_busy_pid_reset(cpu);
2048
2049         pr_debug("controlling: cpu %d\n", cpunum);
2050
2051         return 0;
2052 }
2053
2054 static unsigned int intel_pstate_get(unsigned int cpu_num)
2055 {
2056         struct cpudata *cpu = all_cpu_data[cpu_num];
2057
2058         return cpu ? get_avg_frequency(cpu) : 0;
2059 }
2060
2061 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2062 {
2063         struct cpudata *cpu = all_cpu_data[cpu_num];
2064
2065         if (cpu->update_util_set)
2066                 return;
2067
2068         /* Prevent intel_pstate_update_util() from using stale data. */
2069         cpu->sample.time = 0;
2070         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2071                                      intel_pstate_update_util);
2072         cpu->update_util_set = true;
2073 }
2074
2075 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2076 {
2077         struct cpudata *cpu_data = all_cpu_data[cpu];
2078
2079         if (!cpu_data->update_util_set)
2080                 return;
2081
2082         cpufreq_remove_update_util_hook(cpu);
2083         cpu_data->update_util_set = false;
2084         synchronize_sched();
2085 }
2086
2087 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
2088 {
2089         limits->no_turbo = 0;
2090         limits->turbo_disabled = 0;
2091         limits->max_perf_pct = 100;
2092         limits->max_perf = int_ext_tofp(1);
2093         limits->min_perf_pct = 100;
2094         limits->min_perf = int_ext_tofp(1);
2095         limits->max_policy_pct = 100;
2096         limits->max_sysfs_pct = 100;
2097         limits->min_policy_pct = 0;
2098         limits->min_sysfs_pct = 0;
2099 }
2100
2101 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
2102                                             struct perf_limits *limits)
2103 {
2104
2105         limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
2106                                               policy->cpuinfo.max_freq);
2107         limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
2108         if (policy->max == policy->min) {
2109                 limits->min_policy_pct = limits->max_policy_pct;
2110         } else {
2111                 limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100,
2112                                                       policy->cpuinfo.max_freq);
2113                 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
2114                                                  0, 100);
2115         }
2116
2117         /* Normalize user input to [min_policy_pct, max_policy_pct] */
2118         limits->min_perf_pct = max(limits->min_policy_pct,
2119                                    limits->min_sysfs_pct);
2120         limits->min_perf_pct = min(limits->max_policy_pct,
2121                                    limits->min_perf_pct);
2122         limits->max_perf_pct = min(limits->max_policy_pct,
2123                                    limits->max_sysfs_pct);
2124         limits->max_perf_pct = max(limits->min_policy_pct,
2125                                    limits->max_perf_pct);
2126
2127         /* Make sure min_perf_pct <= max_perf_pct */
2128         limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
2129
2130         limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
2131         limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
2132         limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
2133         limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
2134
2135         pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2136                  limits->max_perf_pct, limits->min_perf_pct);
2137 }
2138
2139 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2140 {
2141         struct cpudata *cpu;
2142         struct perf_limits *perf_limits = NULL;
2143
2144         if (!policy->cpuinfo.max_freq)
2145                 return -ENODEV;
2146
2147         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2148                  policy->cpuinfo.max_freq, policy->max);
2149
2150         cpu = all_cpu_data[policy->cpu];
2151         cpu->policy = policy->policy;
2152
2153         if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2154             policy->max < policy->cpuinfo.max_freq &&
2155             policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
2156                 pr_debug("policy->max > max non turbo frequency\n");
2157                 policy->max = policy->cpuinfo.max_freq;
2158         }
2159
2160         if (per_cpu_limits)
2161                 perf_limits = cpu->perf_limits;
2162
2163         mutex_lock(&intel_pstate_limits_lock);
2164
2165         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
2166                 if (!perf_limits) {
2167                         limits = &performance_limits;
2168                         perf_limits = limits;
2169                 }
2170                 if (policy->max >= policy->cpuinfo.max_freq &&
2171                     !limits->no_turbo) {
2172                         pr_debug("set performance\n");
2173                         intel_pstate_set_performance_limits(perf_limits);
2174                         goto out;
2175                 }
2176         } else {
2177                 pr_debug("set powersave\n");
2178                 if (!perf_limits) {
2179                         limits = &powersave_limits;
2180                         perf_limits = limits;
2181                 }
2182
2183         }
2184
2185         intel_pstate_update_perf_limits(policy, perf_limits);
2186  out:
2187         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2188                 /*
2189                  * NOHZ_FULL CPUs need this as the governor callback may not
2190                  * be invoked on them.
2191                  */
2192                 intel_pstate_clear_update_util_hook(policy->cpu);
2193                 intel_pstate_max_within_limits(cpu);
2194         }
2195
2196         intel_pstate_set_update_util_hook(policy->cpu);
2197
2198         intel_pstate_hwp_set_policy(policy);
2199
2200         mutex_unlock(&intel_pstate_limits_lock);
2201
2202         return 0;
2203 }
2204
2205 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2206 {
2207         struct cpudata *cpu = all_cpu_data[policy->cpu];
2208         struct perf_limits *perf_limits;
2209
2210         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
2211                 perf_limits = &performance_limits;
2212         else
2213                 perf_limits = &powersave_limits;
2214
2215         update_turbo_state();
2216         policy->cpuinfo.max_freq = perf_limits->turbo_disabled ||
2217                                         perf_limits->no_turbo ?
2218                                         cpu->pstate.max_freq :
2219                                         cpu->pstate.turbo_freq;
2220
2221         cpufreq_verify_within_cpu_limits(policy);
2222
2223         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2224             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2225                 return -EINVAL;
2226
2227         /* When per-CPU limits are used, sysfs limits are not used */
2228         if (!per_cpu_limits) {
2229                 unsigned int max_freq, min_freq;
2230
2231                 max_freq = policy->cpuinfo.max_freq *
2232                                                 limits->max_sysfs_pct / 100;
2233                 min_freq = policy->cpuinfo.max_freq *
2234                                                 limits->min_sysfs_pct / 100;
2235                 cpufreq_verify_within_limits(policy, min_freq, max_freq);
2236         }
2237
2238         return 0;
2239 }
2240
2241 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2242 {
2243         intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2244 }
2245
2246 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2247 {
2248         pr_debug("CPU %d exiting\n", policy->cpu);
2249
2250         intel_pstate_clear_update_util_hook(policy->cpu);
2251         if (hwp_active)
2252                 intel_pstate_hwp_save_state(policy);
2253         else
2254                 intel_cpufreq_stop_cpu(policy);
2255 }
2256
2257 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2258 {
2259         intel_pstate_exit_perf_limits(policy);
2260
2261         policy->fast_switch_possible = false;
2262
2263         return 0;
2264 }
2265
2266 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2267 {
2268         struct cpudata *cpu;
2269         int rc;
2270
2271         rc = intel_pstate_init_cpu(policy->cpu);
2272         if (rc)
2273                 return rc;
2274
2275         cpu = all_cpu_data[policy->cpu];
2276
2277         /*
2278          * We need sane value in the cpu->perf_limits, so inherit from global
2279          * perf_limits limits, which are seeded with values based on the
2280          * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
2281          */
2282         if (per_cpu_limits)
2283                 memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));
2284
2285         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2286         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2287
2288         /* cpuinfo and default policy values */
2289         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2290         update_turbo_state();
2291         policy->cpuinfo.max_freq = limits->turbo_disabled ?
2292                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2293         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2294
2295         intel_pstate_init_acpi_perf_limits(policy);
2296         cpumask_set_cpu(policy->cpu, policy->cpus);
2297
2298         policy->fast_switch_possible = true;
2299
2300         return 0;
2301 }
2302
2303 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2304 {
2305         int ret = __intel_pstate_cpu_init(policy);
2306
2307         if (ret)
2308                 return ret;
2309
2310         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2311         if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
2312                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2313         else
2314                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2315
2316         return 0;
2317 }
2318
2319 static struct cpufreq_driver intel_pstate = {
2320         .flags          = CPUFREQ_CONST_LOOPS,
2321         .verify         = intel_pstate_verify_policy,
2322         .setpolicy      = intel_pstate_set_policy,
2323         .suspend        = intel_pstate_hwp_save_state,
2324         .resume         = intel_pstate_resume,
2325         .get            = intel_pstate_get,
2326         .init           = intel_pstate_cpu_init,
2327         .exit           = intel_pstate_cpu_exit,
2328         .stop_cpu       = intel_pstate_stop_cpu,
2329         .name           = "intel_pstate",
2330 };
2331
2332 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2333 {
2334         struct cpudata *cpu = all_cpu_data[policy->cpu];
2335         struct perf_limits *perf_limits = limits;
2336
2337         update_turbo_state();
2338         policy->cpuinfo.max_freq = limits->turbo_disabled ?
2339                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2340
2341         cpufreq_verify_within_cpu_limits(policy);
2342
2343         if (per_cpu_limits)
2344                 perf_limits = cpu->perf_limits;
2345
2346         mutex_lock(&intel_pstate_limits_lock);
2347
2348         intel_pstate_update_perf_limits(policy, perf_limits);
2349
2350         mutex_unlock(&intel_pstate_limits_lock);
2351
2352         return 0;
2353 }
2354
2355 static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
2356                                                struct cpufreq_policy *policy,
2357                                                unsigned int target_freq)
2358 {
2359         unsigned int max_freq;
2360
2361         update_turbo_state();
2362
2363         max_freq = limits->no_turbo || limits->turbo_disabled ?
2364                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2365         policy->cpuinfo.max_freq = max_freq;
2366         if (policy->max > max_freq)
2367                 policy->max = max_freq;
2368
2369         if (target_freq > max_freq)
2370                 target_freq = max_freq;
2371
2372         return target_freq;
2373 }
2374
2375 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2376                                 unsigned int target_freq,
2377                                 unsigned int relation)
2378 {
2379         struct cpudata *cpu = all_cpu_data[policy->cpu];
2380         struct cpufreq_freqs freqs;
2381         int target_pstate;
2382
2383         freqs.old = policy->cur;
2384         freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2385
2386         cpufreq_freq_transition_begin(policy, &freqs);
2387         switch (relation) {
2388         case CPUFREQ_RELATION_L:
2389                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2390                 break;
2391         case CPUFREQ_RELATION_H:
2392                 target_pstate = freqs.new / cpu->pstate.scaling;
2393                 break;
2394         default:
2395                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2396                 break;
2397         }
2398         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2399         if (target_pstate != cpu->pstate.current_pstate) {
2400                 cpu->pstate.current_pstate = target_pstate;
2401                 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2402                               pstate_funcs.get_val(cpu, target_pstate));
2403         }
2404         cpufreq_freq_transition_end(policy, &freqs, false);
2405
2406         return 0;
2407 }
2408
2409 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2410                                               unsigned int target_freq)
2411 {
2412         struct cpudata *cpu = all_cpu_data[policy->cpu];
2413         int target_pstate;
2414
2415         target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2416         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2417         intel_pstate_update_pstate(cpu, target_pstate);
2418         return target_freq;
2419 }
2420
2421 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2422 {
2423         int ret = __intel_pstate_cpu_init(policy);
2424
2425         if (ret)
2426                 return ret;
2427
2428         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2429         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2430         policy->cur = policy->cpuinfo.min_freq;
2431
2432         return 0;
2433 }
2434
2435 static struct cpufreq_driver intel_cpufreq = {
2436         .flags          = CPUFREQ_CONST_LOOPS,
2437         .verify         = intel_cpufreq_verify_policy,
2438         .target         = intel_cpufreq_target,
2439         .fast_switch    = intel_cpufreq_fast_switch,
2440         .init           = intel_cpufreq_cpu_init,
2441         .exit           = intel_pstate_cpu_exit,
2442         .stop_cpu       = intel_cpufreq_stop_cpu,
2443         .name           = "intel_cpufreq",
2444 };
2445
2446 static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
2447
2448 static void intel_pstate_driver_cleanup(void)
2449 {
2450         unsigned int cpu;
2451
2452         get_online_cpus();
2453         for_each_online_cpu(cpu) {
2454                 if (all_cpu_data[cpu]) {
2455                         if (intel_pstate_driver == &intel_pstate)
2456                                 intel_pstate_clear_update_util_hook(cpu);
2457
2458                         kfree(all_cpu_data[cpu]);
2459                         all_cpu_data[cpu] = NULL;
2460                 }
2461         }
2462         put_online_cpus();
2463 }
2464
2465 static int intel_pstate_register_driver(void)
2466 {
2467         int ret;
2468
2469         ret = cpufreq_register_driver(intel_pstate_driver);
2470         if (ret) {
2471                 intel_pstate_driver_cleanup();
2472                 return ret;
2473         }
2474
2475         mutex_lock(&intel_pstate_limits_lock);
2476         driver_registered = true;
2477         mutex_unlock(&intel_pstate_limits_lock);
2478
2479         if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2480             pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2481                 intel_pstate_debug_expose_params();
2482
2483         return 0;
2484 }
2485
2486 static int intel_pstate_unregister_driver(void)
2487 {
2488         if (hwp_active)
2489                 return -EBUSY;
2490
2491         if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2492             pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2493                 intel_pstate_debug_hide_params();
2494
2495         mutex_lock(&intel_pstate_limits_lock);
2496         driver_registered = false;
2497         mutex_unlock(&intel_pstate_limits_lock);
2498
2499         cpufreq_unregister_driver(intel_pstate_driver);
2500         intel_pstate_driver_cleanup();
2501
2502         return 0;
2503 }
2504
2505 static ssize_t intel_pstate_show_status(char *buf)
2506 {
2507         if (!driver_registered)
2508                 return sprintf(buf, "off\n");
2509
2510         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2511                                         "active" : "passive");
2512 }
2513
2514 static int intel_pstate_update_status(const char *buf, size_t size)
2515 {
2516         int ret;
2517
2518         if (size == 3 && !strncmp(buf, "off", size))
2519                 return driver_registered ?
2520                         intel_pstate_unregister_driver() : -EINVAL;
2521
2522         if (size == 6 && !strncmp(buf, "active", size)) {
2523                 if (driver_registered) {
2524                         if (intel_pstate_driver == &intel_pstate)
2525                                 return 0;
2526
2527                         ret = intel_pstate_unregister_driver();
2528                         if (ret)
2529                                 return ret;
2530                 }
2531
2532                 intel_pstate_driver = &intel_pstate;
2533                 return intel_pstate_register_driver();
2534         }
2535
2536         if (size == 7 && !strncmp(buf, "passive", size)) {
2537                 if (driver_registered) {
2538                         if (intel_pstate_driver != &intel_pstate)
2539                                 return 0;
2540
2541                         ret = intel_pstate_unregister_driver();
2542                         if (ret)
2543                                 return ret;
2544                 }
2545
2546                 intel_pstate_driver = &intel_cpufreq;
2547                 return intel_pstate_register_driver();
2548         }
2549
2550         return -EINVAL;
2551 }
2552
2553 static int no_load __initdata;
2554 static int no_hwp __initdata;
2555 static int hwp_only __initdata;
2556 static unsigned int force_load __initdata;
2557
2558 static int __init intel_pstate_msrs_not_valid(void)
2559 {
2560         if (!pstate_funcs.get_max() ||
2561             !pstate_funcs.get_min() ||
2562             !pstate_funcs.get_turbo())
2563                 return -ENODEV;
2564
2565         return 0;
2566 }
2567
2568 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2569 {
2570         pid_params.sample_rate_ms = policy->sample_rate_ms;
2571         pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2572         pid_params.p_gain_pct = policy->p_gain_pct;
2573         pid_params.i_gain_pct = policy->i_gain_pct;
2574         pid_params.d_gain_pct = policy->d_gain_pct;
2575         pid_params.deadband = policy->deadband;
2576         pid_params.setpoint = policy->setpoint;
2577 }
2578
2579 #ifdef CONFIG_ACPI
2580 static void intel_pstate_use_acpi_profile(void)
2581 {
2582         if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
2583                 pstate_funcs.get_target_pstate =
2584                                 get_target_pstate_use_cpu_load;
2585 }
2586 #else
2587 static void intel_pstate_use_acpi_profile(void)
2588 {
2589 }
2590 #endif
2591
2592 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2593 {
2594         pstate_funcs.get_max   = funcs->get_max;
2595         pstate_funcs.get_max_physical = funcs->get_max_physical;
2596         pstate_funcs.get_min   = funcs->get_min;
2597         pstate_funcs.get_turbo = funcs->get_turbo;
2598         pstate_funcs.get_scaling = funcs->get_scaling;
2599         pstate_funcs.get_val   = funcs->get_val;
2600         pstate_funcs.get_vid   = funcs->get_vid;
2601         pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2602
2603         intel_pstate_use_acpi_profile();
2604 }
2605
2606 #ifdef CONFIG_ACPI
2607
2608 static bool __init intel_pstate_no_acpi_pss(void)
2609 {
2610         int i;
2611
2612         for_each_possible_cpu(i) {
2613                 acpi_status status;
2614                 union acpi_object *pss;
2615                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2616                 struct acpi_processor *pr = per_cpu(processors, i);
2617
2618                 if (!pr)
2619                         continue;
2620
2621                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2622                 if (ACPI_FAILURE(status))
2623                         continue;
2624
2625                 pss = buffer.pointer;
2626                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2627                         kfree(pss);
2628                         return false;
2629                 }
2630
2631                 kfree(pss);
2632         }
2633
2634         return true;
2635 }
2636
2637 static bool __init intel_pstate_has_acpi_ppc(void)
2638 {
2639         int i;
2640
2641         for_each_possible_cpu(i) {
2642                 struct acpi_processor *pr = per_cpu(processors, i);
2643
2644                 if (!pr)
2645                         continue;
2646                 if (acpi_has_method(pr->handle, "_PPC"))
2647                         return true;
2648         }
2649         return false;
2650 }
2651
2652 enum {
2653         PSS,
2654         PPC,
2655 };
2656
2657 struct hw_vendor_info {
2658         u16  valid;
2659         char oem_id[ACPI_OEM_ID_SIZE];
2660         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2661         int  oem_pwr_table;
2662 };
2663
2664 /* Hardware vendor-specific info that has its own power management modes */
2665 static struct hw_vendor_info vendor_info[] __initdata = {
2666         {1, "HP    ", "ProLiant", PSS},
2667         {1, "ORACLE", "X4-2    ", PPC},
2668         {1, "ORACLE", "X4-2L   ", PPC},
2669         {1, "ORACLE", "X4-2B   ", PPC},
2670         {1, "ORACLE", "X3-2    ", PPC},
2671         {1, "ORACLE", "X3-2L   ", PPC},
2672         {1, "ORACLE", "X3-2B   ", PPC},
2673         {1, "ORACLE", "X4470M2 ", PPC},
2674         {1, "ORACLE", "X4270M3 ", PPC},
2675         {1, "ORACLE", "X4270M2 ", PPC},
2676         {1, "ORACLE", "X4170M2 ", PPC},
2677         {1, "ORACLE", "X4170 M3", PPC},
2678         {1, "ORACLE", "X4275 M3", PPC},
2679         {1, "ORACLE", "X6-2    ", PPC},
2680         {1, "ORACLE", "Sudbury ", PPC},
2681         {0, "", ""},
2682 };
2683
2684 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2685 {
2686         struct acpi_table_header hdr;
2687         struct hw_vendor_info *v_info;
2688         const struct x86_cpu_id *id;
2689         u64 misc_pwr;
2690
2691         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2692         if (id) {
2693                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2694                 if ( misc_pwr & (1 << 8))
2695                         return true;
2696         }
2697
2698         if (acpi_disabled ||
2699             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2700                 return false;
2701
2702         for (v_info = vendor_info; v_info->valid; v_info++) {
2703                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2704                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2705                                                 ACPI_OEM_TABLE_ID_SIZE))
2706                         switch (v_info->oem_pwr_table) {
2707                         case PSS:
2708                                 return intel_pstate_no_acpi_pss();
2709                         case PPC:
2710                                 return intel_pstate_has_acpi_ppc() &&
2711                                         (!force_load);
2712                         }
2713         }
2714
2715         return false;
2716 }
2717
2718 static void intel_pstate_request_control_from_smm(void)
2719 {
2720         /*
2721          * It may be unsafe to request P-states control from SMM if _PPC support
2722          * has not been enabled.
2723          */
2724         if (acpi_ppc)
2725                 acpi_processor_pstate_control();
2726 }
2727 #else /* CONFIG_ACPI not enabled */
2728 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2729 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2730 static inline void intel_pstate_request_control_from_smm(void) {}
2731 #endif /* CONFIG_ACPI */
2732
2733 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2734         { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2735         {}
2736 };
2737
2738 static int __init intel_pstate_init(void)
2739 {
2740         const struct x86_cpu_id *id;
2741         struct cpu_defaults *cpu_def;
2742         int rc = 0;
2743
2744         if (no_load)
2745                 return -ENODEV;
2746
2747         if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
2748                 copy_cpu_funcs(&core_params.funcs);
2749                 hwp_active++;
2750                 intel_pstate.attr = hwp_cpufreq_attrs;
2751                 goto hwp_cpu_matched;
2752         }
2753
2754         id = x86_match_cpu(intel_pstate_cpu_ids);
2755         if (!id)
2756                 return -ENODEV;
2757
2758         cpu_def = (struct cpu_defaults *)id->driver_data;
2759
2760         copy_pid_params(&cpu_def->pid_policy);
2761         copy_cpu_funcs(&cpu_def->funcs);
2762
2763         if (intel_pstate_msrs_not_valid())
2764                 return -ENODEV;
2765
2766 hwp_cpu_matched:
2767         /*
2768          * The Intel pstate driver will be ignored if the platform
2769          * firmware has its own power management modes.
2770          */
2771         if (intel_pstate_platform_pwr_mgmt_exists())
2772                 return -ENODEV;
2773
2774         if (!hwp_active && hwp_only)
2775                 return -ENOTSUPP;
2776
2777         pr_info("Intel P-state driver initializing\n");
2778
2779         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2780         if (!all_cpu_data)
2781                 return -ENOMEM;
2782
2783         intel_pstate_request_control_from_smm();
2784
2785         intel_pstate_sysfs_expose_params();
2786
2787         mutex_lock(&intel_pstate_driver_lock);
2788         rc = intel_pstate_register_driver();
2789         mutex_unlock(&intel_pstate_driver_lock);
2790         if (rc)
2791                 return rc;
2792
2793         if (hwp_active)
2794                 pr_info("HWP enabled\n");
2795
2796         return 0;
2797 }
2798 device_initcall(intel_pstate_init);
2799
2800 static int __init intel_pstate_setup(char *str)
2801 {
2802         if (!str)
2803                 return -EINVAL;
2804
2805         if (!strcmp(str, "disable")) {
2806                 no_load = 1;
2807         } else if (!strcmp(str, "passive")) {
2808                 pr_info("Passive mode enabled\n");
2809                 intel_pstate_driver = &intel_cpufreq;
2810                 no_hwp = 1;
2811         }
2812         if (!strcmp(str, "no_hwp")) {
2813                 pr_info("HWP disabled\n");
2814                 no_hwp = 1;
2815         }
2816         if (!strcmp(str, "force"))
2817                 force_load = 1;
2818         if (!strcmp(str, "hwp_only"))
2819                 hwp_only = 1;
2820         if (!strcmp(str, "per_cpu_perf_limits"))
2821                 per_cpu_limits = true;
2822
2823 #ifdef CONFIG_ACPI
2824         if (!strcmp(str, "support_acpi_ppc"))
2825                 acpi_ppc = true;
2826 #endif
2827
2828         return 0;
2829 }
2830 early_param("intel_pstate", intel_pstate_setup);
2831
2832 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2833 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2834 MODULE_LICENSE("GPL");